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Abstract

In this paper, we obtain successively weak, strong and linear convergence analysis of the
sequence of iterates generated by our proposed subgradient extragradient method with double
inertial extrapolation steps and self-adaptive step sizes for solving variational inequalities for
which the cost operator is pseudo-monotone and Lipschitz continuous in real Hilbert spaces.
Our proposed method is a combination of double inertial extrapolation steps, relaxation step
and subgradient extragradient method which is aimed to increase the speed of convergence
of many available subgradient extragradient methods with inertia for solving variational
inequalities. Several versions of subgradient extragradient methods with inertial extrapolation
step serve as special cases of our proposed method and the inertia in our proposed method is
more relaxed and chosen in [0, 1]. Numerical implementations of our method show that our
method is efficient, implementable and the benefits gained when subgradient extragradient
method with double inertial extrapolation steps are considered for variational inequalities
instead of subgradient extragradient methods with one inertial extrapolation step available
in the literature.
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1 Introduction

Suppose C is anonempty, closed and convex subset of areal Hilbert space H and A : C — H
is a continuous operator. Consider the variational inequality problem (VI(A, C), for short):
find x € C such that

(Ax,y —x)>0 VyeC. (1)

Several real-world problems from mechanics, economics, engineering and so on, can be
recast into VI(A, C)(1) (see, for example, [1,2,12,14,17-19,23,24]). We assume, throughout
this paper, that S denotes the set of solutions of VI(A, C)(1).

One of the projection methods for solving VI(A, C) (1) is the subgradient extragradient
method introduced in [6] by Censor et al.: x; € H,

Yn = Pc(xp — Ay Axy),
T, :={w € H : (x — MAxy — yn, w — yu) < 0}, 2)
Xn4+1 = PTn(xn —AAyy), n>1,

where 0 < inf,>1 Ay < sup,>; An < % Censor et al. [6] proved that the sequence {x;}
generated by (2) converges weakly to a solution of VI(A, C)(1) (see also [5] for strong
convergence results). The subgradient extragradient method (2) has shown numerically to
improve the extragradient method of Korpelevich [20] when computing projection onto
the feasible set C is computationally expensive (i.e., method (2) minimizes the number of
projections onto C per iteration in the extragradient method) and has been studied by several
authors when A is either monotone or pseudo-monotone in Hilbert spaces.

In [35], Yang et al. studied a modification of the subgradient extragradient method (2) with
the following self-adaptive step-size procedure: Given A1 > 0, x; € H and u € (0, 1),

Yn = Pc(xp — Xy Axy),
T, ={weH: (xy —XAxp — Yu, w — yn) < 0}, 3)
Xp41 = Pr, (X — AnAyn),
where {A,} is given by
] =y P4 1 =ya 12
Angl = mm{ 20 A ) ’)‘”}’ (Axn = Ayn, Xn1t = ya) > 0 )
" otherwise

and showed that the sequence {x,} generated by (3) converges weakly to a solution of
VI(A, C) (1).

Furthermore, Fan et al. in [13] studied the subgradient extragradient method (2) with a single
inertial extrapolation step:

Wy = Xy + 0 (Xp — Xp—1),

yn = Pc(wy — Ay Awy),

T, :={weH:{w, — A Aw, — yp, w — y,) < 0},
Xpp1 = (I —ap)wy + oy, Pr, (Wn — AnAyn),

(&)

where 0 < 6, < 6p41 < 1,4, = 0asn — 00, Y oo | Ay = 00,

40[6(14+6) + o]

5
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and

8 —40[0(140) + 1068 + o]

O<a<a, < T
45[0(1 4 6) + 708 + o]

Fan et al. [13] gave weak convergence result of method (5). Similar recent results on solving
VI(A, C)(1) using versions of method (5) are found in [31], where 0 < 6, < 41 < 15,
A — Oasn — ooandzzilkn = 00; in [32] where 0 < 6, < 0,41 < %,O < a <
oy < % and {A,} is generated by a self-adaptive procedure; in [34] where 0 < 6, < 6 <

—20—1++/86+1

2(1-6)

0= 172&, 0 < u < puo < 1 andin [30] where «;, = 1 and 6, is chosen as

. 1
min| —>———-,0t, x Xp—
0, = {n2uxn—xn_1u2’ ] n 7 Xn-t,
0, otherwise

and 6 > 0. It is observed in all the versions of inertial subgradient extragradient method
mentioned above, the inertial term 6, in the single inertial extrapolation step is chosen such
that0 <6, <0 < 1.

Recently, Shehu et al. [27] proposed a relaxed version of inertial subgradient extragradient
method to solve VI(A, C)(1):

Wy = Xy + O (X — Xp—1),

yn = Pc(wy — Ay Awy),

Ty :={weH: (wy —ryAwy — yn, w — yn) <0},
Xn+1 = (1 - an)xn + OlnPT,, (wn - knAyn)y

6

where0 <6, <land0 < o, < % Shehu et al. [27] obtained weak and strong convergence
results giving the numerical advantage of the relaxed choice of inertia 6,, € [0, 1] in (6) but
no linear convergence result was given.
Quite recently, Chang et al. [7] introduced the following inertial subgradient extragradient
algorithm with adaptive step sizes tosolve VI(A, C)(1):x; = xo € H, y1 = Pc(x1—A1Axy),
Zn41 = Xp +8(xp — Xp—1),
Yu+1 = Pc(zns1 — AnAyn), )
Ty :={w e H :{(zn+1 — AnAYn — Yn+1, W — Yu+1) < 0},
Xnt1 = Pr,(Zn+1 — AnAYn+1),

with the following conditions satisfied:

0<6<3=Y8
O<ua< é,
14+/248 (8)

S(L+8)(1+0) — p(@) (87 - §) < G20
o) :=1—(1++2)e.

Weak convergence of the sequence {x,} generated by (7) was presented alongside some
numerical results. However, neither strong nor linear convergence results for (7) was given
by Chang et al. [7]. Another drawback of the method in [7] is that the inertia § is quite
restrictive and chosen in [0, %) and moreover, the conditions imposed in (8) seem stringent
on the iterative parameters. Some further recent results on inertial subgradient extragradient
method are found in [8-11,16].

