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Abstract
In this paper, a linear and decoupled Euler finite element scheme is proposed for solving the
3D incompressible Navier–Stokes equations with mass diffusion numerically by the mini
element for the velocity equation and the P2 conforming element for the density equation.
When the time step size τ and the mesh size h both are sufficiently small, the proposed
FEM algorithm is unconditionally stable at the full discrete level, which is a key issue in
designing the efficient algorithm for the multi-physical field problem. Furthermore, optimal
temporal-spatial error estimates are presented for the velocity in L2-norm and the density in
H1-norm without any constraint of τ and h by using the technique of error splitting.

Keywords Kazhikhov–Smagulov model · Navier–Stokes equations with mass diffusion ·
Finite element discretization · Unconditional stability · Error estimates

Mathematics Subject Classification 35Q35 · 65M12 · 65M60

1 Introduction

Let � ⊂ R3 be a bounded and convex domain with the sufficiently smooth boundary ∂�

and [0, T ] the time interval with some T > 0. We will use notations QT = [0, T ] × �

and �T = [0, T ] × ∂�. In this paper, we consider the 3D incompressible Navier–Stokes
equations with mass diffusion (or called the Kazhikhov–Smagulov model) in QT , which can
be deduced from the following 3D compressible Navier–Stokes equations:

ρt + ∇ · (ρv) = 0, (1.1)

(ρv)t + ∇ · (ρv ⊗ v) − μ�v − (μ +˜λ)∇(∇ · v) + ∇q = f. (1.2)
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In the above system (1.1–1.2), the unknows ρ : QT → R is the density of the fluid,
v : QT → R3 is the velocity of the fluid and q : QT → R is the pressure which depends on
the density ρ. f : QT → R3 denotes the external force,μ and˜λ are two constants and present
viscosity coefficients which are assumed to satisfy μ > 0 and 3˜λ + 2μ > 0. If the mass
diffusion process obeys Fick’s law (cf. [12]), the velocity v of the fluid can be decomposed
into a potential part and an incompressible part:

v = u − λ∇ ln ρ with ∇ · u = 0,

whereλ > 0 is themass diffusion coefficient. Then the compressibleNavier–Stokes equations
(1.1–1.2) can be rewritten as

ρt − λ�ρ + ∇ρ · u = 0, (1.3)

(ρu)t + ∇ · ((ρu − λ∇ρ) ⊗ u − λu ⊗ ∇ρ) − μ�u + λ2∇ · (ρ−1∇ρ ⊗ ∇ρ) + ∇P = f,
(1.4)

∇ · u = 0, (1.5)

where P = q − λρt + λ(2μ + ˜λ)� ln ρ. Eliminating the λ2-term in (1.4) and using the
following relations:

(ρu)t + ∇ · ((ρu − λ∇ρ) ⊗ u) = ρut + ((ρu − λ∇ρ) · ∇) u,

−λ∇ · (u ⊗ ∇ρ) = −λ∇(u · ∇ρ) + λ∇ · (ρ(∇u)t ),

we get the simplified model of (1.3–1.5) in QT which is described as

ρt − λ�ρ + ∇ρ · u = 0, (1.6)

ρut + ((ρu − λ∇ρ) · ∇)u − ∇ · (

μ∇u − λρ(∇u)t
) + ∇ p = f (1.7)

∇ · u = 0, (1.8)

where p = P − λu · ∇ρ. The above coupled system (1.6–1.8) are the incompressible
Navier–Stokes equations with mass diffusion. It is clear that the system (1.6–1.8) reduce to
the incompressible Navier–Stokes equations with variable density if λ = 0.

We complete (1.6–1.8) by the following boundary conditions

u = 0 and ∂nρ = 0 on �T (1.9)

and the initial conditions

ρ(0, x) = ρ0(x) and u(0, x) = u0(x) in �, (1.10)

where n denotes the outwards unit normal vector to ∂�. Furthermore, we assume that there
have two positive constants m and M such that

0 < m ≤ ρ0(x) ≤ M in �, (1.11)

which means that there has no vacuum state in �.
We recall some known results on the incompressible Navier–Stokes equations with mass

diffusion. For the full model (1.3–1.5), Beirão da Veiga in [31] and Secchi in [29] established
the local existence of the strong solution in terms of linearization and a fixed point method.
Moreover, Secchi in [29] proved the eixstence and uniqueness of a global weak solution to
2D problem by imposing smallness on λ/μ and established the asymptotic behavior towards
a weak solution to the incompressible Navier–Stokes problemwith variable density when the
mass diffusion coefficient λ → 0. Guillén-González etc. in [15] proved the global existence
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of the strong solution for small initial data by means of an iterative method. When the mass
diffusion coefficient λ → 0 and the viscosity coefficient μ → 0, Araruna etc. in [4] studied
the asymptotic behavior towards a solution to a inhomogeneous, inviscid and incompressible
fluid governed by an Euler type system. For the numerical method of (1.3–1.5), Cabrales etc.
in [6] proposed a fully discrete decoupled scheme by using a first-order time discretization
and a C0 finite element approximation for all unknowns and proved some stability and
convergences results.

For the simplified model (1.6–1.8), Kazhikhov and Smagulov in [21] proved the global
existence of the weak solution and the local existence of the strong solution by means of the
Galerkin method under the assumptions that the initial density ρ0(x) satisfies (1.11) and the
viscosity and mass diffusion coefficients satisfy λ < 2μ/(M − m). The global existence of
the weak solution in the non-cylindrical domain was derived in [26]. Secchi in [28] studied
the 3D Cauchy problem and established the local existence and uniqueness of the strong
solution. The global existence of the strong solution to the 2D Cauchy problem and the
2D initial-boundary value problem were studied in [8,9], respectively. For the numerical
methods, there are not many works concerning numerical analysis of the simplified model
(1.6–1.8). By using a first-order time discretization and aC0 finite element approximation for
all unknowns, two decoupled numerical schemes were proposed for solving the 2D problem
and the 3D problem in [16] and [17], respectively, where the stabilities of algorithms and
the convergences of numerical solutions were investigated. Other numerical schemes can be
found in [10] and [11,27], where an hybrid finite volume-finite element scheme and spectral
Galerkin schemes were studied, respectively. Furthermore, the stability and convergence of
numerical algorithm were investigated in [10].

To our best knowledge, the first error analysis of finite element fully discrete scheme for
the simplified model (1.6–1.8) was presented by Guillén-González and Gutiérrez-Santacreu
in [18]. To describe error estimates derived in [18], we introduce some notations. Let 0 =
t0 < t1 < · · · < tN = T be a uniform partition of the time interval [0, T ] with the time step
τ = T /N and tn = nτ . If {vn}Nn=1 is a given vector sequence with vn ∈ X for a Banach
space X , we introduce the following notations for the discrete-in-time norms:

‖vn‖l2(X) =
(

τ

N
∑

n=1

‖vn‖2X
)1/2

and ‖vn‖l∞(X) = sup
1≤n≤N

‖vn‖X .

Let (unh, ρ
n
h ) be the finite element approximations of (u(tn), ρ(tn)) for 1 ≤ n ≤ N . By using

themini-element (cf. [14]) for the approximation of velocity-pressure pair and the P2 element
for the approximation of density, the authors in [18] proved that

‖u(tn) − unh‖l∞(L2) + ‖ρ(tn) − ρn
h‖l∞(H1) ≤ C(τ + h) (1.12)

under the weaker regularity assumptions on the exact solution. Concretely, the authors in [18]
avoided using the assumption ut t ∈ L2(0, T ;L6/5(�)) which required that the data should
satisfy an extra compatibility condition at t = 0.

In this paper, a decoupled numerical scheme is proposed by using the mini-element for the
velocity-pressure pair and the P2 element for the density as that in [18]. Inspired by [22], this
scheme is slightly different the scheme in [18] by introducing the post-processed velocity
in the discretization of the density equation and the stable terms in the discretization of the
Navier–Stokes type equation such that the proposed finite element scheme is unconditionally
stable. The main result derived in this paper is the following optimal error estimate:

‖u(tn) − unh‖l∞(L2) + ‖ρ(tn) − ρn
h‖l∞(H1) ≤ C(τ + h2), (1.13)
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where h > 0 is the mesh size and C > 0 is some constant independent of h and τ . However,
compared to [18], the higher regularities of the exact solution are assumed in this paper. The
method of analysis is based on the technique of error splitting for the nonlinear parabolic
problems proposed by Li and Sun in [23–25] and further developed in [2,3,7,13,32].

The rest of this paper is organized as follows. In Sect. 2, we state the proposed linear and
decoupled Euler finite element scheme, present the stability of numerical scheme in Theorem
2.3 and the main result in Theorem 2.4. The proof of Theorem 2.4 is given in Sect. 3 by using
the technique of error splitting. In particular, we firstly derive temporal error estimates and
regularities of solutions to the time discrete scheme in Sect. 3.1, and then prove optimal
spatial error estimates in Sect. 3.2.

2 Numerical Scheme andMain Result

2.1 Preliminaries

For the mathematical setting, we introduce the following notations. For k ∈ N
+ and 1 ≤

p ≤ +∞, we use Wk,p(�) to denote the classical Sobolev space. The norm in Wk,p(�) is
denoted by ‖ · ‖Wk,p defined by a classical way (cf. [1]). DenoteWk,p

0 (�) be the subspace of
Wk,p(�) where the functions have zero trace on ∂�. Especially, W 0,p(�) is the Lebesgue
space L p(�) and Wk,2(�) is the Hilbert space which is simply denoted by Hk(�). The
boldface notationsHk(�),Wk,p(�) and Lp(�) are used to denote the vector-value Sobolev
spaces corresponding to Hk(�)3,Wk,p(�)3 and L p(�)3, respectively.We use (·, ·) to denote
the L2 or L2 inner product.

Introduce the following function spaces:

H = {u ∈ L2(�), ∇ · u = 0 in �, u · n = 0 on ∂�},
V = H1

0(�), V0 = {u ∈ V, ∇ · u = 0 in �},
H(div,�) = {u ∈ L2(�), ∇ · u ∈ L2(�)},

W = {r ∈ H1(�),

∫

�

r(x)dx = 0},

M = L2
0(�) = {p ∈ L2(�),

∫

�

p(x)dx = 0}
and

H2
N (�) = {ρ ∈ H2(�), ∂nρ = 0 on ∂�,

∫

�

ρ(x)dx =
∫

�

ρ0(x)dx},

H2
N ,0(�) = {ρ ∈ H2(�), ∂nρ = 0 on ∂�,

∫

�

ρ(x)dx = 0}.
It is known that the norms ‖∇ρ‖H1 and ‖ρ‖H2 are equivalent to the seminorm ‖�ρ‖L2

for ρ ∈ H2
N (�) and ρ ∈ H2

N ,0(�), respectively.
Introduce the trilinear term a(ρ;u, v) by

a(ρ;u, v) = μ(∇u,∇v) − λ

∫

�

(

ρ − ˜M + m̃

2

)

(∇u)t : ∇vdx

with

˜M > M, 0 < m̃ < m such that
λ( ˜M − m̃)

2
< μ (2.1)
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for any ρ ∈ L∞(�) and u, v ∈ V. Under the condition (2.1), we can see that if m̃ ≤ ρ(x) ≤
˜M , then

a(ρ;u,u) ≥ μ1‖∇u‖2L2 where μ1 = μ − λ( ˜M − m̃)

2
> 0, (2.2)

a(ρ;u, v) ≤ μ2‖∇u‖L2‖∇v‖L2 . (2.3)

The existence and uniqueness of weak solution to (1.6–1.8) are established by Kazhikhov
and Smagulov in [21]. We recall it in the following theorem.

