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Abstract
This paper describes solution methods for linear discrete ill-posed problems defined by third
order tensors and the t-product formalism introduced in (Linear Algebra Appl 435:641–658,
2011). A t-product Arnoldi (t-Arnoldi) process is defined and applied to reduce a large-
scale Tikhonov regularization problem for third order tensors to a problem of small size.
The data may be represented by a laterally oriented matrix or a third order tensor, and the
regularization operator is a third order tensor. The discrepancy principle is used to determine
the regularization parameter and the number of steps of the t-Arnoldi process. Numerical
examples compare results for several solutionmethods, and illustrate the potential superiority
of solution methods that tensorize over solution methods that matricize linear discrete ill-
posed problems for third order tensors.

Keywords Discrepancy principle · Linear discrete ill-posed problem · Tensor Arnoldi
process · T-product · Tensor Tikhonov regularization

1 Introduction

We are concerned with the solution of large-scale least squares problems of the form

min
X∈Rm×1×n

‖A ∗ X − B‖F , (1.1)

where A = [ai jk]m,m,n
i, j,k=1 ∈ R

m×m×n is a third order tensor of ill-determined tubal rank, i.e.,
the Frobenius norm of the singular tubes of A, which are analogues of the singular values
of a matrix, decay rapidly to zero with increasing index, and there are many nonvanishing
singular tubes of tiny Frobenius norm of different orders of magnitude (cf. Definition 2.2
below). Least squares problems with a tensor of this kind are referred to as linear discrete
ill-posed problems. The tensorsX ∈ R

m×1×n and B ∈ R
m×1×n in (1.1) are laterally oriented
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m × n matrices, and the operator ∗ denotes the tensor t-product introduced in the seminal
work by Kilmer and Martin [23]. We will review the t-product in Sect. 2.

Anadvantageof the formulation (1.1)with the t-product,when compared to other products,
is that the t-product avoids loss of information inherent in the flattening of a tensor; seeKilmer
et al. [22]. The t-product preserves the natural ordering and higher correlations embedded in
the data, and has been found useful inmany application areas, including completion of seismic
data [11], image deblurring problems [10,22,23,35], facial recognition [18], tomographic
image reconstruction [40], and tensor compression [42].

Throughout this paper, ‖ · ‖F denotes the Frobenius norm of a third order tensor, which
for A = [ai jk]m,m,n

i, j,k=1 ∈ R
m×m×n is defined by

‖A‖F =
√
√
√
√

m
∑

i=1

m
∑

j=1

n
∑

k=1

a2i jk .

In applications of interest to us, such as image and video restoration, the data tensor
B ∈ R

m×1×n is contaminated by measurement error (noise) that is represented by a tensor
E ∈ R

m×1×n . Thus,
B = Btrue + E, (1.2)

where Btrue ∈ R
m×1×n represents the unavailable error-free data tensor that is associated

with the known data tensor B. We assume the unavailable linear system of equations

A ∗ X = Btrue

to be consistent and let Xtrue denote its (unknown) solution of minimal Frobenius norm.
Wewould like to compute an accurate approximation ofXtrue. Straightforward solution of

(1.1) typically does not yield a meaningful approximation ofXtrue, because due to the severe
ill-conditioning of A, the error in B gives rise to a large propagated error in the computed
solution. We remedy this difficulty by replacing (1.1) by a nearby problem, whose solution
is less sensitive to perturbations of the right-hand side B, i.e., we solve the penalized least
squares problem

min
X∈Rm×1×n

{‖A ∗ X − B‖2F + μ−1‖L ∗ X‖2F
}

, (1.3)

whereL ∈ R
s×m×n is a regularization operator andμ > 0 is a regularization parameter. This

replacement is commonly referred to as Tikhonov regularization. LetN (M) denote the null
space of the tensor M under ∗ and assume that L satisfies

N (A) ∩ N (L) = {O}, (1.4)

whereO denotes an m × n zero matrix oriented laterally; see below. Then (1.3) has a unique
solution Xμ ∈ R

m×1×n for any μ > 0 (cf. Theorem 3.1). The closeness of Xμ to Xtrue and
the sensitivity of Xμ to the error E in B depends on the value of μ. We determine μ by
the discrepancy principle, which is described and analyzed in, e.g., [12]. Application of the
discrepancy principle requires that a bound

‖E‖F ≤ δ (1.5)

be available. The parameter μ > 0 then is determined so that Xμ satisfies

‖B − A ∗ Xμ‖F = ηδ, (1.6)

where η > 1 is a user-specified constant independent of δ > 0. It can be shown that
Xμ → Xtrue as δ ↘ 0; see [12] for a proof in a Hilbert space setting.
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Many other methods, including generalized cross validation (GCV) and the L-curve cri-
terion, also can be used to determine the regularization parameter; see, e.g., [5,13,15,16,24,
25,36] for discussions and illustrations for the situation whenA is a matrix and B is a vector.

It is well known that a few steps of the (standard) Arnoldi process can be used to reduce
a large square matrix to a matrix of small size. The small matrix so obtained can be used
to define a small Tikhonov regularization problems that is easy to solve; see [5,7,14,27] for
discussions and illustrations. It is the purpose of the present paper to extend the (standard)
matrix version of the Arnoldi process, described, e.g., in [37], to third order tensors using
the t-product formalism. This gives us the t-Arnoldi process. Application of � ≥ 1 steps of
this process, generically, furnishes an orthonormal basis for the �-dimensional tensor Krylov
(t-Krylov) subspace

K�(A,B) = t-span
{

B,A ∗ B,A2 ∗ B, . . . ,A�−1 ∗ B
}

. (1.7)

The meaning of t-span is discussed in Sects. 3 and 4. Each step of the t-Arnoldi process
requires one tensor-matrix product evaluation with A. Often fewer tensor-matrix product
evaluations are required to solve Tikhonov minimization problems (1.3) than when the t-
product Golub-Kahan bidiagonalization (tGKB) process, described by Kilmer et al. [22] is
used, because each step of the latter demands two tensor-matrix product evaluations, one
with A and one with AT , where the superscript T denotes transposition.

We refer to our solution scheme for (1.3) as the t-product Arnoldi–Tikhonov (tAT) regular-
ization method. It is based on reducing the tensorA ∈ R

m×m×n to a small upper Hessenberg
tensor. We also describe a global tAT (G-tAT) method for the solution of (1.3). This method
works with a data tensor slice B ∈ R

m×1×n and is closely related to the T-global Arnoldi–
Tikhonov regularization method recently described by El Guide et al. [10], which takes L
equal to the identity tensor, denoted by I, determines the regularization parameter by the
GCVmethod, andworkswith a general data tensorB ∈ R

m×p×n , p > 1. Differently from the
tAT method, the G-tAT and the T-global Arnoldi–Tikhonov regularization methods involve
matricization of the tensor A. Specifically, the G-tAT method first reduces A in (1.3) to an
upper Hessenberg matrix by carrying out a few steps of the global t-Arnoldi (G-tA) process.
This process furnishes an orthonormal basis for a t-Krylov subspace (1.7). It differs from
the t-Arnoldi process in the choice of inner product. Algorithm 13 in Sect. 5 provides the
details of the G-tA process. Numerical examples with the t-Arnoldi and G-tA processes are
presented in Sect. 6. The tAT and G-tAT methods based on these processes determine the
regularization parameter by the discrepancy principle.

We also describe an extension of the (standard) generalized minimal residual (GMRES)
method proposed by Saad and Schultz [38] to third order tensors based on the t-product
formalism. This extension will be referred to as the t-product GMRES (tGMRES) method.
The tGMRESmethod for the solution of (1.1) computes iterates in t-Krylov subspaces of the
form (1.7); the �th approximate solution X� ∈ K�(A,B) determined by tGMRES method
with initial approximate solution X0 = O satisfies

‖A ∗ X� − B‖F = min
X∈K�(A,B)

‖A ∗ X − B‖F , � = 1, 2, . . . . (1.8)

Another extension of the (standard) GMRES method by Saad and Schulz [38] for the
solution of tensor equations is provided by the global tGMRES (G-tGMRES) method, which
is described in Sect. 5.2. This method is closely related to the T-global GMRES method
recently presented by El Guide et al. [10]. The methods differ in that the data for the G-
tGMRES method is represented by a lateral slice B, while the data for the T-global GMRES
method is a general third order tensorB ∈ R

m×p×n , p > 1.Moreover, our implementation of
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the t-GMRES and G-tGMRES methods uses the discrepancy principle to determine when to
terminate the iterations. Differently from the tGMRESmethod, the G-tGMRES and T-global
GMRESmethods involve matricization of the tensorA. While the tGMRESmethod is based
on the t-Arnoldi process described in Sect. 3, the G-tGMRES method is based on the global
t-Arnoldi (G-tA) process.

Many other methods for solving (1.3) and (1.8) that do not apply the t-product have been
described in the literature; see, e.g., [2,8,9,39]. These methods replace matrix-vector prod-
ucts by tensor-matrix products and involve matricization. A careful comparison of all these
methods is outside the scope of the present paper. Here we note that computed examples of
Sect. 6 indicate that methods that avoid matricization often determine approximate solutions
of higher quality than methods that involve matricization.

We also are interested in solving minimization problems analogous to (1.1), in which B is
replaced by a general third order tensor B. This leads to the Tikhonov minimization problem

min
X∈Rm×p×n

{‖A ∗ X − B‖2F + μ−1‖L ∗ X‖2F
}

, B ∈ R
m×p×n, p > 1. (1.9)

Besides our work [35], no literature is available on solution methods for (1.3) and (1.9) for
L 
= I. The present paper focuses on developing tensor Arnoldi–Tikhonov-type methods for
this situation.

Four methods for the solution of (1.9) will be described. Three of them are based on the
tAT and G-tATmethods applied to the lateral slicesB j , j = 1, 2, . . . , p, ofB, independently.
The other method generalizes the T-global Arnoldi–Tikhonov regularization method recently
presented by El Guide et al. [10] to allow for L 
= I. This method works with the lateral
slices of the data tensor B simultaneously, and will be referred to as the generalized global
tAT (GG-tAT) method.

A comparison of the solutionmethods for (1.9) is presented in Sect. 6. Computed examples
show the GG-tAT method to require less CPU time, but the G-tAT method may yield higher
accuracy. The fact that the GG-tAT requires less CPU time is to be expected since it uses
larger chunks of data at a time.

We remark that theG-tATandGG-tATmethods belong to theAT_BTF (Arnoldi–Tikhonov
Based Tensor Format) family of methods recently described by Beik et al. [2]. They involve
flattening and require additional product definitions to the t-product.

Finally, we will discuss a variant of the T-global GMRES method that recently has been
described by El Guide et al. [10] and is based on the t-product formalism.We will refer to our
variant as the generalized global tGMRES (GG-tGMRES) method. This method replaces the
data tensor B in (1.8) by a general third order tensor B and determines iterates in t-Krylov
subspacesK�(A,B). The �th iterateX� ∈ K�(A,B) determined by theGG-tGMRESmethod
with initial iterate X0 = O ∈ R

m×p×n solves

‖A ∗ X� − B‖F = min
X∈K�(A,B)

‖A ∗ X − B‖F , � = 1, 2, . . . . (1.10)

In theT-globalGMRESmethod byElGuide et al. [10], the iterations are terminated based on a
residual Frobenius norm and a set tolerance that is independent of the error in B. Differently
from the T-global GMRES method, our approach for solving (1.10) uses the discrepancy
principle to determine the number of iterations to carry out with the GG-tGMRES method.