Our aim in this paper is to further improve the inertial subgradient extragradient method
to solve VI(A, C)(1). Specifically, in the present paper we study the inertial subgradient
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extragradient method and improve on the results in [7,13,27,30-32,34,35] in the following
ways:

e We proposed inertial subgradient extragradient method with double inertial extrapolation
steps and relaxation parameter. The method considered in Shehu et al. [27] becomes a
special case and so also are the inertial subgradient extragradient methods studied in
[6,7,13,30-32,34,35]. One of the inertial factors in our double inertial extrapolation steps
is allowed to be equal to 1 and the other inertial factor can be chosen as close as possible
to 1 (see our proposed Algorithm 1 below) which is an improvement over the methods in
[7,13,31,32,34] where the only single inertial extrapolation step is studied and the inertia
is bounded away from 1.

e We obtain weak, strong and linear convergence of our proposed method, respectively.
Weak and strong convergence results are given for inertial subgradient extragradient
method with double inertial extrapolation steps and relaxation parameter with self-
adaptive step size. In the special case when the constant step size is considered alongside
the known Lipschitz constant and modulus of strong pseudo-monotonicity of the cost
operator, we show that linear rate of convergence is achieved. This is an improvement
over the results in [6,7,13,27,31,32,34,35] where no linear rate of convergence is obtained
for inertial subgradient extragradient method.

e We give numerical computations of our proposed method and compare it with the methods
in [7,13,27,30,34,35]. Our preliminary computational results show that our proposed
method is efficient and converges faster (in terms of CPU time and number of iterations)
than the inertial subgradient extragradient methods in [7,13,27,30,34,35].

Our paper is organized as follows: We present some definitions and lemmas in Sect. 2. In
Sect. 3, we introduce our proposed method. Weak convergence analysis of our proposed
method is given in Sect. 4 and strong convergence analysis is given in Sect. 5. Furthermore,
linear convergence is obtained in Sect. 6. We present numerical implementations in Sect. 7
and give some concluding remarks in Sect. 8.

2 Preliminaries

This section gives some definitions and lemmas that would be needed in our convergence
analysis of this paper.

Definition 2.1 A mapping A : H — H is called

(a) n-strongly monotone on H if there exists a constant > 0 such that (Ax — Ay, x —y) >
nllx — y|? forall x, y € H;

(b) monotone on H if (Ax — Ay,x —y) > Oforallx,y € H;

(c) 8-strongly pseudo-monotone on H if there exists § > 0 such that (Ay,x —y) > 0 =
(AX,X_y> = 6”)‘: _y”27 X,y € Ha

(d) pseudo-monotone on H if, forall x,y € H, (Ax,y —x) > 0= (Ay,y —x) > 0;

(e) L-Lipschitz continuous on H if there exists a constant L > 0 such that ||[Ax — Ay|| <
Llx —y| forallx,y € H.

(f) sequentially weakly continuous if for each sequence {x, } we have: {x, } converges weakly
to x implies {Ax,} converges weakly to Ax.

Remark 2.2 Observe that (a) implies (b), (a) implies (c), (c) implies (d), and (b) implies (d)
in the above definitions. If A is n-strongly pseudo-monotone and continuous mapping on
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finite-dimensional subspaces, it has been shown (see, e.g., [36, Theorem 4.8]) that VI(A, C)
(1) has unique solution.

Definition 2.3 The mapping Pc : H — C which assigns to each point u € H the unique
point w € C such that

lu—wl <llu—yll VyeC

is called the metric projection of H onto C.
The metric projection Pc satisfies (see, for example, [3])

(x =y, Pcx — Pcy) = ||Pcx — Pey|)? Va,y € H. ©)
Furthermore, Pcx is characterized by the properties

PcxeC and (x — Pcx,Pcx —y) >0 VyeC. (10)
This characterization implies that

llx = yI? = llx = Pex[|* + lly — Pex||* Vx € H, Vy € C. (1n

Lemma 2.4 The following statements hold in H :

@) lx +y1? = x>+ 2(x, y) + Iyl* forall x, y € H;
(i) llx 4+ yI? < x> +2(y, x + y) forall x, y € H;
(iii) lax +Byl? = ala+B)lx|> + B+ P)llyll> —eBllx —y|I> Vx,y € H, a, B e R.

Lemma 2.5 (Maingé [21]) Let {¢,}, {6,} and {0,,} be sequences in [0, +00) such that

+00
Ont1 < On + 0 (0 — Pn—1) + 8, ¥n > 1, an < 400,

n=1

and there exists a real number 0 with O < 6, < 6 < 1 for all n € N. Then the following
assertions hold true:

() Z,T;’?[wn — @u—1l+ < 400, where [t]; := max{t, 0};

(i) there exists ¢* € [0, +00) such that lim,_, oc ¢, = @*.

Lemma 2.6 (Opial [25]) Let C be a nonempty subset of H and let {x,} be a sequence in H
such that the following two conditions hold:

(i) forany x € C, lim,_,  ||x;, — x|| exists;
(1) every sequential weak cluster point of {x,} is in C.

Then {x,} converges weakly to a point in C.

3 Proposed Method

In this section we introduce and discuss our projection-type method.

Assumption 3.1 Suppose that the following assumptions are satisfied:

(a) The feasible set C is a nonempty, closed, and convex subset of H.
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(b) A: H — H is pseudo-monotone, L-Lipschitz continuous and A satisfies the following
condition: whenever {x,} C H and x,—v*, one has | Av*|| < liminf ||Ax,|.
n—o00

(c) The solution set S of VI(A, C) (1) is nonempty.
(d) Ofen Sen—H <1

€ 0<6 <min[%,91], € € (2, 00).

1
0 0<a=ap <onq1 < g, € €(2,00).

Remark 3.2 The condition " whenever {x,} C H and x,—v*, one has [|[Av*| <
liminf ||Ax,|." in Assumption 3.1(b) is strictly weaker than the sequentially weakly contin-
n— 00

uous assumption in [7,13,30-35]. For example, take A(v) = v||v|| Vv € C. Then A satisfies
our assumption but not sequentially weakly continuous.

We propose our subgradient extragradient method with double inertial extrapolation step and
self-adaptive step sizes.

Algorithm 1 Double Inertial Subgradient Extragradient Method with Adaptive Step Size

1: Choose the parameters 1 € (0, 1) and A1 > 0. Let xg, x; € H be given starting points. Set n := 1.
2: Compute

Wy = Xp + O (Xn — Xp—1), (12)

2 =Xn + 60X — xp—1),
yn = Pc(wp — ApAwp),

where
: pllwn—ynll
o Lt e B TR (13)
- otherwise.

