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Abstract
The conservative Allen–Cahn equation with a nonlocal Lagrange multiplier satisfies mass
conservation and energy dissipation property. A challenge to numerically solving the equa-
tion is how to treat the nonlinear and nonlocal terms to preserve mass conservation and
energy stability without compromising accuracy. To resolve this problem, we first apply
the convex splitting idea to not only the term corresponding to the Allen–Cahn equation
but also the nonlocal term. A wise implementation of the convex splitting for the nonlocal
term ensures numerically exact mass conservation. And we combine the convex splitting
with the specially designed implicit–explicit Runge–Kutta method. We show analytically
that the scheme is uniquely solvable and unconditionally energy stable by using the fact
that the scheme guarantees exact mass conservation. Numerical experiments are presented
to demonstrate the accuracy and energy stability of the proposed scheme.
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1 Introduction

Phase-field models have emerged as a powerful computational approach to modeling and
predicting mesoscale morphological and microstructure evolution in materials [7]. Many
phase-field equations are given by gradient flows for energy functionals [6,28]. One example
is for the Ginzburg–Landau energy functional:

E(φ) =
∫

Ω

(
F(φ) + ε2

2
|∇φ|2

)
dx, (1)

where Ω is a domain in R
d (d = 1, 2, 3), φ is the order parameter, F(φ) = 1

4 (φ
2 − 1)2,

and ε > 0 is a constant related to the interfacial thickness. We assume the zero Neumann
boundary condition for φ: ∇φ · n = 0 on ∂Ω , where n is a unit normal vector to ∂Ω . The
L2-gradient flow for (1) is the Allen–Cahn (AC) equation [1]. Because the AC equation is
of gradient type, it is easy to see that (1) is nonincreasing in time. However, the AC equation
does not conserve the total mass and the conservative AC (CAC) equation was introduced
by adding a nonlocal Lagrange multiplier to the AC equation [22]:

∂φ

∂t
= − δE

δφ
+ 1

|Ω|
∫

Ω

f (φ) dx = − (
f (φ) − ε2Δφ

) + 1

|Ω|
∫

Ω

f (φ) dx, (2)

where δ
δφ

denotes the variational derivative and f (φ) = F ′(φ). The CAC equation (2)
satisfies mass conservation and energy dissipation property:

d

dt

∫
Ω

φ dx =
∫

Ω

∂φ

∂t
dx = −

∫
Ω

(
f (φ) − ε2Δφ

)
dx +

∫
Ω

f (φ) dx = 0

and

dE
dt

=
∫

Ω

δE
δφ

∂φ

∂t
dx =

∫
Ω

(
−∂φ

∂t
+ 1

|Ω|
∫

Ω

f (φ) dx
)

∂φ

∂t
dx

= −
∫

Ω

(
∂φ

∂t

)2

dx + 1

|Ω|
∫

Ω

f (φ) dx
∫

Ω

∂φ

∂t
dx = −

∫
Ω

(
∂φ

∂t

)2

dx ≤ 0.

We note that there are many versions of the CAC equation [5,13,14,16,31] and they conserve
the mass but do not comply with energy properties.

While the total mass is conserved precisely, the extra nonlocal term causes difficulties
for developing accurate and stable numerical methods for Eq. (2). There are various related
works [4,11,15,18,20,23,24,27,29,32] but most of them have only first-order time accuracy
or are unable to prove energy stability except [11,15,20,27,29]. In [11], Hong et al. developed
arbitrarily high order structure-preserving algorithms by combining the concept of energy
quadratization and the Runge–Kutta (RK) method. Jing et al. [15] presented Crank–Nicolson
formulas based on the energy quadratization strategy and Sun et al. [27] presented error
estimates for the formulas. In [20], Okumura proposed a stable and structure-preserving
scheme based on the discrete variational derivative method. Yang [29] constructed a second-
order backward differentiation formula based on the invariant energy quadratization idea.
The aim of this paper is to present a high-order energy stable scheme for Eq. (2), which is
based on the convex splitting idea [8–10,30]. In [26], we developed the specially designed
implicit–explicit RK tables which make the implicit–explicit RKmethod [2,17,21] have both
high-order time accuracy and unconditional energy stability for gradient flow problems. In
order to apply the CSRK scheme in [26] to Eq. (2), we first need to convexly split not only
the term corresponding to the AC equation but also the nonlocal term. We use a clever choice
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of the convex splitting for the nonlocal term to achieve numerically exact mass conservation.
Since Eq. (2) is beyond the scope of Ref. [26], we also need to prove the proposed scheme
is unconditionally energy stable, even with the same RK tables. Note that the unconditional
energy stability in Theorem 2 requires the mass conservation proved in Theorem 1.

