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Abstract
A distributed order time fractional diffusion equation whose solution has a weak singularity
near the initial time t = 0 is considered. The numerical method of the paper uses the
well-known L1 scheme on a graded mesh to discretize the time Caputo fractional derivative
and a standard finite element method in space. A β-robust discrete fractional Grönwall
inequality is investigated. By this inequality, the β-robust optimal-rate convergence and a
superconvergence bound ‖∇Rhun − ∇unh‖ are proved. This superconvergence bound is also
used to show that a simple postprocessing of the computed solutionwill yield a higher order of
convergence in the spatial direction. The final convergence result reveals the optimal grading
that one should use for the temporal graded mesh. Numerical results show that our analysis
is sharp.
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1 Introduction

In the present paper, we consider the distributed order time-fractional diffusion equation with
corresponding initial and boundary conditions as following:

Dω
t u − κΔu = f (x, t) ∀ (x, t) ∈ Q := Ω × (0, T ], (1.1a)

u|∂Ω = 0 for t ∈ (0, T ], (1.1b)

u(x, 0) = u0(x) for x ∈ Ω, (1.1c)

whereΩ ⊂ R
d (d = 1, 2, 3), κ is a positive constant, and f ∈ C(Q)with Q := Ω ×[0, T ].

In (1.1a), Dω
t u denotes the distributed order fractional derivative, which is defined by

Dω
t u(x, t) =

∫ β

0
ω(α)Dα

t u(x, t) dα, 0 < β ≤ 1, (1.2)

whereω(α) ≥ 0,
∫ β

0 ω(α)dα = c0 > 0, Dα
t u (0 < α < 1) is the fractional Caputo derivative

of order α, defined by

Dα
t u(x, t) = 1

Γ (1 − α)

∫ t

0
(t − s)−α ∂u(x, s)

∂s
ds, t > 0.

The analytic solutions of the distributed order time-fractional diffusion equation have
been studied by many researchers [13,24,29,31]. However, only for a few problems the exact
solutions can be displayed, and most of these solutions are consist of complex functions
(Mittag-Leffler function, Wright function, etc.), which are not easy to compute. Thus it is
very necessary to develop some efficient numerical methods to solve the distributed order
time-fractional diffusion equation. Alikhanov [2] presented a priori estimates for the multi-
term variable-distributed order diffusion equation by the method of the energy inequalities
and investigated a difference scheme to solve it. Ye et al. [43] proposed a compact differ-
ence scheme for the problem (1.1) and got the stability and optimal convergent result for
the proposed scheme. The numerical analysis of a finite difference method for the time
distributed-order and Riesz space fractional diffusion equation was presented in [44]. Chen
et al. [9] developed a fully discrete spectral method for the distributed order time-fractional
reaction-diffusion equation, which will achieve the spectral accuracy. Bu et al. [8] inves-
tigated three efficient fully discrete finite element schemes to solve problem (1.1). Li et
al. [23] developed two alternating direction implicit Galerkin-Legendre spectral methods
for distributed-order differential equation in two-dimensional space. Samiee et al. [34,35]
proposed a unified and fast Petrov-Galerkin spectral method for distributed-order partial
differential equations, where Jacobi poly-fractonomials and Legendre polynomials were
employed as temporal and spatial basis/test functions, respectively. Furthermore, some recent
developments are given in [1,38,42].

It is worth noting that the analysis of the above schemes is based on the assumption that
the solution is smooth enough in time direction. However, this assumption is unrealistic.
The solution of the time-fractional partial differential equation typically exhibits a weak
singularity near the initial time. Mclean [30] investigated the regularity result of solutions
for time fractional diffusion equations and discovered these singular behaviors. Stynes et
al. [39] investigated the L1 scheme on graded mesh to solve these weak singularities of the
time-fractional reaction diffusion equation. Liao et al. [27] developed a discrete fractional
Grönwall inequality on nonuniform mesh, which can be used to solve the time-fractional
nonlinear problem with a weakly singular solution. Ren and Chen [32] investigated a finite
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difference/spectral method to approximate a distributed order time fractional diffusion equa-
tion with initial singularity on two dimensional spatial domain, while the convergent result
show that the bound will blow up as β → 1−. Bu et al. [7] proposed a space-time finite
element method for the distributed order time fractional reaction diffusion equation with
weakly singular solution. Moreover, there are some other relevant works about the weakly
singular solution for the time-fractional partial differential equation, e.g. the finite differ-
ence method [22,26,36], the finite element method [3,20,21,41], the discontinuous Galerkin
method [4,5,14,15,17,33], the collocation method [19,25].

Let p be a non-negative integer. Assume that u0 ∈ D(Δp+2) and ∂ lt f (·, t) ∈ D(Δp) for
l = 1, 2, where the fractional power Δp is defined in [16, p.3]. Imitating [16, Theorem 2.1],
we obtained that the solution of the initial-boundary value problem (1.1) satisfies

∥∥u(·, t)∥∥p ≤ C,
∥∥∂ lt u(·, t)∥∥p ≤ C(1 + tσ−l),

∥∥Dω
t u(·, t)∥∥p ≤ C (1.3)

with l = 0, 1, 2, and 0 < σ < 1.
In this paper, we will construct the finite difference/finite element method to solve the

initial-boundary value problem (1.1), whose solutions behave a weak singularity as (1.3).
In order to obtain the sharp H1-norm convergent result, the fully discrete L1 finite element
method with integral formula will be written as differential formula. By investigating a β-
robust discrete Grönwall inequality, the β-robust H1-norm stability and convergent results
are obtained. Furthermore, the superconvergent result in space direction will achieve.

The rest of the paper will organized as follows. In Sect. 2, several operators will be
introduced, which will be used in following error estimate. In Sect. 3, we will construct
a fully discrete scheme, which is based on the L1 scheme in time direction and the finite
element method in space direction. The sharp H1-norm stability and convergent result will
be presented in Sect. 4, while these bounds will blow up as β → 1−. To overcome this, a
new analysis will be presented in Sect. 5, and the β-robust stability and convergent results are
obtained by using a new β-robust Grönwall inequality. The superconvergent result in space
direction is given in Sect. 6.Finally, in Sect. 7, the numerical experiments are presented to
illustrate the sharpness of our theoretical analysis.