Theorem 2.1 Let u0 ∈ H and ρ0 ∈ W satisfying (1.11) and f ∈ L2(0, T ;L2(�)). Suppose
that the constants λ,μ,m and M satisfies

λ <
2μ

M − m
. (2.4)

Then there exists a unique weak solution (ρ,u) to (1.6–1.8) such that the solution satisfies

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V0), ρ ∈ L∞(0, T ;W ) ∩ L2(0, T ; H2
N (�)), (2.5)

0 < m ≤ ρ(t, x) ≤ M in QT (2.6)

and the energy inequalities:

1

2
‖σ(t)u(t)‖2L2 +

(

μ − λ(M − m)

2

)∫ t

0
‖∇u(τ )‖2L2dτ ≤ 1

2
‖σ0u0‖2L2 +

∫ t

0
(f(τ ),u(τ ))dτ,

1

2
‖ρ(t)‖2L2 + λ

∫ t

0
‖∇ρ(τ)‖2L2dτ ≤ 1

2
‖ρ0‖2L2

for all 0 < t ≤ T , where σ(t) = √
ρ(t) and σ0 = √

ρ0.

Throughout this paper, we make the following assumptions on the prescribed data, the
regularity of the solution to (1.6–1.10) and the domain �.

Assumption (A1): Assume that the prescribed data f, u0 and ρ0 satisfy

f ∈ L2(0, T ;L4(�)), u0 ∈ V0 ∩ H2(�) and ρ0 ∈ H2
N (�) with (1.11).

Assumption (A2): Let λ,μ,m, M satisfy (2.4) and m̃, ˜M satisfy (2.1).
Assumption (A3): Assume that the solution (ρ,u, p) satisfies the following regularities:

ρ ∈ L∞(0, T ; H3(�) ∩ W ), ρt ∈ L2(0, T ; H2(�)) ∩ L∞(0, T ; H1(�)),

u ∈ L∞(0, T ;W2,4(�) ∩ V0), ut ∈ L∞(0, T ;H1(�)) ∩ L2(0, T ;H2(�)),

ρt t ∈ L2(0, T ; L2(�)), ut t ∈ L2(0, T ;L2(�)), p ∈ L∞(0, T ; H2(�) ∩ M).

Assumption (A4): Assume that the boundary ∂� is sufficiently smooth such that the
unique solution φ of the Neumann problem

−�φ = g in �, ∂nφ = 0 on ∂�

for prescribed g ∈ M ∩ Hk(�) satisfies

‖φ‖H2+k ≤ C‖g‖Hk , for k = 0, 1,

and the unique solution (v, q) of the Stokes problem

−�v + ∇q = g in �, ∇ · v = 0 in �, v = 0 on ∂�
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for prescribed g ∈ Lp(�) with 1 ≤ p ≤ 4 satisfies

‖v‖W 2,p + ‖q‖W 1,p ≤ C‖g‖L p .

Remark 2.1 The verification of the regularity assumption ut t ∈ L2(0, T ;L2(�)) should
involve an extra compatibility condition on the data at t = 0 which is not generally satisfied
(see such condition for Navier–Stokes equations in [19]). We make this assumption merely
to simplify the presentation. In [18], such assumption was avoided by using the technique of
Euler integrator in the consistency error analysis.

2.2 Time Discrete Scheme

We first describe the time discrete scheme based on the backward Euler method. Let 0 =
t0 < t1 < · · · < tN = T be a uniform partition of the time interval [0, T ] with the time step
τ = T /N and tn = nτ with 0 ≤ n ≤ N .

Given ρ0 = ρ0 and u0 = u0, we consider the following first-order Euler time discrete
scheme for the simplified system (1.6–1.10).

Euler time discrete scheme:
Step I: For given ρn and un , we find ρn+1 by

Dτ ρ
n+1 − λ�ρn+1 + ∇ρn+1 · un = 0 (2.7)

with the boundary condition ∂nρ
n+1 = 0 on ∂�, where

Dτ ρ
n+1 = ρn+1 − ρn

τ
.

Step II: For given ρn , un and ρn+1 derived from (2.7), we find (un+1, pn+1) by

ρnDτun+1 − ∇ · (

μ∇un+1 − λρn+1(∇un+1)t
) + ρn+1(un · ∇)un+1

−λ(∇ρn+1 · ∇)un+1 + ∇ pn+1 = fn+1, ∇ · un+1 = 0 (2.8)

with the boundary condition un+1 = 0 on ∂�.
The weak form of (2.7–2.8) are described as follows. Find the weak solutions ρn+1 ∈ W

and (un+1, pn+1) ∈ V × M , respectively, by

(Dτ ρ
n+1, r) + λ(∇ρn+1,∇r) + (∇ρn+1 · un, r) = 0, ∀ r ∈ W , (2.9)

and

(ρn Dτun+1, v) + a(ρn+1; un+1, v) − (∇ · v, pn+1) + (∇ · un+1, q)

+(ρn+1(un · ∇)un+1, v) − λ((∇ρn+1 · ∇)un+1, v) = (fn+1, v), ∀(v, q) ∈ V × M . (2.10)

In the above form (2.10), we use
∫

�

(∇u)t : ∇vdx = 0

due to ∇ · u = 0 and ∇ · ((∇u)t ) = 0 and v = 0 on ∂�.
From the assumption (A4) on the elliptic regularity, the well-posedness of solution to (2.7)

was established in [17]. We recall it in the following lemma.
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Lemma 2.1 For each 0 ≤ n ≤ N − 1, if

‖∇un‖L2 ≤ κ1, (2.11)

for some κ1 > 0 being independent of τ and n, then for sufficiently small τ , the solution ρn+1

to (2.7) satisfies

m ≤ ρn+1(x) ≤ M, ∀ x ∈ �, (2.12)

‖ρn+1‖2H1 + τ

n
∑

i=0

‖ρi+1‖2H2 ≤ κ2, (2.13)

for some κ2 > 0 being independent of τ and n.

Remark 2.2 Although un in (2.7) replaces unh in [17], the proof of Lemma 2.1 follows imme-

diately from the proof of Lemma 3.4 in [17] by noting the fact that τ

N
∑

n=1

‖∇un‖2L2 ≤ C .

Please see Appendix A in [17].

Next, we discuss the stability of the time discrete scheme (2.7–2.8). Setting φ = 2τρn+1

in (2.9) gives

‖ρn+1‖2L2 − ‖ρn‖2L2 + ‖ρn+1 − ρn‖2L2 + 2λτ‖∇ρn+1‖2L2 = 0

by using

2
∫

�

(∇ρn+1 · un)ρn+1dx =
∫

�

∇|ρn+1|2 · undx = −
∫

�

|ρn+1|2∇ · un = 0.

Taking the sum gives

‖ρn+1‖2L2 + 2λτ

n
∑

i=0

‖∇ρi+1‖2L2 ≤ ‖ρ0‖2L2

for all 0 ≤ n ≤ N − 1.
Suppose that

m ≤ ρn+1(x) ≤ M, ∀ 0 ≤ n ≤ N − 1. (2.14)

Setting (v, q) = 2τ(un+1, pn+1) in (2.10) and using (2.2), we have

‖σ nun+1‖2L2 − ‖σ nun‖2L2 + ‖σ n(un+1 − un)‖2L2 + 2μ1τ‖∇un+1‖2L2

+τ

∫

�

ρn+1un · ∇|un+1|2dx − λτ

∫

�

∇ρn+1 · ∇|un+1|2dx ≤ 2τ(fn+1,un+1),

where σ n+1 = √

ρn+1. Setting φ = τ |un+1|2 in (2.9) leads to

‖σ n+1un+1‖2L2 − ‖σ nun+1‖2L2 + λτ

∫

�

∇ρn+1 · ∇|un+1|2dx + τ

∫

�

(∇ρn+1 · un)|un+1|2dx = 0.

Then we obtain

‖σ n+1un+1‖2L2 − ‖σ nun‖2L2 + ‖σ n(un+1 − un)‖2L2 + 2μ1τ‖∇un+1‖2L2

= 2τ(fn+1,un+1) ≤ μ1τ‖∇un+1‖2L2 + τ

μ1
‖fn+1‖2L2 .

123



47 Page 8 of 31 Journal of Scientific Computing (2022) 90 :47

Taking the sum gives

‖σ n+1un+1‖2L2 + μ1τ

n
∑

i=0

‖∇ui+1‖2L2 ≤ ‖σ0u0‖2L2 + τ

μ1

N−1
∑

i=0

‖fi+1‖2L2

for all 0 ≤ n ≤ N − 1, where σ0 = √
ρ0.

Thus, we get the following stable result of the time discrete scheme (2.7–2.8).

Theorem 2.2 Under the condition (2.11) and the assumptions on the time step τ in Lemma
2.1, the solutions ρn+1 and un+1 to (2.7) and (2.8) satisfy the following the discrete energy
inequalities:

max
0≤n≤N−1

(

‖ρn+1‖2L2 + 2λτ

n
∑

i=0

‖∇ρi+1‖2L2

)

≤ ‖ρ0‖2L2 ,

max
0≤n≤N−1

(

‖σ n+1un+1‖2L2 + μ1τ

n
∑

i=0

‖∇ui+1‖2L2

)

≤ ‖σ0u0‖2L2 + τ

μ1

N−1
∑

i=0

‖fi+1‖2L2 ,

Remark 2.3 From the temporal error analysis in next section, we can see that the condition
(2.11) holds for any 0 ≤ n ≤ N . Thus, the above energy inequalities imply that the time
discrete scheme (2.7–2.8) is unconditionally stable.

2.3 Finite Element Scheme

We give the finite element fully discretization of (2.7–2.8). Let Th = {K j }Lj=1 be a quasi-
uniform tetrahedral partition of � with the mesh size h = max1≤ j≤L {diam K j }. When
∂� has a smooth curve, the element K j adjacent to the boundary may represent a curved
tetrahedron with a curved face. The definitions of finite element spaces on such a partition
with curved elements can be dealt with that in [13,25]. We use the mini element (P1b − P1)
to approximate the velocity field u and the pressure p, and use the piecewise quadratic
Lagrange element (P2) to approximate the density ρ. The finite element spaces of V, M and
W are denoted byVh, Mh andWh , respectively. For this choice, the finite element spacesVh

and Mh satisfy the discrete inf-sup condition. Further, we define the H(div,�) conforming
Raviart-Thomas finite element spaces of order 1 by

RTh = {uh ∈ H(div,�), uh |K ∈ P1(K )3 + x P1(K ), ∀ K ∈ Th},
RT0h = {uh ∈ RTh, ∇ · uh = 0 in � and uh · n = 0 on ∂�}.

We denote by P0h the L2-orthogonal projection operator from L2(�) to RT0h defined by

(u − P0hu, vh) = 0, ∀ vh ∈ RT0h, u ∈ L2(�).