This paper is organized as follows. In Sect. 2, we propose the high-order convex splitting
scheme and prove its mass conservation, unconditional unique solvability, and unconditional
energy stability. In Sect. 3, we present numerical examples showing the accuracy and energy
stability of the proposed scheme. Finally, conclusions are drawn in Sect. 4.

2 High-order Convex Splitting Scheme

In this section, we present a high-order convex splitting scheme for the CAC equation (2).
The scheme is based on the observations that (i) the energy functional (1) can be split into
convex and concave parts:

E(φ) = Ec(φ) − Ee(φ) =
∫

Ω

(
Fc(φ) + ε2

2
|∇φ|2

)
dx −

∫
Ω

Fe(φ) dx, (3)

and then the convexity of Ec(φ) and Ee(φ) yields the following inequality:

E(φ) − E(ψ) ≤ (
fc(φ) − ε2Δφ − fe(ψ), φ − ψ

)
,

where Fc(φ) = 1
4φ

4 + 1
4 , Fe(φ) = 1

2φ
2, fc(φ) = F ′

c(φ), fe(φ) = F ′
e(φ), and (·, ·) denotes

the L2-inner product with respect to Ω; and (ii) order of time accuracy of implicit–explicit
scheme can be improved by combining with the RK method [26].

Applying the convex splitting (3) to Eq. (2), we have

φn+1 = φn − Δt

(
fc(φ

n+1) − ε2Δφn+1 − 1

|Ω|
(
fc(φ

n+1), 1
)

−
(
fe(φ

n) − 1

|Ω|
(
fe(φ

n), 1
)))

,

but it is first-order accurate in time. In order to improve its order of time accuracy, we combine
with an s-stage implicit–explicit RK method [2]: let φ(0) = φn , for i = 1, . . . , s,

φ(i) = φ(0) − Δt
i∑

j=1

(
ai j

(
fc(φ

( j)) − ε2Δφ( j) − 1

|Ω|
(
fc(φ

( j)), 1
))

−âi, j−1

(
fe(φ

( j−1)) − 1

|Ω|
(
fe(φ

( j−1)), 1
)))

,

where ai j and âi, j−1 are RK coefficients, and then

φn+1 = φ(s)

by using the stiffly accurate condition. Using the resemble condition (ai j = âi, j−1 = ri j ),
we have the following s-stage high-order convex splitting scheme for Eq. (2):

φ(i) = φ(0) − Δt
i∑

j=1

ri j
(
fc(φ

( j)) − ε2Δφ( j) − fe(φ
( j−1)) − β( j)

)
, (4)
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where

β(i) = 1

|Ω|
(
fc(φ

(i)) − fe(φ
(i−1)), 1

)

for i = 1, . . . , s. Applying the convex splitting (3) to not only the term corresponding to the
AC equation but also the Lagrange multiplier β yields the following theorem.

Theorem 1 The scheme (4) with rii ≥ 0 for i = 1, . . . , s is uniquely solvable for any time
step Δt > 0. Moreover, the scheme is mass conserving.

Proof Equation (4) can be rewritten as follows:

φ(i) = φ(0) − riiΔt

(
fc(φ

(i)) − ε2Δφ(i) − 1

|Ω|
(
fc(φ

(i)), 1
))

− Δt H (i),

where

H (i) = rii

(
− fe(φ

(i−1)) + 1

|Ω|
(
fe(φ

(i−1)), 1
))

+
i−1∑
j=1

ri j
(
fc(φ

( j)) − ε2Δφ( j) − fe(φ
( j−1)) − β( j)

)
(5)

for i = 1, . . . , s. We consider the following functional for φ defined in the constraint space
(φ, 1) = (φ(0), 1),

I(φ) = 1

2
‖φ − φ(0)‖2 + riiΔtEc(φ) + Δt

(
H (i), φ

)
.