Notation. C denotes a generic constant, it is independent of mesh parameters N and h
and can take different values in different places. We write ‖ · ‖∞ and ‖ · ‖ for the norms
in L∞(Ω) and L2(Ω) respectively. For each m ∈ N, the notation Hm(Ω) is used for the
standard Sobolev space with its associated norm ‖ · ‖m and seminorm | · |m . The L2(Ω) inner
product is denoted by (·, ·).

2 Preliminaries

Recall thatΩ ⊂ R
d . To construct standard finite element space, we write Qk for the space of

polynomials of degree k in d variables. Denote the reference element K̂ := [0, 1]d . Let Th

be a quasiuniform partition of Ω (see Figure 1) into elements Km for m = 1, . . . , M , where
each Km = qm(K̂ ) for some qm ∈ Qk . Then the standard mapped Qk functions are used on
each element (see, e.g., [12, Section 3.7]), set

Vh :=
{
vh ∈ H1(Ω) : vh

∣∣
Km

= ξ ◦ q−1
m with ξ ∈ Qk(K̂ ) and qm : K̂ → Km

}
,

V0h := {vh ∈ Vh : vh |∂Ω = 0} ,

where h := max1≤m≤M {diam(Km)} is the mesh diameter.
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Fig. 1 Quasiuniform partition of
Ω

Next we will introduce three operators. First, define the L2 projector Ph : L2(Ω) → V0h
by

(Phw, vh) = (w, vh) ∀ vh ∈ V0h . (2.1)

One can show [6] that

‖∇Phv‖ ≤ Cp‖∇v‖ ∀ v ∈ H1(Ω), (2.2)

where Cp is a positive constant independent of the mesh size h.
The Ritz projector Rh : H1

0 (Ω) → V0h is defined by (∇Rhw,∇vh) = (∇w,∇vh) for all
vh ∈ V0h . From [40, Lemma 1.1] we get

‖w − Rhw‖ + h‖w − Rhw‖1 ≤ Chk+1|w|k+1 ∀ w ∈ Hk+1(Ω) ∩ H1
0 (Ω). (2.3)

Next, we define the discrete Laplacian Δh : V0h → V0h [40, (1.33)] by

(Δhv,w) = −(∇v,∇w) ∀ v,w ∈ V0h . (2.4)

Imitating [40, (1.34)], we get that these three operators are related by

Δh Rhv = PhΔv ∀ v ∈ H2(Ω). (2.5)

3 The L1 FEMMethod

In this section, we will approximate the problem (1.1) using the finite element method in
space and the well-known L1 difference scheme in time, on a mesh that is uniform in space
and graded in time.

3.1 Temporal Discretisation

Let q be a positive integer. Divide the interval [0, β] into q-subintervals with hα = β/q .
Denote α := (α1, . . . , αq), and D

α
t u := hα

∑q
s=1 ω(αs)D

αs
t u with αs = (s − 1/2)hα for

s = 1, · · · , q . Note that αs is the center of each cell [(s − 1)hα, shα]. Thus the distributed
order fractional derivative can be approximated by the multi-term fractional derivative

Dω
t u = D

α
t u + R(t), (3.1)

where R(t) := Dω
t u − D

α
t u denotes the approximation error. Under the conditions ω(α) ∈

C2[0, β] and Dα
t u(·, ·) ∈ C2[0, β], one has ‖R(t)‖ ≤ Ch2α by composite midpoint formula

for numerical integration [11, (5.1.19)].
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Let N be a positive integer. Set the temporal mesh tn = T (n/N )r for n = 0, 1, . . . , N ,
where the constant r satisfies r ≥ 1. Denote the time step τn := tn − tn−1 for n = 1, . . . , N .

The Caputo fractional derivative Dα
t u(·, tn) with 0 < α < 1 is approximated by the

well-known L1 approximation of [39, (3.1)]

Dα
Nu

n := d(α)
n,1u

n − d(α)
n,nu

0 −
n−1∑
i=1

(
d(α)
n,i − d(α)

n,i+1

)
un−i , (3.2)

where

d(α)
n,i := τ−1

n−i+1

Γ (1 − α)

∫ tn−i+1

tn−i

(tn − η)−αdη for i = 1, . . . , n.

Denote

dn,i := hα

q∑
s=1

ω(αs)d
(αs )
n,i . (3.3)

Thus the distributed order fractional derivative (1.2) can be approximated by

D
α
Nu

n = dn,1u
n − dn,nu

0 −
n−1∑
i=1

(dn,i − dn,i+1)u
n−i . (3.4)

It is easy to see that

0 <dn,i+1 < dn,i for i ≥ 1. (3.5)

Next, we will present three Lemmas, which will be used in our later analysis.

Lemma 3.1 [32, Lemma 2.2] For any grid function {vn}Nn=0 , one has

|vn | ≤ |v0| + Γ (1 − αq) max
j=1,...,n

⎧⎨
⎩
(
hα

q∑
s=1

ω(αs)t
−αs
j

)−1

D
α
N |v j |

⎫⎬
⎭ for n = 1, . . . , N .

Lemma 3.2 [32, Lemma 2.3] Suppose hα is sufficiently small, one has

hα

q∑
s=1

ω(αs)t
−αs
j ≥ c0

2
min{t−α1

j , t
−αq
j } for j = 1, . . . , N .

One should bear in mind that in the rest of our paper, we always take hα sufficiently small
to ensure Lemma 3.2 is valid.

Lemma 3.3 Let σ ∈ (0, 1) and α ∈ (0, 1). Assume that ‖u(l)(·, t)‖1 ≤ C(1 + tσ−l) for
l = 0, 1, 2, and t ∈ (0, T ]. Then

∥∥Dα
Nu(tn) − Dα

t u(tn)
∥∥
1 ≤ Ct−α

n N−min{rσ,2−α} for n = 1, . . . , N ,

where C is a constant.