Start with u0h = Ihu0 and ρ0
h = Jhρ0, where Ih and Jh are the interpolation operators from

V → Vh and W → Wh , respectively, and satisfy

‖u0 − u0h‖L2 + h‖∇(u0 − u0h)‖L2 ≤ Ch2‖u0‖H2 , (2.15)

‖ρ0 − ρ0
h‖L2 + h‖ρ0 − ρ0

h‖H1 ≤ Ch2‖ρ0‖H2 . (2.16)

For 1 ≤ n ≤ N , the finite element fully discrete approximations of (2.7–2.8) are described
as follows.
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Finite element fully discrete scheme:
Step I: For given ρn

h ∈ Wh and unh ∈ Vh , we find ρn+1
h ∈ Wh such that

(Dτ ρ
n+1
h , rh) + λ(∇ρn+1

h ,∇rh) + (∇ρn+1
h · P0hunh, rh) = 0 (2.17)

for all rh ∈ Wh .
Step II: For given ρn

h ∈ Wh , unh ∈ Vh and ρn+1
h ∈ Wh derived from (2.17), we find

(un+1
h , pn+1

h ) ∈ Vh × Mh such that

(ρn
h Dτu

n+1
h , vh) + a(ρn+1

h ;un+1
h , vh) − (∇ · vh, pn+1

h ) + (∇ · un+1
h , qh)

+(ρn+1
h (unh · ∇)un+1

h , vh) + 1

2
(Dτ ρ

n+1
h ,un+1

h · vh) + 1

2
(∇ · (ρn+1

h unh),u
n+1
h · vh)

+λ

2
(∇ρn+1

h ,∇(un+1
h · vh)) − λ((∇ρn+1

h · ∇)un+1
h , vh) = (fn+1, vh) (2.18)

for all (vh, qh) ∈ Vh × Mh .

Remark 2.4 In the above algorithm, the post-processed velocity P0hunh in (2.17) and the
stabilized terms (Dτ ρ

n+1
h ,un+1

h · vh)+ (∇ · (ρn
hu

n+1
h ),un+1

h · vh)+λ(∇ρn+1
h ,∇(un+1

h · vh))
in (2.18) are used to preserve the unconditional stability of numerical scheme.

Taking rh = 2τρn+1
h in (2.17), we get

‖ρn+1
h ‖2L2 − ‖ρn

h‖2L2 + ‖ρn+1
h − ρn

h‖2L2 + 2λτ‖∇ρn+1
h ‖2L2 = 0 (2.19)

by using

2(∇ρn+1
h · P0hunh, ρ

n+1
h ) =

∫

�

P0hunh · ∇|ρn+1
h |2dx = −

∫

�

∇ · (P0hunh)|ρn+1
h |2dx = 0.

Taking the sum of (2.19) gives

‖ρn+1
h ‖2L2 + 2λτ

n
∑

i=0

‖∇ρi+1
h ‖2L2 ≤ ‖ρ0

h‖2L2

for all 0 ≤ n ≤ N − 1.
Suppose that the following condition holds:

m̃ < ρn+1
h (x) < ˜M, ∀ 0 ≤ n ≤ N − 1. (2.20)

Taking (vh, qh) = 2τ(un+1
h , pn+1

h ) in (2.18) and using (2.2), we have

‖σ n+1
h un+1

h ‖2L2 − ‖σ n
h u

n
h‖2L2 + ‖σ n

h (un+1
h − unh)‖2L2 + 2μ1τ‖∇un+1

h ‖2L2 ≤ 2τ(fn+1,un+1
h )

(2.21)

by using

2(ρn+1
h (unh · ∇)un+1

h ,un+1
h ) =

∫

�

ρn+1
h unh · ∇|un+1

h |2dx = −
∫

�

∇ · (ρn+1
h unh)|un+1

h |2dx,

where σ n+1
h =

√

ρn+1
h . Taking the sum of (2.21), we can get

‖σ n+1
h un+1

h ‖2L2 + μ1τ

n
∑

i=0

‖∇ui+1
h ‖2L2 ≤ ‖σ 0

h u
0
h‖2L2 + τ

μ1

N−1
∑

i=0

‖fi+1‖2L2
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for all 0 ≤ n ≤ N − 1, where σ 0
h =

√

ρ0
h .

Like that for the time discrete scheme (2.7–2.8), we get the following stable result of the
fully discrete scheme (2.17–2.18).

Theorem 2.3 Under the condition (2.20), the solutions ρn+1
h ∈ Wh and u

n+1
h ∈ Vh to (2.17)

and (2.18) satisfy the following the discrete energy inequalities:

max
0≤n≤N−1

(

‖ρn+1
h ‖2L2 + 2λτ

n
∑

i=0

‖∇ρi+1
h ‖2L2

)

≤ ‖ρ0
h‖2L2 ,

max
0≤n≤N−1

(

‖σ n+1
h un+1

h ‖2L2 + μ1τ

n
∑

i=0

‖∇ui+1
h ‖2L2

)

≤ ‖σ 0
h u

0
h‖2L2 + τ

μ1

N−1
∑

i=0

‖fi+1‖2L2 .

Remark 2.5 From the temporal-spatial error analysis in next section, we can see that the
condition (2.20) holds for sufficiently small h and τ . Thus, the above energy inequalities
imply that the fully discrete scheme (2.17–2.18) is unconditionally stable. Furthermore, the
discrete energy inequalities show the existence and uniqueness of solutions ρn+1

h ∈ Wh and
un+1
h ∈ Vh when h and τ are sufficiently small.

2.4 Main Result

We present the optimal error estimate in the following theorem. The proof will be given in
Section 3. In the rest of this paper, we denote by C a generic positive constant, which is
independent of n, h and τ , and C may be different at different places.

Theorem 2.4 Under the assumptions (A1)-(A4), there exist τ0 > 0 and h0 > 0 such that
when τ < τ0 and h < h0, the FE solutions ρn+1

h and un+1
h to (2.17) and (2.18) satisfy

max
0≤n≤N−1

(

‖u(tn+1) − un+1
h ‖L2 + ‖ρ(tn+1) − ρn+1

h ‖H1

)

≤ C(τ + h2). (2.22)

In the proof of Theorem 2.4, the following inverse inequalities and interpolation inequal-
ities are frequently used (cf. [5]):

‖uh‖L∞ ≤ Ch−3/2‖uh‖L2 and ‖ρh‖L∞ ≤ Ch−3/2‖ρh‖L2 (2.23)

for any uh ∈ Vh and ρh ∈ Wh , and

‖u‖L3 ≤ C‖u‖1/2
L2 ‖u‖1/2

H1 and ‖u‖L4 ≤ C‖u‖1/4
L2 ‖u‖3/4

H1 , ∀ u ∈ H1(�). (2.24)

Finally, we recall the discrete Gronwall’s inequality established in [20].

Lemma 2.2 Let ak, bk and γk be the nonnegative numbers such that

an + τ

n
∑

k=0

bk ≤ τ

n
∑

k=0

γkak + B, for n ≥ 1. (2.25)

Suppose τγk < 1 and set σk = (1 − τγk)
−1. Then there holds:

an + τ

n
∑

k=0

bk ≤ exp

(

τ

n
∑

k=0

γkσk

)

B, for n ≥ 1 (2.26)

Remark 2.6 If the sum on the right-hand side of (2.25) extends only up to n − 1, then the
estimate (2.26) still holds for all k ≥ 1 with σk = 1.
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3 Error Analysis

In this section, we will prove Theorem 2.4 by using the technique of error splitting. We first
prove temporal errors in Sect. 3.1 and then prove spatial errors in Sect. 3.2. The finite element
error estimates can be derived by combining temporal errors, projection errors and spatial
errors.

3.1 Temporal Error Analysis

In this subsection, we will prove the optimal temporal errors. For 0 ≤ n ≤ N − 1, we take
t = tn+1 in (1.6–1.8) to deduce that

Dτ ρ(tn+1) − λ�ρ(tn+1) + ∇ρ(tn+1) · u(tn) = Rn+1
ρ (3.1)

and

ρ(tn)Dτu(tn+1) − ∇ · (

μ∇u(tn+1) − λρ(tn+1)(∇u(tn+1))
t ) + ∇ p(tn+1)

+ ρ(tn+1)(u(tn) · ∇)u(tn+1) − λ(∇ρ(tn+1) · ∇)u(tn+1) = fn+1 + Rn+1
u , (3.2)

where the truncation functions Rn+1
σ and Rn+1

u are given by

Rn+1
ρ = Dτ ρ(tn+1) − ρt (tn+1) − ∇ρ(tn+1) ·

(∫ tn+1

tn
ut (t)dt

)

,

Rn+1
u = (ρ(tn) − ρ(tn+1))Dτu(tn+1) + ρ(tn+1) (Dτu(tn+1) − ut (tn+1))

−ρ(tn+1)

(∫ tn+1

tn
ut (t)dt · ∇

)

u(tn+1).

Under the regularity assumption (A3), we have

τ

N−1
∑

n=0

(‖Rn+1
ρ ‖2L2 + ‖Rn+1

u ‖2L2

) ≤ Cτ 2. (3.3)

For 0 ≤ n ≤ N , we introduce temporal error functions by

ηn = ρ(tn) − ρn, en = u(tn) − un, εn = p(tn) − pn .

Then error equations satisfied by (ηn+1, en+1, εn+1) with 0 ≤ n ≤ N − 1 are

Dτ η
n+1 − λ�ηn+1 + ∇ρ(tn+1) · en + ∇ηn+1 · un = Rn+1

ρ , (3.4)

and

ρnDτ en+1 − ∇ · (

μ∇en+1 − λρn+1(∇en+1)t
) + ∇εn+1 +

7
∑

i=1

I n+1
i = Rn+1

u (3.5)

with ∇ · en+1 = 0 in �, where

I n+1
1 = −λ(∇ρn+1 · ∇)en+1,

I n+1
2 = ρn+1(un · ∇)en+1,

I n+1
3 = ρn+1(en · ∇)u(tn+1),

I n+1
4 = ηnDτu(tn+1),
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I n+1
5 = λ∇ · (ηn+1(∇u(tn+1))

t ),

I n+1
6 = −λ(∇ηn+1 · ∇)u(tn+1),

I n+1
7 = ηn+1(u(tn) · ∇)u(tn+1).

Moreover, the weak formulations of (3.4) and (3.5) can be described as: find ηn+1 ∈ W such
that

(

Dτ η
n+1, r

) + λ(∇ηn+1,∇r) + (∇ρ(tn+1) · en, r) + (∇ηn+1 · un, r) = (Rn+1
ρ , r) (3.6)

for all r ∈ W , and find (en+1, εn+1) ∈ V × M such that

(

ρn Dτ en+1, v
)

+ a(ρn+1; en+1, v) − (∇ · v, εn+1) + (∇ · en+1, q) +
7

∑

i=1

(I n+1
i , v) = (Rn+1

u , v)

(3.7)

for all (v, q) ∈ V × M .
We estimate ηn+1 and en+1 in l∞(L2)-norm and l2(H1)-norm in the following two lem-

mas.

Lemma 3.1 Under the regularity assumption (A3), there exists some C > 0 such that

‖ηm+1‖2L2 +
m

∑

n=0

‖ηn+1 − ηn‖2L2 + λτ

m
∑

n=0

‖∇ηn+1‖2L2 ≤ C

(

τ 2 + τ

m
∑

n=0

‖en‖2L2

)

(3.8)

for all 0 ≤ m ≤ N − 1.