From the convexity of Ec(φ), it is easy to show that I(φ)with rii ≥ 0 has a unique minimizer
if and only if it solves

dI(φ + ηψ)

dη

∣∣∣∣
η=0

=
(
φ − φ(0), ψ

)
+ riiΔt

(
δEc(φ)

δφ
,ψ

)
+ Δt

(
H (i), ψ

)

=
(
φ − φ(0) + riiΔt

(
fc(φ) − ε2Δφ

) + Δt H (i), ψ
)

= 0 (6)

for any ψ with (ψ, 1) = 0. Since 1 is in the null space of the inner product with ψ , the
solution of (6) can be rewritten as follows:

φ = φ(0) − riiΔt
(
fc(φ) − ε2Δφ

) − Δt H (i) + χ1.

Using the constraint (φ, 1) = (φ(0), 1) and (Δφ, 1) = (
H (i), 1

) = 0, we have χ =
riiΔt
|Ω| ( fc(φ), 1).
We close the whole proof of the theorm by justifing any solution of (4) satisfies the mass

conservation. From Eq. (4), we have

(
φ(i) − φ(0), 1

)
= −Δt

i∑
j=1

ri j
(
fc(φ

( j)) − ε2Δφ( j) − fe(φ
( j−1)) − β( j), 1

)

= −Δt
i∑

j=1

ri j
((

fc(φ
( j)) − fe(φ

( j−1)), 1
)

− |Ω|β( j)
)

= 0,

where
(
Δφ( j), 1

) = ∫
∂Ω

∇φ( j) ·n ds − ∫
Ω

∇φ( j) · ∇1 dx = 0 is given by the zero Neumann
boundary condition for φ( j). ��
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Before proving the energy stability of the scheme (4), we define an s × s matrix R as
Ri j = ri j for j ≤ i and Ri j = 0 for j > i , and an s × s matrix R̃ as R̃i j = r̃i j = ri j − ri−1, j

with r0 j = 0.

Theorem 2 Suppose that R̃ is positive definite. The scheme (4) with rii ≥ 0 for i = 1, . . . , s
is unconditionally energy stable, meaning that for any Δt > 0,

E(φn+1) ≤ E(φn).

Proof From the convexity of Ec(φ) and Ee(φ), we have

E(φn+1) − E(φn) =
s∑

i=1

(
E(φ(i)) − E(φ(i−1))

)

≤
s∑

i=1

(
fc(φ

(i)) − ε2Δφ(i) − fe(φ
(i−1)), φ(i) − φ(i−1)

)
.

Let μ(i) = fc(φ(i)) − ε2Δφ(i) − fe(φ(i−1)) for i = 1, . . . , s. Since
(
φ(i), 1

) = (
φ(0), 1

)
for

i = 1, . . . , s by Theorem 1, we obtain

E(φn+1) − E(φn) ≤
s∑

i=1

(
μ(i) − β(i), φ(i) − φ(i−1)

)
+

s∑
i=1

β(i)
(
1, φ(i) − φ(i−1)

)

= −Δt
s∑

i=1

⎛
⎝μ(i) − β(i),

i∑
j=1

(ri j − ri−1, j )(μ
( j) − β( j))

+ri−1,i (μ
(i) − β(i))

)

= −Δt
s∑

i=1

⎛
⎝μ(i) − β(i),

i∑
j=1

r̃i j (μ
( j) − β( j))

⎞
⎠ .

Let ν = (μ(1) − β(1), . . . , μ(s) − β(s))T . Since R̃ is positive definite,

E(φn+1) − E(φn) ≤ −Δt
∫

Ω

νT R̃ ν dx ≤ 0.

It follows that E(φn+1) ≤ E(φn). ��

3 Numerical Experiments

3.1 Numerical Implementation

The s-stage high-order convex splitting scheme (4) can be rewritten as follows:

φ(i) + riiΔt

(
fc(φ

(i)) − ε2Δφ(i) − 1

|Ω|
(
fc(φ

(i)), 1
))

= φ(0) − Δt H (i), (7)

where H (i) is defined in (5) for i = 1, . . . , s. The nonlinearity in Eq. (7) comes from fc(φ(i))

and this can be handled using a Newton-type linearization [3,12,19,25]

fc(φ
(i−1,m+1)) ≈ fc(φ

(i−1,m)) + f ′
c(φ

(i−1,m))(φ(i−1,m+1) − φ(i−1,m))
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Fig. 1 Relative l2-errors of φ(x, 3) using the first-, second-, and third-order schemes for 16, 24, . . . , 256 grid
points and Δt = 2−6, 2−5, . . . , 1. Here, ε = 0.01.