Proof The result is followed from [32, Lemma 2.4] and [32, Lemma 2.6]. �
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3.2 The Fully Discrete L1 FEM

Firstly, we use the standard finite element method (FEM) to discretize (1.1a) in spatial
direction. A weak formulation of (1.1) is: Find u(·, t) ∈ H1

0 (Ω) for each t ∈ (0, T ], such
that

(
Dω
t u, v

)+ κ(∇u,∇v) = ( f , v) ∀ v ∈ H1
0 (Ω) (3.6)

with u(x, 0) = u0.
Our semi-discrete FEM is: Find uh(·, t) ∈ V0h for each t ∈ (0, T ], such that

(
Dω
t uh, vh

)+ κ(∇uh,∇vh) = ( f , vh) ∀ vh ∈ V0h (3.7)

with u0h = Rhu0.
Applying the L1 scheme (3.4) to approximate (3.7) in temporal direction, the fully discrete

L1 finite element method (L1 FEM) takes the form: find unh ∈ V0h for n = 0, 1, . . . , N such
that

(
D

α
Nu

n
h, vh

)+ κ(∇unh,∇vh) = ( f n, vh) with u0h = Rhu0, (3.8)

where f n(·) := f (·, tn).
By (2.4) and (2.1), the L1 FEM (3.8) can be written as: find unh ∈ V0h for n = 0, 1, . . . , N

such that

(
D

α
Nu

n
h, vh

)− κ(Δhu
n
h, vh) = (Ph f

n, vh) with u0h = Rhu0

for n = 1, . . . , N . Owing to D
α
Nu

n
h,Δhunh and Ph f n all belong to V0h , this integral for-

mulation of L1 FEM takes the differential form: find unh ∈ V0h for n = 0, 1, . . . , N such
that

D
α
Nu

n
h − κΔhu

n
h = Ph f

n with u0h = Rhu0 (3.9)

for n = 1, . . . , N .

4 H1-norm Stability of L1 FEM

In this section, we will present the sharp H1-norm stability and convergent results of the
computed solution given in (3.9).

Next the following important property of the L1 scheme will be stated.

Lemma 4.1 Let the functions v j = v(·, t j ) be in L2(Ω) for j = 0, 1, . . . , N. Then the
discrete L1 scheme satisfies

(
D

α
Nvn, vn

) ≥ (Dα
N‖vn‖) ‖vn‖ for n = 1, 2, . . . , N .

Proof Let n ∈ {1, 2, . . . , N }. The definition of Dα
Nvn gives
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(Dα
Nvn, vn) = dn,1(v

n, vn) − dn,n(v
0, vn) −

n−1∑
i=1

(dn,i − dn,i+1)(v
n−i , vn)

≥ dn,1‖vn‖2 − dn,n‖v0‖ ‖vn‖ −
n−1∑
i=1

(dn,i − dn,i+1)‖vn−i‖ ‖vn‖

= (Dα
Nvn

) ‖vn‖,
where we used Cauchy-Schwarz inequalities and 0 < dn,i+1 < dn,i given in (3.5). �

Now we give the stability of the L1 FEM (3.9) in following lemma.

Lemma 4.2 The solution unh of the discrete problem (3.9) satisfies

‖∇unh‖ ≤ ‖∇u0h‖ + CpΓ (1 − β)
2T β

c0
max

j=1,...,n
‖∇ f j‖. (4.1)

Proof Fix n ∈ {1, 2, . . . , N }. Multiplying (3.9) by −Δhunh and integrating over Ω , one has
(
D

α
Nu

n
h,−Δhu

n
h

)+ κ‖Δhu
n
h‖2 = (Ph f

n,−Δhu
n
h).

Applying κ > 0, then use the definition (2.4) of Δh to get
(
D

α
N (∇unh),∇unh

) ≤ (∇Ph f
n,∇unh).

Now Lemma 4.1, a Cauchy-Schwarz inequality, and (2.2) yield
(
D

α
N‖∇unh‖

) ‖∇unh‖ ≤ ‖∇Ph f
n‖ ‖∇unh‖ ≤ Cp‖∇ f n‖ ‖∇unh‖. (4.2)

Invoking (4.2) and Lemmas 3.1 and 3.2, one has

‖∇unh‖ ≤ ‖∇u0h‖ + Γ (1 − αq) max
j=1,...,n

{(
hα

q∑
s=1

ω(αs)t
−αs
j

)−1
D

α
N‖∇u j

h‖
}

≤ ‖∇u0h‖ + CpΓ (1 − αq) max
j=1,...,n

{(
hα

q∑
s=1

ω(αs)t
−αs
j

)−1‖∇ f j‖
}

≤ ‖∇u0h‖ + CpΓ (1 − β)
2

c0
max

j=1,...,n

{
max{tα1j , t

αq
j } ‖∇ f j‖

}

≤ ‖∇u0h‖ + CpΓ (1 − β)
2T β

c0
max

j=1,...,n
‖∇ f j‖,

where Lemma 3.2 is used for the penultimate inequality. �
Let un and unh be the solutions of (1.1) and (3.9) respectively at time t = tn for n =

0, 1, . . . , N . Denote Rn := Dω
t u(tn) − D

α
t u(tn) for n = 0, 1, . . . , N . To facilitate the error

analysis for the standard finite element method, we follow the writing

un − unh = (Rhu
n − unh) − (Rhu

n − un) = ζ n − ρn, (4.3)

where ζ n := Rhun −unh and ρn := Rhun −un . Now we consider the analysis of ζ n , because
the bound of ρn can be approximated immediately using (2.3). From (1.1a), (3.9), and (2.5),
one has
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D
α
N ζ n − κΔhζ

n = [Rh
(
D

α
Nu

n)− κΔh Rhu
n]− (Dα

Nu
n
h − κΔhu

n
h

)
= (Rh − Ph)D

α
Nu

n + Ph(D
α
Nu

n − κΔun) − Ph f
n

= Ph(Rh − I )Dα
Nu

n + Ph(D
ω
t u

n − κΔun + D
α
Nu

n − Dω
t u

n) − Ph f
n

= Ph(Rh − I )Dα
Nu

n + Ph( f
n + D

α
Nu

n − D
α
t u

n − Rn) − Ph f
n

= Ph(Rh − I )Dα
Nu

n + Ph( f
n − ϕn − Rn) − Ph f

n

= PhD
α
Nρn − Ph(ϕ

n + Rn),

where ϕn(x) := D
α
t u

n − D
α
Nu

n =∑q
s=1 hαω(αs)[Dαs

t u(x, tn) − Dαs
N u(x, tn)]. Clearly

D
α
Nρn = D

α
Nρn − D

α
t ρn + D

α
t ρn − Dω

t ρn + Dω
t ρn

= (Dα
t u

n − D
α
Nu

n)− Rh
(
D

α
t u

n − D
α
Nu

n)+ (Dω
t u

n − D
α
t u

n)
− Rh

(
Dω
t u

n − D
α
t u

n)+ Dω
t ρn

= ϕn + Rn − Rh(ϕ
n + Rn) + Dω

t ρn . (4.4)

Thus

D
α
N ζ n − κΔhζ

n = PhD
ω
t ρn − Rh(ϕ

n + Rn) for n = 1, 2, . . . , N . (4.5)

We can now prove the optimal-rate convergence of our L1 FEM (3.9) in L∞(H1).