This paper is organized as follows. Section 2 introduces notation and preliminaries asso-
ciated with the t-product. Methods based on the t-Arnoldi process are described in Sect. 3.
This includes Tikhonov regularization methods, one of which is based on a nested t-Krylov
subspace, and GMRES-type methods for the computation of approximate solutions of (1.1)
and the analogous minimization problem obtained by replacing the tensor slice B by a third
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order tensor B. Thus, we can consider color image and video restoration problems. For the
former, B represents a blurred and noisy RGB image of dimension m × p × 3, while for
gray-scale video restoration problems, B is of dimension m × p × n with a sequence of n
consecutive blurred and noisy video frames. Section 4 describes algorithms that are based
on the generalized global t-Arnoldi (GG-tA) process with data tensor B. The algorithms of
Sect. 5 are obtained by modifying algorithms of Sect. 4 to be applicable to each lateral slice
of B separately. This allows us to consider, for instance, the restoration of gray-scale images.
Section 6 presents some numerical examples that illustrate the performance of the described
methods. Concluding remarks can be found in Sect. 7.

2 Notation and Preliminaries

This section reviews results on the t-product introduced by Kilmer et al. [22,23] and defines
notation from [10,26] to be used in the sequel. In this paper, a tensor is of third order, i.e.,
a three-dimensional array of real scalars denoted by calligraphic script letters, say, A =
[ai jk]�,m,n

i, j,k=1 ∈ R
�×m×n with real entries ai jk . Matrices and vectors are second and first order

tensors, respectively. We use capital letters to denote matrices, lower case letters to denote
vectors, and bold face lower case letters to denote tube fibers (tubal scalars or tubes). A
fiber of a third order tensor is a 1D section obtained by fixing two of the indices. Using
MATLAB notation,A(:, j, k),A(i, :, k), andA(i, j, :) denote mode-1, mode-2, and mode-3
fibers, respectively. A slice of a third order tensor is a 2D section obtained by fixing one of the
indices.WithMATLAB notation,A(i, :, :),A(:, j, :), andA(:, :, k) denote the i th horizontal,
j th lateral, and kth frontal slices, respectively. The j th lateral slice is also denoted by A j . It
is a tensor and will be referred to as a tensor column. Moreover, the kth frontal slice, which
also will be denoted by A(k), is a matrix.

Given A ∈ R
�×m×n with � × m frontal slices A(i), i = 1, 2, . . . , n, the operator

unfold(A) returns a block �n × m matrix made up of the faces A(i) of A. The fold
operator folds back the unfolded A, i.e.,

unfold(A) =

⎡

⎢
⎢
⎢
⎣

A(1)

A(2)

...

A(n)

⎤

⎥
⎥
⎥
⎦

, fold(unfold(A)) = A.

The operator bcirc(A) generates an �n × mn block circulant matrix with unfold(A)

forming the first block column,

bcirc(A) =

⎡

⎢
⎢
⎢
⎣

A(1) A(n) . . . A(2)

A(2) A(1) . . . A(3)

...
...

. . .
...

A(n) A(n−1) . . . A(1)

⎤

⎥
⎥
⎥
⎦

.

Definition 2.1 (t-product [23]) LetA ∈ R
�×m×n andB ∈ R

m×p×n . Then the t-productA ∗ B
is the tensor C ∈ R

�×p×n defined by

C := fold(bcirc(A) · unfold(B)), (2.1)

where “·” denotes the standard matrix-matrix product.
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We can view C in (2.1) as an � × p matrix of tubes oriented along the third dimension
with its (i, j)th tube given by

C(i, j, :) =
p
∑

k=1

B(i, k, :) ∗ C(k, j, :).

This shows that the t-product is analogous to matrix multiplication, except that multiplication
between scalars is replaced by circular convolution between tubes.

The matrix bcirc(A) can be block diagonalized by the discrete Fourier transform (DFT)
matrix combined with the Kronecker product. Suppose thatA ∈ R

�×m×n and let Fn ∈ C
n×n

denote the unitary DFT matrix. Then

Ā := blockdiag(Â(1), Â(2), . . . , Â(n)) = (Fn ⊗ I�) · bcirc(A) · (F∗
n ⊗ Im), (2.2)

where ⊗ is the Kronecker product and F∗
n denotes the conjugate transpose of Fn . The matrix

Ā is an �n×mn block diagonal matrix with �×m blocks Â(i), i = 1, 2, . . . , n. The matrices
Â(i) are the frontal slices of the tensor Â obtained by applying the discrete Fourier transform
along each tube of A. We remark that

‖A‖F = 1√
n

‖ Ā‖F .

The t-product is a natural extension of matrix multiplication for third order tensors [23].
Higher order tensors allow the definition of analogues of the t-product; see [30]. Matrix
algorithms for QR and SVD factorizations have analogues for third order tensors; see Kilmer
et al. [22].

We may choose to evaluate A ∗ B according to Definition 2.1 if the tensors A and B are
sparse. For general tensors A ∈ R

�×m×n and B ∈ R
m×p×n , the t-product A ∗ B can be

computed efficiently by using the transformation (2.2), i.e.,

A ∗ B = fold
(

(F∗
n ⊗ I�) Ā(Fn ⊗ Im) · unfold(B)

)

. (2.3)

The right-hand side of (2.2) can be evaluated in O(�mn log2(n)) arithmetic floating point
operations (flops) using the fast Fourier transform (FFT); see [23].

The t-product is readily computed in MATLAB. We often will use the superscript̂to
denote objects that are obtained by taking the FFT along the third dimension.UsingMATLAB
notation, let Ĉ := fft(C, [ ], 3) be the tensor obtained by applying the FFT to C along the
third dimension. Then the t-productA ∗B can be computed by first taking the FFT along the
tubes of A and B to get Â = fft(A, [ ], 3) and B̂ = fft(B, [ ], 3), multiplying each pair
of the frontal slices of Â and B̂,

Ĉ(:, :, i) = Â(:, :, i) · B̂(:, :, i), i = 1, 2, . . . , n,

and then taking the inverse FFT along the third dimension to obtain C = ifft(Ĉ, [ ], 3).
The t-product (2.3) can be computed by using the MATLAB tensor-tensor product toolbox;1

see [28]. Certain symmetry properties can be utilized during the computations. This is done
in the computations reported in Sect. 6.

Let A ∈ R
�×m×n . The tensor transpose, AT ∈ R

m×�×n , is the tensor obtained by trans-
posing each one of the frontal slices of A, and then reversing the order of the transposed
frontal slices 2 through n; see [23]. The tensor transpose has similar properties as the matrix

1 https://www.github.com/canyilu/tproduct.
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transpose. For instance, ifA and B are two tensors such thatA ∗ B and BT ∗AT are defined,
then (A ∗ B)T = BT ∗ AT .

The identity tensor I ∈ R
m×m×n is a tensor, whose first frontal slice, I(1), is the m × m

identity matrix and all other frontal slices, I(i), i = 2, 3, . . . , n, are zero matrices; see [23].
The concept of orthogonality is well defined under the t-product formalism; see Kilmer

and Martin [23]. A tensor Q ∈ R
m×m×n is said to be orthogonal if QT ∗ Q = Q ∗ QT = I.

Analogously to the columns of an orthogonal matrix, the lateral slices of an orthogonal tensor
Q are orthonormal, i.e.,

QT (:, i, :) ∗ Q(:, j, :) =
{

e1 i = j,
0 i 
= j,

where e1 ∈ R
1×1×n is a tubal scalar whose (1, 1, 1) entry equals 1 and the remaining entries

vanish. It is shown in [23] that if Q is an orthogonal tensor, then

‖Q ∗ A‖F = ‖A‖F . (2.4)

The tensor Q ∈ R
�×m×n with � > m is said to be partially orthogonal if QT ∗ Q is well

defined and equal to the identity tensor I ∈ R
m×m×n ; see [23].

A tensorA ∈ R
m×m×n is said to have an inverse, denoted byA−1, provided thatA∗A−1 =

I and A−1 ∗ A = I. Moreover, a tensor is said to be f-diagonal if each frontal slice of the
tensor is a diagonal matrix; see [23].

The tensor singular value decomposition (tSVD) of A ∈ R
�×m×n , introduced by Kilmer

and Martin [23], is given by
A = U ∗ S ∗ VT ,

where U ∈ R
�×�×n and V ∈ R

m×m×n are orthogonal tensors, and the tensor

S = diag[s1, s2, . . . , smin{�,m}] ∈ R
�×m×n

is f-diagonal with singular tubes s j ∈ R
1×1×n , j = 1, 2, . . . ,min{�,m}, ordered according

to

‖s1‖F ≥ ‖s2‖F ≥ · · · ≥ ‖smin{�,m}‖F .

The number of nonzero singular tubes of A is referred to as the tubal rank of A; see Kilmer
et al. [22]. The singular tubes of A are analogues of the singular values of a matrix A. In
linear discrete ill-posed problems that require the solution of a linear system of equations or
of a least squares problem with a matrix A, this matrix has many singular values of different
orders of magnitude close to zero. Definition 2.2 describes linear discrete ill-posed tensor
problems.

Definition 2.2 The tensor least squares problems (1.1) is said to be a linear discrete ill-posed
problem for third order tensors under ∗ ifA has ill-determined tubal rank, i.e., the Frobenius
norm of the singular tubes of A decays rapidly to zero with increasing index, and there are
many nonvanishing singular tubes of tiny Frobenius norm of different orders of magnitude.

We remark that this definition is not in terms of the frontal slices A(i), i = 1, 2, . . . , n,

of A, but describes a property of the whole tensor A, i.e., of the singular tubes of A. The
singular tubes are computed by finding the singular value decomposition of each frontal slice
Â(i), i = 1, 2, . . . , n, of Â in the Fourier domain; see [23] for details.

The norm of a nonzero tensor column X ∈ R
m×1×n is defined as

‖X‖ := ‖XT ∗ X‖F
‖X‖F ,
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and ‖X‖ = 0 if X = O; see [22] for details. The Frobenius norm of a tensor column
X ∈ R

m×1×n is given by

‖X‖F =
√
(

XT ∗ X
)

(:,:,1);
see [22]. Thus, the square of the Frobenius norm of X is the first frontal face of the tube
XT ∗ X ∈ R

1×1×n denoted by
(

XT ∗ X
)

(:,:,1).
Algorithm 1, which takes a nonzero tensorX ∈ R

m×1×n and returns the normalized tensor
V ∈ R

m×1×n and the tubal scalar a ∈ R
1×1×n , such that

X = V ∗ a and ‖V‖ = 1,

is important in the sequel. Note that the tubal scalar a might not be invertible; see [22] for
details.Wemention that a is invertible if there is a tubal scalar b such that a ∗ b = b ∗ a = e1.
The scalar a( j) is the j th face of the 1 × 1 × n tubal scalar a, while V( j) is a vector with
m entries, and is the j th frontal face of V ∈ R

m×1×n . The call of the MATLAB function
randn(m, 1) in Algorithm 1 generates a pseudo-randomm-vector with normally distributed
entries with zero mean and variance one. In Algorithm 1 and elsewhere in this paper, ‖ · ‖2
denotes the Euclidean vector norm.