Proof Taking r = 2τηn+1 in (3.6) and using
∫

�

(∇ηn+1 · un)ηn+1dx = −1

2

∫

�

|ηn+1|2∇ · undx + 1

2

∫

∂�

|ηn+1|2un · nds = 0,

it is easy to see that

‖ηn+1‖2L2 − ‖ηn‖2L2 + ‖ηn+1 − ηn‖2L2 + 2λτ‖∇ηn+1‖2L2

≤ τ

2
‖ηn+1‖2L2 + Cτ

(‖en‖2L2 + ‖Rn+1
ρ ‖2L2

)

.

Summing up the above estimate for n from 0 tom and using (3.3) and the discrete Gronwall’s
inequality in Lemma 2.2, we complete the proof of (3.8). ��
Lemma 3.2 Under the assumptions (A2) and (A3), there exists some small τ1 > 0 such that
when τ < τ1, there holds

‖σm+1em+1‖2L2 +
m

∑

n=0

‖σ n(en+1 − en)‖2L2 + τ

m
∑

n=0

‖∇en+1‖2L2 ≤ Cτ 2 (3.9)

for all 0 ≤ m ≤ N − 1.

Proof Setting (v, q) = 2τ(en+1, εn+1) in (3.7), we have

‖σ nen+1‖2
L2

− ‖σ nen‖2
L2

+ ‖σ n(en+1 − en)‖2
L2

+ 2a(ρn+1; en+1, en+1)

−λτ(∇ρn+1, ∇|en+1|2) + τ(ρn+1un , ∇|en+1|2) + 2τ
7

∑

i=3

(I n+1
i , en+1) = 2τ(Rn+1

u , en+1).
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Multiplying (2.7) by τ |en+1|2 and integrating over �, one has

‖σ n+1en+1‖2L2 − ‖σ nen+1‖2L2 + λτ(∇ρn+1,∇|en+1|2) − τ(ρn+1un,∇|en+1|2) = 0

where the integration by parts is used. Taking the sum of the above formulations, we get

‖σ n+1en+1‖2L2 − ‖σ nen‖2L2 + ‖σ n(en+1 − en)‖2L2 + 2a(ρn+1; en+1, en+1)

+2τ
7

∑

i=3

(I n+1
i , en+1) = 2τ(Rn+1

u , en+1). (3.10)

Now, we suppose that

‖∇un‖L2 ≤ 1 + ‖∇u0‖L2 + ‖∇u‖L∞(0,T ;L2) := κ1, ∀ 0 ≤ n ≤ N − 1. (3.11)

According to Lemma 2.1, we have

m̃ < m ≤ ρn+1(x) ≤ M < ˜M, ∀ 0 ≤ n ≤ N − 1, (3.12)

which with (2.2) and (3.10) gives

‖σ n+1en+1‖2L2 − ‖σ nen‖2L2 + ‖σ n(en+1 − en)‖2L2 + 2μ1τ‖∇en+1‖2L2

≤ 2τ
∣

∣(Rn+1
u , en+1)

∣

∣ + 2τ

∣

∣

∣

∣

∣

7
∑

i=3

(I n+1
i , en+1)

∣

∣

∣

∣

∣

. (3.13)

To close the mathematical induction (3.11), we need to prove that

‖∇un+1‖L2 ≤ κ1, ∀ 0 ≤ n ≤ N − 1. (3.14)

The right-hand side of (3.13) can be estimated term by term as follows. It is easy to see that

2τ
∣

∣(Rn+1
u , en+1)

∣

∣ ≤ τ
(‖Rn+1

u ‖2L2 + ‖en+1‖2L2

)

.

By (A3) and (3.12), we have

2τ
∣

∣

∣(I n+1
3 , en+1)

∣

∣

∣ ≤ Cτ‖ρn+1‖L∞‖en‖L2‖∇u(tn+1)‖L3‖∇en+1‖L2

≤ μ1τ

5
‖∇en+1‖2L2 + Cτ‖en‖2L2 ,

2τ
∣

∣

∣(I n+1
4 , en+1)

∣

∣

∣ ≤ Cτ‖ηn‖L2‖Dτu(tn+1)‖L3‖∇en+1‖L2

≤ μ1τ

5
‖∇en+1‖2L2 + Cτ‖ηn‖2L2 ,

2τ
∣

∣

∣(I n+1
5 , en+1)

∣

∣

∣ ≤ Cτ‖ηn+1‖L6‖∇u(tn+1)‖L3‖∇en+1‖L2

≤ μ1τ

5
‖∇en+1‖2L2 + Cτ‖ηn+1‖2L2 + Cτ‖∇ηn+1‖2L2 ,

2τ
∣

∣

∣(I n+1
6 , en+1)

∣

∣

∣ ≤ Cτ‖∇ηn+1‖L2‖∇u(tn+1)‖L3‖∇en+1‖L2

≤ μ1τ

5
‖∇en+1‖2L2 + Cτ‖∇ηn+1‖2L2 ,

and

2τ
∣

∣

∣(I n+1
7 , en+1)

∣

∣

∣ ≤ Cτ‖ηn+1‖L6‖u(tn)‖L∞‖∇u(tn+1)‖L3‖∇en+1‖L2

≤ μ1τ

5
‖∇en+1‖2L2 + Cτ‖ηn+1‖2L2 + Cτ‖∇ηn+1‖2L2 ,
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where the Hölder inequality and the Young inequality are used. Taking into account the above
estimates, we get from (3.13) that

‖σ n+1en+1‖2L2 − ‖σ nen‖2L2 + ‖σ n(en+1 − en)‖2L2 + μ1τ‖∇en+1‖2L2

≤ Cτ
(‖Rn+1

u ‖2L2 + ‖en+1‖2L2 + ‖en‖2L2 + ‖ηn+1‖2L2 + ‖ηn‖2L2 + ‖∇ηn+1‖2L2

)

≤ Cτ
(‖Rn+1

u ‖2L2 + ‖σ n+1en+1‖2L2 + ‖σ nen‖2L2 + ‖∇ηn+1‖2L2

)

+Cτ 3 + Cτ 2
m

∑

n=0

‖σ nen‖2L2 , (3.15)

where (3.8) in Lemma 3.1 and (3.12) are used. Summing up (3.15) for n from 0 to m, using
(3.3), (3.8) and the discreteGronwall’s inequality in Lemma 2.2, we derive (3.9) and complete
the mathematical induction (3.14) by taking a sufficiently small τ1 such that

‖∇un+1‖L2 ≤ ‖∇en+1‖L2 + ‖∇u(tn+1)‖L2 ≤ ‖∇u‖L∞(0,T ;L2) + (Cτ1)
1/2

≤ ‖∇u‖L∞(0,T ;L2) + 1 ≤ κ1.

��
From the proof of Lemma 3.2, we can see that (3.14) holds for all 0 ≤ n ≤ N − 1. It

follows from Lemma 2.1 that the solutions ρn+1 to (2.7) and un+1 to (2.8) satisfy

m̃ < m ≤ ρn+1(x) ≤ M < ˜M, (3.16)

‖∇un+1‖L2 + ‖ρn+1‖2H1 + τ

n
∑

i=0

‖ρi+1‖2H2 ≤ C (3.17)

for all 0 ≤ n ≤ N − 1. By (3.8) and (3.9), we get the following estimate for the density:

‖ηm+1‖2L2 +
m

∑

n=0

‖ηn+1 − ηn‖2L2 + λτ

m
∑

n=0

‖ηn+1‖2H1 ≤ Cτ 2 (3.18)

for 0 ≤ m ≤ N − 1. Furthermore, we can estimate ηn+1 in l∞(H1)-norm and l2(H2)-norm
as follows.

Lemma 3.3 Under the assumptions (A2) and (A3), when τ < τ1, where τ1 is from Lemma
3.2, there exists some C > 0 such that

‖ηm+1‖2H1 +
m

∑

n=0

‖ηn+1 − ηn‖2H1 + λτ

m
∑

n=0

‖ηn+1‖2H2 ≤ Cτ 2 (3.19)

for all 0 ≤ m ≤ N − 1.

Proof Multiplying (3.4) by −2τ�ηn+1 and integrating over �, we can prove that

‖∇ηn+1‖2L2 − ‖∇ηn‖2L2 + ‖∇(ηn+1 − ηn)‖2L2 + 2λτ‖�ηn+1‖2L2

≤ Cτ
(‖en‖L2 + ‖Rn+1

ρ ‖L2
) ‖�ηn+1‖L2 + Cτ‖∇ηn+1‖1/2

L2 ‖un‖L6‖�ηn+1‖3/2
L2

≤ λτ‖�ηn+1‖2L2 + Cτ
(‖en‖L2 + ‖Rn+1

ρ ‖L2 + ‖∇ηn+1‖2L2

)

Summing up the above estimate for n from 0 to m and using (3.18), we obtain

‖∇ηm+1‖2L2 +
m

∑

n=0

‖∇(ηn+1 − ηn)‖2L2 + λτ

m
∑

n=0

‖�ηn+1‖2L2 ≤ Cτ 2

for 0 ≤ m ≤ N − 1. By noticing (3.18), again, we complete the proof of (3.19). ��
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The error estimate (3.19) provides a uniform boundness of ρn+1 in H2-norm. That is to
say that there exists some C > 0 such that

‖ρn+1‖H2 ≤ C, ∀ 0 ≤ n ≤ N − 1. (3.20)

Next, we estimate un+1 in l2(H2)-norm under the assumption (A4). To do this, we rewrite
(2.8) as the Stokes type problem:

−μ�un+1 + ∇ pn+1 = Fn+1, (3.21)

where

Fn+1 = fn+1 − ρn Dτun+1 − λ∇ρn+1 · (∇un+1)t − ρn+1(un · ∇)un+1 + λ(∇ρn+1 · ∇)un+1

by using ∇ · (∇un+1)t = 0 due to ∇ · un+1 = 0. From (3.16) and

‖ρn(un+1 − un)‖2L2 ≤ 2‖ρn(en+1 − en)‖2L2 + 2‖ρn(u(tn+1) − u(tn))‖2L2

≤ 2‖σ n‖2L∞‖σ n(en+1 − en)‖2L2 + 2τ‖ρn‖2L∞

∫ tn+1

tn
‖ut (t)‖2L2dt

≤ C‖σ n(en+1 − en)‖2L2 + Cτ

∫ tn+1

tn
‖ut (t)‖2L2dt,

we have

τ

N−1
∑

n=0

‖ρnDτun+1‖2L2 ≤ C, (3.22)

where (3.9) is used. From (3.16), (3.17) and (3.20), one has

‖ρn+1(un · ∇)un+1‖L3/2 + ‖(∇ρn+1 · ∇)un+1‖L3/2 + ‖∇ρn+1 · (∇un+1)t‖L3/2

≤ ‖ρn+1‖L∞‖un‖L6‖∇un+1‖L2 + 2‖∇ρn+1‖L6‖∇un+1‖L2

≤ C . (3.23)

Then (3.22) and (3.23) yield

τ

N−1
∑

n=0

‖Fn+1‖2L3/2 ≤ C,

which with the assumption (A4) gives

τ

N−1
∑

n=0

(‖un+1‖2W 2,3/2 + ‖pn+1‖2W 1,3/2

) ≤ C .