Theorem 4.1 (Error estimate for the L1 FEM) Let un and unh be the solutions of (1.1) and
(3.9), respectively. Assume the hypotheses of (1.3) with k + 1 ≤ p, ω(α) ∈ C2[0, β], and
Dα
t u(·, ·) ∈ C2[0, β]. Then for n = 1, 2, . . . , N, there exists a constant C such that

‖∇un − ∇unh‖ ≤ CΓ (1 − β)
(
hk + h2α + N−min{rσ,2−αq }) . (4.6)

Proof Fix n ∈ {1, 2, . . . , N }. Multiplying (4.5) by −Δhζ
n and integrating over Ω , one has

− (Dα
N ζ n,Δhζ

n)+ ‖Δhζ
n‖2 = − (PhDω

t ρn,Δhζ
n)+ (Rh(ϕ

n + Rn),Δhζ
n). (4.7)

Recalling the definition (2.4) of Δh and the projection Ph , we get(
D

α
N (∇ζ n),∇ζ n)+ ‖Δhζ

n‖2 = (∇PhD
ω
t ρn,∇ζ n)− (∇Rh(ϕ

n + Rn),∇ζ n) .
By Lemma 4.1 and a Cauchy-Schwarz inequality, this gives

(
D

α
N‖∇ζ n‖) ‖∇ζ n‖ ≤ ‖∇PhD

ω
t ρn‖ ‖∇ζ n‖ + ‖∇Rh(ϕ

n + Rn)‖ ‖∇ζ n‖.
Thus

D
α
N‖∇ζ n‖ ≤ Cp‖∇Dω

t ρn‖ + ‖∇(ϕn + Rn)‖. (4.8)

Invoking Lemma 3.1 and (4.8), one has

‖∇ζ n‖

≤ ‖∇ζ 0‖ + Γ (1 − αq ) max
j=1,...,n

{(
hα

q∑
s=1

ω(αs)t
−αs
j

)−1
D

α
N‖∇ζ j‖

}

≤ Γ (1 − αq ) max
j=1,...,n

{(
hα

q∑
s=1

ω(αs)t
−αs
j

)−1
[
Cp‖∇Dω

t ρ j‖ + ‖∇(ϕ j + R j )‖
]}
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≤ CΓ (1 − αq ) max
j=1,...,n

{(
hα

q∑
s=1

ω(αs)t
−αs
j

)−1

[
hk + h2α + hα

q∑
s=1

ω(αs)t
−αs
j N−min{rσ,2−αs }

]}

≤ CΓ (1 − β) max
j=1,...,n

{
max{tα1j , t

αq
j }(hk + h2α)

}
+ CΓ (1 − β)N−min{rσ,2−αq }

≤ CΓ (1 − β)
(
hk + h2α + N−min{rσ,2−αq }) ,

where Lemmas 3.2 and 3.3, (2.3), and ‖∇ζ 0‖ = ‖∇(Rhu0 − u0)‖ = 0 are used. Combining
this bound and (2.3) with (4.3), we get (5.8). �
Remark 4.1 The orders of convergence displayed in Theorem 4.1 indicate that the rates of
convergence in space, distributed variable, and time are hk , h2α , and N−min{rσ,2−αq }, respec-
tively.

It is obvious that the convergent result obtained in Theorem 4.1 will blow up as β → 1−.
This phenomenon also appears in [32]. In the next part we will try to improve this convergent
result by making it β-robust.

5 ˇ-robust H1-norm Error Analysis of the L1 FEM

In this section, we will present a β-robust discrete Grönwall inequality, which is an improve
of [18, Lemma 8]. Applying this new discrete Grönwall inequality, a β-robust H1-norm error
estimate for the computed solution is obtained. Based on this result, a superconvergent result
is achieved immediately.

As in [39, (4.6)], define the positive real numbers θn, j , for n = 1, 2, . . . , N and j =
1, 2, . . . , n − 1, by

θn,n = 1, θn, j =
n− j∑
k=1

1

dn−k,1
(dn,k − dn,k+1)θn−k, j , (5.1)

where dn,k is defined in (3.3). Observe that (3.5) implies θn, j > 0 for all n, j .

Lemma 5.1 [10, Lemma 5.1] For n = 1, 2, . . . , N and 1 ≤ k ≤ n, one has
n∑
j=k

d j, j+1−kθn, j = dn,1. (5.2)

Lemma 5.2 Let γ ∈ (0, 1) be a constant. Then for n = 1, 2, . . . , N, one has

n∑
j=1

( q∑
s=1

hαω(αs)
Γ (1 + γ )

Γ (1 + γ − αs)
tγ−αs
j

)
θn, j ≤ dn,1t

γ
n . (5.3)

Proof Imitating [10, Lemma 5.3], one has

Γ (1 + γ )

Γ (1 + γ − αs)
tγ−αs
j ≤

j∑
k=1

d(αs )
j, j+1−k

(
tγk − tγk−1

)
.

Thus
q∑

s=1

hαω(αs)
Γ (1 + γ )

Γ (1 + γ − αs)
tγ−αs
j
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≤
q∑

s=1

hαω(αs)

j∑
k=1

d(αs )
j, j+1−k

(
tγk − tγk−1

)

=
j∑

k=1

q∑
s=1

hαω(αs)d
(αs )
j, j+1−k

(
tγk − tγk−1

)

=
j∑

k=1

d j, j+1−k
(
tγk − tγk−1

)
.