If w, = yn = xp, STOP. Otherwise
3: Compute

Xp+1 = (I —an)zn + on P, (wp — AnAyn), n =1, (14)
where {7} is given by
Tn :={w € H : (wp — ApAwp — yn, w — yp) < 0}

4: Setn < n+ 1, and go to 2.

Remark 3.3 Observe that if x, = w, = y,, then (12) implies the equality x, = Pc(x, —
A Axy) and so x,, € S.

Remark 3.4 Note that by (13), A,+1 < A, Vn > 1 and there exists A > O such that lim %, =
n—0o0
A > min{%,kl}.

Remark 3.5 (a) In our Algorithm 1, the inertia 6,, = 1 is allowed. This is not the case for the
methods in [7,13,31,32,34,35] where 6,, < 1. Observe also in our proposed Algorithm

1 that as € increases, so is § approaching 1 since lim,_, o =< Y2¢ — 1. Furthermore,
as € increases, o, reduces. Conversely, as € approaches 2, § approaches zero and o,
approaches %
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(b) In the inertial subgradient extragradient methods proposed in [7,32,34], many stringent
conditions are imposed on the inertial factor. For example, in [7], 6 is assumed to satisfy
seemingly strong condition (8) above; in [32] that) < 6, <6 < % and {6, } was assumed
to satisfy the condition 0 < 6, <6 < 72@722?7_ 5)89}1,9_ = 1—2&,0 < u<py<lin
[34]. Our Assumption 3.1(d)—(f) are easier to implement than the conditions in [7,32,34].

(c) In the paper [13], it was assumed that 0 < 6, < 6 < 1 with

40[0(1 4 6) + o]
_ 40160 +0) +o]
1—62

and

§—40[0(1+6) + 108 + 0]
4800(1 +0) + 108 + 01

O<a<a, <

In the result of this paper, these strong assumptions are dispensed with and replaced with
a more relaxed and seemingly easier conditions in Assumption 3.1 (d)-(f).

(d) A self-adaptive step size rule is incorporated in Algorithm 1. It is more efficient than the
step size rule in the methods of [13,31], where it is assumed that A, — 0 asn — oo
and that ) >, A, = oo. Furthermore, our adaptive step size rule does not require the
knowledge of the Lipschitz constant of A as an input parameter. Also, Algorithm 1 does
not require any line search. O

4 Convergence Analysis
In this section we show that under Assumption 3.1, the sequence {x,} generated by Algo-
rithm 1 converges weakly to a point in S.
For the rest of this paper, we define
up = Pr,(w, — A, Ay,) Vn > 1.

First we prove the following lemma for {x,} generated by Algorithm 1.

Lemma 4.1 Suppose that {x,} is generated by Algorithm 1 and Assumption 3.1 holds. Then
{x,,} is bounded.

Proof Choose a point x* € S. Then (Ax*, y, — x*) > 0 and since A is pseudo-monotone,
we have (Ay,, y, — x*) > 0. Hence (Ay,, v, — x* + u,, — uy,) > 0 and thus

(Ayn,x* —up) < {Ayn, Yu — n). (15)
From the definition of 7;, we have (w, — A, Aw, — yu, un — yn) < 0. Therefore

(Wp — A AYn — Yn, Un — Yn)
= (wn — AnAwy — Yn, n — Yn) + An{Awy — Ayn, un — yn)
< An(Awy, _A))na Up _yn>~ (16)
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Using (11) and (15), we now obtain

litn — x*1* < llwp — 2 Ayn — x* 12 = lwy — Ay Ay — ||
= flwy — x*[1* = llwn — > + 220 (Ayn, x* — 1)
< llwp — X1 = llwn — unl* + 22 (Ayn, Yn — tn)
= llwy — x* 1> = lwn — tn + Yn — Yull* + 200 (A, Yu — tn)
= llwy — x* > = lwy — yull* = llyn — unl®

+2(wy, — ApAyy — Yn, Up — Yn). a7
Next, using (16) and (17), we see that

g — x*1% < flwy — x*|I* = wy — yull* = llyn — unl®
+ 2{wn — AuAYn — Yns Un — Yn)
< llwp — I = lwy = yull* = llyn — unl®
+ 20 (Awy — Ayn, Un — Yn)
< llwn — x*IF = lwp = yull* = llyn — unl®

+ 20| Awy — Aynllllun — yull

< Nlwn — x*1% = llwy — yull* = lyw — unll?
2An 1L
+ = wn = Yallllun — yall
)Ln+l

2 2 2
< lwn = x™ 17 = Nlwy — yull* = llyn — unll

Anfh
+ 2 (lwn = 3l + s = 3l
n+1
Anfh
= g = 5512 = (1= 5w = yal?
+1
Anpt
= (1= 25 = 3l ()
n+1

Since lim (1 — ;}’J) =1 — u > 0, there exists a natural number N > 1 such that
n— 00 n+l1

lun — x*|| < [lwy, —x*|| Vn = N. (19)
Now, from Algorithm 1, we have

It — 2% 1% = (1 — ) (zn — x*) + ot (un — x|
= (1 —aw)llzn — X*[1* + anllun — x*|?
—an(1 = ap)llzn — upll?
< (L= ap)llzn — x* 1> + aplwn — x|
—ay(1 = a)llzn — unl?, Vn = N. (20)

From x,,+1 = (1 — ay)zn + ayu, we have

1
lun — znll = —llxn4+1 — znll, Vo> 1. (21)
Uy
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Combining (21) with (20) gives

2 2 2
gt = x*1% < (1= @w)llzn — x*12 + @ llwy — 7]
(I —ap)

n

2
IXn4+1 — znll”, Vr = N.

Also, by Lemma 2.4 (iii), we have

lwy — X1 = X + 6n (x5 — xn—1) — x|
= (1 4 6,) (g — x*) = O (xu—y — )12
= (1+0,)llxn — x*[1* = Opllxy—1 — x*|?
+ 0, (1 + 0,)|xn — Xp—11|%, V0 > 1.

Applying Lemma 2.4 (iii) again, we have

lzn — x*[1* = [0 + 8Ctn — x—1) — x|
= [|(1 +8)(xpy — x*) = §(xamy — x|
= (14 8)[xn — x*[I* = 8llxa_t — x*?
+8(1+ 8)llxy — xu—11I*, Vn > 1.