From the Sobolev imbedding theorem W2,3/2(�) ↪→ W1,3(�), we have

τ

N−1
∑

n=0

‖un+1‖2W 1,3 ≤ C . (3.24)
By (3.16), (3.17) and (3.20), again, we have

‖ρn+1(un · ∇)un+1‖L2 + ‖(∇ρn+1 · ∇)un+1‖L2 + ‖∇ρn+1 · (∇un+1)t‖L2

≤ ‖ρn+1‖L∞‖un‖L6‖∇un+1‖L3 + 2‖∇ρn+1‖L6‖∇un+1‖L3

≤ C‖∇un+1‖L3 . (3.25)
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Then (3.22) and (3.25) yield

τ

N−1
∑

n=0

‖Fn+1‖2L2 ≤ C .

By the assumption (A4), again, we get

τ

N−1
∑

n=0

(‖un+1‖2H2 + ‖pn+1‖2H1

) ≤ C . (3.26)

Thus, the numerical velocity un+1 is uniformly bound in l2(H2)-norm. Based on the reg-
ularities (3.20) and (3.26), we can obtain the error estimate of en+1 in l∞(V)-norm and
l2(H2)-norm stated in Lemma 3.4. To make this, we rewrite (3.5) as

ρnDτ en+1 − μ�en+1 + λ∇ρn+1 · (∇en+1)t + ∇εn+1 +
6

∑

i=1

I n+1
i = Rn+1

u (3.27)

with ∇ · en+1 = 0 in �.

Lemma 3.4 Under the assumptions (A2)-(A4), there exists some τ2 < τ1 such that when
τ < τ2, there holds

‖∇em+1‖2L2 +
m

∑

n=0

‖∇(en+1 − en)‖2L2 + τ

m
∑

n=0

(‖en+1‖2H2 + ‖εn+1‖2H1

) ≤ Cτ 2 (3.28)

for all 0 ≤ m ≤ N − 1.

Proof Testing (3.27) by 2τ(en+1 − en) leads to

2‖σ n(en+1 − en)‖2L2 + μτ
(‖∇en+1‖2L2 − ‖∇en‖2L2 + ‖∇(en+1 − en)‖2L2

)

≤ 2τ
∣

∣

(

Rn+1
u , en+1 − en

)∣

∣ + 2λτ
∣

∣

(∇ρn+1 · (∇en+1)t , en+1 − en
)∣

∣

+2τ
7

∑

i=1

∣

∣

∣

(

I n+1
i , en+1 − en

)∣

∣

∣ . (3.29)

The right-hand side of (3.29) can be estimated term by term by using the Hölder inequality
and the Young inequality. From (3.16), it is easy to show that

2τ
∣

∣

(

Rn+1
u , en+1 − en

)∣

∣ ≤ 1

9
‖σ n(en+1 − en)‖2L2 + Cτ 2‖Rn+1

u ‖2L2 ,

and

2λτ
∣

∣

(∇ρn+1 · (∇en+1)t , en+1 − en
)∣

∣

≤ 2λτ
∣

∣

(∇ηn+1 · (∇en+1)t , en+1 − en
)∣

∣ + 2λτ
∣

∣

(∇ρ(tn+1) · (∇en+1)t , en+1 − en
)∣

∣

≤ 1

9
‖σ n(en+1 − en)‖2L2 + Cτ 2‖∇en+1‖2L2 + Cτ 2‖∇ηn+1‖2L3‖en+1‖2H2 .

A similar argument gives

2τ
∣

∣

∣

(

I n+1
1 , en+1 − en

)∣

∣

∣ ≤ 1

9
‖σ n(en+1 − en)‖2

L2
+ Cτ2‖∇en+1‖2

L2
+ Cτ2‖∇ηn+1‖2

L3
‖en+1‖2

H2 .
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Other terms can be bound, respectively, by

2τ
∣

∣

∣

(

I n+1
2 , en+1 − en

)∣

∣

∣ ≤ 1

9
‖σ n(en+1 − en)‖2L2 + Cτ 2‖un‖2H2‖∇en+1‖2L2

2τ
∣

∣

∣

(

I n+1
3 , en+1 − en

)∣

∣

∣ ≤ 1

9
‖σ n(en+1 − en)‖2L2 + Cτ 2‖∇en‖2L2 ,

2τ
∣

∣

∣

(

I n+1
4 , en+1 − en

)∣

∣

∣ ≤ 1

9
‖σ n(en+1 − en)‖2L2 + Cτ 2‖ηn‖2H2 ,

2τ
∣

∣

∣

(

I n+1
5 , en+1 − en

)∣

∣

∣ ≤ 1

9
‖σ n(en+1 − en)‖2L2 + Cτ 2‖ηn+1‖2H2 ,

2τ
∣

∣

∣

(

I n+1
6 , en+1 − en

)∣

∣

∣ ≤ 1

9
‖σ n(en+1 − en)‖2L2 + Cτ 2‖ηn+1‖2H2 ,

2τ
∣

∣

∣

(

I n+1
7 , en+1 − en

)∣

∣

∣ ≤ 1

9
‖σ n(en+1 − en)‖2L2 + Cτ 2‖ηn+1‖2H2 ,

where we use the regularity assumption (A3) and (3.16). Substituting the above estimates
into (3.29) leads to

‖σ n(en+1 − en)‖2L2 + μτ
(‖∇en+1‖2L2 − ‖∇en‖2L2 + ‖∇(en+1 − en)‖2L2

)

≤ Cτ 2
(‖Rn+1

u ‖2L2 + ‖un‖2H2‖∇en+1‖2L2 + ‖ηn‖2H2 + ‖ηn+1‖2H2

)

+Cτ 2
(‖∇en+1‖2L2 + ‖∇en‖2L2

) + Cτ 2‖∇ηn+1‖2L3‖en+1‖2H2 . (3.30)

Summing up (3.30) for n from 0 to m and using (3.9) and (3.19), we obtain

μτ‖∇em+1‖2L2 +
m

∑

n=0

‖σ n(en+1 − en)‖2L2 + μτ

m
∑

n=0

‖∇(en+1 − en)‖2L2

≤ Cτ 3 + Cτ 2
m

∑

n=0

‖un‖2H2‖∇en+1‖2L2 + Cτ 2
m

∑

n=0

‖∇ηn+1‖2L3‖en+1‖2H2 .

By (3.26) and the discrete Gronwall’s inequality in Lemma 2.2, we get

τ‖∇em+1‖2L2 +
m

∑

n=0

‖σ n(en+1 − en)‖2L2 + τ

m
∑

n=0

‖∇(en+1 − en)‖2L2

≤ Cτ 3 + Cτ 3
m

∑

n=0

‖en+1‖2H2 (3.31)

by using ‖∇ηn+1‖2
L3 ≤ C‖ηn+1‖2

H2 ≤ Cτ . On the other hand, from (3.27) and the regularity
assumption (A4) of the solution to the Stokes problem, we have

‖en+1‖2H2 + ‖εn+1‖2H1

≤ C‖ρnDτ en+1‖2L2 + C‖Rn+1
u ‖2L2 + C‖∇ρn+1 · (∇en+1)t‖2L2 + C

6
∑

i=1

‖I n+1
i ‖2L2

≤ Cτ−2‖σ n(en+1 − en)‖2L2 + C‖Rn+1
u ‖2L2 + C‖∇en+1‖L2‖en+1‖H2

+C‖∇en‖2L2 + C‖ηn+1‖2H2 + C‖ηn‖2H2

≤ 1

2
‖en+1‖2H2 + Cτ−2‖σ n(en+1 − en)‖2L2

+C
(‖Rn+1

u ‖2L2 + ‖∇en‖2L2 + ‖ηn+1‖2H2 + ‖ηn‖2H2

)

. (3.32)
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Summing up (3.32) for n from 0 to m and using (3.19) and (3.31), we obtain

τ

m
∑

n=0

(‖en+1‖2H2 + ‖εn+1‖2H1

) ≤ Cτ 2 + Cτ−1
m

∑

n=0

‖σ n(en+1 − en)‖2L2

≤ Cτ 2 + Cτ 2
m

∑

n=0

‖en+1‖2H2 . (3.33)

Taking a sufficiently small τ2 < τ1 such that Cτ2 < 1, we derive

τ

m
∑

n=0

(‖en+1‖2H2 + ‖εn+1‖2H1

) ≤ Cτ 2,

which with (3.31) leads to

τ‖∇em+1‖2L2 +
m

∑

n=0

‖σ n(en+1 − en)‖2L2 + τ

m
∑

n=0

‖∇(en+1 − en)‖2L2 ≤ Cτ 3.

Thus, we complete the proof of Lemma 3.4. ��
From (3.28), we can see that

‖∇un+1‖L2 ≤ Cτ + ‖∇u‖L∞(0,T ;L2)

≤ 1 + ‖∇u0‖L2 + ‖∇u‖L∞(0,T ;L2) = κ1, ∀ 0 ≤ n ≤ N − 1

for some small τ > 0. Thus, (3.14) holds and we close the mathematical induction.
The estimate (3.28) provides a uniform boundness of the time discrete solution

(un+1, pn+1) in l∞(H2) × l∞(H1)-norm, which means that there exists some C > 0 such
that

‖un+1‖H2 + ‖pn+1‖H1 ≤ C, ∀ 0 ≤ n ≤ N − 1. (3.34)

In addition, the estimates (3.19) and (3.28) imply that

‖∇(Dτun+1)‖L2 + ‖Dτ ρ
n+1‖H1 + τ

n
∑

i=0

(‖Dτun+1‖H2 + ‖Dτ ρ
n+1‖H2

) ≤ C (3.35)

for all 0 ≤ n ≤ N − 1, if we notice the regularity assumption (A3).
Next, we estimate the time discrete solutions (ρn+1,un+1, pn+1) in H3 × W2,4 × W 1,4-

norm. We turn back to (2.7) and (3.21). In terms of (3.20) and (3.34), one has

‖∇ρn+1 · un‖L2 ≤ C‖ρn+1‖H2‖∇un‖L2 ≤ C,

‖∇(∇ρn+1 · un)‖L2 ≤ C‖ρn+1‖H2‖un‖H2 ≤ C

and

‖ρn+1(un · ∇)un+1‖L4 + ‖(∇ρn+1 · ∇)un+1‖L4 + ‖∇ρn+1 · (∇un+1)t‖L4

≤ C‖ρn+1‖L∞‖un‖H2‖∇un+1‖L4 + C‖∇ρn+1‖L∞‖∇un+1‖L4

≤ C .

From the regularity assumption (A4), we obtain

‖ρn+1‖H3 + ‖un+1‖W 2,4 + ‖pn+1‖W 1,4 ≤ C, ∀ 0 ≤ n ≤ N − 1. (3.36)
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3.2 Spatial Error Analysis

In this subsection, we will prove the optimal spatial error estimate for the velocity in l∞(L2)-
norm and the density in l∞(H1)-norm. The proof is based on the regularities of time discrete
solutions derived in Sect. 3.1 and the following new projection operators.

For 1 ≤ n ≤ N , we introduce three new projection operators (Rn
h, Q

n
h) : V × M →

Vh × Mh and �n
h : W → Wh defined by

a(ρn;Rn
hu − u, vh) − (∇ · vh, Qn

h p − p) = 0, ∀ vh ∈ Vh,

(∇ · (Rn
hu − u), qh) = 0, ∀ qh ∈ Mh,

and

λ(�n
hρ − ρ, rh) + λ(∇(�n

hρ − ρ),∇rh) + (∇(�n
hρ − ρ) · un−1, rh) = 0, ∀ rh ∈ Wh,

where ρn and un−1 are the solutions to (2.7–2.8) and satisfy the point-wise inequality (3.16)
and the regularity (3.34), respectively.