Multiply this inequality by θn, j then sum from j = 1 to n. This yields

n∑
j=1

( q∑
s=1

hαω(αs)
Γ (1 + γ )

Γ (1 + γ − αs)
tγ−αs
j

)
θn, j

≤
n∑
j=1

θn, j

j∑
k=1

d j, j+1−k
(
tγk − tγk−1

)

=
n∑

k=1

(
tγk − tγk−1

)
⎛
⎝ n∑

j=k

θn, j d j, j+1−k

⎞
⎠

= dn,1

n∑
k=1

(
tγk − tγk−1

)

= dn,1t
γ
n ,

by changing the order of summation then invoking Lemma 5.1. �
Corollary 5.1 Setting lN = 1/ ln N, one has

1

dn,1

n∑
j=1

( q∑
s=1

hαω(αs)t
−αs
j

)
θn, j ≤ er max1≤s≤q Γ (1 + lN − αs)

Γ (1 + lN )
.

Proof Applying 1 ≤ jrlN and NrlN = er , one has

1

dn,1

n∑
j=1

( q∑
s=1

hαω(αs)t
−αs
j

)
θn, j

≤ 1

dn,1

n∑
j=1

θn, j

( q∑
s=1

hαω(αs)t
−αs
j j rlN

)

= NrlN

T lN

1

dn,1

n∑
j=1

θn, j

( q∑
s=1

hαω(αs)t
lN−αs
j

)

≤ er max1≤s≤q Γ (1 + lN − αs)

T lN Γ (1 + lN )

1

dn,1

n∑
j=1

θn, j

( q∑
s=1

hαω(αs)
Γ (1 + lN )

Γ (1 + lN − αs)
t lN−αs
j

)
.

Choosing γ = lN in Lemma 5.2 yields

1

dn,1

n∑
j=1

( q∑
s=1

hαω(αs)t
−αs
j

)
θn, j
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≤ er max1≤s≤q Γ (1 + lN − αs)

T lN Γ (1 + lN )
t lNn ≤ er max1≤s≤q Γ (1 + lN − αs)

Γ (1 + lN )
,

where t lNn ≤ T lN is used. Thus the result follows. �
Corollary 5.2 Setting lN = 1/ ln N, one has

1

dn,1

n∑
j=1

θn, j ≤ er max1≤s≤q Γ (1 + lN − αs)

Γ (1 + lN )

2

c0
max{tα1n , t

αq
n }.

Proof From Lemma 3.2 we have

1

dn,1

n∑
j=1

( q∑
s=1

hαω(αs)t
−αs
j

)
θn, j

≥ 1

dn,1

n∑
j=1

c0
2
min{t−α1

j , t
−αq
j }θn, j

≥ c0
2
min{t−α1

n , t
−αq
n } 1

dn,1

n∑
j=1

θn, j .

Thus the result follows from Corollary 5.1 and 1

min{t−α1
n ,t

−αq
n } ≤ max{tα1n , t

αq
n }. �

Next we will prove a new nonstandard Grönwall inequality, which is an improvement of
[18, Lemma 8].

Lemma 5.3 Assume that the sequences {ξn}∞n=1, {ηn}∞n=1 are nonnegative and the grid func-
tion { vn : n = 0, 1, . . . , N } satisfies v0 ≥ 0 and(

D
α
Nvn

)
vn ≤ ξnvn + (ηn)2 for n = 1, 2, . . . , N . (5.4)

Then

vn ≤ v0 + 1

dn,1

n∑
j=1

θn, j (ξ
j + η j ) + max

1≤ j≤n

{
η j
}

for n = 1, 2, . . . , N . (5.5)

Proof For n = 1, . . . , N , set

ηn∗ := max
1≤ j≤n

{
η j
}

, gn := ξn + ηn .

Our proof uses induction on n. First consider the case n = 1. If v1 ≤ η1∗, then as v0, θn, j

and ξ j are all non-negative, the result for n = 1 follows immediately. Otherwise v1 > η1∗,
which implies v1 > η1 ≥ 0. Hence the inequality (5.4) with n = 1 gives us

D
α
Nv1 ≤ ξ1 + η1 = g1,

i.e.,

d1,1v
1 − d1,1v

0 ≤ g1

by (3.4). Rearranging this inequality then invoking (5.1), one has

v1 ≤ v0 + 1

d1,1
g1 = v0 + 1

d1,1

1∑
j=1

θ1,1g
1
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≤ v0 + 1

d1,1

1∑
j=1

θ1,1g
1 + η1∗.

Thus the result is true for n = 1.
Fix k ∈ {2, . . . , N }. Assume that (5.5) is valid for n = 1, 2, . . . , k − 1. If vk ≤ ηk∗, then

as v0, θn, j and ξ j are all non-negative, the result for n = k follows immediately. Otherwise
vk > ηk∗, which implies vk > ηk ≥ 0. Hence the inequality (5.4) with n = k gives us

D
α
Nvk ≤ ξ k + ηk = gk,

i.e.,

dk,1v
k − dk,kv

0 +
k−1∑
j=1

(dk, j+1 − dk, j )v
k− j ≤ gk,

by (3.4). This is equivalent to

vk ≤ 1

dk,1

⎡
⎣gk + dk,kv

0 +
k−1∑
j=1

(dk, j − dk, j+1)v
k− j

⎤
⎦ .

Combining this inequality with the inductive hypothesis yields

vk ≤ 1

dk,1

⎧⎨
⎩gk + dk,kv

0 +
k−1∑
j=1

(dk, j − dk, j+1)

⎡
⎣v0 + 1

dk− j,1

k− j∑
s=1

θk− j,sg
s + η

k− j∗

⎤
⎦
⎫⎬
⎭

≤ 1

dk,1

⎧⎨
⎩gk + dk,kv

0 +
k−1∑
j=1

(dk, j − dk, j+1)

[
v0 + 1

dk− j,1

k− j∑
s=1

θk− j,sg
s
]⎫⎬
⎭

+ 1

dk,1

k−1∑
j=1

(dk, j − dk, j+1)η
k− j∗

≤ 1

dk,1

⎧⎨
⎩gk + dk,1v

0 +
k−1∑
j=1

[
(dk, j − dk, j+1)

1

dk− j,1

k− j∑
s=1

θk− j,sg
s
]⎫⎬
⎭

+ 1

dk,1
(dk,1 − dk,k)η

k−1∗

≤ 1

dk,1

⎧⎨
⎩gk + dk,1v

0 +
k−1∑
s=1

gs
[ k−s∑

j=1

1

dk− j,1
(dk, j − dk, j+1)θk− j,s

]⎫⎬
⎭

+ ηk∗

= v0 + 1

dk,1

k∑
s=1

θk,sg
s + ηk∗,

where we used the relationship (5.1), dk,k > 0, and ηn∗ is nondecreasing for n increasing. We
conclude the lemma is true by the principle of induction. �

Now we will achieve a β-robust stability result for the fully discrete L1 FEM by Lemma
5.3.
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Theorem 5.1 The solution unh of the discrete problem (3.9) satisfies

‖∇unh‖ ≤ ‖∇u0h‖ + C max1≤s≤q Γ (1 + lN − αs)

Γ (1 + lN )
max
1≤ j≤n

{
‖ f j‖

}
, (5.6)

where lN is defined in Corollary 5.2.

