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Abstract

In this paper, a linear and decoupled Euler finite element scheme is proposed for solving the
3D incompressible Navier—Stokes equations with mass diffusion numerically by the mini
element for the velocity equation and the P, conforming element for the density equation.
When the time step size v and the mesh size h both are sufficiently small, the proposed
FEM algorithm is unconditionally stable at the full discrete level, which is a key issue in
designing the efficient algorithm for the multi-physical field problem. Furthermore, optimal
temporal-spatial error estimates are presented for the velocity in L2-norm and the density in
H'-norm without any constraint of ¢ and /4 by using the technique of error splitting.

Keywords Kazhikhov—Smagulov model - Navier—Stokes equations with mass diffusion -
Finite element discretization - Unconditional stability - Error estimates

Mathematics Subject Classification 35Q35 - 65M12 - 65M60

1 Introduction

Let Q@ C R? be a bounded and convex domain with the sufficiently smooth boundary 32
and [0, T'] the time interval with some 77 > 0. We will use notations Q7 = [0, T] x Q
and X7 = [0, T'] x 92. In this paper, we consider the 3D incompressible Navier—Stokes
equations with mass diffusion (or called the Kazhikhov—Smagulov model) in Q7, which can
be deduced from the following 3D compressible Navier—Stokes equations:

pr+ V- (pv) =0, (.1
(oV)i + V- (pv @ V) — pAV — (u + MV(V -v) + Vg = 1. (1.2)
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In the above system (1.1-1.2), the unknows p : Qr — R is the density of the fluid,
v: Qr — R3is the velocity of the fluid and ¢ : Q7 — R is the pressure which depends on
the density p.f: Q7 — R? denotes the external force, " and X are two constants and present
viscosity coefficients which are assumed to satisfy © > 0 and 3%+ 2u > 0. If the mass
diffusion process obeys Fick’s law (cf. [12]), the velocity v of the fluid can be decomposed
into a potential part and an incompressible part:

v=u—AVIinp with V.-u=0,

where A > 01is the mass diffusion coefficient. Then the compressible Navier—Stokes equations
(1.1-1.2) can be rewritten as

ot —AAp+Vp-u=0, (1.3)
(pw); + V- ((pu—AVp) ®@u—Au® Vp) — pAu+ 1>V - (p~'Vp @ Vp) + VP =1,

(1.4)
V.u=0, (1.5)

where P = g — Ap; + 22u + ’X)A In p. Eliminating the 22-term in (1.4) and using the
following relations:

(pu); + V- ((pu —AVp) @ u) = pu; + ((pu —AVp) - V)u,
—AV-(u®Vp) = —AV(u-Vp)+ 1V - (p(Vu)'),

we get the simplified model of (1.3—1.5) in Q7 which is described as

Pt —AAp+Vp-u=0, (1.6)
pu; + ((pu—AVp) - VIu—V - (uVu—rp(Vu)') + Vp =1 1.7
V-u=0, (1.8)

where p = P — Au - Vp. The above coupled system (1.6—1.8) are the incompressible
Navier—Stokes equations with mass diffusion. It is clear that the system (1.6—1.8) reduce to
the incompressible Navier—Stokes equations with variable density if A = 0.

We complete (1.6-1.8) by the following boundary conditions

u=0 and dhp =0 on X7 (1.9)
and the initial conditions
p(0,x) = po(x) and wu(0,x) =up(x) in 2, (1.10)

where n denotes the outwards unit normal vector to 0€2. Furthermore, we assume that there
have two positive constants m and M such that

O<m<pyx) <M inQ, (1.11)

which means that there has no vacuum state in €2.

We recall some known results on the incompressible Navier—Stokes equations with mass
diffusion. For the full model (1.3-1.5), Beirdo da Veiga in [31] and Secchi in [29] established
the local existence of the strong solution in terms of linearization and a fixed point method.
Moreover, Secchi in [29] proved the eixstence and uniqueness of a global weak solution to
2D problem by imposing smallness on A /x and established the asymptotic behavior towards
a weak solution to the incompressible Navier—Stokes problem with variable density when the
mass diffusion coefficient A — 0. Guillén-Gonzilez etc. in [15] proved the global existence
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of the strong solution for small initial data by means of an iterative method. When the mass
diffusion coefficient A — 0 and the viscosity coefficient & — 0, Araruna etc. in [4] studied
the asymptotic behavior towards a solution to a inhomogeneous, inviscid and incompressible
fluid governed by an Euler type system. For the numerical method of (1.3—1.5), Cabrales etc.
in [6] proposed a fully discrete decoupled scheme by using a first-order time discretization
and a C finite element approximation for all unknowns and proved some stability and
convergences results.

For the simplified model (1.6-1.8), Kazhikhov and Smagulov in [21] proved the global
existence of the weak solution and the local existence of the strong solution by means of the
Galerkin method under the assumptions that the initial density po(x) satisfies (1.11) and the
viscosity and mass diffusion coefficients satisty A < 2u/(M — m). The global existence of
the weak solution in the non-cylindrical domain was derived in [26]. Secchi in [28] studied
the 3D Cauchy problem and established the local existence and uniqueness of the strong
solution. The global existence of the strong solution to the 2D Cauchy problem and the
2D initial-boundary value problem were studied in [8,9], respectively. For the numerical
methods, there are not many works concerning numerical analysis of the simplified model
(1.6-1.8). By using a first-order time discretization and a C? finite element approximation for
all unknowns, two decoupled numerical schemes were proposed for solving the 2D problem
and the 3D problem in [16] and [17], respectively, where the stabilities of algorithms and
the convergences of numerical solutions were investigated. Other numerical schemes can be
found in [10] and [11,27], where an hybrid finite volume-finite element scheme and spectral
Galerkin schemes were studied, respectively. Furthermore, the stability and convergence of
numerical algorithm were investigated in [10].

To our best knowledge, the first error analysis of finite element fully discrete scheme for
the simplified model (1.6-1.8) was presented by Guillén-Gonzélez and Gutiérrez-Santacreu
in [18]. To describe error estimates derived in [18], we introduce some notations. Let 0 =
tp <t <--- <ty =T be auniform partition of the time interval [0, 7] with the time step
t=T/Nandt, =nt.If {V”},’,V=l is a given vector sequence with v' € X for a Banach
space X, we introduce the following notations for the discrete-in-time norms:

1/2

N

||v"||,z<x>=(r2||v"||§> and ||V icx) = sup [V']|x.
n=1

1<n<N

Let (u},, p;) be the finite element approximations of (u(t,), p(t;)) for 1 < n < N. By using
the mini-element (cf. [14]) for the approximation of velocity-pressure pair and the P, element
for the approximation of density, the authors in [18] proved that

i) — W} llpe 12y + 10Gn) = o) sty < C(x +h) (1.12)

under the weaker regularity assumptions on the exact solution. Concretely, the authors in [18]
avoided using the assumption w;; € L2(0, T; L%3()) which required that the data should
satisfy an extra compatibility condition at = 0.

In this paper, a decoupled numerical scheme is proposed by using the mini-element for the
velocity-pressure pair and the P, element for the density as that in [18]. Inspired by [22], this
scheme is slightly different the scheme in [18] by introducing the post-processed velocity
in the discretization of the density equation and the stable terms in the discretization of the
Navier—Stokes type equation such that the proposed finite element scheme is unconditionally
stable. The main result derived in this paper is the following optimal error estimate:

() = W e 2y + I0(ta) = pj e g1y < C(x + 1), (1.13)
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where i > 0 is the mesh size and C > 0 is some constant independent of # and . However,
compared to [18], the higher regularities of the exact solution are assumed in this paper. The
method of analysis is based on the technique of error splitting for the nonlinear parabolic
problems proposed by Li and Sun in [23-25] and further developed in [2,3,7,13,32].

The rest of this paper is organized as follows. In Sect. 2, we state the proposed linear and
decoupled Euler finite element scheme, present the stability of numerical scheme in Theorem
2.3 and the main result in Theorem 2.4. The proof of Theorem 2.4 is given in Sect. 3 by using
the technique of error splitting. In particular, we firstly derive temporal error estimates and
regularities of solutions to the time discrete scheme in Sect. 3.1, and then prove optimal
spatial error estimates in Sect. 3.2.