Also,

101 = zall? = X1 — G + 8o — xam )12
= [|(Xpg1 — Xn) — 8(xp — xp—1) >

(22)

(23)

(24)

2 2 2
= |lxpg1 — xnllI” + 87 %0 — Xu—1 17 — 28(Xn41 — Xy X — Xn—1)

2 2 2
> X1 — X0 I7 + 87 1% — xu—1117 = 28 1xp+1 — Xnllllxn — xp—1l

> (1= 0)lxns1 = xll* + 6% = )l —xn1 >
Substituting (23), (24) and (25) into (22), we have
b =212 < (1= e[ (1 )ln =512 = Sllut — )
801+ )lln = a1 1P + [ (1 + 60 15 = 512

= Ballamt = X124 60 (1 + 60 % = 5111
_U—ay

n

=1 —a)d+8lxy —x** = 81 — an)xn—1 — x*|I?

+ (1= a)8(1+ 8) Ixn — X111 + ot (1 + 6,) [ x — x*|1?

— O llxn—1 — X% + b, (1 4 6,) 1xy — X1 ||

(d—ad -9 s (—a)(*—9)
e . B
oy oy

= (1= )1+ 8) + a1 +6) ) Ity — 27|12

= (50 = @) + ) at = 2112

+ [(l —on)8(1 +8) + cu0,(1 4 6,) —

oy

(1 —an) (8% — 5)]

(25)

[ = &)1 = 202+ 6 = 8t = -1 1?]

2
llxn — xp—1ll

2
llxn — xp—1ll
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(1 —ap)(1 —9) 2
- Ixn41 — xall
Qp

= (1 @b+ 601 = o)) I = X2 = (a6 +5(1 = ) ) oy = x|

= pullxns1 = xull® + oullxn — xa1 117, (26)
where
_ (=) =9
n — -
Oy
and
(1— )8 —9)
o, = —ay)s(1+6) + a,60,(1+6,) — T
n
Define
Dy o= oin = 217 = (@2 + 81 = ) )11 = x*12 + olly = %t |2, 0= 1.
Then
Lot = Lo = It =17 = (@161 +8(1 = ) ) ey — 2]
ot = 32 = o = x*12 4 (bl + 81 = ) ) la-g — 271
+ 0l %, _)Cn—IH2
= (oo + 801 = ) = i Bss = 51— ) ) n — 27
= pallXng1 = Xnll® + oupi X041 — a1
= (60 = ®atn = Gt = Detat) o — x|
= PullXn41 = Xnll* + Opst K01 — X1 27)

Since 0, < Op41, 00 < app1and 0 < 6§ <6y < 6,,Yn > 1, we have that 6, — § > 0 and
Op+1 —8 > 0sothat 6, — 8 < 6,41 — S and (6, — Sy < (By+1 — 8)ap4q forall n > 1.

Hence,
(6n — 8oty — (Bpt1 — Sotny1 < 0.
Then from (27), we have
Tutt = Tn < =pallXnst = Xl + ongt X041 — Xa >
= —(pn — oD IXnt1 — xall*.

By Conditions (e) and (f) of Assumption 3.1, we have

(I —ayd —39)
Pn — On+1 = .~ (I —an+1)8(1 +8) — ay16n+1(1 + Ong1)
n
n (1 — apy 1) (8% = 8)
Up41

>e(1=8)+e(@® =8 — (1 —ant1)8(1 +8) — 204
> e(1—8) +€(6* = 8) —2(1 — 1) — 20041
=e(l1—8)+e@d>—68 —2

=e8® —2e5+e€—2.
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e~ ~/7

Since § < , we have that €82 — 2¢8 + € — 2 > 0. Therefore, from (29) and (30), we

have
Tyt — Dy < =Bllxns1 — xull’, 31
where f 1= €82 —2¢8 + ¢ —2 > 0. Hence, {I'»} is non-increasing. Furthermore,
P =l = X1 = (@6 +8(1 = ) ) a1 = x*12 4+ 0l = 501 [
> [lxn — x* 1% = (@b + 81 — @) lxa—1 — x*||*. (32)
So,
ltw = 17 = (b + 81 = o)) It = x|

= (o +8(1 = ) ) Ixamt = x* 2 4Ty

IA

($ 801 —a))||x L= 4T
1—"—6 n— n

= ylxn—1 —x* >+ T,
< plxa—r —x*I> + Ty

< y"lxo —x* 1P+ (A +y 4+
I
11—y’ (33)

< y"llxo — x*|I* + =y

where y := i +8(1 — @) € (0, 1) since § < Y2 < E & € (0,1) by the
choice of §. Hence, {||x, — x*||} is bounded and so is {x,,}. Also,

—pllxn—1 = x*)1? < llxn — x| = y llxnt — x|
<I,=<T.
Now,
Lt = e = 5512 = (@rs16rs1 +8(1 = ) e — 27112
+ Ot g1 — xal®
> — (@101 + 801 = anin)) vy — x| (34)
Using (33) and (34), we have

~ st = (1ot + 80 = ) 5 — x|

< yllxn —x*|?
yI'

llxo — x*)|* + T (35)
—-Y

n+l
By (31) and (35), we get

n
2
B E lxk+1 — xkll” < Ty — Tyt
k=1

n+1

Iy
llxo — x*|I* + ——. (36)
l—y
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Therefore,

00 I
D lnst — Xl £ ——— < +o0. (37)
o B —y)

This implies that lim ||x,4+1 — x,|| = 0. From (26) we get
n—0o0

st = 217 = (14 ey + 800 = ) lorn = 217 = (a6 + 81 = ) 1 — 572

— pullXng1 = xull? + onllxn — X1 I
< N = x* 12 4 (@ + 81— ) (lxn — x* 1% = [lxa—1 — x*[1)
+(7n||xn _xn—1||2
< o = x* 12 4 (@ + 81— ) (Ixn — x* 1 = llxa—1 — x*[1%)
2
1 —a)d(1+6 P
+[( @)8(1+8) + 1+¢€

(I-a)
o

+ O [EAE A (38)

where
(I -

2
on<(1—a)s(1+8)+—+ (6 —8%),¥n > 1.
1+e

Note also that
1
oy +6(1 —ay) < m—l—r?(l—a) <1

. € e=2¢ €
since § < o=y because § < == < i

Invoking Lemma 2.5 in (38) (and noting (37)), we get

fora € (0,1) and € € (2, 00).

lim ||x, —x™| exists.
n—o00
Therefore, {x,} is bounded. ]

Theorem 4.2 Let the sequence {x,} be generated by Algorithm 1. If Assumption 3.1 holds,
then it converges weakly to a point in S.