Proof Fix n ∈ {1, 2, . . . , N }. Multiplying (3.9) by −Δhunh and integrating over Ω , one has

− (Dα
Nu

n
h,Δhu

n
h

)+ κ‖Δhu
n
h‖2 = −(Ph f

n,Δhu
n
h) ≤ 1

4κ
‖ f n‖2 + κ‖Δhu

n
h‖2.

Discard the non-negative term ‖Δhunh‖2, then use the definition (2.4) of Δh to get

(
D

α
N (∇unh),∇unh

) ≤ 1

4κ
‖ f n‖2.

Applying Lemma 4.1 yields

(Dα
N‖∇unh‖) ‖∇unh‖ ≤ 1

4κ
‖ f n‖2. (5.7)

By Lemma 5.3, one has

‖∇unh‖ ≤ ‖∇u0h‖ + 1

2
√

κ

1

dn,1

n∑
j=1

θn, j‖ f j‖ + 1

2
√

κ
max
1≤ j≤n

{
‖ f j‖

}
.

Applied Corollary 5.2, the lemma is proved. �
We then prove themain result of the paper, which demonstrates convergence of ourmethod

in L∞(H1) with an optimal and β-robust convergence rate.

Theorem 5.2 (Error estimate) Let un and unh be the solutions of (1.1) and (3.9), respectively.
Assume the hypotheses of (1.3) with k + 1 ≤ p, ω(α) ∈ C2[0, β], and Dα

t u(·, ·) ∈ C2[0, β].
Then for n = 1, 2, . . . , N, one has

‖∇un − ∇unh‖ ≤ C max1≤s≤q Γ (1 + lN − αs)

Γ (1 + lN )

(
N−min{2−αq ,rσ } + hk + h2α

)
, (5.8)

‖∇Rhu
n − ∇unh‖ ≤ C max1≤s≤q Γ (1 + lN − αs)

Γ (1 + lN )

(
N−min{2−αq ,rσ } + hk+1 + h2α

)
.

(5.9)

where lN = 1/lnN and C is a constant independent of h and N.

Proof Fix n ∈ {1, 2, . . . , N }. Multiplying (4.5) by−Δhζ
n and integrating overΩ , we arrive

at

− (Dα
N ζ n,Δhζ

n)+ κ‖Δhζ
n‖2 = − (PhDω

t ρn − Rh R
n,Δhζ

n)+ (Rhϕ
n,Δhζ

n).

(5.10)

Recalling the definition (2.4) of Δh and the projection Ph yileds(
D

α
N (∇ζ n),∇ζ n)+ κ‖Δhζ

n‖2 = (−Dω
t ρn + Rh R

n,Δhζ
n)− (∇Rhϕ

n,∇ζ n) .
Applying the Lemma 4.1 and the Cauchy-Schwartz inequality, one has

(Dα
N‖∇ζ n‖) ‖∇ζ n‖ ≤ 1

4κ
‖Dω

t ρn − Rh R
n‖2 + ‖∇Rhϕ

n‖ ‖∇ζ n‖.
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Invoking (2.2) and (2.3), we get

(
D

α
N‖∇ζ n‖) ‖∇ζ n‖ ≤ 1

4κ
(‖Dω

t ρn‖ + ‖Rh R
n‖)2 + ‖∇Rhϕ

n‖ ‖∇ζ n‖
≤ Ch2(k+1) + C‖∇Rh R

n‖2 + ‖∇Rhϕ
n‖ ‖∇ζ n‖

≤ C(h2(k+1) + h4α) + ‖∇ϕn‖ ‖∇ζ n‖, (5.11)

where the inequality ‖∇Rhw‖ ≤ ‖∇w‖ ∀w ∈ H1
0 (Ω) is used. Observe that (5.11) is a

particular case of (5.4). Thus we can invoke Lemma 5.3 to get

‖∇ζ n‖ ≤ ‖∇ζ 0‖ + C

dn,1

n∑
j=1

θn, j

(
‖∇ϕ j‖ + hk+1 + h2α

)
+ C(hk+1 + h2α). (5.12)

By Lemma 3.3, we get ‖∇ϕ j‖ ≤ C
∑q

s=1 hαω(αs)t
−αs
j N−min{2−αs ,rσ }. Substituting this

inequality into (5.12) and invoking Corollaries 5.1 and 5.2 yields

‖∇ζ n‖ ≤ ‖∇ζ 0‖ + C

dn,1

n∑
j=1

( q∑
s=1

hαω(αs)t
−αs
j N−min{2−αs ,rσ }

)
θn, j

+ C

dn,1

n∑
j=1

θn, j

(
hk+1 + h2α

)
+ C(hk+1 + h2α)

≤ CN−min{2−αq ,rσ } 1

dn,1

n∑
j=1

( q∑
s=1

hαω(αs)t
−αs
j

)
θn, j

+ C

dn,1

n∑
j=1

θn, j

(
hk+1 + h2α

)
+ C(hk+1 + h2α)

≤ er max1≤s≤q Γ (1 + lN − αs)

Γ (1 + lN )
C
(
N−min{2−αq ,rσ } + hk+1 + h2α

)
,

where we used ‖∇ζ 0‖ = ‖∇(Rhu0 − u0h)‖ = 0. Combining this bound and (2.3) with (4.3),
we get (5.8). �
Remark 5.1 No blow up appear in the error estimate given in Theorem 5.2 as β → 1−, unlike
the bound in Theorem 4.1 and [32, Theorem 3.1].