2 Numerical Scheme and Main Result
2.1 Preliminaries

For the mathematical setting, we introduce the following notations. For k € Nt and 1 <
p < +o00, we use WK-P(Q) to denote the classical Sobolev space. The norm in WkP(Q) is
denoted by || - ||y, defined by a classical way (cf. [1]). Denote W(];’p(Q) be the subspace of
WP () where the functions have zero trace on 9S2. Especially, WP (Q) is the Lebesgue
space LP(2) and W*2(Q) is the Hilbert space which is simply denoted by HK(). The
boldface notations H¥ (), Wk-p (R2) and L” (R2) are used to denote the vector-value Sobolev
spaces corresponding to HR(Q)3, WhP(Q)3 and LP(Q)3, respectively. We use (-, -) to denote
the L? or L? inner product.
Introduce the following function spaces:
H={uel?), V-u=0inQ, u-n=0o0n9Q},
V=H\(Q), Vo={ueV, V.u=0inQ},
H(div, Q) = {fu e L(Q), V-u e L*(Q)},

W = {re H(Q), /Qr(x)dx =0},
M= L3(Q) = {p e LX), /Qp(x)dx =0}
and
H(@ = lp € H@), dup =000 09 [ pordx = [ potrra),
Hy o(Q) = {p € H*(Q), dup = 0 0n 3, /Qp(x)dx =0)}.
It is known that the norms ||V p|| 41 and ||p|| g2 are equivalent to the seminorm [|Ap|| 2

for p € HI%, (2) and p € Hz%/,o(Q)’ respectively.
Introduce the trilinear term a(p; u, v) by

M + i

a(p;u,v) = p(Vu, Vv) — k/ (p — > (Vu)' : Vvdx
Q
with
- - (M — i)
M > M, 0<m < m suchthat f<u 2.1
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fgr any p € L*°(Q) and u, v € V. Under the condition (2.1), we can see that if m < p(x) <
M, then

MM — i)

_— >
2

a(p;w,v) < walVual 2| Vvl 2. (2.3)

a(p;u,u) = 1| Vull7, where j1 = p — 0, (2.2)

The existence and uniqueness of weak solution to (1.6—1.8) are established by Kazhikhov
and Smagulov in [21]. We recall it in the following theorem.

Theorem 2.1 Let ug € H and py € W satisfying (1.11) and f € L*(0, T; L>(2)). Suppose
that the constants \, i, m and M satisfies

2u

A< .
M—m

2.4)

Then there exists a unique weak solution (p, u) to (1.6—1.8) such that the solution satisfies

ue L0, T;H)NL*0,T; Vo), pelL>0,T;W)NL*0,T; H3(Q)), (2.5)
O<m<p(t,x) <M inQr (2.6)

and the energy inequalities:

MM — m)

t 1 t
5 ) /O IVa(D)72d7 < S lloouol7 + fo (f(r), u())dr,

1

Slo a2 + (u -
1 2 ! 2 L. 2
SIeOIL2 +2 | IVP@IL2dr < ool

forall0 <t < T, where o(t) = /p(t) and oy = /po.

Throughout this paper, we make the following assumptions on the prescribed data, the
regularity of the solution to (1.6—1.10) and the domain 2.
Assumption (A1): Assume that the prescribed data f, ug and pp satisfy

feL?0,T;L*(Q), upe VoNH*(Q) and py € Hy(2) with (1.11).

Assumption (A2): Let A, u, m, M satisfy (2.4) and 1, M satisfy (2.1).
Assumption (A3): Assume that the solution (p, u, p) satisfies the following regularities:

p € L®O,T; H(QNW), p € L*0,T; H*(Q)) N L™, T; H'(Q)),
ue L0, T; W*H(Q) N Vo), u, € L=, T; H(Q)) N L*(0, T; H*(Q)),
pu € L*(0, T; L*(R)), u,; € L2(0, T; LA(Q)), p € L%, T; HX(2) N M).

Assumption (A4): Assume that the boundary 92 is sufficiently smooth such that the
unique solution ¢ of the Neumann problem

—Ap =g inQ, on® =0 onadQ
for prescribed g € M N H*(Q) satisfies
Il oee < Cliglye. fork =0, 1,
and the unique solution (v, g) of the Stokes problem

—Av+Vg=ginQ2, V-v=0inQ, v=00n9dQ
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for prescribed g € L”(2) with 1 < p < 4 satisfies
Ivilw2r + llgllwir < Cligllee.

Remark 2.1 The verification of the regularity assumption u;; € L2(0, T; L*(S2)) should
involve an extra compatibility condition on the data at + = 0 which is not generally satisfied
(see such condition for Navier—Stokes equations in [19]). We make this assumption merely
to simplify the presentation. In [18], such assumption was avoided by using the technique of
Euler integrator in the consistency error analysis.

2.2 Time Discrete Scheme

We first describe the time discrete scheme based on the backward Euler method. Let 0 =
to <t <--- <ty =T be auniform partition of the time interval [0, T'] with the time step
t=T/Nandt, =nt withO <n < N.

Given p° = py and u® = u, we consider the following first-order Euler time discrete
scheme for the simplified system (1.6—-1.10).

Euler time discrete scheme:

Step I: For given p" and u"*, we find p"*! by

Drpn+1 _ )\.A,On+l + V,On+1 a" =0 (27)

n+1

with the boundary condition d, = 0 on 9%2, where

n+l _ . n

Dpn+1_p P
T = .

T
Step II: For given p”, u” and p"*! derived from (2.7), we find (u"*!, p"*+1) by

anrunJrl _ V . (Mvun"rl _ Apn+1(vun+l)f) + pn-H(un . V)un"rl
AVt vprtl =l vt =0 (2.8)

with the boundary condition u”*! = 0 on 9.
The weak form of (2.7-2.8) are described as follows. Find the weak solutions p"*! € W
and ("1, p"*t1) € V x M, respectively, by

(D" 1) + A (V" T V) + (V" ut ) =0, YreW, 2.9)

and

(anrun+l’ V) +a(p"+l; u”+1,v) —(V-v, pn+l) + (V- un—o—l’ 9
+(p"+1(un . V)u"'H, V) — k((Vp"+l . V)un_‘—l, V) = (f"'"l, v), Y(v.q) e Vx M. (2.10)

In the above form (2.10), we use
/ (Vu)’ : Vvdx =0
Q
duetoV-u=0and V- ((Vu))) =0and v =0o0n 0.

From the assumption (A4) on the elliptic regularity, the well-posedness of solution to (2.7)
was established in [17]. We recall it in the following lemma.
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Lemma2.1 ForeachO <n <N — 1, if
V" |2 < k1, 2.11)

for some k1 > 0 being independent of T and n, then for sufficiently small T, the solution p"+!
to (2.7) satisfies

m<p"tx) <M, VxeQ, (2.12)
n

1" 3+ 7 D 10" e < k. 2.13)
i=0

for some k> > 0 being independent of T and n.

Remark 2.2 Although u" in (2.7) replaces uj, in [17], the proof of Lemma 2.1 follows imme-
N

diately from the proof of Lemma 3.4 in [17] by noting the fact that t Z (|Vu" ||iz < C.

n=1

Please see Appendix A in [17].