Proof From lim ||x,+1 — x,|| = 0, we have
n—oo

Ixn+1 — Zall < 1Xn+1 — Xnll + llxn — 22|l

= [[xp1 — Xull +8llxp — X401l — 0, n — o0.

Also,
IXn41 — wall < lxpg1 — Xl + 10 — wyll
< Mxps1 — xull + lxn — x4—1ll = 0,7 — o0.
Now,
Ixn+1 — zall = anllzy —unll > allzy — ugll,
which means that
lim |z, — un|l = 0. (39)
n—0o0
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Furthermore,
lwp — zull = llxn +8(xn — Xn—1) — Xn — Op (X — xp—1)|l
< Sllxn—1 — xXull + O llxn — xu—1ll
< 8llxn—1 — xnll + X — xp—1ll = 0,n — 00, (40)

Now, from Algorithm 1 we have

1
lun — znll = —lXn+1 — zull
Qp
1
< a”anrl = znll = 0,n — o0, (41

and similarly,
lwyp — upll < lwp — zall + llun — zall = 0, n — o0.

From (18), we have for some M > 0,

An it
(1= 225 = 3l =l — 12 = iy —
Antl

= (Wow =51+ Bt = 1) (e = 571 = e — "1

< M|lw, — uy|l = 0,n — 0. (42)
By (42) (and noting that lim,,_, sc X, = A), we see that lim,_,  |w, — y»|| = 0. Also

lxn — znll < llxn — X1/l + lxn+1 — 22ll > 0, — 00 (43)

and
lxn — wall < llxn = X1l + X041 — wall = 0,7 — o0. (44)

By Lemma 4.1, {x,} is bounded. Hence, let v* be a weak cluster point of {x,}. Then, we can
choose a subsequence of {x, }, denoted by {xy, } such that x,,, ~v* € H. Sincelim, o [ X, —
wy || = 0, we have that w,, —~v* € H. Therefore, we obtain from (42) that limy_, o [|wy, —
Yn Il = 0. Now using Lemma [29, Lemma 3.7], we have that v* € S. Since lim,— o ||, —
x*|| exists for any x* € S and every sequential weak cluster point of {x,} is in S, the
two assumptions of Lemma 2.6 are verified. Therefore, {x,} converges weakly to a point
in S. O

Remark 4.3 All the results in this section can still be obtained for the case where A is a pseudo-
monotone operator, L-Lipschitz continuous on bounded subsets of H and the functional
g(x) ;= ||Ax||, x € H is weakly lower semi-continuous on H.

5 Strong Convergence
In this section, we give strong convergence result of our proposed Algorithm 1 when the
operator A in VI(A, C) (1) is strongly pseudo-monotone and Lipschitz continuous on H.

The strong convergence result is obtained without the prior knowledge of both the modulus
of strong pseudo-monotonicity and the Lipschitz constant of the cost operator A.
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Theorem 5.1 Suppose Assumption 3.1(a), (e) and (f) hold. Let the sequence {x,} be generated
by Algorithm 1. If A is strongly pseudo-monotone and Lipschitz continuous on H, then {x,}
converges strongly to the unique solution x* of VI(A, C) (1).

Proof Observe that the strong pseudo-monotonicity of A implies that VI(A, C) (1) has a
unique solution. Let us denote this unique solution by x*. Hence, (Ax*, y, — x*) > 0. By

the strong pseudo-monotonicity of A, we have (Ay,, y, — x*) > 5|y, — x*||2, where 7 is
some positive constant. Thus,
(A, Yo — ttn + uy —2*) = llyn = x*)1%.
and
(A, X = tun) < (Ayn yu = ttn) = nllyn = 2*|1%. (45)

Using (11) and (53), we get

lin = x*1* < llwy — AnAyn — X*[I* = llwn — Ay Ayn — n|)?

= llwn — x*1* = lwn — tn|* + 220 (Ayn, X* — 1)

< llwp — I = llwy — unl* + 220 (Ayn, Yo — tn)
— 2 llyn — x|

= Jlwy — x*|> = lwn + Yn — Yu — tnll* + 220 (Ayn, Yn — tn)
= 20unllyn — x*|?

= llwn = x*12 = lwn = yall> = yn — uanll* = 2200 llyn — x*|I?
+2{wn — AuAYn — Yns Un — Yn)- (46)

Using (16), we also have

(Wn — A AYn — Y, iy — Yn) < Ap(Awy — Ayp, Uy — Yu)-
By (46), we get

i = x*12 < flwn — 317 = llwn = yull* = lyn — unll* = 20unllyn — x|
+2(wy — ApAyn — Y, n — Yn)
< llwn = x*1% = llwn — yall* = lyn — unl®* = 22nnllyn — x*|1?
+ 20 (Awy — Ay, Uy — Yu)
< llwn — X1 = llwn — yull* = lyn — unll* = 20anllyn — x*|?

Anlh
lw, — yull* + == llun — yull, (47)
Al Antl

where

2(Awy, — Ay, upy — yn) < 21l1Aw, — Aypllllug — yull

lwn — yullllen — yull
}\n+1

=

2 2
lwn — yull” + lun — ynull*

An+1 An+l

Since lim,,—,oc A, = X and the sequence {A,} is monotonically decreasing, we have A, >
A Vn > 1. Let p be a fixed number in the interval (u, 1). Since lim,_ % =u < p,
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there exists a natural number N such that

/{\:fl < p Vn> N.So,Vn > N, we have

Py
A=A, 2B, (48)
)Ln+1

Plugging (48) in (47), we have Vn > N,
g — x*1* < llwy = x*17 = (1= p)llwp — yull* = A = P lIyn — unll* = 2470y, — x*|1?
= [1(1 4 6,) (ot — x*) = O (X1 — x> = (1 = p)llwy — yull®
— (1= p)llyn — unll* = 247l yn — x*|1?
= (146 [1x0 — x*1? = Opllxu—r — x*|12
+ 0, (14 0) %0 — X1 1> = (1 = p)llwy — yall?
— (1= p)llyn — unll* = 220y — x*|1*. (49)
Repeating similar arguments from (20) to (26), we obtain
st = 217 < (14 ey + 801 = )ty = 517 = (a6 + 51 = ) ) -1 = 57|12
— pullXnst = Xull? 4 onllxn — Xn—111* + 2aninlly, — x*|1%,Vn > N.
(50)
Therefore,
2aanllyn — x* |7 < Nl — x*|* = [1xp1 — ¥
(et + 80 = @) (w = 512 = ot = x*112)
+onllxn — xn—1 ”2
< D — x* 12 = llxg1 — x*|1?
+ (b + 01 = a)) (I = 512 = a1 — ")
+ M*||xy — X1 1%
where