Corollary 5.3 Assume the hypotheses of Theorem 5.2 are satisfied. Then

‖un − unh‖ ≤ C max1≤s≤q Γ (1 + lN − αs)

Γ (1 + lN )

(
N−min{2−αq ,rσ } + hk+1 + h2α

)
. (5.13)

Proof Applying Poincare inequality, one has ‖Rhun−unh‖ ≤ C‖∇Rhun−∇unh‖. Combining
this result with (5.9) and (2.3), we get (5.13). �

6 Superconvergence Analysis

In this section, a superconvergent result for the distributed order time-fractional diffusion
equation (1.1) in two-dimensions will be presented, where the bilinear element (k = 1) is
used in our finite element space.
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To obtain the superconvergent result, we will introduce two operators as follows. Let
πh : H2(Ω) → V0h be the interpolation operator satisfying πhv(ai ) = v(ai ), where ai , (i =
1, 2, 3, 4) are the four vertices of Km . By [37, (8)], we get the H1-norm estimate

‖Rhw − πhw‖1 ≤ Ch2‖w‖3, ∀ w ∈ H1
0 (Ω) ∩ H3(Ω), (6.1)

which will play an important role in the superclose and superconvergence analysis.
Now we adopt the interpolation postprocessing operator π2h as the same in [28], which

satisfies

π2hπhw = π2hw, ∀ w ∈ H2(Ω), (6.2a)

‖w − π2hw‖1 ≤ Ch2|w|3, ∀ w ∈ H3(Ω), (6.2b)

‖π2hwh‖1 ≤ C‖wh‖1, ∀ wh ∈ V0h . (6.2c)

Next we will state the global superconvergence result.

Corollary 6.1 Assume the hypotheses of Theorem 5.2 are satisfied with p = 3. Using bilinear
element (k = 1) in our finite element space. If the domain Ω is rectangular with sides
parallel to the coordinate axes, one has

‖∇πhu
n − ∇unh‖ ≤ C max1≤s≤q Γ (1 + lN − αs)

Γ (1 + lN )

(
N−min{2−αq ,rσ } + h2 + h2α

)
, (6.3)

‖∇un − ∇π2hu
n
h‖ ≤ C max1≤s≤q Γ (1 + lN − αs)

Γ (1 + lN )

(
N−min{2−αq ,rσ } + h2 + h2α

)
. (6.4)

Proof By triangle inequality,we arrive at‖∇πhun−∇unh‖ ≤ ‖∇πhun−∇Rhun‖+‖∇Rhun−
∇unh‖. Then the bound (6.3) follows from (6.1) and (5.9) immediately.

Furthermore, combining the bound (6.3) with (6.2) yields

‖∇un − ∇π2hu
n
h‖ ≤ ‖∇un − ∇π2hπhu

n‖ + ‖∇π2hπhu
n − ∇π2hu

n
h‖

= ‖∇un − ∇π2hu
n‖ + ‖∇π2h(πhu

n − unh)‖
≤ Ch2 + C‖∇πhu

n − ∇unh‖
≤ C max1≤s≤q Γ (1 + lN − αs)

Γ (1 + lN )

(
N−min{2−αq ,rσ } + h2 + h2α

)
.

Thus the proof is complete. �
Remark 6.1 Under the same condition of Corollary 6.1, the spatial H1-norm error of exact
solution and numerical solution given in (5.8) reaches O(h) convergence for the bilinear
element in space (note that the degree of the polynomial is k = 1 ). However, according
to the superconvergent result (6.4), the H1-norm error of the exact solution and numerical
solution after postprocessing is improved to O(h2) convergence.

7 Numerical Experiments

In this section we will present some numerical results for the initial-boundary value problem
(1.1) whose solution mimic the behaviour described in (1.3) with σ = β.

Define the errors EM,N
0 , EM,N

1 , and EM,N
2 for the computed solutions by

EM,N
0 := max

0≤n≤N
‖∇un − ∇unh‖,
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Table 1 Example 7.1: EM,N
0

errors and rates of convergence in
temporal direction

N=10 N=20 N=30 N=40

β = 0.3 6.8409E-2 2.1408E-2 1.0737E-2 6.5847E-3

1.6759 1.7017 1.6998

β = 0.5 1.0902E-1 3.8769E-2 2.1148E-2 1.3792E-2

1.5046 1.4947 1.4857

β = 0.7 1.7449E-1 6.9783E-2 4.1538E-2 2.8837E-2

1.3222 1.2794 1.2685

EM,N
1 := max

0≤n≤N
‖∇πhu

n − unh‖, EM,N
2 := max

0≤n≤N
‖∇un − ∇π2hu

n
h‖.

Example 7.1 Consider the problem (1.1) with κ = 0.1, T = 1,ω(α) = Γ (β +1−α)/Γ (1+
β), Ω = (0, 1) × (0, 1), and the function f is chosen such that the exact solution of this
problem is u(x, y, t) = tβ sin(πx) sin(π y).

To solve Example 7.1 numerically, a uniform rectangular partition of Ω with M + 1
nodes in each spatial direction and the bilinear polynomial in spatial are used. By taking r =
(2−β)/β, one obtains the optimal rates of convergence inTheorem5.2 andCorollary 6.1, viz.,
O
(
h + h2α + N−(2−β)

)
for ‖∇un −∇unh‖ and O

(
h2 + h2α + N−(2−β)

)
for ‖∇πhun −∇unh‖

and ‖∇un − ∇π2hunh‖.
Firstly, we verify the temporal accuracy of our fully discrete L1 FEM (3.9). Table 1 shows

the EM,N
0 errors for β = 0.3, 0.5, 0.7. Here M = �N 2−β� and q = 100 are taken so that the

temporal error dominates the result. The orders of convergence displayed indicate that the
rate of convergence is N−(2−β), as predicted by (5.8) of Theorem 5.2. Tables 2 and 3 display
the EM,N

1 and EM,N
2 error and their associated orders of convergence for β = 0.3, 0.5, 0.7,

with M = �N 1−β/2� and q = 100 so that the temporal error dominates the distributed
variable error and the spatial error. The orders of convergence displayed indicate that the rate
of convergence is N−(2−β), as predicted by Corollary 6.1.