Next, we discuss the stability of the time discrete scheme (2.7-2.8). Setting ¢ = 2rp"tl
in (2.9) gives

1" M 172 = 1" 72 + 10" = 0" I3 + 2071V I = 0
by using

2/(Vpn+1 -u"),on_de:/ V|,0n+1|2'undx:—f |pn+1|2v‘un:0.
Q Q Q

Taking the sum gives

n
1,2 i+12 2
o™ 7, + 227 > IV T, < llpoll7s
i=0

foral0 <n <N — 1.
Suppose that

m<p"tlx)y<M, YOo<n<N-1. (2.14)
Setting (v, ¢) = 2t(w*t!, p*1) in (2.10) and using (2.2), we have
o™ w12, — o™ |12, + " @ —u) |2, + 2u 7| VT2,

—H/ Pyt v 2y — M/ Vot vt Pdx < 20@ ! wit),
Q Q
where 6”1 = /pn+1. Setting ¢ = 7|uw*t!|? in (2.9) leads to

”O_n+1un+1”2L2 _ ”O_nun+1”22 +)L‘L'/ ver»l . Vlun+1|2dx 4T / (vpn+l ) u")lu”“lzdx =0.
Q Q
Then we obtain
1 12 2 1 2 1,2
lo™ 2, — o™ 2, + o @ — w2, + 2T Va2,

1 1 12 T 12
=2t u"t) <yt ve't 72+ lefwr ll72-
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Taking the sum gives

n N-—1
1 1,2 i+1)2 2 T i+1)2
o a2, 4+ it Yy VR, < loguolls, + — 1747,
L L L L

i=0 i=0

forall0 <n < N — 1, where o9 = /po.
Thus, we get the following stable result of the time discrete scheme (2.7-2.8).

Theorem 2.2 Under the condition (2.11) and the assumptions on the time step T in Lemma
2.1, the solutions p"+" and w10 (2.7) and (2.8) satisfy the following the discrete energy
inequalities:

n

n+12 i+12 2

max 20T v < s

,max <||p 12, + 20” p ||Lz) < llpoll?,
1=l

n N-1
1 12 i+12 2 T i+1)2
max | [o" a7 + T E IVa' ™17, ) < lloouoll;> + — E (i
O=n=N-1 i=0 e

Remark 2.3 From the temporal error analysis in next section, we can see that the condition
(2.11) holds for any O < n < N. Thus, the above energy inequalities imply that the time
discrete scheme (2.7-2.8) is unconditionally stable.

2.3 Finite Element Scheme

We give the finite element fully discretization of (2.7-2.8). Let 7;, = {K J-}/L.z1 be a quasi-
uniform tetrahedral partition of © with the mesh size 1 = max|<;<; {diam K;}. When
02 has a smooth curve, the element K ; adjacent to the boundary may represent a curved
tetrahedron with a curved face. The definitions of finite element spaces on such a partition
with curved elements can be dealt with that in [13,25]. We use the mini element (P15 — P;)
to approximate the velocity field u and the pressure p, and use the piecewise quadratic
Lagrange element (P,) to approximate the density p. The finite element spaces of V, M and
W are denoted by Vj,, M;, and W}, respectively. For this choice, the finite element spaces V),
and M), satisfy the discrete inf-sup condition. Further, we define the H(div, €2) conforming
Raviart-Thomas finite element spaces of order 1 by

RT), = {u, € H(div, ), wi|x € Pi(K)’ +xP(K), ¥ K € T},
RTy, = {u, e RTy,, V-u, =0in Q2 and uy - n = 0 on 9Q2}.
We denote by Py, the L2-orthogonal projection operator from L2(2) to R, defined by
(u—Popu,v;) =0, Vv, € RTg,, ueL*(Q).

Start with ug = Iugy and ,02 = Jnpo, where I and Jj, are the interpolation operators from
V — V, and W — W, respectively, and satisfy

lag — ullll 2 + AV (o —u)ll2 < Ch?|lugll 2, (2.15)
oo — ppllz2 4 Rllpo — PRl < Ch2 |l poll g2 (2.16)

For 1 < n < N, the finite element fully discrete approximations of (2.7-2.8) are described
as follows.
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Finite element fully discrete scheme:
Step I: For given p; € W), and u}, € V), we find p”“ € Wy, such that
(Do) + (Vo V) + (Vo Popug ) = 0 2.17)

for all r, € Wy,
Step II: For given p; € Wy, w; € Vj, and ,OZH € Wy, derived from (2.17), we find
@™, pry € Vi x My, such that

n+1 n+1

(P D™ v + alp)! Vi) — (V- vy, p"+1)+<V-u"+l,qh>

+(op ™ () - Vyw vh)+§<Dfp;;+‘ vy + (v (o ) v

+3 (v,o,’:“ vt i) = AVt Vw v = @ ) (2.18)
for all (vy,, gn) € Vi X My,.

Remark 2.4 In the above algorithm, the post-processed velocity Po,uj in (2.17) and the
stabilized terms (D,pZH oy 4+ (V- (pZ’uZH) u”+] V) +A(Vp}'l’+1, V(ufrl V1))
in (2.18) are used to preserve the unconditional stability of numerical scheme.

Taking rj, = 2tp/ ™ in (2.17), we get

i Iz = lopllg + o™ = oIz + 2270V I =0 (2.19)

by using
250 R ™) = [ o V1o P = = [ ol Px =0,

Taking the sum of (2.19) gives

Loy 122 + 247 Z Vo2, < lopli2.
i=0
forall0 <n <N — 1.
Suppose that the following condition holds:

<oty <M, YOo<n<N-L (2.20)

Taking (vy,, gn) = 21(u”+1, Py in (2.18) and using (2.2), we have

|| n+1 I’l+1|| n+1

—uD)|3, + 2| Va2, < 20 @t gt

— lojwili72 + llo (uj; <
@221

by using

z(pl’l+l(uh V)uI’H-l ul]:ll+1) /PZ+luh'V|uZ+l|2dX=—/ V. (pl’H-l n)lul’l+1|2dx

where o/ ™! = \/p*!. Taking the sum of (2.21), we can get
L Nl
1ot 1 0,012 i+1)2
lloy ||Lz+er||vul+ 2, < loyuhlzz + - DI,
i=0 i=0
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forall0<n <N -1, whereoh _,/ph

Like that for the time discrete scheme (2.7-2.8), we get the following stable result of the
fully discrete scheme (2.17-2.18).

Theorem 2.3 Under the condition (2.20), the solutions p"'H € Wy, and u"'H e Vyto(2.17)
and (2.18) satisfy the following the discrete energy inequalities:

o (np"“an +2ArZ||Vp’“||L2> < llopllz2,
=0

N—1
n+1 n+1 i+1 0,02 T i+12
max o + T Vu,, < |lo,u + — .
O<non— (” ”L2 12 E I ”L2 oy h”L2 oy ;:0 Ir ||L2

i=0

Remark 2.5 From the temporal-spatial error analysis in next section, we can see that the
condition (2.20) holds for sufficiently small # and t. Thus, the above energy inequalities
imply that the fully discrete scheme (2.17-2.18) is unconditionally stable. Furthermore, the
discrete energy inequalities show the existence and uniqueness of solutions /o"+1 € Wy and

uZH € Vj, when h and t are sufficiently small.

2.4 Main Result

We present the optimal error estimate in the following theorem. The proof will be given in
Section 3. In the rest of this paper, we denote by C a generic positive constant, which is
independent of n, h and t, and C may be different at different places.

Theorem 2.4 Under the assumptions (A1)-(A4), there exist 19 > 0 and hg > 0 such that
when t < 19 and h < hy, the FE solutions ,o"Jrl and u"Jrl to (2.17) and (2.18) satisfy

max () = w4 o) = o ) = C@ 48D, 222)
0<n=<N-1

In the proof of Theorem 2.4, the following inverse inequalities and interpolation inequal-
ities are frequently used (cf. [5]):

=372 -3/2

lapliree < Ch™""llupll 2 and |lppliree < CR™ [l onll 2 (2.23)

for any u, € Vj, and p;, € Wj, and

1/2 1/2 1/4

¥, Yue HY(Q).  (2.24)

lullzs < Cllull 5 H»

lully;y and lullps < Cllull
Finally, we recall the discrete Gronwall’s inequality established in [20].

Lemma 2.2 Let ay, by and yy be the nonnegative numbers such that

n n
an—l—TZkatZykak—l—B, forn > 1. (2.25)
k=0 k=0

Suppose v, < 1 and set o = (1 — Ty) ™). Then there holds:

n n
a, + 1 Zbk < exp <1: ZVch) B, forn>1 (2.26)

k=0 k=0

Remark 2.6 1f the sum on the right-hand side of (2.25) extends only up to n — 1, then the
estimate (2.26) still holds for all £ > 1 with o = 1.
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3 Error Analysis

In this section, we will prove Theorem 2.4 by using the technique of error splitting. We first
prove temporal errors in Sect. 3.1 and then prove spatial errors in Sect. 3.2. The finite element
error estimates can be derived by combining temporal errors, projection errors and spatial
errors.