D)

o

2
M* =1 —-a)81+6
S

Hence

n

2 2 2
20in 3 vk = x* I < lew — 512 = lPxugn — 27|
k=N

+ (e + 801 = ) ) 15 — x|

- (aN—19N—1 +5(1 - OlN—l))IIXN—l —x*)?

n
2
+ MY = x|
k=N

Since the sequence {x,} is bounded and Z/?izv Xk — xi—1l> < o0 by (37), we have that
S22 v vk — x*|1? < 0o. Hence lim ||y, — x*|| = 0. Consequently, we get
n—0o0

e, — x* N < Nl — wall + llwy, = Yull + llyn —x*|| - 0,n — oo.
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This concludes the proof. O

Remark 5.2 Theorem 5.1 is obtained for the sequence {x, } generated by Algorithm 1, which
is a subgradient extragradient method with double inertial extrapolation steps without a pri-
ori knowledge of the modulus of strong pseudo-monotonicity and the Lipschitz constant
of A. As far as we know, our result is one of the few available strong convergence results
for solving VI(A, C) (1) with a combination of subgradient extragradient method and dou-
ble inertial extrapolation steps. The benefits of adding double inertial extrapolation step as
against single inertial extrapolation step are discussed in the numerical illustrations given in
Sect. 7.

6 Linear Convergence

In this section, we give linear rate of convergence of sequence {x, } generated by our proposed
Algorithm 1 to the unique solution x* of VI(A, C)(1) under the following assumptions:

Assumption 6.1 (a) The feasible set C is a nonempty, closed, and convex subset of H.

(b) A: H— H is n strongly pseudo-monotone and L-Lipschitz continuous.

(c) Choose the constantstep size A € (0, %) suchthatt := 1—% min{l—AL,2An} € (%, 1).
(d) Take § = 0 and choose 6, =0 € [0, 1] suchthat 0 < 0 < 1_7’

€ ap=ac0,3).

Under Assumption 6.1, our proposed Algorithm 1 reduces to the following Algorithm.

Algorithm 2 Single Inertial Subgradient Extragradient Method

1: Let xg, x1 € H be given starting points. Set n := 1.
2: Compute

Wy = xXp +0(xn — xp—1), 31
{ Yn = PC(wn — AMwp), ( )

If wy, = y, = xp, STOP. Otherwise
3: Compute

Xpt1 = (I — a)xpy + aPp, (wy —AAyy), n =1, (52)
where the sequence {7},} is defined by
Tn:={w € H : {wp — AAwn — yn, w — yn) < 0}.

4: Setn <—n + 1, and go to 2.

Using Assumption 6.1, we now give the linear convergence of Algorithm 2 below.

Theorem 6.2 Suppose that Assumption 6.1 is fulfilled. Then {x,},2 | generated by Algorithm?2
converges linearly to the unique point in S.

Proof Let x* € § be the unique solution of VI(A, C) (1). Since A is n-strongly pseudo-
monotone, we have that

(A}"n’ Yn _x*> = 77||yn _X*Hz-
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Therefore,

(Ayrh Uy — X*> = (Aym Uy — yn> + (Aym Yn — X*>
> llyn — x* 1% + (Ayn, yn — x*).
Hence,
— 20 { Ay, up — x*) < =2An|lyn — x*||%
—2M(Ayn, un — Yn)- (583)
By (11) and (53), we have
litn — x*1% < llwp — 2Ayn — x*17 = lwn — AAy, — un|?
= [lwy, — ™% = lwy — wn|* = 21 (A, ty — x*)
< Nwn — x*1? = lwn — unll® = 2270l yn — x*|1?
— 20 (Ayn, tuy — yn)
= [lwy — x* 1% — [ Wn — thn + yu — Yall* = 220llyn — x*|12
—2X(Ayn, Un — Yn)
= Jlwp — x*1% = lwa — yull* = llyn — wnll?*
— 20l yn — X124 20wy — AAYy — Y, tty — ). (54)
Note that from the definition of 7,,, we get
(W, — AAW, — yp, Uy — yn) <0
and thus
(wy, _)\Ayn _yn»”n_yn> < AM{Aw, _Ayn’un _)’n>- (55)
Hence,
g — x*11% < llwy — X1 = lwn — Yull® = llyn — unl?
— 20 llyn — X* 12 4 2(wy — AAYy — Yn, tn — )
< Jwp — x* 12 = wn — yull® = lyn — unl?
—2Allyn — x* 1?4 20 Awy — Ayp, tty — Yn)
< llwn —x*1* = (A = ALY wy — yull* = (1 = AL) ||y — unll*
—2Anllyn — x*|1?
< llwn — x*1* = (0 = ALY wn — yull* = 220llyn — x*||?

1
< llwy = x"I* = 5 min{1 = AL, 2n}lwy — x|
1
- (1 — 5 min(1 —/\L,an})nwn — |2 (56)

From Algorithm 2, we get

41 — X 12 = (1 — @) (xn — x™) + auy — x*)|?
= (1 — a&)lx, — x*|1* + atflup, — x*|?
—a(l —a)lx, — upll®

< (I —a)lxy — x*|* + atllw, — x*||?
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I-o

2
lxn+1 — xnll

< (1= @l = "2+ az[ (1 4+ 0) oy — 52

—0llamt = X2+ 01+ O)l| o — a1 ]
(1 -a)

2
lxXn1 — xnll

=1 —a(l —t(1+6))x, — x*[* = bat|x,—1 — x*|

(I—-oa)

+0(1 + O)atllx, — xp—1]* — %01 — xnll>. (57)

This implies that

(1—a)

201 — X |12 + 01 — Xl < (1 = (1 = T(1 + ) |lx, — x*|?
—Bart|x,—1 — x*|?
+0(1 4 0)at|x, — X1l (58)

Since 0 < @ < %, we have from (58) that

%41 = X2 + 11 — x> < (1= a(1 = 7(1+0)llx, — x*||
—Oat|x,—1 — x*|?
+0(1 + 0)at|xy — xp_1]>
< (1 —a(l — (1 +0)))llx* —x*|?
+60(1 + O)at|x* — x*1?
= (1= a(l = B2+ O 5 — "
01 +0)art 5
T rsl LASE ]
<A =—all —1(1+0)))(lx, — x|

+ = -1, (59)
where the last inequality follows from the fact that % < 1.
Now, define a,, := ||x, — x*||> + ||x, — x,—1]|>. Then we obtain from (59) that
apy1 = (1 —a(l — (1 +6)))ay. (60)
By induction, we obtain
app1 = (1 —a(l =1 +0))"ar. (61)

Therefore, by the definition of a,, we have
Ixp1 —x*1* < (1 —a(l — (1 +6))'a;, n > 1.