Next we test the accuracy in spatial direction. Table 4 shows the EM,N
0 , EM,N

1 , and EM,N
2

errors and their associated orders of convergence for β = 0.3, 0.5, 0.7. Here N = 200
and q = 100 are taken so that the spatial error dominates the results. We observe O(h)

convergence for EM,N
0 and O(h2) convergence for EM,N

1 and EM,N
2 , again as predicted by

Theorem 5.2 and Corollary 6.1.
At last we check the convergence order for distributed variable. Table 5 shows the EM,N

1
error and the associated order of convergence for β = 0.3, 0.5, 0.7, where N = 1000 and
M = 200 are taken to eliminate the temporal error and the spatial error.

These numerical results demonstrate the sharpness of our theoretical convergence bounds
in Theorem 5.2 and Corollary 6.1.

Example 7.2 Consider the problem (1.1) with κ = 0.1, T = 1,ω(α) = Γ (β +1−α)/Γ (1+
β), Ω = (0, 1) × (0, 1), and φ(x, y) = x2.5(x − 1)y2.5(y − 1). The function f is chosen
such that the exact solution of this problem is u(x, y, t) = (1 + tβ)x2.5(x − 1)y2.5(y − 1),
which is nonsmooth in spatial direction.

In this example, we just test the convergent result of EM,N
1 and EM,N

2 , and the selection

of M, N , and q is same as Example 7.1. Tables 6 and 7 show that EM,N
1 and EM,N

2 have
the global truncation error O(N−(2−β)) in temporal direction. Table 8 shows that O(h2)
convergence for EM,N

1 and EM,N
2 in spatial direction is observed.
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Table 2 Example 7.1: EM,N
1 errors and rates of convergence in temporal direction

N=40 N=80 N=160 N=320 N=640

β = 0.3 3.4599E-3 1.1331E-3 3.5575E-4 1.0994E-4 3.4313E-5

1.6104 1.6703 1.6943 1.6812

β = 0.5 8.3643E-3 2.9477E-3 1.0639E-3 3.7353E-4 1.3185E-3

1.5046 1.4755 1.5029 1.5025

β = 0.7 1.8759E-2 7.0388E-3 2.9176E-3 1.2397E-3 5.1130E-4

1.4141 1.2704 1.2345 1.2789

Table 3 Example 7.1: EM,N
2 errors and rates of convergence in temporal direction

N=40 N=80 N=160 N=320 N=640

β = 0.3 6.6453E-3 2.1717E-3 6.7214E-4 2.0878E-4 6.4730E-5

1.6134 1.6923 1.6849 1.6916

β = 0.5 1.5621E-2 5.1626E-3 1.8896E-3 6.7802E-4 2.3912E-4

1.5637 1.4497 1.4790 1.5042

β = 0.7 2.9737E-2 1.2300E-2 5.0884E-3 2.1082E-3 8.7630E-4

1.1681 1.2740 1.3037 1.2561

Table 4 Example 7.1: EM,N
0 , EM,N

1 , and EM,N
2 errors and convergence rates in spatial direction

M EM,N
0 Order EM,N

1 Order EM,N
2 Order

β = 0.3 8 4.3761E-1 - 3.1868E-2 - 6.0159E-2 -

16 2.1826E-1 1.0035 8.0456E-3 1.9858 1.5089E-2 1.9953

32 1.0906E-1 1.0008 2.0105E-3 2.0006 3.7721E-3 2.0000

64 5.4525E-2 1.0002 4.9683E-4 2.0162 9.3996E-4 2.0046

β = 0.5 8 4.3790E-1 - 3.3903E-2 - 6.1283E-2 -

16 2.1830E-1 1.0042 8.5523E-3 1.9870 1.5366E-2 1.9957

32 1.0907E-1 1.0010 2.1318E-3 2.0042 3.8381E-3 2.0012

64 5.4525E-2 1.0002 5.2149E-4 2.0327 9.5323E-4 2.0098

β = 0.7 8 4.3817E-1 - 3.5708E-2 - 6.2322E-2 -

16 2.1833E-1 1.0049 8.9989E-3 1.9884 1.5621E-2 1.9962

32 1.0907E-1 1.0012 2.2359E-3 2.0088 3.8970E-3 2.0029

64 5.4526E-2 1.0003 5.3981E-4 2.0498 9.6338E-4 2.0167

Table 5 Example 7.1: EM,N
1

errors and convergence rates for
the distributed variable

N=2 N=4 N=8 N=16

β = 0.3 5.2242E-3 1.3312E-3 3.3415E-4 8.3631E-5

1.9723 1.9942 1.9989

β = 0.5 7.1872E-3 1.8175E-3 4.4140E-4 9.7649E-5

1.9834 2.0431 2.1758

β = 0.7 9.2441E-3 2.3636E-3 5.8322E-4 1.3611E-4

1.9697 2.0166 2.0992
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Table 6 Example 7.2: EM,N
1 errors and rates of convergence in temporal direction

N=40 N=80 N=160 N=320 N=640

β = 0.3 2.1250E-4 6.9723E-5 2.1326E-5 6.6642E-6 2.0707E-6

1.6116 1.7103 1.6772 1.6858

β = 0.5 4.8051E-4 1.5851E-4 5.8931E-5 2.1619E-5 7.6261E-6

1.5970 1.4326 1.4472 1.5012

β = 0.7 8.5790E-4 3.8711E-4 1.6112E-4 6.5448E-5 2.7437E-5

1.1486 1.2652 1.2996 1.2551

Table 7 Example 7.2: EM,N
2 errors and rates of convergence in temporal direction

N=40 N=80 N=160 N=320 N=640

β = 0.3 4.6671E-4 1.5443E-4 4.7852E-5 1.5154E-5 4.7729E-6

1.6004 1.6848 1.6559 1.6720

β = 0.5 1.0445E-3 3.4508E-4 1.2938E-4 4.7984E-5 1.7129E-5

1.5981 1.4192 1.4262 1.4890

β = 0.7 1.8559E-3 8.3009E-4 3.4631E-4 1.4175E-4 5.9976E-5

1.1609 1.2623 1.2848 1.2428

Table 8 Example 7.2: β = 0.3;

EM,N
1 , EM,N

2 errors, and
convergence rates in spatial
direction

Polynomial M EM,N
1 Order EM,N

2 Order

Q1 8 1.8181E-3 - 4.1434E-3 -

16 4.7576E-4 1.9334 1.0421E-3 1.9930

32 1.2027E-4 1.9879 2.6426E-4 1.9779

64 3.0118E-5 1.9951 6.7221E-5 1.9967
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