Then from the coercive property (2.2), and using a classical argument (cf.[5,14]), the
following approximations hold:

‖u − Rn
hu‖L2 + h‖∇(u − Rn

hu)‖L2 + h‖p − Qn
h p‖L2 ≤ Ch2(‖u‖H2 + ‖p‖H1 ), (3.37)

‖ρ − �n
hρ‖L2 + h‖ρ − �n

hρ‖H1 ≤ Ch2‖ρ‖H2 , (3.38)

‖ρ − �n
hρ‖L∞ + ‖u − Rn

hu‖L∞ ≤ Ch1/2 (3.39)

for any (ρ,u, p) ∈ H2(�) ∩ H2(�) ∩ V × H1(�). Furthermore, one has

‖ρ − �n
hρ‖L4 + ‖u − Rn

hu‖L4 ≤ Ch2(‖ρ‖W 2,4 + ‖u‖W 2,4 + ‖p‖W 1,4), (3.40)

‖ρ − �n
hρ‖W 1,4 + ‖u − Rn

hu‖W 1,4 ≤ Ch(‖ρ‖W 2,4 + ‖u‖W 2,4 + ‖p‖W 1,4) (3.41)

if (ρ,u, p) ∈ W 2,4(�) ∩ W2,4(�) ∩ V × W 1,4(�).
We denote by P1h the standard Raviart-Thomas projection from H(div,�) onto RTh ,

which satisfies the following properties (cf. [30]):

(∇ · P1hu, vh) = (∇ · u, vh), ∀ vh ∈ P1(Th),
‖u − P1hu‖L2 ≤ Chl‖u‖Hl , ∀ u ∈ Hl(�), l = 1, 2,

where P1(Th) ⊂ H1(�) is the finite element space of functions which are the piecewise
linear polynomials on each K ∈ Th . For the time discrete solution un , since ∇ · un = 0 in �

and un · n = 0 on ∂�, then

∇ · P1hun = 0 in � and P1hun · n = 0 on ∂�,

which implies that P1hun ∈ RT0h . By noticing the definition of the L2-projection P0h , there
holds that

‖un − P0hun‖L2 ≤ ‖un − P1hun‖L2 ≤ Ch2. (3.42)

Introduce spatial error functions by

η0h = Jhρ0 − ρ0
h = 0, e0h = Ihu0 − u0h = 0,

ηnh = �n
hρ

n − ρn
h , enh = Rn

hu
n − unh, εnh = Qn

h p
n − pnh , ∀ 1 ≤ n ≤ N ,
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where (ρn
h ,unh, p

n
h ) and (ρn,un, pn) are numerical solutions to (2.17–2.18) and (2.7–2.8),

respectively. Moreover, we denote projection error functions by

θ0 = Jhρ0 − ρ0, E0 = Ihu0 − u0,

θn = �n
hρ

n − ρn, En = Rn
hu

n − un, ξn = Qn
h p

n − pn, ∀ 1 ≤ n ≤ N .

From (3.37–3.41) and the regularities (3.20), (3.34) and (3.35), projection error functions
satisfy

‖En‖L2 + h(‖∇En‖L2 + ‖ξn‖L2) ≤ Ch2, (3.43)

‖En‖L∞ + ‖θn‖L∞ ≤ Ch1/2, (3.44)

‖DτEn‖L2 + ‖Dτ θ
n‖L2 ≤ Ch2(‖Dτun‖H2 + ‖Dτ ρ

n‖H2), (3.45)

‖En‖L4 + h‖En‖W 1,4 ≤ Ch2, (3.46)

‖θn‖L2 + h‖θn‖H1 ≤ Ch3. (3.47)

For 0 ≤ n ≤ N −1, subtracting (2.17–2.18) from (2.9–2.10) with (r , v, q) = (rh, vh, qh)
and noticing the definitions of projection operators (Rn+1

h , Qn+1
h ) and �n+1

h , we get the
following error equations satisfied by ηn+1

h and (en+1
h , εn+1

h ), respectively,

(Dτ ηn+1
h , rh) + λ(∇ηn+1

h ,∇rh)

= (Dτ θn+1, rh) − λ(θn+1, rh) − (∇θn+1 · (un − P0hu
n
h), rh) − (∇ρn+1 · (un − P0hu

n
h), rh)

+(∇ηn+1
h · (un − P0hu

n
h), rh) − (∇ηn+1

h · un , rh)

:=
6

∑

i=1

(I n+1
ih , rh), ∀ rh ∈ Wh , (3.48)

and

(ρnh Dτ e
n+1
h , vh) + 1

2

(

Dτ ρn+1
h , en+1

h · vh
)

+ a(ρn+1
h ; en+1

h , vh)

−(∇ · vh , εn+1
h ) + (∇ · en+1

h , qh)

= (ρnh DτEn+1, vh) −
(

(ρn − ρnh )Dτun+1, vh
)

+ 1

2

(

Dτ θn+1,Rn+1
h un+1 · vh

)

+λ
(

(ρn+1 − ρn+1
h ), (∇∇un+1)t : ∇vh

)

− 1

2

(

∇ · (ρn+1un − ρn+1
h unh),Rn+1

h un+1 · vh
)

− 1

2

(

∇ · (ρn+1
h unh), en+1

h · vh
)

− λ

2

(

∇(ηn+1
h − θn+1), ∇(Rn+1

h un+1 · vh)
)

+λ

2

(

∇ρn+1
h ,∇(en+1

h · vh)
)

− λ
(

(∇ρn+1
h · ∇)en+1

h , vh
)

−λ
(

(∇(ηn+1
h − θn+1) · ∇)un+1, vh

)

+ λ
(

(∇ρn+1 · ∇)En+1, vh
)

−λ
(

(∇(ηn+1
h − θn+1) · ∇)En+1, vh

)

+
(

ρn+1(un · ∇)En+1, vh
)

−
(

ρn+1
h (unh · ∇)en+1

h , vh
)

−
(

(ηn+1
h − θn+1)(un · ∇)Rn+1

h un+1, vh
)

−
(

ρn+1
h ((un − unh) · ∇)Rn+1

h un+1, vh
)

− 1

2

(

Dτ ηn+1
h ,Rn+1

h un+1 · vh
)

:=
17
∑

i=1

(Jn+1
ih , vh), ∀ (vh , qh) ∈ Vh × Mh , (3.49)

where we have noted ∇ · un = 0 in � and

(Dτ ρn+1,Rn+1
h un+1 · vh) + (∇ · (ρn+1un),Rn+1

h un+1 · vh) = −λ(∇ρn+1, ∇(Rn+1
h un+1 · vh))
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by taking r = Rn+1
h un+1 · vh ∈ Wh in (2.9).

We first estimate ηn+1
h and ∇ηn+1

h in l∞(L2)-norm in the following two lemmas.

Lemma 3.5 Under the assumptions (A1–A4), there exists some τ3 < τ2 such that when
τ < τ3, there holds

‖ηm+1
h ‖2

L2
+ τ

m
∑

n=0

‖ηn+1
h ‖2

H1 ≤ Ch4 + Cτ

m
∑

n=0

‖un − P0hu
n
h‖2

L2
+ Ch2τ

m
∑

n=0

‖un − P0hu
n
h‖2

L3

(3.50)

for all 0 ≤ m ≤ N − 1.

Proof Taking rh = 2τηn+1
h in (3.48) leads to

‖ηn+1
h ‖2L2 − ‖ηnh‖2L2 + ‖ηn+1

h − ηnh‖2L2 + 2λτ‖∇ηn+1
h ‖2L2 = 2τ

4
∑

i=1

(I n+1
ih , ηn+1

h ) (3.51)

by noticing

(I n+1
5h , ηn+1

h ) = 1

2

∫

�

∇|ηn+1
h |2 · (un − P0hunh)dx

= −1

2

∫

�

|ηn+1
h |2∇ · (un − P0hunh)dx = 0

and

(I n+1
6h , ηn+1

h ) = 1

2

∫

�

∇|ηn+1
h |2 · undx = −1

2

∫

�

|ηn+1
h |2∇ · undx = 0.

The right-hand side of (3.51) can be bound by using the Hölder inequality and the Young
inequality. It follows from (3.43–3.45) that

2τ(I n+1
1h , ηn+1

h ) ≤ Cτ‖ηn+1
h ‖2L2 + Cτh4,

2τ(I n+1
2h , ηn+1

h ) ≤ Cτ‖ηn+1
h ‖2L2 + Cτh4.

For I n+1
3 and I n+1

4 , we can prove that

2τ(I n+1
3h , ηn+1

h ) ≤ Cτ‖∇θn‖L2‖un − P0hunh‖L3‖ηn+1
h ‖H1

≤ λτ

2
‖ηn+1

h ‖2H1 + Cτh2‖un − P0hunh‖2L3 ,

2τ(I n+1
4h , ηn+1

h ) ≤ Cτ‖ρn+1‖H2‖un − P0hunh‖L2‖ηn+1
h ‖H1

≤ λτ

2
‖ηn+1

h ‖2H1 + Cτ‖un − P0hunh‖2L2 .

Substituting the above estimates into (3.51), we obtain

‖ηn+1
h ‖2L2 − ‖ηnh‖2L2 + ‖ηn+1

h − ηnh‖2L2 + λτ‖ηn+1
h ‖2H1

≤ Cτh4 + Cτ‖ηn+1
h ‖2L2 + Cτ‖un − P0hunh‖2L2 + Cτh2‖un − P0hunh‖2L3 . (3.52)

Taking the sum from 0 to m and using the discrete Gronwall’s inequality in Lemma 2.2, we
get the desired result (3.50) for some small τ < τ3 < τ2. ��
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Lemma 3.6 Under the assumptions (A1)-(A4), if

‖un − P0hunh‖2L2 ≤ Ch3, ∀ 0 ≤ n ≤ N − 1, (3.53)

then there exists some C > 0 such that

τ

m
∑

n=0

‖Dτ η
n+1
h ‖2L2 + λ‖∇ηm+1

h ‖2L2 ≤ Ch4 + Cτ

m
∑

n=0

‖un − P0hunh‖2L2 (3.54)

for all 0 ≤ m ≤ N − 1.