3.1 Temporal Error Analysis

In this subsection, we will prove the optimal temporal errors. For 0 <n < N — 1, we take
t = ty4+1 in (1.6-1.8) to deduce that

Dep(tast) — AAP(tas1) + Vo (tat1) - u(ty) = RAH! 3.1

and

p(tn) Dru(ty41) — V- (/‘vvu([n+l) - )‘p(tn—kl)(vu(tn—&-l))t) + Vp(tat1)
+ oty 1) tn) - VIU(tn11) — AV (tag1) - VIU(tn 1) = £ 4+ R (3.2)

where the truncation functions R”*! and R"*! are given by

In41
RN = Dep(tus1) — pitag1) — Vo(tas) - (/ ut(t)dt> .
A
RZ-H = (p(ty) — p(tn+1)) Deu(tys1) + o (1) (De(ty1) — W (ty41))

Int1
—p(tnt1) (/ u; ()dt - V) U(fny1)-
1,

Under the regularity assumption (A3), we have

N—1

T > (IR, + IRET,) < €22 (33)
n=0

For 0 < n < N, we introduce temporal error functions by
Nt =pty) —p", € =u(,)—u", € =p@,)—-p".
Then error equations satisfied by (" *!, e"*!, ¢"*1) with0 <n < N — 1 are
Do — A AN" T £ Vp(tygr) - € 4+ V't u = RO (3.4)

and
7
anreVl-‘rl —-Vv. (/J.Ven+1 _ )\pﬂ-‘rl(ven-l—l)t) 4 Ven+l 4 Z Iin+l — RZ-‘rl (35)
i=1
with V - e’ = 0 in Q, where
Iln-H —)\(V,On_H . v)en—H
I;H_l — pn+1(un . V)en+l’
= p" e V),

0 = " Doultyy),
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15n+1 — AV - (,,"“(Vu(tng))’),
= (vt Vyud, ),
B =y ) - Vyutgn).

Moreover, the weak formulations of (3.4) and (3.5) can be described as: find "' € W such
that

(D™ r) + (V"L Ve 4 (Vo(tar) € ) + (V" r) = (RET ) (3.6)
forall r € W, and find (¢"t!, ") € V x M such that

;
(p”Dre"“, v) +a(p" e ) — (Vv et 4 (Ve )+ > v = (R )
i=1
(3.7)
forall (v,q) e Vx M.
We estimate 7! and e”*! in 1°°(L%)-norm and /2(H")-norm in the following two lem-
mas.

Lemma 3.1 Under the regularity assumption (A3), there exists some C > 0 such that

m m m
D" Y T =12, + A Y IV, < C <r2 +ry. ||e"||iz) (3.8)

n=0 n=0 n=0

forall0 <m <N — 1.

Proof Taking r = 2t9™+! in (3.6) and using

1 1
/ (Vnn+1 ~u")n”+ldx — _7/ |nn+l|2v -udx + 7/ |nn+l|2un -nds = O,
Q 2 Ja 2 Jae
it is easy to see that
™02, = " 1125 + ™ = "1, + 22| V"2,
T
< I+ C (e 152 + IRGIZ.) -

Summing up the above estimate for n from O to m and using (3.3) and the discrete Gronwall’s
inequality in Lemma 2.2, we complete the proof of (3.8). O

Lemma 3.2 Under the assumptions (A2) and (A3), there exists some small Ty > 0 such that
when T < 11, there holds

m m
o™ e 2, + > o @t —eMT, + 7Y IVeT T, < CP (3.9)
n=0 n=0

forall0 <m <N — 1.
Proof Setting (v, g) = 2t(e"T!, ¢"*1) in (3.7), we have

Hanen+l ”i2 _ ”O,nenuiz + ”O_n(en+l _ en)”iz +2a(pn+1; en—‘—l’ en+l)

7
—)\r(V,o"H,Vle"+1|2)+f(,0n+lun,Vlen+1|2)+2'L’ Z(lin+l’en+l):21(R3+l’en+l)'
i=3
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Multiplying (2.7) by |e"*!|? and integrating over €2, one has
||Ul’l+len+l ”iz _ ||O,l’len+1 ”iz + )\.T(V,On+l, V|en+l|2) _ t(pn+1un, V|en+1|2) =0
where the integration by parts is used. Taking the sum of the above formulations, we get
o™ e 7, — llo"e" 7, + o™ (! — €T, +2a(p" e et
7
2r Yy (@t et = 20 (R €. (3.10)
i=3
Now, we suppose that
[Vu"[l;2 < 1+ [[Vugll 2 + VUl poog 7. 12) := k1, YO<n<N-—1 (3.11)
According to Lemma 2.1, we have
m<m<ptla)<M <M, VY0<n<N-I, (3.12)
which with (2.2) and (3.10) gives

112 2 1 2 12
o™ e 7, — llo"e" 72 + lo™ @ — e, + 2Tl Ve 7,

7
<ot Ryt et 42t Y it et (3.13)
i=3
To close the mathematical induction (3.11), we need to prove that
||Vu”“||Lz <k, vOo<n<N-1. (3.14)

The right-hand side of (3.13) can be estimated term by term as follows. It is easy to see that
20 [(REF e < T (IR, + e ™12,) .

By (A3) and (3.12), we have

1 1 1 1
2t ‘(1§1+ et )‘ < Crllp"Mielle | 2 1Vattar )l 3 I Ve 2
Hmit 12 2
== Ve 7, + Ctlle"]l;,.

20 (I @) < Colln 2] Do)l Ve 2

IA

it 12 2
TI|V6"+ 72+ Ctln"ll72s

1 1 1 1
2|zt €| < Co ™ s V)l Ve 2

m,
5

IA

(Ve ™12, + Celln™ 12, + Co | Vi 2,

1 1 1 1
2|t e | < oIV Va1 Ve

IA

n1T
—-lver! 172 4+ CTlIVy" 3.,
and

20 [y | < Coll s ) s Va1

IA

M1t 1,2 1,2 1,2
?IIW"+ 172+ Clln" 72 + C| V"™ 72,
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where the Holder inequality and the Young inequality are used. Taking into account the above
estimates, we get from (3.13) that

o™ te 2, — llo"e" (17, + o™ (" — eM)|7, + il Ve 3,
12 12 2 1,2 2 112
< Cr (IR, + 112, + 112, + "2, + 0" 1122 + 1V 12,)

12 1 n+1 2 2 12
< Ct(IRy 2 + o™ e 7, + o e 17, + V0" 172)

m
+CTP +CT? ) [lo"e" |72, (3.15)

n=0

where (3.8) in Lemma 3.1 and (3.12) are used. Summing up (3.15) for n from O to m, using
(3.3), (3.8) and the discrete Gronwall’s inequality in Lemma 2.2, we derive (3.9) and complete
the mathematical induction (3.14) by taking a sufficiently small 7; such that

IV 2 < IV ™ 2 + [Vultar )l 2 < IVl g 7.22) + (CT1)'?
< [IVullpoo(o,7:22) + 1 < k1.
[m}

From the proof of Lemma 3.2, we can see that (3.14) holds forall0 <n < N — 1. It
follows from Lemma 2.1 that the solutions p”*! to (2.7) and w"*! to (2.8) satisfy

m<m<ptlx) <M< M, (3.16)

n
IV 2+ 10" 1+ Y e G, <= C (3.17)
i=0
forall0 <n < N — 1. By (3.8) and (3.9), we get the following estimate for the density:

m m
"G+ 3 "™ =G e 3 I, < c? (3.18)
n=0 n=0

for 0 < m < N — 1. Furthermore, we can estimate 7" ! in /°°(H!)-norm and 12(H%)-norm
as follows.