Algorithm 1: Normalize [21]

Input: X ∈ R
m×1×n 
= O

Output: V, a with ‖V‖ = 1
1 V ← fft(X, [ ], 3)
2 for j = 1 to n do
3 a( j) ← ‖V( j)‖2 (V( j) is a vector)
4 if a( j) > tol then
5 V( j) ← 1

a( j) V
( j)

6 else
7 V( j) ← randn(m, 1); a( j) ← ‖V( j)‖2; V( j) ← 1

a( j) V
( j); a( j) ← 0

8 end
9 end

10 V ← ifft(V, [ ], 3); a ← ifft(a, [ ], 3)
The t-product-based tensor QR (tQR) factorization implemented by Algorithm 2 is

described by Kilmer et al. [22]. Let A ∈ R
�×m×n . Then its tQR factorization is given by

A = Q ∗ R,

where the tensorQ ∈ R
�×m×n is partially orthogonal and the tensorR ∈ R

m×m×n is f-upper
triangular (i.e., each face is upper triangular).

Algorithm 2: tQR factorization [22]

Input: A ∈ R
�×m×n , � ≥ m

Output: Q ∈ R
�×m×n, R ∈ R

m×m×n such that A = Q ∗ R
1 Â ← fft(A, [ ], 3)
2 for i = 1to n do
3 Factor Â(:, :, i) = QR, where Q is unitary
4 Q̂(:, :, i) ← Q, R̂(:, :, i) ← R
5 end
6 Q ← ifft(Q̂, [ ], 3), R ← ifft(R̂, [ ], 3)
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We introduce additional definitions used by El Guide et al. [10]. They will be needed
when discussing the G-tAT, GG-tAT, G-tGMRES and GG-tGMRES methods in Sects. 4 and
5. Let

Ck := [C1, C2, . . . , Ck] ∈ R
m×kp×n, Ck := [C1,C2, . . . ,Ck] ∈ R

m×k×n,

where C j ∈ R
m×p×n and C j ∈ R

m×1×n . Suppose that y = [y1, . . . , yk]T ∈ R
k . Then El

Guide et al. define the product � as

Ck � y =
k
∑

j=1

y jC j , Ck � y =
k
∑

j=1

y jC j .

It can be shown that for orthogonal tensors Q ∈ R
m×kp×n and Q ∈ R

m×k×n , one has

‖Q � y‖F = ‖y‖2, ‖Q � y‖F = ‖y‖2; (2.5)

see [10] for details.
Consider the tensors C = [ci jk] and D = [wi jk] in Rm×p×n with lateral slices C = [ci1k]

and D = [di1k] in R
m×1×n , respectively. Define the scalar products

〈C,D〉 =
m
∑

i=1

p
∑

j=1

n
∑

k=1

ci jkdi jk, 〈C,D〉 =
m
∑

i=1

n
∑

k=1

ci1kdi1k .

Let

A := [A1,A2, . . . ,Am] ∈ R
�×km×n, B := [B1,B2, . . . ,Bp] ∈ R

�×kp×n,

A := [A1,A2, . . . ,Am] ∈ R
�×m×n, B := [B1,B2, . . . ,Bp] ∈ R

�×p×n,
(2.6)

where Ai ∈ R
�×k×n , Ai ∈ R

�×1×n , i = 1, 2, . . . ,m, and B j ∈ R
�×k×n , B j ∈ R

�×1×n ,
j = 1, 2, . . . , p. Following El Guide et al. [10], we define the T-diamond products AT♦B
and AT♦B. They define m × p matrices with entries

[AT♦B]i j = 〈Ai , B j 〉, [AT♦B]i j = 〈Ai , B j 〉, i = 1, 2, . . . ,m, j = 1, 2, . . . , p.

The generalized global tensor QR (GG-tQR) factorization is described in [35] and imple-
mented by Algorithm 3. Given A in (2.6), this factorization is defined by

A = Q � R,

where R ∈ R
m×m is an upper triangular matrix, and the tensorQ ∈ R

�×km×n with � ≥ k has
k partially orthogonal tensor columns such that

Q
T♦Q = Im,

where Im is the m × m identity matrix.
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Algorithm 3: Generalized global tQR (GG-tQR) factorization [35]

Input: A := [A1,A2, . . . ,Am] ∈ R
�×km×n , A j ∈ R

�×k×n , j = 1, 2, . . . ,m, � ≥ k
Output: Q := [Q1,Q2, . . . ,Qm] ∈ R

�×km×n , R = (ri j ) ∈ R
m×m such that

A = Q � R and QT♦Q = Im
1 Set r11 ← 〈A1,A1〉1/2, Q1 ← 1

r11
A1

2 for j = 1, 2, . . . ,m do
3 W → A j

4 for i = 1, 2, . . . , j − 1 do
5 ri j ← 〈Qi ,W〉
6 W ← W − ri jQi

7 end
8 r j j ← 〈W,W〉1/2
9 Q j ← W/r j j

10 end

Wealsowill need a special case of theGG-tQR factorization,whichworkswith each lateral
slice Ai , i = 1, 2, . . . ,m, of the tensorA in (2.6). This factorization method is implemented
by Algorithm 4; it is also described in [35], and is there referred to as the global tQR (G-tQR)
factorization method.

Algorithm 4: Global tQR (G-tQR) factorization [35]

Input: A := [A1,A2, . . . ,Am] ∈ R
�×m×n , A j ∈ R

�×1×n , j = 1, 2, . . . ,m, � ≥ m
Output: Q := [Q1,Q2, . . . ,Qm] ∈ R

�×m×n , Q j ∈ R
�×1×n , R̄ = [ri j ] ∈ R

m×m such
that A = Q � R̄ and QT♦Q = Im

1 r11 ← 〈A1,A1〉1/2, Q1 ← 1
r11

A1

2 for j = 1, 2, . . . ,m do
3 W ← A j

4 for i = 1, 2, . . . , j − 1 do
5 ri j ← 〈Qi ,W〉
6 W ← W − ri jQi

7 end
8 r j j ← 〈W,W〉1/2
9 Q j ← W/r j j

10 end

We conclude this section with the definition of some tensor operators that will be conve-
nient to apply in Sect. 6. The matrix X ∈ R

m×n is associated with the tensor X ∈ R
m×1×n

by the squeeze and twist operators, defined by Kilmer et al. [22], i.e.,

X = twist(X) and X = squeeze(X).

Note that the squeeze operator is identical to the MATLAB squeeze function.
We also define the multi_squeeze and multi_twist operators that enable us to

squeeze and twist a general third order tensor. The tensor C ∈ R
m×p×n is associated with

D ∈ R
m×n×p by

D = multi_twist(C) and C = multi_squeeze(D),
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where multi_twist(C) twists each one of the frontal slices C(i), i = 1, 2, . . . , n, of C
by using the twist operator, and stacks them as lateral slices Di , i = 1, 2, . . . , n, of D.
Moreover, the operator multi_squeeze(D) squeezes the lateral slices of D using the
squeeze operator and stacks them as faces of C.

3 Methods Based on the t-Arnoldi Process

Wefirst describe an algorithm for the t-Arnoldi process. This algorithm is applied in Sects. 3.1
and 3.2 to reduce the large-scale problem (1.1) to a problem of small size.

LetA ∈ R
m×m×n . The t-Arnoldi process described by Algorithm 5 (cf. the matrix version

in [37, Chapter 5]) reduces the tensorA to an upper Hessenberg tensor (t-Hessenberg), whose
every face is an upper Hessenberg matrix.

Algorithm 5: The t-Arnoldi process

Input: A ∈ R
m×m×n, B ∈ R

m×1×n 
= O
1 [Q1, z1] ← Normalize(B) with z1 invertible, and such that B = Q1 ∗ z1 and ‖Q1‖ = 1
2 for j = 1, 2, . . . , � do
3 W ← A ∗ Q j

4 for i = 1, 2, . . . , j do
5 hi j ← QT

i ∗ W

6

⎧

⎨

⎩

W ← W − Qi ∗ hi j (no reorthogonalization)

W ← W − Qi ∗ hi j , W ← W −
i∑

k=1
Qk ∗ (QT

k ∗ W) (with reorthogonalization)

7 end
8 [Q j+1,h j+1, j ] ← Normalize(W) with h j+1, j invertible
9 end

The t-Arnoldi process is said to break down if any of the subdiagonal tubal scalars h j+1, j

for j = 1, 2, . . . , �, is not invertible. This is analogous to a break down of the (standard)
Arnoldi process. We will assume that the number of steps, �, of the t-Arnoldi process is small
enough to avoid break down, i.e., that � is chosen small enough so that every subdiagonal tubal
scalar h j+1, j is invertible for j = 1, 2, . . . , �. This means, in particular, that the transformed
tubal scalars ĥ j+1, j of h j+1, j do not have zero Fourier coefficients.

Algorithm 5 produces the partial t-Arnoldi decomposition

A ∗ Q� = Q�+1 ∗ H̄�, (3.1)

where

H̄� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h11 . . . h1�
h21 h22

h32 h33
...

. . .
. . .

h�,�−1 h�,�

h�+1,�

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
(�+1)×�×n

is of upper t-Hessenberg form. The lateral slicesQ j , j = 1, 2, . . . , �, ofQ� ∈ R
m×�×n form

an orthonormal tensor basis for the t-Krylov subspace (1.7), where t-span refers to the set of
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all tensor linear (t-linear) combinations, whose coefficients are tubal scalars, ci ∈ R
1×1×n ,

i = 1, 2, . . . , �. Thus,

K�(A,B) =
{

Z ∈ R
m×1×n, Z =

�
∑

i=1

(A(i−1) ∗ B) ∗ ci , ci ∈ R
1×1×n

}

, A0 = I. (3.2)

The t-Arnoldi process generates an orthonormal tensor basis for the t-Krylov subspace
(3.2) by applying the standard Arnoldi process to each frontal slice Â(i), i = 1, 2, . . . , n, of
Â simultaneously. This process requires normalization, which is carried out by Algorithm 1.

We comment on the complexity of the standard Arnoldi and t-Arnoldi processes. Let
A ∈ R

m×m be a dense matrix and 1 ≤ � � m the number of steps carried out by the
standard Arnoldi process. Then this process requires O(�2m + �m2) flops, since � matrix-
vector product evaluations with A cost O(�m2) flops and O(�2m) flops are required for
orthogonalization.

We implement the t-Arnoldi process with transformations to and from the Fourier domain.
For a dense tensor A ∈ R

m×m×n , application of 1 ≤ � � m steps of this process requires
application of � steps of the standard (matrix) Arnoldi process to the frontal slices A(i),
i = 1, 2, . . . , n, of A simultaneously in the Fourier domain, and orthogonalization. Each
transformation of A and Q j to and from the Fourier domain in step 3 of Algorithm 5 costs
O(m2n log(n)) and O(mn log(n)) flops, respectively. Moreover, � matrix-vector products
of the faces of A and Q j in the Fourier domain cost O(�m2) flops. For n frontal slices, it
has a complexity of O(�m2n) flops in the Fourier domain. Similarly, the orthogonalization
steps 4-7 in the Fourier domain cost O(�2mn) flops for n frontal slices. Note that it costs
O(n log(n)) flops to transform each tubal scalar hi j to and from the Fourier domain. Hence,
the total flop count for carrying out � steps of the t-Arnoldi process in the Fourier domain
is O((�m2 + �2m)n) flops. The cost is the same for the G-tA process implemented by
Algorithm 13 in Sect. 5.

Wewill use the decomposition (3.1) to determine an approximate solution of the Tikhonov
minimization problems (1.3) and (1.9) in Sect. 3.1, and of the minimization problems (1.8)
and (1.10) in Sect. 3.2.

3.1 Tensor Arnoldi–Tikhonov RegularizationMethods

This subsection discusses the computation of an approximate solution of the tensor Tikhonov
regularization problem (1.3) with the aid of the t-Arnoldi process. We describe how this
process can be used in conjunction with the discrepancy principle (1.6), and show that the
penalized least squares problem (1.3) has a unique solution Xμ; see, e.g., [6] for a proof of
the matrix case.