for m = 0, 1, . . .. We then develop a Newton-type fixed point iteration method as

[
I + riiΔt

(
f ′
c(φ

(i−1,m)) − ε2Δ − 1

|Ω|
(
f ′
c(φ

(i−1,m)), ·
))]

φ(i−1,m+1)

= φ(0) − Δt H (i) − riiΔt

(
g(φ(i−1,m)) − 1

|Ω|
(
g(φ(i−1,m)), 1

))
, (8)

where
(
f ′
c(φ

(i−1,m)), ·) φ := (
f ′
c(φ

(i−1,m)), φ
)
, g(φ) := fc(φ) − f ′

c(φ)φ, and φ(i−1,0) =
φ(i−1), and we set

φ(i) = φ(i−1,m+1)

if a relative l2-norm of the consecutive error
∥∥φ(i−1,m+1)−φ(i−1,m)

∥∥
‖φ(i−1,m)‖ is less than a tolerance tol.

In this paper, the biconjugate gradient (BICG) method is used to solve the system (8) and
we use the following preconditioner P to accelerate the convergence speed of the BICG
algorithm:

P = I + riiΔt
(−ε2Δ

)
.

The stopping criterion for the BICG iteration is that the relative residual norm is less than
tol.

In order to have high-order time accuracy, unconditional unique solvability, and uncondi-
tional energy stability, it is required that rii ≥ 0 for i = 1, . . . , s and R̃ is positive definite.
To this end, we use the following matrices R [26]:

R = ( 1 ) for the first-order scheme, (9)

R =
⎛
⎝

2
3 0 0

− 7
12

2
3 0

− 1
3

2
3

2
3

⎞
⎠ for the second-order scheme, (10)
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Fig. 2 a Evolution of E(t) for the reference solution with ε = 0.01 and Δx = 1
128 . b Relative l2-errors of

φ(x, 3) for Δt = 2−6, 2−5, . . . , 1

and

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 0 0 0
1
2

1
2 0 0 0 0

− 1
10

1
10

1
2 0 0 0

13252051
50981620 − 100507933

407852960
19290953
81570592

1
2 0 0

401851541
5098162000 − 20327867

637270250 − 200790581
1019632400

1
20

1
2 0

3217
14300 − 703

7150 − 6359
42900 − 4556

10725
406
429

1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

(11)

for the third-order scheme. The positive definiteness of R̃ is easily seen by showing eigen-

values of 1
2 (R̃ + R̃T ) are all positive. The eigenvalues of 1

2 (R̃ + R̃T ) are 1 for (9), 2
3 −

√
26
8 ,

2
3 , and

2
3 +

√
26
8 for (10), and approximately 0.0063, 0.1105, 0.3582, 0.5722, 0.9225, and

1.0303 for (11). We note that the matrices R are available up to order 3 and the existence of
the matrix R of order higher than 3 is an open question.

And we use the Fourier spectral method [19,25] for the spatial discretization and the
discrete cosine transform in MATLAB is applied for the whole numerical simulations to
solve the CAC equation with the zero Neumann boundary condition.

3.2 Convergence Test

We demonstrate the convergence of the proposed schemes with an initial condition

φ(x, 0) = 0.02 cos(4πx) + 0.04 cos(7πx)

on Ω = [0, 1]. We set ε = 0.01 and tol = 10−8Δt , and compute φ(x, t) for 0 < t ≤ 10.
In order to show spatial accuracy of the numerical solution, simulations are performed by
varying the number of grid points 16, 24, . . . , 256. Figure 1 shows the relative l2-errors of
φ(x, 3) using the first-, second-, and third-order schemes for various numbers of grid points
and time steps. Here, the errors are computed by comparison with the numerical solution
using the third-order scheme, 512 grid points, and Δt = 2−8. As we can see in Fig. 1,
the spatial convergence of the scheme under grid refinement is evident and 128 grid points
(Δx = 1

128 ) give sufficient spatial accuracy.
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Fig. 3 Evolution of
∫
Ω(φ(x, t)−φ(x, 0)) dx using the first-, second-, and third-order schemes with different

time steps
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Fig. 4 Number of nonlinear and BICG iterations for the first-, second-, and third-order schemes with different
time steps