Lemma 3.3 Under the assumptions (A2) and (A3), when t < t1, where 1| is from Lemma
3.2, there exists some C > 0 such that

m m
I W+ D =0 2T Dl e <€ (B19)
n=0 n=0

forall0 <m <N — 1.
Proof Multiplying (3.4) by —27 An"*! and integrating over 2, we can prove that
IVa 2 = V0" 172 + IV O =5, + 24z An" 17,
< Cr (€' 2 + IR 2) 1An" ) 2 + Co| vy
< AtllAn 3, + Cr (€2 + IR 2 + V0" TH172)

n+1 ”3/2

o [l A+ S

Summing up the above estimate for n from 0 to m and using (3.18), we obtain

m m
V0" 72+ Y IV@™ =g +ar Y A", < C7?
n=0 n=0
for0 <m < N — 1. By noticing (3.18), again, we complete the proof of (3.19). O
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The error estimate (3.19) provides a uniform boundness of p"*! in H2-norm. That is to
say that there exists some C > 0 such that

" e <C, VYO<n<N-1. (3.20)

Next, we estimate w"*! in /2(H?)-norm under the assumption (A4). To do this, we rewrite
(2.8) as the Stokes type problem:

—/,LAlanrl + Vp71+1 — Fn+1, (321)

where

) it S o R an_[un-H _ )van-ﬁ—l . (Vu"-H)I _ pn+1(un .V)un-H +)\(Vp"+1 . V)un-H

by using V - (Vu"t1)! = 0 due to V - w"*! = 0. From (3.16) and

" " — w2, < 20p" (" —eM)I7, + 200" Wltat1) — ult))12,

2 T 2 2 e+l 2
¥
<2[lo" |7 llo”™ (€" " —€e")]l72 + 27]Ip" 1 / lu, ()17 2dt
n

Tnt1
1 2 2
< Cllo"(e"* —e">||L2+Cr/ lla, ()12, dt,
1,

n

we have

N—-1

Ty lp" Do, < C, (322)
n=0

where (3.9) is used. From (3.16), (3.17) and (3.20), one has

o™ @™ - Vw3 + 1V W e 4+ Ve T (VT

1 1 1 1
< 1" ool Lo VU™ 2 + 21V "l o[ VA" 12

<C. (3.23)

Then (3.22) and (3.23) yield

N-1

Ty IFH, < C
n=0

which with the assumption (A4) gives
N—1
T (I e + 12" 052) < C.

n=0

From the Sobolev imbedding theorem W23/2(Q) < W!3(Q), we have

N—1
Ty s < C (3.24)
By (3.16), (3.17) and (3.20), againzve have
[ U ol VPR N [0 O i VER N A 2 A R 12
< [lp" M oo 0" [l o IVl 13 + 20V o™ | L6 VU T 15

< C|vu" . (3.25)
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Then (3.22) and (3.25) yield

N-1

T Y IFL, < C
n=0

By the assumption (A4), again, we get

N-1

T (2 + 13 < C. (3.26)
n=0
Thus, the numerical velocity ut s uniformly bound in [2(H?)-norm. Based on the reg-
ularities (3.20) and (3.26), we can obtain the error estimate of €*t! in /°°(V)-norm and

) 2(Hz)-norm stated in Lemma 3.4. To make this, we rewrite (3.5) as

6
anIeﬂ+l _ /.;LAen+l —f-)»V,O’HJ . (VenJrl)[ + V€n+l + len"rl — RLI"lJrl (3.27)

i=1
with V - "1 = 0in Q.
Lemma 3.4 Under the assumptions (A2)-(A4), there exists some 1y < t] such that when

T < Ty, there holds

m m
IVe™ 17, + Y IVE ™ —eMl7.+1 ) (e 7. + 1" 13,) < €t (3.28)
n=0 n=0

forall0 <m <N — 1.
Proof Testing (3.27) by 27(e"t! — e") leads to

200" (€ — )17, + ur (IVe" 12, — Ve 17, + V(" —eM)l7,)

<2t }(RZJrl,e’”'1 —e")|+ 27 |(V,o"+1 S(Verth et e")|

7
+27 Z ‘(Ii"H, et e”) .
i=1

The right-hand side of (3.29) can be estimated term by term by using the Holder inequality
and the Young inequality. From (3.16), it is easy to show that

(3.29)

1
1 1 1 2 2 112
2t |(RIFE, et — )| < 6||a"(e"+ —e7, + CT IR,
and

2AT |(vp}’l+1 . (Vel’l‘Fl)l’ en+l _ el’l)|
<2z |(V" T (Ve et — )| + 247 |(Voltyrr) - (VerTH et —e7)|

1
1 2 2 12 2 12 12
< §IIU"(6"Jr — e+ CTIVe 1, + CP Vs e
A similar argument gives

1 1
2o |(1 et —e)| < Slo @t eI, + Vet 2, + oo v e 2 .
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Other terms can be bound, respectively, by

1
1 2 200412 12
< §||a”(e"+ —e")[7, + Cu" 172 1Ve 7,

1
< gllo" @ - €3, + CT2|Ve"||3,,

1
< §||a"<e"+1 — "7, + C "5,

1
I 2 2 02
< §||a”(e"+ — e, + C " g0,

1
1 2 2 1,2
< gllo" @ —eNlE + CT I e,

1
I 2 2 012
< §||U"(e"+ =& + C " g,

where we use the regularity assumption (A3) and (3.16). Substituting the above estimates
into (3.29) leads to
o™ @ — M7, + pr (Ve 7, — Ve |7, + V(e —eM)|?,)
< C (IR + I 132V 70 + 10" 1 + 10" T11%,2)
+C7? (IVe I, + Ve [72) + Co2 V" s e 7. (3.30)
Summing up (3.30) for n from O to m and using (3.9) and (3.19), we obtain

m

m
12 1 2 1 2
prll Ve tIT, + ) o™ @t —eI7, +ut Y IV —en]7,
n=0 n=0

m m
3 2 2 12 2 12 12
< CT 4T Y Ve T, + T Y IVt e .
n=0 n=0

By (3.26) and the discrete Gronwall’s inequality in Lemma 2.2, we get

m m
12 1 2 1 2
Ve T, + ) llo @ —enlf + Ty IVt — e,
n=0 n=0

m
<cr+c ) e, (3.31)
n=0
by using || V" +! ||i3 < C|p"t ”%{2 < Ct. On the other hand, from (3.27) and the regularity
assumption (A4) of the solution to the Stokes problem, we have

le" 1%, + e 13,
6
< Cllp" D" 17, + CIURI T, + CIVE" - (Ve ™) 17, + C Y117,
i=1
< Ct 2o — M7, + CIRIT T, + CIVe 2 e 2
+CIVE |7, + Clln" 2. + Clin" 113,
1
< Eue"“ui,z +Ct 20" (e —eM)|7,
C Rn-‘rl 2 \V/ nn2 n+12 nn2 3.32
+C (IR, + IVe 172 + 1" 1,2 + 10" 13,2) - (3.32)
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Summing up (3.32) for n from O to m and using (3.19) and (3.31), we obtain

m m
12 12 2 —1 1 2
oY (" 1, + e ) < CPH CrT Y o @ — e,
n=0 n=0

m
<crr4+Cr? )l 3. (3.33)
n=0
Taking a sufficiently small 7o < 77 such that Ct, < 1, we derive

m

12 112 2
T (e 3. + e I3,) < Cr
n=0

which with (3.31) leads to

m m

12 1 2 1 2 3

| Ve T, + ) o€ =T + 7Y Ve — e, < CT.
n=0 n=0

Thus, we complete the proof of Lemma 3.4. O
From (3.28), we can see that
IVu"*1 2 < CT + |Vl .7 12)
5 1+||Vu()||L2+||Vu||Loo(0‘T;L2)=K1, VOS”EN—l

for some small 7 > 0. Thus, (3.14) holds and we close the mathematical induction.