Theorem 3.1 Let μ > 0 be the regularization parameter. The minimization problem (1.3)
has a unique solution

Xμ = (AT ∗ A + μ−1LT ∗ L)−1 ∗ AT ∗ B (3.3)

that satisfies the normal equations

(AT ∗ A + μ−1LT ∗ L) ∗ X = AT ∗ B. (3.4)

Proof: The function

Jμ(X) := ‖A ∗ X − B‖2F + μ−1‖L ∗ X‖2F

123



Journal of Scientific Computing (2022) 90 :59 Page 13 of 39 59

can be written as

Jμ(X) =
∥
∥
∥
∥

[ A
μ−1/2L

]

∗ X −
[

B
O

] ∥
∥
∥
∥

2

F
,

where
[ A
μ−1/2L

]

∈ R
(m+s)×m×n,

[

B
O

]

∈ R
(m+s)×1×n, O ∈ R

s×1×n .

Thus, Xμ is a minimizer of Jμ(X) if and only if Xμ is the solution of the normal equations

[ A
μ−1/2L

]T

∗
[ A
μ−1/2L

]

∗ X =
[ A
μ−1/2L

]T

∗
[

B
O

]

,

which can be written as (3.4). Due to (1.4) the solution is unique. �
The normal Eq. (3.4) with L = I have been used by Kilmer et al. [22] and Martin et al.

[30].
When the regularization operator L is the identity tensor, the solution (3.3) simplifies to

Xμ = (AT ∗ A + μ−1I)−1 ∗ AT ∗ B. (3.5)

Using this expression for Xμ, define the function

φ(μ) := ‖A ∗ Xμ − B‖2F . (3.6)

Then Eq. (1.6) (for L = I) can be written as

φ(μ) = η2δ2. (3.7)

A zero-finder, such as bisection, Newton’s method, or a related method [3,34], can be used to
solve (3.7) for μdiscr = μ > 0. We assume here and below that δ > 0. Then Xμdiscr satisfies
the discrepancy principle (1.6) (when L = I).

The following properties of φ are shown in [35]. We remark that while the solution (3.5)
is meaningful for μ > 0 only, we may define φ(μ) for μ ≥ 0 by continuity.

Proposition 3.1 Assume that AT ∗ B 
= O and let φ(μ) be given by (3.6) with Xμ defined
by (3.5). Then

φ(μ) =
(

BT ∗ (μA ∗ AT + I)−2 ∗ B
)

(:,:,1) , μ > 0,

and φ(0) = ‖B‖2F . Moreover,

φ′(μ) < 0 and φ′′(μ) > 0

for μ > 0.

3.1.1 The tAT Method for the Solution of (1.3)

Wedevelop the t-product Arnoldi–Tikhonov (tAT) regularizationmethod for the approximate
solution of least squares problems of the form (1.3). The method will be used to illustrate the
potential superiority of tensorizing as opposed to vectorizing or matricizing ill-posed tensor
equations in general. This method will be generalized in Sect. 3.1.2 to the least squares
problems (1.9) with a general data tensor B.
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Let X = Q� ∗ Y for some Y ∈ R
�×1×n and substitute the decomposition (3.1) into (1.3).

This yields
min

Y∈R�×1×n
{‖H̄� ∗ Y − QT

�+1 ∗ B‖2F + μ−1‖L ∗ Q� ∗ Y‖2F }. (3.8)

Using the fact that B = Q1 ∗ z1 (cf. Algorithm 5), we obtain

QT
�+1 ∗ B = e1 ∗ z1 ∈ R

(�+1)×1×n, (3.9)

where the (1, 1, 1)th entry of e1 ∈ R
m×1×n equals 1 and the remaining entries vanish.

Substitute (3.9) into (3.8) to obtain

min
Y∈R�×1×n

{‖H̄� ∗ Y − e1 ∗ z1‖2F + μ−1‖L ∗ Q� ∗ Y‖2F }. (3.10)

In the computed examples of Sect. 6, we use the regularization operators L1 ∈
R

(m−2)×m×n and L2 ∈ R
(m−1)×m×n , where the tensor L1 has the tridiagonal matrix

L(1)
1 = 1

4

⎡

⎢
⎣

−1 2 −1
. . .

. . .
. . .

−1 2 −1

⎤

⎥
⎦ ∈ R

(m−2)×m (3.11)

as its first frontal slice, and the remaining frontal slices L(i)
1 ∈ R

(m−2)×m , i = 2, 3, . . . , n,
are zero matrices. The first face of the tensor L2 is the bidiagonal matrix

L(1)
2 = 1

2

⎡

⎢
⎢
⎢
⎣

1 −1
1 −1

. . .
. . .

1 −1

⎤

⎥
⎥
⎥
⎦

∈ R
(m−1)×m, (3.12)

and the remaining faces L(i)
2 ∈ R

(m−1)×m , i = 2, 3, . . . , n, are zero matrices.
Our approach of handling these regularization operators is analogous to the technique used

in [19]. It can be applied to many other regularization operators as well. We use Algorithm 2
to compute the tQR factorization

L ∗ Q� = QL,� ∗ RL,�,

where the tensor QL,� ∈ R
s×�×n has � orthonormal tensor columns and the tensor RL,� ∈

R
�×�×n is f-upper triangular. In view of (2.4), the minimization problem (3.10) simplifies to

min
Y∈R�×1×n

{‖H̄� ∗ Y − e1 ∗ z1‖2F + μ−1‖RL,� ∗ Y‖2F }. (3.13)

For the regularization operators L defined by (3.11) and (3.12) as described above, as
well as for many other regularization operators L, the tensor RL,� is invertible and not very
ill-conditioned. In this situation, we may form

Z = RL,� ∗ Y, H̃� = H̄� ∗ R−1
L,�, (3.14)

where H̃� is computed by solving � linear systems of equations. Substituting the above
expressions into (3.13) yields

min
Z∈R�×1×n

{‖H̃� ∗ Z − e1 ∗ z1‖2F + μ−1‖Z‖2F
}

. (3.15)
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The minimization problem (3.15) can be solved fairly stably by computing the solution of

min
Z∈R�×1×n

∥
∥
∥
∥

[ H̃�

μ−1/2I
]

∗ Z −
[

e1 ∗ z1
O

] ∥
∥
∥
∥
F

(3.16)

using Algorithm 6 below. The solution of (3.16) can be expressed as

Zμ,� = (H̃T
� ∗ H̃� + μ−1I)−1 ∗ H̃T

� ∗ e1 ∗ z1, (3.17)

and the associated approximate solution of (1.3) is given by

Xμ,� = Q� ∗ R−1
L,� ∗ Zμ,�.

Algorithm 6: Solution of a generic tensor least squares problem [35]

Input: C ∈ R
�×m×n , where its Fourier transform has nonsingular frontal slices;

D ∈ R
�×1×n , D 
= O

Output: The solution Y ∈ R
m×1×n of minY∈Rm×1×n ‖C ∗ Y − D‖F

1 C ← fft(C, [ ], 3)
2 D ← fft(D, [ ], 3)
3 for i = 1 to n do
4 Y(:, :, i) = C(:, :, i)\D(:, :, i), where \ denotes MATLAB’s backslash operator
5 end
6 Y ← ifft(Y, [ ], 3)

We use the discrepancy principle (1.6) to determine the regularization parameter μ > 0
and the required number of steps of the t-Arnoldi process as follows. Define the function

φ�(μ) := ‖H̃� ∗ Zμ,� − e1 ∗ z1‖2F , (3.18)

which is analogous to (3.6). Substituting (3.17) into (3.18), and using the identity

I − H̃� ∗ (H̃T
� ∗ H̃� + μ−1I)−1 ∗ H̃T

� = (μH̃� ∗ H̃T
� + I)−1,

we obtain
φ�(μ) =

(

(e1 ∗ z1)T ∗ (μH̃� ∗ H̃T
� + I)−2 ∗ e1 ∗ z1

)

(:,:,1) . (3.19)

The following proposition shows that we can apply the discrepancy principle (1.6) to the
reduced problem to determine μ > 0, i.e., we require μ to be such that

‖H̃� ∗ Zμ,� − e1 ∗ z1‖F = ηδ.

Proposition 3.2 Let μ = μ� solve φ�(μ) = η2δ2 and let Zμ,� solve (3.16). Let Yμ,� and
Zμ,� be related by (3.14). Then the associated approximate solution Xμ,� = Q� ∗ Yμ,� of
(1.1) satisfies

‖A ∗ Xμ,� − B‖2F = (

(e1 ∗ z1)T ∗ (μH̃� ∗ H̃T
� + I)−2 ∗ e1 ∗ z1

)

(:,:,1).

Proof Substituting Xμ,� = Q� ∗ Yμ,� into (1.6) and using the decomposition of (3.1), as
well as (3.9) and (2.4), gives

‖A∗Xμ,�−B‖2F = ‖Q�+1∗H̄�∗Yμ,�−B‖2F = ‖H̄�∗Yμ,�−e1∗z1‖F = ‖H̃�∗Zμ,�−e1∗z1‖F .

�
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It can be shown analogously as Proposition 3.1 that the function φ�(μ) is decreasing and
convex with φ�(0) = ‖e1 ∗ z1‖2F . Therefore, Newton’s method can be used for the solution
of

φ�(μ) − η2δ2 = 0 (3.20)

without safeguarding for any initial approximate solution μ0 ≥ 0 smaller than the solution
of (3.20). In particular, we may use μ0 = 0 when φ�(μ) and φ′

�(μ) are suitably defined at
μ = 0. Note that when the regularization parameter μ > 0 in (1.3) is replaced by 1/μ, the
analogue of the function φ� obtained is not guaranteed to be convex. Then Newton’s method
has to be safeguarded. An algorithm for Newton’s method can be found in [35].

We refer to the solution method for (3.8) described above as the tAT method. It is imple-
mented by Algorithm 7 with p = 1. It follows from Proposition 3.1, with φ replaced by φ�,
that φ�(μ) is a decreasing function of μ. A lower bound for φ�(μ) on the right-hand side of
(3.21) can be established similarly as in the proof of [35, Proposition 4.4].

Proposition 3.3 Let φ�(μ) be given by (3.19). Then

lim
μ→∞ φ�(μ) =

(

zT1 ∗ U(1, :, :) ∗ D ∗ U(1, :, :)T ∗ z1
)

(:,:,1), (3.21)

where D ∈ R
(�+1)×(�+1)×n is a tensor whose first frontal slice D(1) has the entry 1 at the

(�+1, �+1)st position, and the remaining frontal slicesD(i), i = 2, . . . , n, are zeromatrices.
The tensor U ∈ R

(�+1)×(�+1)×n is the left singular tensor of H̃�.

The values

� → lim
μ→∞ φ�(μ)

typically decrease quite rapidly as � increases, because making � larger increases the dimen-
sion of the subspace over which the least squares problem (3.8) is minimized. Therefore,
generally, only a fairly small number of steps of Algorithm 7 are required to satisfy (3.20)
for some 0 < μ < ∞.

3.1.2 tAT Methods for the Solution of (1.9)

This subsection generalizes the solutionmethods of Sect. 3.1.1 to the solution of least squares
problems of the form (1.9). The methods of this subsection can be applied to color image
and video restorations. Several matrix-based methods for the solution of these restoration
problems have recently been described by Beik et al. [1,2] and El Guide et al. [8,10].