Proof Taking rh = 2Dτ η
n+1
h in (3.48) leads to

2‖Dτ η
n+1
h ‖2L2 + λDτ‖∇ηn+1

h ‖2L2 + λτ‖∇(Dτ η
n+1
h )‖2L2 = 2

6
∑

i=1

(I n+1
ih , Dτ η

n+1
h ). (3.55)

We estimate the right-hand side of (3.55) term by term according to the regularities derived
in (3.20), (3.34), (3.36) and (3.36). From the Hölder inequality and the Young inequality, we
have

2(I n+1
1h , Dτ η

n+1
h ) ≤ 1

6
‖Dτ η

n+1
h ‖2L2 + Ch4‖Dτ ρ

n+1‖2H2 ,

2(I n+1
2h , Dτ η

n+1
h ) ≤ 1

6
‖Dτ η

n+1
h ‖2L2 + Ch4‖ρn+1‖2H2 ,

2(I n+1
3h , Dτ η

n+1
h ) ≤ C‖∇θn+1‖L3‖un − P0hunh‖L2‖Dτ η

n+1
h ‖L6

≤ C‖Dτ η
n+1
h ‖L2‖un − P0hunh‖L2

≤ 1

6
‖Dτ η

n+1
h ‖2L2 + C‖un − P0hunh‖2L2 ,

where the inverse inequalities (2.23) is used, and

2(I n+1
4h , Dτ η

n+1
h ) ≤ ‖∇ρn+1‖L∞‖un − P0hunh‖L2‖Dτ η

n+1
h ‖L2

≤ 1

6
‖Dτ η

n+1
h ‖2L2 + C‖un − P0hunh‖2L2 ,

and

2(I n+1
5h , Dτ η

n+1
h ) ≤ ‖∇ηn+1

h ‖L∞‖un − P0hunh‖L2‖Dτ η
n+1
h ‖L2

≤ 1

6
‖Dτ η

n+1
h ‖2L2 + Ch−3‖un − P0hunh‖2L2‖∇ηn+1

h ‖2L2 ,

where the inverse inequalities (2.23) is used, and

2(I n+1
6h , Dτ η

n+1
h ) ≤ 1

6
‖Dτ η

n+1
h ‖2L2 + C‖∇ηn+1

h ‖2L2 .

Substituting the above estimates into (3.55) and taking the sum from 0 to m, we get

τ

m
∑

n=0

‖Dτ η
n+1
h ‖2L2 + λ‖∇ηm+1

h ‖2L2

≤ Ch4 + Cτ

m
∑

n=0

‖un − P0hunh‖2L2 + Cτ

m
∑

n=0

(1 + h−3‖un − P0hunh‖2L2)‖∇ηn+1
h ‖2L2 .

By the condition (3.53) and using the discrete Gronwall inequality in Lemma 2.2, we get the
desired result (3.54). ��
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Next lemma presents the estimate of en+1
h in l∞(L2)-norm and l2(V)-norm.

Lemma 3.7 Under the assumptions (A1–A4), there exists sufficiently small h4 > 0 and
τ4 < τ3 such that when h < h4 and τ < τ4, the finite element scheme (2.18) admits a unique
solution (un+1

h , pn+1
h ) ∈ Vh × Mh. Moreover, there holds

‖em+1
h ‖2L2 + τ

m
∑

n=0

‖∇en+1
h ‖2L2 ≤ C2

0h
4, ∀ 0 ≤ m ≤ N − 1, (3.56)

where C0 > 0 is independent of τ , h and m.

Proof We will prove (3.56) by the method of mathematical induction.
• Initialization (m = 0)

We first prove that (3.56) is valid for m = 0. Taking m = 0 in (3.50) and (3.54), we can
get

τ‖Dτ η
1
h‖2L2 + ‖η1h‖2L2 ≤ Ch4 (3.57)

by using

‖u0 − P0hu0h‖2L2 ≤ 2‖u0 − P0hu0‖2L2 + 2‖P0hu0 − P0hu0h‖2L2

≤ 2‖u0 − P0hu0‖2L2 + 2‖u0 − u0h‖2L2

≤ Ch4,

h2‖u0 − P0hu0h‖2L3 ≤ 2h2‖u0 − P0hu0‖2L3 + 2h2‖P0hu0 − P0hu0h‖2L3

≤ Ch4 + Ch‖P0hu0 − P0hu0h‖2L2

≤ Ch4.

Furthermore, we get from the inverse inequality (2.23) and (3.57) that

‖η1h‖L∞ ≤ Ch1/2 and ‖ρ1 − ρ1
h‖L∞ ≤ Ch1/2. (3.58)

Then there exists some sufficiently small h4 such that when h < h4, one has

m̃ < m − Ch1/2 < ‖ρ1
h‖L∞ < M + Ch1/2 < ˜M, (3.59)

which with (2.2) implies that the numerical scheme (2.18) with n = 0 admits a unique
solution (u1h, p

1
h) ∈ Vh × Mh . Taking n = 0 and (vh, qh) = 2τ(e1h, ε

1
h) in (3.49) and using

(2.2) and e0h = 0, we get

‖σ 0
h e

1
h‖2L2 + ‖σ 1

h e
1
h‖2L2 + 2μ1τ‖∇e1h‖2L2 ≤ 2τ

17
∑

i=1

(J 1ih, e
1
h). (3.60)

Due to η0h = 0, then from (3.43–3.45) and (3.35), one has

2τ
3

∑

i=1

(J 1ih, e
1
h) ≤ μ1τ

11
‖∇e1h‖2L2 + Cτh4. (3.61)

By (3.57) and (3.58), we estimate (J 14h, e
1
h) by

2τ(J 14h, e
1
h) ≤ Cτ‖ρ1 − ρ1

h‖L∞‖∇e1h‖2L2 + Cτ‖∇R1
hu

1‖L3‖ρ1 − ρ1
h‖L2‖∇e1h‖L2

≤ μ1τ

11
‖∇e1h‖2L2 + Cτh4
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for sufficiently small h < h4. Using the integration by parts, we estimate (J 15h, e
1
h) by

2τ(J 15h, e
1
h) = τ

(

((ρ1 − ρ1
h)u0 + ρ1

h(u0 − u0h)) · ∇(R1
hu

1), e1h
)

+τ
(

((ρ1 − ρ1
h)u0 + ρ1

h(u0 − u0h)) · (R1
hu

1),∇e1h
)

≤ Cτ
(‖ρ1 − ρ1

h‖L2 + ‖u0 − u0h‖L2
) ‖∇e1h‖L2

≤ μ1τ

11
‖∇e1h‖2L2 + Cτh4,

2τ(J 16h, e
1
h) = −2τ(J 114h, e

1
h).

Similarly, we can prove

2τ(J 110h, e
1
h) + 2τ(J 112h, e

1
h) ≤ Cτ‖ρ1 − ρ1

h‖L2‖∇e1h‖L2

≤ μ1τ

11
‖∇e1h‖2L2 + Cτh4,

2τ(J 18h, e
1
h) = −2τ(J 19h, e

1
h).

From the definition of �1
h , one has

2τ(J 17h, e
1
h) = −λτ(∇η1h,∇(R1

hu
1 · e1h)) − τ(∇θ1 · u0,R1

hu
1 · e1h) − λτ(θ1,R1

hu
1 · e1h)

≤ Cτ(‖∇η1h‖L2 + ‖θ1‖L2)‖∇e1h‖L2

≤ μ1τ

11
‖∇e1h‖2L2 + Cτh4,

where (3.57) is used. It is easy to see that

2τ(J 111h, e
1
h) + 2τ(J 113h, e

1
h) ≤ Cτ‖E1‖L2‖∇e1h‖L2

≤ μ1τ

11
‖∇e1h‖2L2 + Cτh4,

and

2τ(J 115h, e
1
h) ≤ 2τ‖u0‖L∞‖∇R1

hu
1‖L3‖ρ1 − ρ1

h‖L2‖∇e1h‖L2

≤ μ1τ

11
‖∇e1h‖2L2 + Cτh4,

2τ(J 116h, e
1
h) ≤ 2τ‖ρ1

h‖L∞‖∇R1
hu

1‖L3‖E0‖L2‖∇e1h‖L2

≤ μ1τ

11
‖∇e1h‖2L2 + Cτh4.

For J17h , we get from (3.57) that

2τ(J 117h, e
1
h) = −λτ(Dτ η

1
h,R

1
hu

1 · e1h)
≤ Cτ‖Dτ η

1
h‖L2‖e1h‖L2

≤ 1

4
‖σ 1

h e
1
h‖2L2 + Cτh4.

Taking into account these estimates with (3.60), there exits some C1 > 0 independent of
C0, h and τ such that

‖e1h‖2L2 + τ‖∇e1h‖2L2 ≤ C2
1τh

4.

Thus, (3.56) is valid for m = 0 by taking C0 ≥ C1.
• General step (m ≥ 1)
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For 0 ≤ n ≤ N − 1, we assume that (3.56) is valid for m = n, i.e.,

‖enh‖2L2 + τ

n
∑

i=1

‖∇eih‖2L2 ≤ C2
0h

4. (3.62)

Then

‖un − P0hunh‖2L2 ≤ 2‖un − P0hun‖2L2 + 2‖P0h(un − unh)‖2L2

≤ Ch4 + C(‖enh‖2L2 + ‖En‖2L2)

≤ Ch4 + C‖enh‖2L2

≤ C(1 + C0)
2h4. (3.63)

Thus, the condition (3.53) is valid and the estimate (3.54) holds in Lemma 3.6.
By the inverse inequality (2.23), we have

‖enh‖L∞ ≤ Ch−3/2‖enh‖L2 ≤ CC0h
1/2,

which implies that

‖unh‖L∞ ≤ ‖un‖L∞ + ‖En‖L∞ + ‖enh‖L∞

≤ C‖un‖H2 + C(1 + C0)h
1/2

≤ C (3.64)

for sufficiently small h < h4 such that (1 + C0)h
1/2
4 ≤ 1. From (3.50) in Lemma 3.5 and

(3.63), one has

‖ηn+1
h ‖2L2 + τ

n
∑

i=0

‖ηi+1
h ‖2H1 ≤ C(1 + C0)

2h4, (3.65)

where we use the inverse inequality (2.23), (3.36) and

h2‖un − P0hunh‖2L3 ≤ Ch2‖En‖2L3 + Ch‖Rn
hu

n − P0hunh‖2L2

≤ Ch4 + Ch(‖En‖2L2 + ‖un − P0hunh‖2L2)

≤ Ch4 (3.66)

for sufficiently small h < h4. Then the finite element solution ρn+1
h satisfies

‖ρn+1 − ρn+1
h ‖L∞ ≤ ‖θn+1‖L∞ + Ch−3/2‖ηn+1

h ‖L2

≤ C(1 + C0)h
1/2, (3.67)

which with (3.16) implies that

m̃ < m − C(1 + C0)h
1/2 < ρn+1

h < M + C(1 + C0)h
1/2 < ˜M, ∀ 0 ≤ n ≤ N − 1

(3.68)

for sufficiently small h < h4 such that

C(1 + C0)h
1/2
4 < max{m − m̃, ˜M − M}.

According to (2.2), the fully discrete scheme (2.18) admits a unique solution (un+1
h , pn+1

h ) ∈
Vh × Mh .

123



47 Page 26 of 31 Journal of Scientific Computing (2022) 90 :47

To close the mathematical induction, we need to prove that (3.56) is valid for m = n + 1.
Setting (vh, qh) = 2τ(en+1

h , εn+1
h ) in (3.49), we get

‖σ n+1
h en+1

h ‖2L2 − ‖σ n
h e

n
h‖2L2 + 2μ1τ‖∇en+1

h ‖2L2 ≤ 2τ
17
∑

i=1

(Jn+1
ih , en+1

h ). (3.69)

Using the Hölder inequality, the Young inequality, the regularity results (3.34–3.36) derived
in Sect. 3 and the projection approximations (3.43–3.47) and the induction assumptions
(3.62–3.68), we estimate the right-hand side of (3.69) term by term as follows:

• Estimate of 2τ(Jn+1
1h , en+1

h )

2τ(Jn+1
1h , en+1

h ) ≤ 2τ‖ρn
h‖L∞‖DτEn+1‖L2‖en+1

h ‖L2

≤ Cτ‖σ n+1
h en+1

h ‖2L2 + Cτh4‖Dτun+1‖2H2 .