The estimate (3.28) provides a uniform boundness of the time discrete solution
(!, p" D in [°°(H?) x [°°(H")-norm, which means that there exists some C > 0 such
that

" g2 + 1P g <€, YO<n<N-—1. (3.34)
In addition, the estimates (3.19) and (3.28) imply that
n
IVD" 2+ 1D p" Ml +7 Y (IDew" 2 + 1D p"Hly2) <€ (3.39)
i=0

forall0 <n < N — 1, if we notice the regularity assumption (A3).
Next, we estimate the time discrete solutions ("1, w"*1, p"*D in H3 x W>* x wl4.
norm. We turn back to (2.7) and (3.21). In terms of (3.20) and (3.34), one has

Ve "t w2 < Cllp" Tl g2 VU2 < C,
IV(Ve "t a2 < Clle" M 2l g2 < €

and

o™ @™ - vy o + 1V T Vu e + VT (VT | s
< Cllo" iz 0" | g2 VU 4 + CIIV " Tl oo | VU T 4
<C.

From the regularity assumption (A4), we obtain

1" s + " gz + 1p" Higre <€ YO<n<N-1. (336

@ Springer



Journal of Scientific Computing (2022) 90:47 Page 190f31 47

3.2 Spatial Error Analysis

In this subsection, we will prove the optimal spatial error estimate for the velocity in /*° (L?)-
norm and the density in /°°(H ')-norm. The proof is based on the regularities of time discrete
solutions derived in Sect. 3.1 and the following new projection operators.
For 1 < n < N, we introduce three new projection operators (R, Q%) : V. x M —
V; x My, and l'Ih W — W, defined by
a(e"; Rpu—w,vp) = (V-vp, Qpp — p) =0, Yvy €V,
(V- Rju—u),qy) =0, VgueM,,

and
AT p — p, ) + A(V(ITEp — p), Vi) + (V(ITip — p) 0"~ ) =0, Vry € Wy,

where p” and u”~! are the solutions to (2.7-2.8) and satisfy the point-wise inequality (3.16)
and the regularity (3.34), respectively.

Then from the coercive property (2.2), and using a classical argument (cf.[5,14]), the
following approximations hold:

lu— Ryul 2 + 2V —REwll 2+ hllp — Qfpll2 < Ch2(Jull g2 + I pll ). (3.37)
lo—Tpl2 +hlp—Tpllg < Ch? loll g2, (3.38)
lp = Miplr + lu - Ryul = < Ch'/? (3.39)

for any (p,u, p) € H2(S2) N HZ(Q) NV x H(Q). Furthermore, one has

lp =T pllzs + llu — Riull 4 < CA*(plly2a + llullyas + [ pllyra), (3.40)
o —Mpllwis + lu—Rpullyrs < Chllpllw2s + lully2s + lIpllyra) — (3.41)

if (p,u, p) € W2HQ) NW>H(Q) NV x W4(Q).
We denote by Pyj, the standard Raviart-Thomas projection from H(div, 2) onto RTy,
which satisfies the following properties (cf. [30]):

(V- -Ppu,vp) = (V-u,vp), Yo € Pi(Tp),
lu—Ppul2 < CAlYjull ., YueH(Q),1=1,2,

where P (7;) C H'(Q) is the finite element space of functions which are the piecewise
linear polynomials on each K € 7;,. For the time discrete solution u”, since V- u”* = 0 in
andu” -n = 0 on 0€2, then

V.- Pypu"'=0inQ and Pju” -n=00n0d<,

which implies that Pj,u” € RToy. By noticing the definition of the Lz-projection Py, there
holds that

lu” — Popu"|| 2 < [lu" — Pyu’| 2 < Ch?. (3.42)
Introduce spatial error functions by
= Jhpo —pp =0, € =Iu—up =0,

n n n..n n n n_.n
ny, =TI p" —pp, € =Rju"—u;, € =Qip"—py, Y1<n<N,
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where (o5, u), p;) and (p”, u", p") are numerical solutions to (2.17-2.18) and (2.7-2.8),
respectively. Moreover, we denote projection error functions by

0° = Jupo — po, E° = Iug — uy,
0" =T p" —p", E'=Riu"—u", £ =0Q/p"—p", V1<n<N.

From (3.37-3.41) and the regularities (3.20), (3.34) and (3.35), projection error functions
satisfy

IE™ |2 + h(IVE" || ;2 + IE" ] 2) < Ch?, (3.43)
IE" | + 116" || < Ch'/?, (3.44)

IDE" |12 4+ 1D0" [l 2 < Ch2(ID0" | 2 + 1Dz p" | ), (3.45)

IE" |14 + RIE"[[y14 < Ch?, (3.46)

10™ 112 + hlIO™ | 1 < Ch>. (3.47)

For0 <n < N — 1, subtracting (2.17-2.18) from (2.9-2.10) with (r, v, ¢) = (rn, Vu, qn)
and noticing the definitions of projection operators (R"Jrl Q”“) and H"+1, we get the

n+1 and (en+1 n+1

following error equations satisfied by 7}, ), respectively,

(D ) + AVt Vi)
= (D:0" ) — 20" ) — (VO @ — Pojul), ) — (V"L (@ — Pojpull), )
+(V77n+] (" 7P0huh) ) — (Vnn-H u )

= Z(l"“, ) Yy € W, (3.48)
and
(phDren—H i)+ o 1 (D”OrH—l L )+a(pﬁ+l:eZ+I,Vh)
~(Vevi e Th+ (v et )
= DR v — (G = D™ ) + 5 (Do R )
+A ((p’“Ll - ,o;LH'l), (vvuth Vvh) - % (V (" T — p"HUZ) RZ'Hu'hLl -vh)
; (V (pn+1un) en+l Vh) . % (V(VIZH 7€n+1)’ V(R’;l“u"“ ‘Vh)>
+5 (vph“ vt vh)) 2 ((Vp;j“ -V)eZH,vh)
_a ((V(WZH — oty vyt Vh) Ta ((vpn+l CVE"H Vh)
_a ((V(nn+l —gn+ly. V)E"H,vh) + ( Lyt vy Vh)
('OlrzH—l(uh v)erH—l Vh) <(nn+l "y - V)RZHu"H, Vh)

1
_ (pn+l((un _ u”) . V)Rz+lu"+l,vh> _ 5 (Drnz+l: Rz+lun+l . Vh)
= Z(J"H, Vi), ¥ Vi, qn) € Vip X Mp, (3.49)

where we have noted V - v = 0 in 2 and

(Dfpn_H,RZ_Hlln-H 'Vh) + (V- (pn+l n) Rn+1 n+1 Vh) _ 7A(Vpn+1, V(RZ+]un+l 'Vh))
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by taking r = RZHU”"'1 -v, € Wy, in (2.9).
We first estimate 772“ and Vr;ZH in /°°(L?)-norm in the following two lemmas.

Lemma 3.5 Under the assumptions (A1-A4), there exists some 13 < Ty such that when
T < 13, there holds

m m
I 2, + < Z %, < Cht 4 CT Y W — Popup |12, + Ch2T Y [l = Popu |2 4
n=0 n=0
(3.50)
forall0 <m <N — 1.

Proof Taking r, = 27} ! in (3.48) leads to

I 12, = W2, + ™ = 2, + 2221V 2, = 2TZU”“, ' Gsh
by noticing

1
gy = 5 f Vit P - (u" — Pojuy)dx

_7/ I T2V - (" — Popull)dx = 0
and

(I}’H-l, Z+l) /v|nn+1|2 u'ldx = — / |nn+l| VvV .-u'dx = 0.

The right-hand side of (3.51) can be bound by using the Holder inequality and the Young
inequality. It follows from (3.43-3.45) that

2e(a it < Crllp I, + Coat,
2e(5 ™ < Crlmp g, + Coh®

1n+]

For I [t

and I, ", we can prove that

A

1 1 1
2015 Cf||V9"||L2 l[u — Ponull 311yl

1 2 2
S || P+ CTh " — Popu |75,

1 1 1
(1t it < Crnp"+ g2 0" — Popal |l 2 7 ] g

n+1

2
5 ||77 + Ctlu" — Popujl,.