We present two algorithms for the solution of (1.9). They both consider (1.9) as p separate
Tikhonov minimization problems

min
X j∈Rm×1×n

{‖A ∗ X j − B j‖2F + 1

μ
‖L ∗ X j‖2F }, j = 1, 2, . . . , p, (3.22)

where B1,B2, . . . ,Bp are tensor columns of the data tensor B in (1.9). Both algorithms are
based on the t-Arnoldi process and the tAT method described in Sect. 3.1.1.

LetB j,true denote the unknown error-free tensor (slice) associated with the available error-
contaminated tensor (slice) B j , and assume that bounds δ j for the norm of the errors

E j := B j − B j,true, j = 1, 2 . . . , p,
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are available or can be estimated, i.e.,

‖E j‖F ≤ δ j , j = 1, 2, . . . , p, (3.23)

cf. (1.2) and (1.5). Algorithm 7 solves each one of the p least squares problems (3.22)
independently. We refer to this approach of solving (3.22) as the tATp method.

Algorithm 7: The tATp method for the solution of (1.9) by solving the p problems
(3.22) independently

Input: A, p, B1,B2, . . . ,Bp , δ1, δ2, . . . , δp , L, η > 1, �init = 2
1 for j = 1, 2, . . . , p do
2 � ← �init, [Q1, z1] ← Normalize(B j ).
3 Compute Q�,Q�+1, and H̄� by Algorithm 5
4 Construct RL,� by computing the tQR factorization of L ∗ Q� using Algorithm 2

5 Compute H̃� ← H̄� ∗ R−1
L,� and let e1 ← I(:, 1, :)

6 Solve the minimization problem

min
Z∈R�×1×n

‖H̃� ∗ Z − e1 ∗ z1‖F
for Z� by using Algorithm 6

7 while ‖H̃� ∗ Z� − e1 ∗ z1‖F ≥ ηδ j do
8 � ← � + 1
9 Go to step 3

10 end
11 Determine the regularization parameter by the discrepancy principle, i.e., compute

the zero μ� > 0 of

ξ�(μ) := ‖H̃� ∗ Z j,μ�
− e1 ∗ z1‖2F − η2δ2j

and the associated solution Z j,μ�
of

min
Z∈R�×1×n

∥
∥
∥
∥

[ H̃�

μ
−1/2
� I

]

∗ Z −
[

e1 ∗ z1
O

] ∥
∥
∥
∥
F

by using Algorithm 6
12 Compute Y j,μ�

← R−1
L,� ∗ Z j,μ�

, X j,μ�
← Q� ∗ Y j,μ�

13 end

Algorithm 8 generates a t-Krylov subspace K�(A,B1) of sufficiently large dimension �

to contain accurate enough approximate solutions of all the p least squares problems (3.22).
Thus,wefirst solve the least squares problem (3.22) for j = 1byAlgorithm8, and then seek to
solve the least squares problem (3.22) for j = 2 using the same t-Krylov subspaceK�(A,B1).
If the discrepancy principle cannot be satisfied, then the dimension � of the t-Krylov subspace
is increased until the discrepancy principle can be satisfied. Having solved this least squares
problem, we proceed similarly to solve the problems (3.22) for j = 3, 4, . . . , p. The details
are described byAlgorithm8. The t-Arnoldi process is implementedwith reorthogonalization
when applied in Algorithm 8 to ensure that the quantities QT

�+1 ∗ B j are evaluated with
sufficient accuracy. When the required number of t-Arnoldi steps, �, for solving the least
squares problem is large, it may be beneficial to restart Algorithm 8 with the tensor B j .
Restarting was not required in the computations reported in Sect. 6. We refer to this approach
based on using nested t-Krylov subspaces as the nested_tATp method.
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Algorithm 8: The nested_tATp method for the solution of (1.9) by solving the p
problems (3.22) using a nested t-Krylov subspace

Input: A, p, B1,B2, . . . ,Bp , δ1, δ2, . . . , δp , L, η > 1, �init = 2
1 � ← �init, [Q1,∼] ← Normalize(B1) by Algorithm 1
2 Compute Q�,Q�+1 and H̄� by Algorithm 5 with reorthogonalization of the tensor
columns of Q� and Q�+1

3 Construct RL,� by computing the tQR factorization of L ∗ Q� by using Algorithm 2

4 Compute H̃� ← H̄� ∗ R−1
L,�

5 Solve the minimization problem

min
Z∈R�×1×n

‖H̃� ∗ Z − QT
�+1 ∗ B1‖F

for Z� by using Algorithm 6
6 while ‖H̃� ∗ Z� − QT

�+1 ∗ B1‖F ≥ ηδ1 do
7 � ← � + 1
8 Go to step 2
9 end

10 Determine the regularization parameter μ� by the discrepancy principle, i.e., compute
the zero μ� > 0 of

ξ�(μ) := ‖H̃� ∗ Z1,μ�
− QT

�+1 ∗ B1‖2F − η2δ21

Compute the associated solution Z1,μ�
of

min
Z1∈R�×1×n

∥
∥
∥
∥

[ H̃�

μ
−1/2
� I

]

∗ Z1 −
[QT

�+1 ∗ B1

O

]∥
∥
∥
∥
F

by using Algorithm 6
11 Compute Y1,μ�

← R−1
L,� ∗ Z1,μ�

, X1,μ�
← Q� ∗ Y1,μ�

12 for j = 2, . . . , p do
13 [Q1,∼] ← Normalize(B j )

14 while ‖H̃� ∗ Z� − QT
�+1 ∗ B j‖F ≥ ηδ j do

15 � ← � + 1
16 Repeat steps 2-5 with the present tensors H̃�, QT

�+1, and B j

17 end
18 Repeat step 10 with the present δ j and the tensors H̃�, QT

�+1, and B j to compute
Z j,μ�

19 Compute Y j,μ�
← R−1

L,� ∗ Z j,μ�
, X j,μ�

← Q� ∗ Y j,μ�

20 end

3.2 The tGMRESMethod for the Solution of (1.8) and (1.10)

We first describes the t-product GMRES (tGMRES) method for the approximate solution of
(1.8). This method subsequently will be generalized to the solution of problems of the form
(1.10). We remark that the tGMRES method is analogous to the (standard) GMRES method
introduced by Saad and Schultz [38]. Regularizing properties of the (standard) GMRES
method for the situation when A is a matrix are discussed in [4,33].
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Substituting X = Q� ∗Y into the right-hand side of (1.8), using (3.1) as well as (3.9) and
(2.4), gives the reduced minimization problem

min
Y∈R�×1×n

‖H̄� ∗ Y − e1 ∗ z1‖F .

We refer to this solution method for (1.8) as the tGMRES method. It is implemented by
Algorithm 9 with p = 1. The number of t-Arnoldi steps required by the tGMRES method is
determined by the discrepancy principle

‖H̄� ∗ Y − e1 ∗ z1‖F ≤ ηδ (3.24)

in Algorithm 9, where η > 1 is a user-specified constant that is independent of δ; cf. (1.6).
Thus, we terminate the tGMRES iterations as soon as an iterate Y = Y� that satisfies (3.24)
has been found.Generally, only fairly few iterations are needed.Restarting tGMRES therefore
typically is not required.

We turn to a tGMRESmethod for the solution of (1.10), whichwe refer to as the tGMRESp

method. Thismethod, implemented byAlgorithm 9, considers (1.10) as p separateminimiza-
tion problems for X j,� ∈ K�(A,B j ),

‖A∗X j,�−B j‖F = min
X j∈K�(A,B j )

‖A∗X j−B j‖F , � = 1, 2, . . . , j = 1, 2, . . . , p, (3.25)

whereB1,B2, . . . ,Bp are tensor columns of the data tensorB in (1.10). The input parameters
δ j for Algorithm 9 are defined by (3.23). The number of steps � is chosen large enough to
satisfy the discrepancy principle.

Algorithm 9: The tGMRESp method for the solution of (1.10)

Input: A, p, B1,B2, . . . ,Bp , δ1, δ2, . . . δp , L, η > 1, �init = 2
1 for j = 1, 2, . . . , p do
2 � ← �init, [Q1, z1] ← Normalize(B j )

3 Compute Q�,Q�+1 and H̄� by Algorithm 5
4 Construct e1 ← I(:, 1, :)
5 Solve the minimization problem

min
Y j∈R�×1×n

‖H̄� ∗ Y j − e1 ∗ z1‖F

for Y j,� by using Algorithm 6
6 while ‖H̄� ∗ Y j,� − e1 ∗ z1‖F ≥ ηδ j do
7 � ← � + 1
8 Go to step 3
9 end

10 Compute X j,� ← Q� ∗ Y j,�

11 end

4 Methods Based on the Generalized Global t-Arnoldi Process

This section discusses the computation of an approximate solution of the tensor Tikhonov
regularization problem (1.9) and the minimization problem (1.10) with the aid of the T-
global Arnoldi process recently described by El Guide et al. [10]. Application of a few,
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say 1 ≤ � � m, steps of the T-global Arnoldi process to the tensor A ∈ R
m×m×n with

initial tensor B ∈ R
m×p×n , p > 1, reduces this tensor to a small upper Hessenberg matrix

H̄� ∈ R
(�+1)×�. We refer to this process as the generalized global t-Arnoldi (GG-tA) process.

It is implemented by Algorithm 10. We assume that the number of steps, �, is small enough
to avoid breakdown. Then the GG-tA process yields the decomposition

A ∗ Q� = Q�+1 � H̄�, (4.1)

where
Q j := [Q1,Q2, . . . ,Q j ] ∈ R

m×pj×n, j ∈ {�, � + 1},
and

A ∗ Q� = [A ∗ Q1,A ∗ Q2, . . . ,A ∗ Q�] ∈ R
m×�p×n,

Q�+1 � H̄� = [Q�+1 � H̄�(:, 1),Q�+1 � H̄�(:, 2), . . . ,Q�+1 � H̄�(:, �)] ∈ R
m×�p×n .

(4.2)
The tensorsQ j ∈ R

m×p×n , j = 1, 2, . . . , �, generated byAlgorithm 10 form an orthonormal
tensor basis for the t-Krylov subspace K�(A,B), which is analogous to the space (1.7),

K�(A,B) =
{

Z ∈ R
m×p×n, Z =

�
∑

i=1

αi (A(i−1) ∗ B), αi ∈ R

}

, A0 = I. (4.3)

The next result follows immediately from the definition (4.3). The analogous result when A
is a matrix and B is a vector is discussed, e.g., in [37,41].

Proposition 4.1 Let Z ∈ K�(A,B). Then Z = p(A) ∗ B for some polynomial p of degree
at most � − 1.

Proof The tensor Z ∈ K�(A,B) can be expressed as

Z = α0B + α1A ∗ B + · · · + α�A�−1 ∗ B = (α0 + α1A + · · · + α�A�−1) ∗ B = p(A) ∗ B

for certain real scalars α j , where p(A) :=
�−1∑

j=0
α jA j is the polynomial of a tensor A; see

[29,31,32] for discussions on tensor functions. �
The upper Hessenberg matrix in (4.2) is given by

H̄� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h11 . . . h1�
h21 h22

h32 h33
...