Hence, we obtain our desired conclusion. O

Remark 6.3 (a) If we choose the step size A in Algorithm 2 such that A € (ﬁ %) then
T =1-tmin{l — AL, 2an} = 1 — '5& € (4, 1). Thus Assumption 6.1(c) is fulfilled

with this choice of A.
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Table 1 Methods parameters for Example 7.1

Alg. 1 A =1.1 n=0.1 6, =1 o = 0.3332
§=2499 x 107
Shehu Alg. A =11 n=0.1 O, =1 oy = 0.3332
1
Fan Alg. An = P a, = 0.1 6, = 0.6
Yang Alg. r =11 n=0.1
1
Yang?2 Alg. A =11 =0.1 =—
ang g 1 I3 (7} 2001 +2)
Chang Alg. A =11 n=0.1 o =0.343 § =02
1
n():lOOO anl—&—i
1+ fix (%)

(b) As tin Assumption 6.1(c) approaches %, sois @ in Algorithm 2 approaches 1 by Assump-
tion 6.1(d).

7 Numerical Examples

In this section we present many computational experiments and compare the method we
proposed in Sect. 3 with some existing methods which are available in the literature. All
the codes were written in MATLAB R2019a and ran on a PC Desktop Intel(R) Core(TM)
i7-6600U CPU @ 2.60GHz 2.81 GHz, RAM 16.00 GB.

In all these examples, we present numerical comparisons of our proposed Algorithm 1 with
the methods in [7,13,27,30,34,35]. In all the numerical implementations, we choose § €

[o, min[#,m]), € € (2,00), 6, € [0,1] and o, € (0, ﬁ) € € (2,00) in our
Algorithm 1 for the numerical comparisons with the methods in [7,13,27,30,34,35].

For convenience, [7, Algorithm 3.1] is denoted by “Chang Alg.”, [13, Algorithm 3.1] is
denoted by “Fan Alg.”, [27, Algorithm 1] is denoted by “Shehu Alg.”, [30, Algorithm 3.1]
is denoted by “Thong Alg.”, [34, (2) Theorem 3.1] is denoted by “Yang Alg.”, and [35,

Algorithm 2] is denoted by “Yang2 Alg.” in this section.
Example 7.1 We define A : R — R™ by

Ax = (e‘xTQ" + /3) (Px +q),

where Q is a positive definite matrix (i.e, xTOx > 0|x||>*Vx e R™), Pisa positive semi-
definite matrix, ¢ € R™ and 8 > 0. It can be seen that A is differentiable and by the Mean
Value Theorem A is Lipschitz continuous. It is also shown in [4, Example 2.1] that A is
pseudo-monotone but not monotone.

Take C := {x € R™|Bx < b}, where B is a matrix of size [* x m and b € ]Rli with /* = 10.
Let us take xo = (1, 1, ..., 1)T and x is generated randomly in R”. In this example, we use
the stopping criterion ||w, — y,| < 103 with different dimensions m.

Example 7.2 This example is taken from [15] and has been considered by many authors for
numerical experiments (see, for example, [22,26,28]). The operator A is defined by Ax :=
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Table 2 Example 7.1 comparison for different values of m

m = 100 m =120

No. of Iter. CPU time No. of Iter. CPU time
Alg. 1 16 1.5712 16 1.9640
Shehu Alg. 20 1.7986 17 2.2744
Fan Alg. 64482 1752.389 55756 1555.9497
Yang Alg 185 5.9472 213 8.9348
Yang?2 Alg. 190 18.2391 221 11.0381
Chang Alg. 37 2.2902 45 4.0698

Table 3 Methods parameters for Example 7.2

Alg. 1 A =0.1 n=0.9 Op =1 a, = 0.2903
6 =0.0241
Shehu Alg. A1 =0.1 n=20.9 Op =1 a, = 0.2903
Thong Alg. A =0.1 a=1 n=0.9
Yang Alg. A1 =0.1 n=0.1
1
Yang2 Alg. A1 =0.1 =0.1 =—
ang2 Alg i " = 20m + 2)
Chang Alg. A =0.1 a=03 §=02 ng = 1000
1
pn =1+ ———7—
1+ fix (%)

Table 4 Example 7.2 comparison for different k and m

m=10 m =20
No. of Iter. CPU time No. of Iter. CPU time
k=20
Alg. 1 674 12.3199 2115 57.6222
Shehu Alg. 1067 17.6383 3027 59.0911
Thong Alg. 1949 32.4864 5105 91.6340
Yang Alg 1682 28.1467 5428 121.5206
Yang2 Alg. 7104 119.3229 32196 601.5723
Chang Alg. 1019 17.9513 3506 70.1590
k=130
Alg. 1 547 11.8926 1658 37.9337
Shehu Alg. 757 13.2258 2010 45.9194
Thong Alg. 2029 44.1655 3412 74.1134
Yang Alg 1052 20.2902 4170 89.4936
Yang2 Alg. 4883 108.3688 20520 392.3700
Chang Alg. 958 22.5218 2487 70.7776
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Table 5 Methods parameters for Example 7.3

Alg. 1 A =1.1 w=0.99 Op =1 ap = 0.2250
8 =0.4950
Shehu Alg. A =11 w=0.99 Op = ap = 0.2250
Thong Alg. A=1.1 a=2 n=20.99
1
Fan Alg. An = p— Op =0.1 ap = 0.05
1

Yang2 Alg. A =11 =0.99 = —

ang2 Alg 1 K On 2001 +2)

Table 6 Example 7.3 comparison for different cases

Case I Case II
No. of Iter. CPU time No. of Iter. CPU time
k=20
Alg. 1 416 0.058408 416 0.06156
Shehu Alg. 799 0.11686 799 0.12665
Thong Alg. 688 0.092934 10000 1.995
Fan Alg 2836 0.4066 2836 0.38609
Yang?2 Alg. 1947 0.2977 1947 0.29401
k=130
Alg. 1 415 0.062968 419 0.059773
Shehu Alg. 791 0.11601 796 0.11553
Thong Alg. 9997 1.984 567 0.079136
Fan Alg 2811 0.3843 2630 0.36257
Yang2 Alg. 1947 0.30259 1991 0.30477