”Hl
Substituting the above estimates into (3.51), we obtain
Iy 052 = gl Ze + ™ = il + Azl FHI,
< Cth* + Celln} 2, + Crllu" — Popul |12, + Cth?|ju" — Popul |25, (3.52)

Taking the sum from O to m and using the discrete Gronwall’s inequality in Lemma 2.2, we
get the desired result (3.50) for some small 7 < 13 < 15. ]
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Lemma 3.6 Under the assumptions (Al)-(A4), if
lu" — Popuy|7, < Ch>, YO <n<N-—1, (3.53)

then there exists some C > 0 such that

anDfn"“an+A||Vn'”“||L2 < Ch4+cf2||u — Pt} |17 (3.54)
n=0 n=0

forall0 <m < N — 1.
Proof Taking r;, = 2D.n}*" in (3.48) leads to

20Dy M 17s + 2DV T + AT IV (Do Y17, =2 Z(I;;,“ Doyt (3.55)
We estimate the right-hand side of (3.55) term by term according to the regularities derived
in (3.20), (3.34), (3.36) and (3.36). From the Holder inequality and the Young inequality, we
have

||H2’

1
205, Doty < 6||Dfn”+‘||Lz

1
2015 Doy ™) = Doy g + ChY o™

IA

25, D™y < CIVO T s lu — Popul [l 21| Do ) 6

1
ClIDey Ml 2w — Popujll 2

IA

I A

1 2
fIIDm” 12, + Cllu" — Posu} |25,
where the inverse inequalities (2.23) is used, and

IA

1 1
IIV,O"+ Izl — Popu || 121 Doy I 2

/\

+1 2
*IIDrn" 172 + Cllu" — Popu |7,

and

2(Iflglh+l DT nJrl)

IA

+1 +1
IV, el — Popuy [l 2 (|1 Doy Nl 22

anrn"“

I A

1
12, + Ch™3 Ju" — Popult |3, V)12,

where the inverse inequalities (2.23) is used, and

2015, Doty < anfn”*‘ + IVt

||L2

Substituting the above estimates into (3.55) and taking the sum from 0 to m, we get

m
1 1
T Z 1D 72 + AV,

m
<Ch4+CrZ||u —Pouuj 172+ CT Y (1 +h 7> o = Posuj 7)1V 17
n=0 n=0

By the condition (3.53) and using the discrete Gronwall inequality in Lemma 2.2, we get the
desired result (3.54). m]
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Next lemma presents the estimate of eZJ’] in 1°°(L%)-norm and /2(V)-norm.

Lemma 3.7 Under the assumptions (A1-A4), there exists sufficiently small hy > 0 and

T4 < 13 such that when h < hq and © < 14, the finite element scheme (2.18) admits a unique

solution (uZH, pZ'H) € Vi, x My. Moreover, there holds

m
ey 5 + 2 ) IVe G, < Gt VO<m<N-1  (356)
n=0

where Co > 0 is independent of T, h and m.

Proof We will prove (3.56) by the method of mathematical induction.
o Initialization (m = 0)

We first prove that (3.56) is valid for m = 0. Taking m = 0 in (3.50) and (3.54), we can
get

| Denyllz. + g 7. < Ch* (3.57)

by using
[u” = Popui) |17, < 2[u® — Popu’|17, + 2[[Popu’ — Popui |7,
< 2[ju” — Popu’ |17, + 2[u’ — |7,
< Ch*,
h?u® — Popuf) |75 < 2% ([u® — Popu’ |17 5 + 247 [Popu’ — Popup |7 5

< Ch* + Ch|[Pgyu’ — Popul) |17,
< Ch*.

Furthermore, we get from the inverse inequality (2.23) and (3.57) that

2 and |p' = p}llLe < CR'2, (3.58)

Il < Ch
Then there exists some sufficiently small 4 such that when 2 < h4, one has
m<m—Ch'? <|lp}le < M+ Ch'? < M, (3.59)

which with (2.2) implies that the numerical scheme (2.18) with n = 0 admits a unique
solution (uéll, p}L) € Vy x My. Taking n = 0 and (vp, qp) = Zr(e}l, 6;11) in (3.49) and using
(2.2) and ), = 0, we get

17
loyeyll7s + llogeyllss + 2Tl Vey 2, <21 ) (J). eh). (3.60)
i=1
Due to 772 = 0, then from (3.43-3.45) and (3.35), one has
& mit
2 Jhoely < B2y vel |2, + Cth®. 3.61
’,;( i) = Ve Iz, + C (3.61)

By (3.57) and (3.58), we estimate (J},, e}) by

A

1o I 2 11 1 i
2t(Jgy. ) < Ctlp' — pyll= Ve, l172 + CTIIVRL (I 31lp" — oyl 211 Ve, Il 2

nit
an},niz + Cth?
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for sufficiently small 7 < h4. Using the integration by parts, we estimate (Jslh, e,ll) by

2t(J3, €) = 7 (((p" — pi)uo + pj(ug — u))) - V(Rju'), e})
+1 (((p" = ppuo + py (o — up)) - (Rju'), Vey)
C(lp" = ppllzz + luo — ujli2) I Vepll 2

< “1—11t||Ve}l||§2 +Coht,
—2t(JY,. e)).

IA

A

2t(Jd, . e})

Similarly, we can prove

A

2t (I, eh) +2t(J . ey < Ctlp! = pill 2 Vel 2

IA

u1T
Ve, + Coit,

20(Jgy. e)) = —2t(Jgy, €}).

From the definition of I }l, one has

2t(J3y, e)) = —At(Vnh, V(R}u' -e})) — (Vo' -up, Riu' -e}) — rz(0', Rju' -e})
CtIVapll2 + 10M.2)11Vep Il 2

HiT
T IVellz. + Ceat,

IA

IA

where (3.57) is used. It is easy to see that

A

CllE' | 121 Veyll 2
T
T ||Ve}, ”iz + C'L'h4,

2e(J,, e 42t (0, e

IA

and

A

1 1 0 1.1 1 1 1
21(J}5;. e}) < 2t [VRLu' [ l1p" — phll2 11 Vepl 2

IA

H1T
Vel + coit,

2t(Jg), eh)

IA

1..1 1
2zl ppll oo VR U | S IIEC | 1211 Ve Il 2
Mt
Tuwgniz + Cth*.

IA

For Ji7;,, we get from (3.57) that

2t(J},, e)) = —At(Don), Riu' -e})

1 1
Ctl[ Doy li2llep 22

A

1
< Z||ohle}l||iz + Cth*.

Taking into account these estimates with (3.60), there exits some C; > 0 independent of
Co, h and 7 such that

lell7, + TliVeyll?, < Cirh®.
Thus, (3.56) is valid for m = 0 by taking Co > C.

e General step (m > 1)
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For0 <n < N — 1, we assume that (3.56) is valid for m = n, i.e.,

n
lej 72 +7 ) IVe)li7. < Coh*. (3.62)

i=l1
Then
lu” — Poyut |12, < 2[u" — Popu (|2, + 2[|Pos (0" — u)|[3,
< Ch* +Clepl?, + IE"[12,)
< cht+Clell?,
< C(1+ Cp)*n*. (3.63)

Thus, the condition (3.53) is valid and the estimate (3.54) holds in Lemma 3.6.
By the inverse inequality (2.23), we have

lefllze < Ch/?|le}]l 2 < CCoh'/?,
which implies that

lujlizee < flu[lzoe + [IE™ || oo + ll€j |l Loe
< Clu"| 2 + C(A + Co)h'/?
<C (3.64)

for sufficiently small i < hy such that (1 4+ Co)hy/> < 1. From (3.50) in Lemma 3.5 and

(3.63), one has
n .
Iy 07, 4+ Yl % < €+ Coy*h, (3.65)
i=0

where we use the inverse inequality (2.23), (3.36) and
h2|[u" — Popult||75 < Ch*|E"||75 4+ Ch|Rju" — Popult |7,

< Ch* + Ch(|E" |}, + [u" — Popuf|7,)

< cnt (3.66)
for sufficiently small 2 < h4. Then the finite element solution ,OZH satisfies

™ = oy i < 16" llzoe + CH 2 12
< C(+Coh'?, (3.67)

which with (3.16) implies that

Ai<m—CA+Coh'? < pi <M+ CU+Co)h'/?> <M, VO<n<N-—1
(3.68)

for sufficiently small 2 < h4 such that
C(1+ Co)hy* < maxim — i, M — M}.