. . .
. . .

h�,�−1 h�,�

O h�+1,�

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
(�+1)×�. (4.4)

The relation
B = Q�+1 � e1β, e1 = [1, 0, . . . , 0]T (4.5)

is easily deduced from Algorithm 10.
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Algorithm 10: The generalized global t-Arnoldi (GG-tA) process [10]

Input: A ∈ R
m×m×n , B ∈ R

m×p×n

1 Set β ← ‖B‖F , Q1 ← 1
β
B

2 for j = 1, 2, . . . , � do
3 W ← A ∗ Q j

4 for i = 1, 2, . . . , j do
5 hi j ← 〈Qi ,W〉
6 W ← W − hi jQi

7 end
8 h j+1, j ← ‖W‖F , if h j+1, j = 0 stop; else
9 Q j+1 ← W/h j+1, j

10 end

Differently from the t-Arnoldi process, the GG-tA process uses the data tensor B ∈
R
m×p×n , p > 1, and only requires transformation to and from the Fourier domain in

step 3. Each transformation of A and Q j to and from the Fourier domain in step 3 costs
O(m2n log(n)) and O(mpn log(n)) flops, respectively. This step computes � matrix-matrix
product of the frontal slices Â(i) and Q̂(i)

j , i = 1, 2, . . . , n, for O(�m2 p) flops each. Hence

for n frontal slices, the cost of implementing step 3 in the Fourier domain is O(�m2 pn)

flops. The orthogonalization steps 4-7 demandsO(�2mnp) flops. Hence, the GG-tA process
has a complexity of O((�m2 + �2m)np) flops in the Fourier domain. This cost is the same
when the t-Arnoldi and G-tA processes are applied to separately solve the p minimization
problems (3.22), since solving each one of the p minimization problems independently costs
O((�m2 + �2m)n) flops in the Fourier domain.

We use the decomposition (4.1) to determine an approximate solution of the Tikhonov
minimization problem (1.9) in Sect. 4.1, and of the minimization problem (1.10) in Sect. 4.2.

4.1 The GG-tATMethod for the Solution of (1.9)

This subsection describes a modification of the T-global Arnoldi–Tikhonov regularization
method recently presented by El Guide et al. [10] for the approximate solution of (1.9) with
L = I to allow a general third order tensor regularization operator L 
= I. This modification
requires Algorithm 3. We refer to this modification of the method by El Guide et al. [10]
as the generalized global tAT (GG-tAT) method. This method is based on first reducing A
in (1.9) to an upper Hessenberg matrix by carrying out a few, say �, steps of the GG-tA
process, which is described by Algorithm 10. Differently from the approach of El Guide et
al. [10], who apply a restarted GG-tA process, determine the regularization parameter by
the GCV, and use a stopping criterion based on the residual Frobenius norm and a specified
tolerance that is independent of the error in the data tensor, we use the discrepancy principle
to determine the regularization parameter and the number of iterations required by the GG-tA
process. Then the implementation of the GG-tA process does not require restarts since only
a small number of iterations are needed.

We compute an approximate solution of (1.9) analogously as described in Sect. 3.1.1.
Thus, letting X = Q� � y, and using (4.1) and (4.5), the minimization problem (1.9) reduces
to

min
y∈R�

{‖Q�+1 � H̄� � y − Q�+1 � e1β‖2F + μ−1‖L ∗ Q� � y‖2F }, (4.6)
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where β = ‖B‖F . Algorithm 3 yields the GG-tQR factorization

L ∗ Q� = QL,� � RL,� ∈ R
s×�p×n, (4.7)

where RL,� ∈ R
�×� is an upper triangular matrix and QL,� ∈ R

s×�p×n has � orthonormal
tensor columns. Substituting (4.7) into (4.6), and using the left-hand side of (2.5), gives

min
y∈R�

{‖H̄�y − e1β‖22 + μ−1‖RL,�y‖22}. (4.8)

Typically, the matrix RL,� is nonsingular and not very ill-conditioned. Then we can express
(4.8) as a Tikhonov minimization problem in standard form,

min
z∈R�

{‖H̃�z − e1β‖22 + μ−1‖z‖22}, (4.9)

where
z := RL,�y, H̃� := H̄�R

−1
L,�. (4.10)

Similarly as above, we compute H̃� by solving � linear systems of equations. The minimiza-
tion problem (4.9) is analogous to (3.15). Its solution, zμ,�, can be computed fairly stably by
solving

min
z∈R�

∥
∥
∥
∥

[

H̃�

μ−1/2 I

]

z −
[

e1β
0

]∥
∥
∥
∥
2
. (4.11)

The associated approximate solution of (1.9) is given by

Xμ,� = Q� � R−1
L,�zμ,�.

We determine the regularization parameter μ by the discrepancy principle based on the
Frobenius norm. This assumes knowledge of a bound

‖E‖F ≤ δ

for the error E in B. Thus, we choose μ > 0 so that the solution zμ,� of (4.11) satisfies

‖H̃�zμ,� − e1β‖2 = ηδ.

Define the function

ψ�(μ) := ‖H̃�zμ,� − e1β‖22,
where zμ,� solves (4.11). Manipulations similar to those applied in Sect. 3.1.1 show that
ψ�(μ) can be expressed as

ψ�(μ) = β2eT1 (μH̃� H̃
T
� + I )−2e1. (4.12)

It is readily verified that the function μ → ψ�(μ) is decreasing and convex for μ ≥ 0 with
ψ�(0) = β2.

Proposition 4.2 Let ψ�(μ) be given by (4.12). Then

lim
μ→∞ ψ�(μ) = γβ2, (4.13)

where γ > 0 is the square of the (1, 1) entry of the (� + 1)st left singular vector of H̃�.
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The infimum ofψ�(μ) on the right-hand side of (4.13) typically decreases quite rapidly as
�, which is the dimension of the solution subspace, increases; see [35] for a proof of (4.13).

A similar reasoning as in Sect. 3.1 suggests that it may be convenient to solve

ψ�(μ) − η2δ2 = 0 (4.14)

by Newton’s method with initial approximate solution μ = 0.
We turn to a matrix analogue of Proposition 3.2.

Proposition 4.3 Let μ� solve (4.14) and let zμ,� be the associated solution of (4.9) with μ =
μ�. Let yμ,� and zμ,� be related by (4.10). Then the approximate solution Xμ,� = Q� � yμ,�

of (1.9) satisfies
‖A ∗ Xμ,� − B‖2F = β2eT1 (μH̃� H̃

T
� + I )−2e1. (4.15)

Proof Substituting Xμ,� = Q� � yμ,� into (4.15), using (4.1) and (4.5), as well as left-hand
side of (2.5), gives

‖A∗Xμ,� −B‖2F = ‖Q�+1 � (H̄� � yμ,� −e1β)‖2F = ‖H̄�yμ,� −e1β‖22 = ‖H̃�zμ,� −e1β‖22. �

We refer to the solution method described above as the GG-tAT method. It is imple-
mented by Algorithm 11. The method works with all lateral slices B j , j = 1, 2, . . . , p, of B
simultaneously.

Algorithm 11: The GG-tAT method for the solution of (1.9)
Input: A, B, δ, L, η > 1, �init = 2

1 � ← �init, β ← ‖B‖F , Q1 ← 1
β
B

2 Compute Q�, Q�+1, and H̄� by Algorithm 10
3 Determine RL,� by computing the GG-tQR factorization of L ∗ Q� using Algorithm 3

4 Compute H̃� ← H̄�R
−1
L,�

5 Solve the minimization problem

min
z∈R�

‖H̃�z − e1β‖2
for z�

6 while ‖H̃�z� − e1β‖2 ≥ ηδ do
7 � ← � + 1
8 Go to step 2
9 end

10 Determine the regularization parameter μ� by the discrepancy principle, i.e., compute
the zero μ� > 0 of

ϕ�(μ) := ‖H̃�zμ,� − e1β‖22 − η2δ2

and the associated solution zμ,� of

min
z∈R�

∥
∥
∥
∥

[
H̃�

μ
−1/2
� I

]

z −
[

e1β
0

]∥
∥
∥
∥

2

11 Compute yμ,� ← R−1
L,�zμ,�, Xμ,� ← Q� � yμ,�
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4.2 The GG-tGMRESMethod for the Approximate Solution of (1.10)

We describe the generalized global tGMRES (GG-tGMRES) method for the approximate
solution of (1.10). This method works with all lateral slices B j , j = 1, 2, . . . , p, of B simul-
taneously. A closely related method, referred to as the T-global GMRES method, recently
has been described by El Guide et al. [10]. The latter method differs from the GG-tGMRES
method in the following ways: it uses a restarted GG-tA process and a stopping criterion
based on the residual Frobenius norm with a prespecified tolerance that is independent of
the error in B. The GG-tGMRES method uses the discrepancy principle to decide when
to terminate the iterations. The number of iterations required by this method to satisfy the
discrepancy principle typically is quite small. Restarting therefore generally is not required.

Substituting X = Q� � y into the right-hand side of (1.10), using (4.1) and (4.5), as well
as the left-hand side of (2.5), gives the reduced minimization problem

min
y∈R�

‖H̄�y − βe1‖F . (4.16)

The GG-tGMRES method solves (4.16) for a value of � determined by the discrepancy
principle and requires that a bound δ for ‖E‖F be known, where E is the error in B. This
method is analogous to the tGMRES method described in Sect. 3.2. It is implemented by
Algorithm 12.

Algorithm 12: The GG-tGMRES method for the solution of (1.10)
Input: A, B, δ, L, η > 1, �init = 2
Output: Approximate solution X� of (1.10)

1 � ← �init, β ← ‖B‖F , Q1 ← 1
β
B

2 Compute Q�, Q�+1, and H̄� by Algorithm 10
3 Solve the minimization problem

min
y∈R�

‖H̄�y − e1β‖2

for y�
4 while ‖H̄�y� − e1β‖2 ≥ ηδ do
5 � ← � + 1
6 Go to step 2
7 end
8 Compute X� ← Q� � y�

5 Methods Based on the Global t-Arnoldi Process

This section discusses the computation of approximate solutions of the tensor Tikhonov
regularization problems (1.3) and (1.9), and of the minimization problems (1.8) and (1.10),
with the aid of the global t-Arnoldi (G-tA) process. This process is readily implemented
by taking p = 1 in Algorithm 10. We assume that � is small enough to avoid breakdown.
Algorithm 13 determines the G-tA decomposition

A ∗ Q� = Q�+1 � ¯̄H�, (5.1)
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where
Q j := [Q1,Q2, . . . ,Q j ] ∈ R

m× j×n, j ∈ {�, � + 1}.

Algorithm 13: The global t-Arnoldi (G-tA) process

Input: A ∈ R
m×m×n , B ∈ R

m×1×n

1 Set β ← ‖B‖F , Q1 ← 1
β
B

2 for j = 1, 2, . . . , � do
3 W ← A ∗ Q j

4 for i = 1, 2, . . . , j do
5 hi j ← 〈Qi ,W〉
6 W ← W − hi jQi

7 end
8 h j+1, j ← ‖W‖F , if h j+1, j = 0 stop; else
9 Q j+1 ← W/h j+1, j

10 end

The expressions A ∗ Q� and Q�+1 � ¯̄H� in (5.1) are defined similarly as (4.2), and
¯̄H ∈ R

(�+1)×� has a form analogous to (4.4). The tensors Q j ∈ R
�×1×n , j = 1, 2, . . . , �,

generated by Algorithm 13 form an orthonormal tensor basis for the t-Krylov subspace
K�(A,B), where the definition of t-span is analogous to (4.3). We use the G-tA process to
determine an approximate solution of the Tikhonov minimization problems (1.9) and (1.3)
in Sect. 5.1.

5.1 The G-tATMethod for the Solution of (1.9) and (1.3)

Wedescribe a solutionmethod for (1.9) thatworkswith each lateral sliceB j , j = 1, 2, . . . , p,
of the data tensor B independently. Thus, one solves (1.9) by applying the global t-product
Arnoldi–Tikhonov (G-tAT) method to the p Tikhonov minimization problems (3.22) sep-
arately. We refer to this solution approach as the G-tATp method. It is implemented by
Algorithm 14.