Mx+q,where M = BBT+S+D,with B, S, D € Rm>m randomly generated matrices such
that S is skew-symmetric (hence the operator does not arise from an optimization problem), D
is a positive definite diagonal matrix (hence the variational inequality has a unique solution)
and g = 0. The feasible set C is described by the linear inequality constraints Bx < b for
some random matrix B € R**" and a random vector b € R¥ with nonnegative entries. Hence
the zero vector is feasible and therefore the unique solution of the corresponding variational
inequality. These projections are computed using the MATLAB solver fmincon. Hence, for
this class of problems, the evaluation of A is relatively inexpensive, whereas projections are
costly. We present the corresponding numerical results (number of iterations and CPU times
in seconds) using different dimensions m and different numbers of inequality constraints k.
We choose the stopping criterion as |e,|l2 = ||x,]| < €, where € = 0.001. The sizes
k = 20, 30 and m = 10, 20. The matrices B, S, D and the vector b are generated randomly.

Next, we give some examples in an infinite dimensional Hilbert space.

Example7.3 Let H := L2([0,1]) with norm and inner product given by x| :=
1
(fol x(z)2d1> * and (x,y) = fol x(®)y(t)dt, x,y € H,respectively. We define the feasible
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104 T T T T
Proposed Alg. 1

+ Shehu Alg.
e Fan Alg.
102 o =—O— Yang Alg. B
5 + Yang?2 Alg.
=3¢ Chang Alg.

10°

[lenll2

1072

107

10_6 1 1 1 1
10° 10" 102 103 10% 10°

Number of iterations

Fig. 1 Example 7.1: m = 100

104 T T T Ty T T T T T T Ty T T T T
Proposed Alg. 1

—3— Shehu Alg.
e Fan Alg.

=—— Yang Alg. B
+ Yang2 Alg.
—3— Chang Alg.

10° 10" 102 103 10% 10°
Number of iterations

Fig.2 Example 7.1: m = 120
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101 T T T
Proposed Alg. 1
—3— Shehu Alg.
et Thong Alg.
—— Yang Alg. E
—afe— Yang2 Alg.
=3¢ Chang Alg.
10" F E
-«
=
ol
102 E
103 ¢ E
-4 1 1 1
10
10° 10’ 102 103 10
Number of iterations
Fig.3 Example 7.2: (m, k) = (10, 20)
103 T T T T
Proposed Alg. 1
—3— Shehu Alg.

102 F ——f— Thong Alg. 3
—— Yang Alg.
+Yang2 Alg.

10" —3%— Chang Alg. .

o 100 _

=

L

107 3
1072 E
103 E
10.4 1 1 1 1

100 10’ 102 108 10* 10°

Fig.4 Example 7.2: (m, k) = (20, 20)

Number of iterations
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1 02 T T T
Proposed Alg. 1
—3¢— Shehu Alg.
101 L _ wfid= Thong Alg. i
7 =—O— Yang Alg.
+ Yang2 Alg.
=3¢ Chang Alg.
10° 3
o
= 41 4
ﬁ 10
1072 4
1073 4
10.4 L M| L PRy | il

10° 10" 102 108 104
Number of iterations

Fig.5 Example 7.2: (m, k) = (10, 30)

103 T T T T T T T T
Proposed Alg. 1
) —3¢— Shehu Alg.
10° F el Thong Alg. 3
—O— Yang Alg.
+Yang2 Alg.
10" —3— Chang Alg. 5

llenll2
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102

1073

10_4 1 1 1 I4
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Number of iterations

Fig.6 Example 7.2: (m, k) = (20, 30)
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102 -
Proposed Alg. 1
S s a2 = ¥ = Shehu Alg.
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Fig.7 Example 7.3: Case I

set C by: C := {x € L%([0, 1]) : fo1 tx()dt = 2}. Define A : L*([0, 1]) — L2([0, 1]) by
Ax(t) := max{x(1),0}, x € L*(0,1]), t€[0,1].
Then A is monotone and Lipschitz with L = 1. Observe that S # @ since 0 € S and that
fol tx(t)dt — 2
Jy 12dt

We set the stopping criterion to be e, := [|x,4+1 — x| < €, where € = 10~* and consider
four different cases as follows:

Case I xg = % [97* + 4t] and x; = L [ —e"]

Pc(x)(t) := x(t) — t, te[0,1].

250
1 1
Case Il xo =+ [97¢% + 4t] and x| = Tog [sin(30) + cos(100)]
Case Il xo = —— [2—e ] and x; = L LsinG31) + cos(101)]
250 100

% [97¢% + 41]

The following remarks on the numerical implementations given above are in order.

1
Case IV xy = 100 [sin(37) + cos(10¢)] and x| =

Remark 7.4 (1). The numerical results from the above Examples (both finite and infinite
dimension) show that our proposed Algorithm 1 is considerably fast, easy to implement
and very efficient (Table 1).

(2). For the given Examples, our proposed Algorithm 1, which is a subgradient extragradient
method with double inertial extrapolation steps, outperforms several existing subgradient
extragradient methods with single inertial extrapolation step studied in [7,13,27,30,34,
35]. This is evident from Tables 2, 3, 4, 5 and 6 and Figs. 1, 2, 3,4,5,6,7, 8,9 and 10
with respect to speed and number of iterations.
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Fig.8 Example 7.3: Case II

[lenl]

102
Proposed Alg. 1

10"

100 k
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1072

1073

107
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Thong Alg.
+ Fan Alg.

i —* m Yang2 Alg.

10° 10" 102 103 10*

Number of iterations

Fig.9 Example 7.3: Case III
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Fig. 10 Example 7.3: Case IV

8 Conclusion

We have proposed an inertial version of the subgradient extragradient method of Censor et
al. [6] with the possibility 8, = 1 for the inertial factor and self-adaptive step sizes. Thus, in
contrast with the methods considered so far, our proposed method extends the choices of the
inertial factor to 6, = 1. We obtain weak convergence of our method in real Hilbert spaces
under simpler conditions than previously assumed for other inertial subgradient extragradient
methods. We also present a strong convergence result for the case where the cost function is
strongly monotone with adaptive step sizes. In all our results the Lipschitz constant (or its
estimate) of the cost function is not needed during implementations. Preliminary numerical
experiments show that our methods are efficient and promising. One of the goals of our future
projects is to estimate the rate of convergence for Algorithm 1.
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