According to (2.2), the fully discrete scheme (2.18) admits a unique solution (uZH, p,';“) IS

Vi x My,
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To close the mathematical induction, we need to prove that (3.56) is valid form = n + 1.
Setting (vy,, gn) = 21:(e”Jrl "H) in (3.49), we get

loy et 7, — lopeplls, + 2mitl Ver 17, < ZrZu"*‘, . (3.69)

Using the Holder inequality, the Young inequality, the regularity results (3.34-3.36) derived
in Sect. 3 and the projection approximations (3.43-3.47) and the induction assumptions
(3.62-3.68), we estimate the right-hand side of (3.69) term by term as follows:

o Estimate of 21:(]”+1 eZ“)

1 1 1 1
2o ety < 2t Lo I DLE | e o
< Crtlof el ™2, + Coh* | D12,

e Estimate of 27 (J, "H eZH)

A

203 ™ < 2t (Il 2 + 16”11 2) I1Dew" s e o

—HVe”*‘ 17, + Celinj 2, + Cth®.

I/\

e Estimate of 27 (J5 "H eZ“)

21_( n+1 n+1)

A

1 1 1 1
T D" 2 IR ) s 1€l ]

| /\

B 196 1 + Coh* D" 2
o Estimate of 2t (J;,"", &} 1)

20 ety < 2n (I o + 10 e ) 1V 12
+25 (19l o + 167+ 6 ) IVE™ 51 Vel 2
+20 (Il Ml + 107 2 ) VW Vel 2
> ) ||Ve”+l

1 1
+Crh2||n”+ 12, + Crllgp 3,

(C(l +Co)h'? + +Ceht

”LZ

||Ve"+1 2, + Colp 12, + Coh* + ot

for sufficiently small & < hg such that C(1 + Co)hy/* < 11 /32.
e Estimate of 2r(15”h+1 eZH)

2T(Jn+1 n+1) T (pn+l(un _ uz) + (pn—H n+1)uh7 R;1+lun+l _ez+l)

47 (pn+] (un _ uZ) 4 (pn—H n+1)uh! RZ+1u”+l . VeZ_H)

I/\

(el 2 + IE" 2 + Iy e + 1612 ) 1952
17T
< ?nwz*‘niﬁcf (NopelZs + 13 +4*)

where the integration by parts is used.
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e Relation of ZI(Jé’hH , eZH) and 2t(JI"4J,’11, eZ“)
20 ety = 20 (o, Vet et = 2zt e th,

where the integration by parts is used.
o Estimate of 21.'(]7";;H eZ‘H)

21_(]7nh+l’ eZJrl) — —AT (Vanrl’ V(Rz+lun+l .ez+1)>
n+1 n+l . n+1 _n+l
—AT (9 'R, u - €) )
_r <V0n+1 ", RZ+1un+1 ,eZH)

1 1 1 1
Celny g Ve, 2 + Cllo" 2 Ve 2

IA

IA

T
?IIVeZ“ 12, + Crln 13, + Crht,
where the definition of HZH is used.
e Relation of 2t (Jg,™', /™) and 27 (Jg,", €} ™)
20 et = =20 (g et

by using the integration by parts.
e Estimate of 21(]1”0;1, eZ“)

2_[(]1}10-;1, e2+1) — 2)\.T((7]Z+l _ 6n+1)Aun+1 , eZ-‘rl)
+2rT (! —omth vt et

1 1 1
Cr (I g + 10" .2 ) 19€] 2

IA

H1T
< F||Ve’;l“ 12, + Ctln ™12, + Ceht

by using the integration by parts.
e Estimate of 2'[(]1'11—;1, eZ“)

2_[(‘]{’!1;1’ eZ+1) — _ZA.T(AanrlEn-’_l, eZ‘Fl) _ 2}»‘[(V,On+l, En+1 . vez+1)

1 1 +1
Cllp" s 1B 21 Vel I 2

IA

IA

w1t
an;“niz +Cth*

by using the integration by parts.
o Estimate of 21'(]{’;,1, eZH)

n+1 _n+l1
2t(Jiyy, €, )

A

Ct (IVn e + 196" 2 ) IVE" |5 Ve 2
wit
= S IV I + Cl v T, + Coht,

e Estimate of 21(]1"321, eZH)

205t et = —2¢ (Vp"'H u' ET eZ"'l) -2t (p”+1(u” -Vyeptt, E”'H)

IA

1 1 +1
Cll" [ 2 llp" g2 1" 21V el 2

IA

n1T
ang“niz +Ccoit
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by using the integration by parts and V - u” = 0 in Q.
e Estimate of 21:(]1"5;1, eZH)

n+1 _n+l
2t(is), - &)

| /\

1 1 1 1 1
Cr (I e + 1072 ) o ooe I VR w1 s Ve
wit
< S IV + Crlimy g, + Coat,
e Estimate of 2t(11";,‘11, eZ“)

+1 +1 +1 +1 1 +1
2t €, ) < Cr(llehli + IE"22) 1oy oo I VR u" i 3| Ve ™l 2

| /\

—||Ve"+l|| , + Crlofer|?, + Crh’.

e Estimate of 21(]{17‘21, eZ‘H)

n+1 _n+l
2t(Jy7, - €, )

IA

+1 +1ntl +1
Cl| Doyl 2 IR a3 el ™ s

| /\

—6||Vez“|| 2+ Ctl Doy 2,

Substituting these estimates for JI"h'H to J {%1 into (3.69), we get
lof el 2, — lloperllZ, + mir| Vet 2,
< cm‘* + Cr(lop et 2, + llofen2,) + Cth* (| Deu" 2, + 1D p" T 12,)
+CTmp s + It 2 + 1V 2, + 1 Den T 12,).

Taking the sum gives

1 1 1
lloy et 12, +w2||Ve’+ 17
i=0

1 1 1 1 1
<Ch'+Ct E (lloy ™ el 7 + Do 17+ I 7 + 1V, 1)
i=0

<Ch*+Ct Z lop e 12, + Ch*e Z lu' — Pojui, 12,
i=0 i=0

n
+Ct Y u’ = Poyuj i3, (3.70)
i=0

where we used error estimates derived in Lemmas 3.5 and 3.6. From (3.36) (3.63) and (3.66),
we have

n
Rty o’ = Popujl|7s < Ch?
i=0
and

n n

i i2 4 i2

CT Yo =Py |2, < Ch* +CT Y 12,
i=0 i=0

< Ch* +CrZ [EAAS
i=0
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Then (3.70) reduces to

1 1 1
lop el M7, + it IIVe'Jr I
L L
i=0

<Ch*+Cr Z lojtlel 2, + Cr Z lopel 12
i=0 i=0

Applying the discrete Gronwall’s inequality in Lemma 2.2, we derive

loy el 7, + it Z IVe, ™17, < Cexp(CT)R

i=0
and
G172 + T Z Ive,t7, < Cexp(cTHn* < con*
i=0
by using (3.68) and taking \/Cexp(CT) < Co. Thus, we prove that (3.56) is valid for
m = n + 1 and finish the mathematical induction. O

3.3 Proof of Theorem 2.4

By (3.9) in Lemma 3.2 and (3.56) in Lemma 3.7, it is easy to see that

() — o < 1€ 2+ IE 2 + el
<C(+h?, YO<n<N-1,

where the uniform boundness (3.12) of p"t! is used. Thus, we get the optimal L? error
estimate for the velocity. To establish the optimal H' error estimate for the density, we have

Il < CR2,
where (3.50) in Lemma 3.5 and (3.54) in Lemma 3.6 are used. Then,

+1 I 1 +1
o) = o g < 0" g + 10" gy 4+ ™ e

<C(t+h?, YO<n<N-—1.

Thus, we complete the proof of Theorem 2.4.
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