The G-tAT method for the approximate solution of (1.3) first reduces A in (1.3) to an
upper Hessenberg matrix by carrying out a few, say �, steps of the G-tA process described
by Algorithm 13. Let X = Q� � y. Then following a similar approach as in Sect. 4.1, we
reduce (1.3) to

min
y∈R�

{‖Q�+1 � ¯̄H� � y − Q�+1 � e1β‖2F + μ−1‖L ∗ Q� � y‖2F }. (5.2)

Compute the G-tQR factorization of L ∗ Q� by Algorithm 4 to obtain

L ∗ Q� = QL,� � R̄L,�, (5.3)

where the tensor QL,� ∈ R
s×�×n has � orthonormal tensor columns and the matrix R̄L,� ∈

R
�×� is upper triangular.
Substitute (5.3) into (5.2), use the right-hand side of (2.5), and define

z := R̄L,�y, H̆� := ¯̄H� R̄
−1
L,�,
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where we assume that the matrix R̄L,� is invertible and not very ill-conditioned. We obtain
the Tikhonov minimization problem in standard form

min
z∈R�

{‖H̆�z − e1β‖22 + μ−1‖z‖22}.

This problem can be solved similarly as (4.9). We refer to this approach of solving (1.3) as
the G-tAT method. It is implemented by Algorithm 14 with p = 1. The parameter δ1 is set
to δ determined by (1.5). When applying Algorithm 14 to solve (1.9), the input parameters
δ1, δ2, . . . , δp are determined by (3.23).

Algorithm 14: The G-tATp method for the solution of (1.9)

Input: A, p, B1,B2, . . . ,Bp , L, δ1, δ2, . . . , δp , η > 1, �init = 2
1 for j = 1, 2, . . . , p do
2 � ← �init, β ← ‖B j‖F , Q1 ← 1

β
B j

3 Compute Q�, Q�+1, and
¯̄H� by Algorithm 13

4 Determine R̄L,� by computing the G-tQR factorization of L ∗Q� using Algorithm 4

5 Compute H̆� ← ¯̄H� R̄
−1
L,�

6 Solve the minimization problem

min
z∈R�

‖H̆�z − e1β‖2
for z�

7 while ‖H̆�z� − e1β‖2 ≥ ηδ j do
8 � ← � + 1
9 Go to step 3

10 end
11 Determine the regularization parameter μ� > 0 by the discrepancy principle, i.e., by

computing the zero μ� of

ϕ�(μ) := ‖H̆�z j,μ�
− e1β‖22 − η2δ2j

and the associated solution z j,μ�
of

min
z∈R�

∥
∥
∥
∥
∥

[

H̆�

μ
−1/2
� I

]

z −
[

e1β
0

]
∥
∥
∥
∥
∥
2

12 Compute: y j,μ�
← R̄−1

L,�z j,μ�
, X j,μ�

← Q� � y j,μ�

13 end

5.2 The G-tGMRESMethod for the Solution of (1.8) and (1.10)

This subsection describes the global tGMRES (G-tGMRES) method for the approximate
solution of (1.8) and (1.10). The G-tGMRES method uses the G-tA process described by
Algorithm 13 andworkswith a data tensor sliceB in (1.8) or one lateral slice of the data tensor
B at a time in (1.10). The G-tGMRES method is analogous to the GG-tGMRES method of
the previous section.
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Substitute X = Q� � y into (1.8) and proceed similarly as described in Sect. 4.2 to obtain
the reduced minimization problem

min
y∈R�

‖ ¯̄H�y − βe1‖2.

We refer to the solution method so defined as the G-tGMRES method. It is implemented by
Algorithm 15 with p = 1.

We conclude this subsection by describing an algorithm for the approximate solution of
(1.10) based on the G-tGMRES method. This algorithm provides an alternative to the GG-
tGMRES method of Sect. 4.2. It works with each lateral slice B j , j = 1, 2, . . . , p, of the
data tensor B independently. Thus, one solves the pminimization problems (3.25) separately
by the G-tGMRES method. This approach is implemented by Algorithm 15 and will be
referred to as the G-tGMRESp method. The parameters δ1, δ2, . . . , δp for the algorithm are
determined by (3.23).

Algorithm 15: The G-tGMRESp method for the solution of (1.9)

Input: A, p, B1,B2, . . . ,Bp , L, δ1, δ2, . . . , δp , η > 1, �init = 2
1 for j = 1, 2, . . . , p do
2 � ← �init, β ← ‖B j‖F , Q1 ← 1

β
B j

3 Compute Q�, Q�+1, and
¯̄H� by Algorithm 13

4 Solve the minimization problem

min
y j∈R�

‖ ¯̄H�y j − e1β‖2

for y j,�
5 while ‖ ¯̄H�y j,� − e1β‖2 ≥ ηδ j do
6 � ← � + 1
7 Go to step 3
8 end
9 Compute: X j,� ← Q� � y j,�

10 end

6 Numerical Examples

This section illustrates the performance of the methods described in the previous sections
when applied to the solution of several linear discrete ill-posed tensor problems. These
methods are broadly categorized into two groups: those that involve flattening, i.e., reduce the
tensor least squares problems (1.3), (1.8), (1.9), and (1.10) to equivalent problems involving
matrices and vectors, and those that preserve the tensor structure and do not involve flattening.
We illustrate that it is generally beneficial to preserve the multidimensional tensor structure
when solving linear discrete ill-posed tensor problems.

Applications to the restoration of (color) images and gray-scale videos are considered.
Computed examples show that methods that preserve the natural spatial ordering yield the
most accurate approximate solutions. In particular, tAT-type methods, such as tAT, tATp

and nested_ tATp , give the best approximate solution in all computed examples except
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in Example 6.2; see Table 3. All computations were carried out in MATLAB 2019b on a
Lenovo computer with an Intel Core i3 processor and 4 GB RAM running Windows 10.

We use the discrepancy principle to determine the regularization parameter(s) and the
number of steps of the iterative methods in all examples. The “noise” tensor E ∈ R

m×p×n ,
which simulates the error in the data tensor B = Btrue + E , is determined by its lateral slices
E j , j = 1, 2, . . . , p. The entries of these slices are normally distributed random numbers
with zero mean and are scaled to correspond to a specified noise level δ̃. Thus,

E j := δ̃
E0, j

‖E0, j‖F ‖Btrue, j‖F , j = 1, 2, . . . , p, (6.1)

where the entries of the error tensors E0, j are N (0, 1). For problem (1.1), we have p = 1.
Let Xmethod be the computed approximate solution of (1.1) by a chosen method. The

relative error

Emethod = ‖Xmethod − Xtrue‖F
‖Xtrue‖F

is used to determine the effectiveness of the proposedmethods. The relative error for problems
with a three-mode data tensor B is determined analogously.

We letA ∈ R
256×256×256 in all computed examples unless otherwise stated. The condition

number of the frontal slices ofA are computed using the MATLAB command cond. We set
tol = 10−12 in Algorithm 1.

Example 6.1 This example compares Tikhonov regularization with the regularization tensor
L2 ∈ R

255×256×256, see (3.12), as implemented by the tATp , nested_tATp , G-tATp and
GG-tAT methods to the GMRES-type methods described by the tGMRESp , G-tGMRESp ,
and GG-tGMRES methods. Let the matrix

A1 = gravity(256, 1, 0, 1, d), d = 0.8,

be generated by the function gravity from Hansen’s Regularization Tools [17] and define
the prolate matrix A2 = gallery(′prolate′, 256, α) in MATLAB. We set α = 0.46.
Then A2 is a symmetric positive definite ill-conditioned Toeplitz matrix. The tensor A is
defined by its frontal slices

A(i) = A1(i, 1)A2, i = 1, 2, . . . , 256.

The exact data tensor Btrue ∈ R
256×3×256 is given by Btrue = A ∗ Xtrue, where the

exact solution Xtrue ∈ R
256×3×256 has all entries equal to unity. The noise-contaminated

right-hand side B ∈ R
256×3×256 is generated by B = Btrue + E , where the noise tensor

E ∈ R
256×3×256 is determined according to (6.1). The condition numbers of the slices A(i)

satisfy cond(A(i)) ≥ 1 · 1016 for all i . Thus, every slice is numerically singular. We take
η = 1.15 and determine the regularization parameter(s) for Tikhonov regularization by
Newton’s method. The computed regularization parameters and relative errors for different
noise levels, as well as the number of iterations required to satisfy the discrepancy principle
by eachmethod, are displayed in Table 1. Here and below the table entry “-” indicates that the
solution method carries out different numbers of t-Arnoldi steps or computes different values
of the regularization parameter for the different lateral slices of B, or that no regularization
parameter is required.

Table 1 shows theGG-tATandGG-tGMRESmethods to be the fastest for both noise levels,
but the tATp andnested_tATp methods, which do not involve flattening, yield approximate
solutions of higher accuracy for both noise levels. The tATp method determines the most
accurate approximations of Xtrue and requires the most CPU time for both noise levels. The
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Table 1 Results for Example 6.1

Noise level Method � μ� Relative error CPU time (s)

10−3 tATp – – 2.09e−03 1.25e+01

nested_tATp 3 – 2.23e−03 8.46e+00

tGMRESp – – 8.94e−01 7.67e+00

G-tATp – – 6.20e−03 1.06e+01

G-tGMRESp – – 7.57e−03 7.16e+00

GG-tAT 3 7.13e−02 6.20e−03 5.50e+00

GG-tGMRES 3 – 7.57e−03 2.77e+00

10−2 tATp – – 7.90e−03 5.97e+00

nested_tATp 2 – 1.13e−02 4.82e+00

tGMRESp – – 4.71e+00 3.28e+00

G-tATp – – 1.18e−02 4.76e+00

G-tGMRESp – – 2.37e−02 3.08e+00

GG-tAT 2 3.09e−02 1.18e−02 2.31e+00

GG-tGMRES 2 – 2.37e−02 1.10e+00

tGMRESp method yields the worst quality solution for both noise levels. In general, the
quality of the computed approximate solutions determined by Tikhonov regularization is
higher than the approximate solutions calculated by GMRES-type methods. This depends
on the use of the regularization operator L2 by the former methods. We remark that Btrue

depends on the t-product.

Example 6.2 This example implementsExample 6.1 analogously by takingL = I,d = 0.025
to generate A1, and determines the regularization parameter(s) by Newton’s method with
η = 1.1. The condition numbers of A(i) are as described above. The relative errors for
different noise levels and the CPU times are displayed in Table 2.

Table 2 shows that the GG-tAT and GG-tGMRES methods, which involve flattening, are
the fastest for both noise levels. Thenested_tATp method,which does not involve flattening
and is based on nested t-Krylov subspaces, yields the most accurate approximate solutions.
The G-tATp and GG-tAT methods with Tikhonov regularization determine approximate
solutions of almost the same quality as the GMRES-type methods implemented by the G-
tGMRESp and GG-tGMRES methods for both noise levels. The tGMRESp method yields
approximate solutions of least accuracy for both noise levels. For the solutionmethods that do
not involve flattening (implemented by the tATp , nested_tATp , and tGMRESp methods),
the quality of the computed approximate solutions is higher when Tikhonov regularization
is applied.

We finally compare the tAT andG-tATmethods to the tGMRES andG-tGMRESmethods.
The exact solution is the tensor column Xtrue ∈ R

256×1×256 with all entries equal to unity.
The noise-contaminated right-hand side B ∈ R

256×1×256 is generated by B = Btrue + E,
where the noise tensor E ∈ R

256×1×256 is determined as described above. Table 3 shows
the number of iterations required to satisfy the discrepancy principle by each method, the
regularization parameters, as well as the relative errors and CPU times for both noise levels.