Next, to estimate the convergence rate with respect to Δt , simulations are performed by
fixing Δx = 1

128 and varying Δt = 2−6, 2−5, . . . , 1. We take the quadruply over-resolved
numerical solution using the third-order scheme as the reference solution. Figure 2a, b show
the evolution of E(t) for the reference solution and the relative l2-errors of φ(x, 3) (this time
is indicated by a dashed line in Fig. 2a) for various time steps, respectively. Here, the errors
are computed by comparison with the reference solution. And Fig. 3 shows the evolution of∫
Ω

(φ(x, t) − φ(x, 0)) dx using the first-, second-, and third-order schemes with different
time steps. It is observed that the proposed scheme gives desired order of accuracy in time
and conserves the total mass.

And, to show the robustness of the nonlinear solver, we count the number of nonlinear
and BICG iterations (see Fig. 4). Here, we regard the number of BICG iterations at each
time level as the averaged number of BICG iterations for the nonlinear iterations at each
time level. For the first-order scheme, 2–5 nonlinear iterations were involved in proceeding
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Fig. 5 Evolution of E(t) using the first-, second-, and third-order schemes with different time steps

t = 0 t = 37.5 t = 150 t = 300

Fig. 6 Evolution ofφ(x, y, t) using the third-order schemewith ε = 0.01,Δx = Δy = 1
128 , andΔt = t f /2

15

to the next time level and we believe that such a fast iterative convergence can be achieved
since the successive iteration (8) is a Newton-type fixed point iteration method. And numbers
of nonlinear iterations of the (three-stage) second- and (six-stage) third-order schemes are
about three and six times more than that of the (one-stage) first-order scheme, respectively.
These results indicate that the number of nonlinear iterations is almost linear with respect
to the number of stages. Furthermore, the BICG algorithm converges in a small number of
iterations by using the preconditioner.

3.3 Energy Stability of the Proposed Scheme

In order to investigate the energy stability of the proposed scheme, we take an initial condition
as

φ(x, y, 0) = 0.9

(
1 + tanh

(
0.1 − √

(x − 0.25)2 + (y − 0.25)2√
2ε

)

+ tanh

(
0.15 − √

(x − 0.57)2 + (y − 0.57)2√
2ε

))
+ rand

on Ω = [0, 1] × [0, 1], where rand is a random number between −0.1 and 0.1 at the grid
points. We use ε = 0.01, Δx = Δy = 1

128 , and tol = 10−10, and compute φ(x, y, t)
for 0 < t ≤ t f = 300. Figure 5 shows the evolution of E(t) using the first-, second-, and
third-order schemes with different time steps. All the energy curves are nonincreasing in time
even for sufficiently large time steps. Figure 6 shows the evolution of φ(x, y, t) using the
third-order scheme with Δt = t f /215.
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t = 8 t = 64 t = 256

0 8 32 64 96 128 160 192 224 256
0
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Fig. 7 Evolution of φ(x, y, z, t) and E(t) using the third-order scheme with ε = 0.01,Δx = Δy = Δz = 1
64 ,

and Δt = 1
4 . In each snapshot, the yellow, green, and blue regions indicate φ = 0.3, 0, and −0.3, respectively

3.4 Spinodal Decomposition

We simulate the spinodal decomposition on Ω = [0, 1] × [0, 1] × [0, 1] with ε = 0.01,
Δx = Δy = Δz = 1

64 , Δt = 1
4 , tol = 10−10, and the third-order scheme. An initial

condition is φ(x, y, z, 0) = rand, where rand is a random number between −0.1 and 0.1
at the grid points. Figure 7 shows the evolution of φ(x, y, z, t) and E(t). We observe that
the randomly perturbed homogeneous state evolves to many small structures and then to an
irregular and interconnected structure as the energy is dissipated in time.

4 Conclusions

We developed first-, second-, and third-order energy stable schemes for the CAC equation
with a nonlocal Lagrange multiplier by applying the convex splitting to not only the term cor-
responding to the AC equation but also the Lagrange multiplier, and employing the specially
designed implicit–explicit RK tables. As a result, the schemes were mass conserving, accu-
rate, unconditionally uniquely solvable, and unconditionally energy stable. We confirmed
that the proposed schemes give desired order of accuracy in time and are unconditionally
energy stable. And we performed the long time simulation for the phase separation process.
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