• Estimate of 2τ(Jn+1
2h , en+1

h )

2τ(Jn+1
2h , en+1

h ) ≤ 2τ
(‖ηnh‖L2 + ‖θn‖L2

) ‖Dτun+1‖L3‖en+1
h ‖L6

≤ μ1τ

16
‖∇en+1

h ‖2L2 + Cτ‖ηnh‖2L2 + Cτh4.

• Estimate of 2τ(Jn+1
3h , en+1

h )

2τ(Jn+1
3h , en+1

h ) ≤ τ‖Dτ θ
n+1‖L2‖Rn+1

h un+1‖L3‖en+1
h ‖L6

≤ μ1τ

16
‖∇en+1

h ‖2L2 + Cτh4‖Dτ ρ
n+1‖2H2 .

• Estimate of 2τ(Jn+1
4h , en+1

h )

2τ(Jn+1
4h , en+1

h ) ≤ 2λτ
(

‖ηn+1
h ‖L∞ + ‖θn+1‖L∞

)

‖∇en+1
h ‖2L2

+2λτ
(

‖ηn+1
h ‖L6 + ‖θn+1‖L6

)

‖∇En+1‖L3‖∇en+1
h ‖L2

+2λτ
(

‖ηn+1
h ‖L2 + ‖θn+1‖L2

)

‖∇un+1‖L∞‖∇en+1
h ‖L2

≤
(

C(1 + C0)h
1/2 + μ1

32

)

τ‖∇en+1
h ‖2L2 + Cτh4

+Cτh2‖ηn+1
h ‖2H1 + Cτ‖ηn+1

h ‖2L2

≤ μ1τ

16
‖∇en+1

h ‖2L2 + Cτ‖ηn+1
h ‖2L2 + Cτh4 + Cτh2‖ηn+1

h ‖2H1

for sufficiently small h < h4 such that C(1 + C0)h
1/2
4 < μ1/32.

• Estimate of 2τ(Jn+1
5h , en+1

h )

2τ(Jn+1
5h , en+1

h ) = τ
(

ρn+1(un − unh) + (ρn+1 − ρn+1
h )unh,∇Rn+1

h un+1 · en+1
h

)

+τ
(

ρn+1(un − unh) + (ρn+1 − ρn+1
h )unh,R

n+1
h un+1 · ∇en+1

h

)

≤ Cτ
(

‖enh‖L2 + ‖En‖L2 + ‖ηn+1
h ‖L2 + ‖θn+1‖L2

)

‖∇en+1
h ‖L2

≤ μ1τ

16
‖∇en+1

h ‖2L2 + Cτ
(

‖σ n
h e

n
h‖2L2 + ‖ηn+1

h ‖2L2 + h4
)

,

where the integration by parts is used.
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• Relation of 2τ(Jn+1
6h , en+1

h ) and 2τ(Jn+1
14h , en+1

h )

2τ(Jn+1
6h , en+1

h ) = 2τ(ρn+1
h unh,∇en+1

h · en+1
h ) = −2τ(Jn+1

14h , en+1
h ),

where the integration by parts is used.
• Estimate of 2τ(Jn+1

7h , en+1
h )

2τ(Jn+1
7h , en+1

h ) = −λτ
(

∇ηn+1
h ,∇(Rn+1

h un+1 · en+1
h )

)

−λτ
(

θn+1,Rn+1
h un+1 · en+1

h

)

−τ
(

∇θn+1 · un,Rn+1
h un+1 · en+1

h

)

≤ Cτ‖ηn+1
h ‖H1‖∇en+1

h ‖L2 + Cτ‖θn+1‖L2‖∇en+1
h ‖L2

≤ μ1τ

16
‖∇en+1

h ‖2L2 + Cτ‖ηn+1
h ‖2H1 + Cτh4,

where the definition of �n+1
h is used.

• Relation of 2τ(Jn+1
8h , en+1

h ) and 2τ(Jn+1
9h , en+1

h )

2τ(Jn+1
8h , en+1

h ) = −2τ(Jn+1
9h , en+1

h )

by using the integration by parts.
• Estimate of 2τ(Jn+1

10h , en+1
h )

2τ(Jn+1
10h , en+1

h ) = 2λτ((ηn+1
h − θn+1)�un+1, en+1

h )

+2λτ((ηn+1
h − θn+1)∇un+1,∇en+1

h )

≤ Cτ
(

‖ηn+1
h ‖L2 + ‖θn+1‖L2

)

‖∇en+1
h ‖L2

≤ μ1τ

16
‖∇en+1

h ‖2L2 + Cτ‖ηn+1
h ‖2L2 + Cτh4

by using the integration by parts.
• Estimate of 2τ(Jn+1

11h , en+1
h )

2τ(Jn+1
11h , en+1

h ) = −2λτ(�ρn+1En+1, en+1
h ) − 2λτ(∇ρn+1,En+1 · ∇en+1

h )

≤ Cτ‖ρn+1‖H3‖En+1‖L2‖∇en+1
h ‖L2

≤ μ1τ

16
‖∇en+1

h ‖2L2 + Cτh4

by using the integration by parts.
• Estimate of 2τ(Jn+1

12h , en+1
h )

2τ(Jn+1
12h , en+1

h ) ≤ Cτ
(

‖∇ηn+1
h ‖L2 + ‖∇θn+1‖L2

)

‖∇En+1‖L3‖∇en+1
h ‖L2

≤ μ1τ

16
‖∇en+1

h ‖2L2 + Cτ‖∇ηn+1
h ‖2L2 + Cτh4.

• Estimate of 2τ(Jn+1
13h , en+1

h )

2τ(Jn+1
13h , en+1

h ) = −2τ
(

∇ρn+1 · un,En+1 · en+1
h

)

− 2τ
(

ρn+1(un · ∇)en+1
h ,En+1

)

≤ Cτ‖un‖H2‖ρn+1‖H2‖En+1‖L2‖∇en+1
h ‖L2

≤ μ1τ

16
‖∇en+1

h ‖2L2 + Cτh4
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by using the integration by parts and ∇ · un = 0 in �.
• Estimate of 2τ(Jn+1

15h , en+1
h )

2τ(Jn+1
15h , en+1

h ) ≤ Cτ
(

‖ηn+1
h ‖L2 + ‖θn+1‖L2

)

‖un‖L∞‖∇Rn+1
h un+1‖L3‖∇en+1

h ‖L2

≤ μ1τ

16
‖∇en+1

h ‖2L2 + Cτ‖ηn+1
h ‖2L2 + Cτh4.

• Estimate of 2τ(Jn+1
16h , en+1

h )

2τ(Jn+1
16h , en+1

h ) ≤ Cτ
(‖enh‖L2 + ‖En‖L2

) ‖ρn+1
h ‖L∞‖∇Rn+1

h un+1‖L3‖∇en+1
h ‖L2

≤ μ1τ

16
‖∇en+1

h ‖2L2 + Cτ‖σ n
h e

n
h‖2L2 + Cτh4.

• Estimate of 2τ(Jn+1
17h , en+1

h )

2τ(Jn+1
17h , en+1

h ) ≤ Cτ‖Dτ η
n+1
h ‖L2‖Rn+1

h un+1‖L3‖en+1
h ‖L6

≤ μ1τ

16
‖∇en+1

h ‖2L2 + Cτ‖Dτ η
n+1
h ‖2L2 .

Substituting these estimates for Jn+1
1h to Jn+1

17h into (3.69), we get

‖σ n+1
h en+1

h ‖2L2 − ‖σ n
h e

n
h‖2L2 + μ1τ‖∇en+1

h ‖2L2

≤ Cτh4 + Cτ(‖σ n+1
h en+1

h ‖2L2 + ‖σ n
h e

n
h‖2L2) + Cτh4(‖Dτun+1‖2H2 + ‖Dτ ρ

n+1‖2H2)

+Cτ(‖ηnh‖2L2 + ‖ηn+1
h ‖2L2 + ‖∇ηn+1

h ‖2L2 + ‖Dτ η
n+1
h ‖2L2).

Taking the sum gives

‖σ n+1
h en+1

h ‖2L2 + μ1τ

n
∑

i=0

‖∇ei+1
h ‖2L2

≤ Ch4 + Cτ

n
∑

i=0

(‖σ i+1
h ei+1

h ‖2L2 + ‖Dτ η
i+1
h ‖2L2 + ‖ηi+1

h ‖2L2 + ‖∇ηi+1
h ‖2L2)

≤ Ch4 + Cτ

n
∑

i=0

‖σ i+1
h ei+1

h ‖2L2 + Ch2τ
n

∑

i=0

‖ui − P0huih‖2L3

+Cτ

n
∑

i=0

‖ui − P0huih‖2L2 , (3.70)

where we used error estimates derived in Lemmas 3.5 and 3.6. From (3.36) (3.63) and (3.66),
we have

h2τ
n

∑

i=0

‖ui − P0huih‖2L3 ≤ Ch4

and

Cτ

n
∑

i=0

‖ui − P0huih‖2L2 ≤ Ch4 + Cτ

n
∑

i=0

‖eih‖2L2

≤ Ch4 + Cτ

n
∑

i=0

‖σ i
he

i
h‖2L2 .
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Then (3.70) reduces to

‖σ n+1
h en+1

h ‖2L2 + μ1τ

n
∑

i=0

‖∇ei+1
h ‖2L2

≤ Ch4 + Cτ

n
∑

i=0

‖σ i+1
h ei+1

h ‖2L2 + Cτ

n
∑

i=0

‖σ i
he

i
h‖2L2 .

Applying the discrete Gronwall’s inequality in Lemma 2.2, we derive

‖σ n+1
h en+1

h ‖2L2 + μ1τ

n
∑

i=0

‖∇ei+1
h ‖2L2 ≤ C exp(CT )h4

and

‖en+1
h ‖2L2 + μ1τ

n
∑

i=0

‖∇ei+1
h ‖2L2 ≤ C exp(CT )h4 ≤ C2

0h
4

by using (3.68) and taking
√

C exp(CT ) ≤ C0. Thus, we prove that (3.56) is valid for
m = n + 1 and finish the mathematical induction. ��

3.3 Proof of Theorem 2.4

By (3.9) in Lemma 3.2 and (3.56) in Lemma 3.7, it is easy to see that

‖u(tn+1) − un+1
h ‖L2 ≤ ‖en+1‖L2 + ‖En+1‖L2 + ‖en+1

h ‖L2

≤ C(τ + h2), ∀ 0 ≤ n ≤ N − 1,

where the uniform boundness (3.12) of ρn+1 is used. Thus, we get the optimal L2 error
estimate for the velocity. To establish the optimal H1 error estimate for the density, we have

‖ηn+1
h ‖H1 ≤ Ch2,

where (3.50) in Lemma 3.5 and (3.54) in Lemma 3.6 are used. Then,

‖ρ(tn+1) − ρn+1
h ‖H1 ≤ ‖ηn+1‖H1 + ‖θn+1‖H1 + ‖ηn+1

h ‖H1

≤ C(τ + h2), ∀ 0 ≤ n ≤ N − 1.

Thus, we complete the proof of Theorem 2.4.
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