We see from Table 3 that the quality of the computed approximate solutions is higher
when using Tikhonov regularization. The G-tGMRES and tGMRES methods are the fastest,
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Table 2 Results for Example 6.2

Noise level Method � μ� Relative error CPU time (s)

10−3 tATp – – 6.69e−03 1.43e+01

nested_tATp 3 – 4.35e−03 1.24e+01

tGMRESp – – 2.11e−02 8.12e+00

G-tATp – – 5.65e−03 1.29e+01

G-tGMRESp – – 5.65e−03 7.47e+00

GG-tAT 3 3.28e−01 5.65e−03 6.54e+00

GG-tGMRES 3 – 5.65e−03 2.85e+00

10−2 tATp – – 4.10e−02 6.47e+00

nested_tATp 2 – 2.59e−02 5.43e+00

tGMRESp – – 1.07e−01 3.31e+00

G-tATp – – 2.46e−02 5.11e+00

G-tGMRESp – – 2.47e−02 3.01e+00

GG-tAT 2 3.30e−02 2.46e−02 2.54e+00

GG-tGMRES 2 – 2.47e−02 1.16e+00

Table 3 Results for Example 6.2

Noise level Method � μ� Relative error CPU time (s)

10−3 tAT 3 9.87e−01 8.40e−03 1.41e+01

G-tAT 3 7.25e−01 5.96e−03 1.37e+01

tGMRES 3 – 2.80e−02 3.10e+00

G-tGMRES 3 – 5.99e−03 2.90e+00

10−2 tAT 3 5.54e−02 4.37e−02 3.67e+00

G-tAT 2 7.35e−02 2.46e−02 3.20e+00

tGMRES 2 – 1.45e−01 1.80e+00

G-tGMRES 2 – 2.56e−02 1.00e+00

but the tGMRES method yields approximate solutions of least quality for both noise levels.
The G-tAT and G-tGMRES methods, which matricize the tensor equation (1.1), yield the
most accurate solutions for both noise levels. This is the only one of our examples in which
matricizing is beneficial for the quality of the computed solutions. In our experience this
situation is quite rare.

The remainder of this section discusses image and video restoration problems. We use
the bisection method to determine the regularization parameter over a chosen interval. The
blurring operatorA is constructed similarly as described in [20] by using the function blur
from [17]. We assess the quality of the approximate restorations determined by the different
methods by comparing the relative error defined above and the Peak Signal-to-Noise Ratio
(PSNR) given by

PSNR = 10log10

(
MAXXtrue√

MSE

)

,
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where MAXXtrue is the maximum of all the pixel values of the true image represented by
Xtrue ∈ R

m×p×n and the mean square error is given by

MSE = 1

mpn

m
∑

i=1

p
∑

j=1

n
∑

k=1

(Xtrue(i, j, k) − Xmethod(i, j, k)
)2

.

For the problem (1.1) discussed in Example 6.3, we use p = 1.

Example 6.3 (2D image restoration problem) This example illustrates the advantage of
preserving the tensor structurewhen solving tensor linear discrete ill-posed problems. Specif-
ically, we show that the tATmethod, which avoids flattening (matricization and vectorization)
of the tensor equation (1.1), yields restorations of the highest quality for both noise levels
independently of the regularization operators used.

We discuss the performance of the tAT and G-tATmethods with the regularization tensors
L = I, and L = L1 ∈ R

298×300×300 defined by (3.12), and compare these methods to the
standard Arnoldi–Tikhonov (AT) regularization method with regularization matrix L = I
described in [27], (standard) GMRES, tGMRES, and G-tGMRES methods when applied to
the restoration of the Telescope2 image of size 300× 300 pixels that have been contami-
nated by blur and noise. The AT and GMRES methods compute an approximate solution of
the linear system of equations

(A1 ⊗ A2)x = b, (6.2)

where ⊗ denotes the Kronecker product; the block matrix A1 ⊗ A2 ∈ R
3002×3002 represents

the blurring operator. The right-hand side vector b ∈ R
3002 stores the vectorized available

blur- and noise-contaminated image B ∈ R
300×300. This vector is contaminated by e ∈ R

3002 ,
which represents (unknown) noise; it is a vectorization of the noise matrix E ∈ R

300×300. We
would like to determine an approximation of the “true” blur- and noise-free image X true ∈
R
300×300 or its vectorized form xtrue ∈ R

3002 . The circulant matrix A1 and Toeplitz matrix
A2 are generated with the MATLAB commands

z1 = [exp(−([0 : band − 1].2)/(2œ2)),zeros(1,N − band)],
A2 = 1

σ
√
2π

toeplitz(z1),

z2 = [z1(1) fliplr(z1(end − length(z1) + 2 : end))],
A1 = 1

σ
√
2π

toeplitz(z1,z2),

(6.3)

with N = 300, σ = 3 and band = 9. By exploiting the circulant structure of A1 ⊗ A2 and
using the fold, unfold, and twist operators, the 2D deblurring problem (6.2) can be
formulated as the following problem in tensor form

A ∗ X = B, (6.4)

where X = twist(X), B = twist(B), and E = twist(E). The frontal slices A(i) ∈
R
300×300, i = 1, 2, . . . , 300, of the blurring operator A ∈ R

300×300×300 are generated by
folding the first block column of A1 ⊗ A2, i.e.,

A(i) = A1(i, 1)A2, i = 1, 2, . . . , 300. (6.5)

2 https://github.com/jnagy1/IRtools/blob/master/Extra/test_data/HSTgray.jpg.
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Fig. 1 True image (left), blurred and noisy image (middle) with noise level δ̃ = 10−3, and restored image by
the tAT (right) method after 8 iterations

The computed condition numbers ofA(i) are cond(A(i)) = 1.6 ·105 for i = 1, 2, . . . , 9, and
cond(A(i)) is “infinite” for i ≥ 10. We let η = 1.1 in (1.6) and determine the regularization
parameter by the bisection method over the interval [101, 107].

The true Telescope image is shown on the left-hand side of Fig. 1. For the matrix
problem (6.2), this image is stored as a vector xtrue ∈ R

3002 and blurred by A1 ⊗ A2, while
for the tensor problem (6.4), it is stored as Xtrue ∈ R

300×1×300 using the twist operator
and blurred by the tensorA. The blurred and noisy image represented by b is shown in Fig. 1
(middle) using the MATLAB reshape command.

The restored images determined by the tAT, G-tAT, and tGMRES methods are accessed
using the squeeze operator and displayed in Figs. 1 and 2 for the noise level δ̃ = 10−3.
Similarly, the restored image computed by theGMRESmethod is displayed in Fig. 2 (middle)
using the MATLAB reshape command.

Table 4 shows the computed regularization parameters, relative errors, and PSNR values
for the noise levels 10−2 and 10−3, as well as CPU times. As can be expected, the quality
of the computed restorations is higher when the noise level is smaller. The tGMRES method
requires the least CPU time for δ̃ = 10−3 and yields the worst restorations for both noise
levels. Independently of the choice of L, Tikhonov regularization implemented by the tAT
method determines restorations of the highest quality. The G-tAT and G-tGMRES methods,
which involve flattening, demand the most CPU time and require the most iterations for both
noise levels. The GMRES and G-tGMRES methods require the same number of iterations
and yield the same quality restorations for both noise levels. Similar observations can be
made for the AT and G-tAT methods when the regularization operator is the identity matrix
and identity tensor, respectively.

Example 6.4 (Color image restoration) This example is concerned with the restoration of
color images using the same regularization operators as in Example 6.3.We seek to determine
an approximate solution of the image deblurring problem

(A1 ⊗ A2)X = B, (6.6)

where the desired unavailable blur- and noise-free image X true ∈ R
3002×3 is the matricized

three-channel image Xtrue ∈ R
300×300×3. The right-hand side B ∈ R

3002×3 in (6.6) is
generated by B = (A1 ⊗ A2)X true + E , where the unknown noise in the matrix B is
represented by E ∈ R

3002×3, which is the matricized “noise” tensor E ∈ R
300×300×3. The

blurring matrices A1 and A2 are defined by (6.3) in Example 6.3 with N = 300, σ = 3 and
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Fig. 2 Restored images by the G-tAT (left), GMRES (middle), and tGMRES (right) methods after 51, 51, and
8 iterations, respectively, for the noise level δ̃ = 10−3

Table 4 Results for Example 6.3

L Noise level Method � μ� PSNR Relative error CPU time (s)

L1 10−3 tAT 8 2.27e+04 29.09 1.19e−01 3.51e+01

G-tAT 51 3.18e+04 28.04 1.34e−01 9.78e+02

10−2 tAT 3 4.43e+01 26.81 1.53e−01 7.23e+00

G-tAT 12 3.98e+02 25.30 1.84e−01 6.35e+01

I 10−3 tAT 8 9.26e+04 29.05 1.19e−01 2.74e+01

G-tAT 51 1.11e+05 28.04 1.34e−01 9.11e+02

10−2 tAT 3 1.34e+03 26.99 1.51e−01 5.41e+00

G-tAT 12 1.86e+03 25.21 1.86e−01 5.23e+01

10−3 AT 51 1.11e+05 28.04 1.34e−01 6.01e+01

10−2 AT 12 1.90e+03 25.21 1.86e−01 2.76e+00

10−3 GMRES 51 – 27.97 1.35e−01 5.99e+01

tGMRES 8 – 20.28 2.03e−01 2.44e+01

G-tGMRES 51 – 27.97 1.35e−01 8.98e+02

10−2 GMRES 12 – 24.94 1.91e−01 2.64e+00

tGMRES 3 – 17.74 4.39e−01 3.40e+00

G-tGMRES 12 – 24.94 1.91e−01 5.09e+01

band = 12. By the same reasoning as in Example 6.3, we formulate (6.6) as the 3D image
deblurring problem

A ∗ X = B, (6.7)

where the blurring tensor A ∈ R
300×300×300 is constructed by (6.5) in Example 6.3. The

computed condition numbers of the frontal slices of A are cond(A(i)) = 7.6 · 108 for
i = 1, 2, . . . , 12, and cond(A(i)) is “infinite” for i ≥ 13. We determine the regulariza-
tion parameter(s) by the bisection method over the interval [10−5, 107]. The discrepancy
principle is used with the parameter η = 1.1. The (standard) global GMRES (G-GMRES)
and (standard) global Arnoldi–Tikhonov (GAT) methods for (6.6) are based on the global
Arnoldi process applied by Huang et al. [19]. We compare the performance of these methods
to the tATp , nested_tATp , G-tATp , GG-tAT, tGMRESp , G-tGMRESp , and GG-tGMRES
methods for the solution of (6.7).
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Fig. 3 True image (left), blurred and noisy image (middle) with noise level δ̃ = 10−3, and restored image
determined by nested_tATp (right) after 9 iterations

Fig. 4 Restored images determined by GG-tAT (left) after 32 iterations, and G-GMRES (middle) after 32
iterations and the tGMRESp (right), for the noise level δ̃ = 10−3

The original (blur- and noise-free) flower3 image shown on the left-hand side of Fig. 3
is stored as a tensor Xtrue ∈ R

300×3×300. It is blurred using the tensor A. Thus, Btrue =
A∗Xtrue ∈ R

300×3×300 represents the blurred but noise-free image associated withXtrue. The
“noise” tensor E ∈ R

300×3×300 is generated as described by (6.1) with noise level δ̃ = 10−3

and added to Btrue to obtain the blurred and noisy image B shown in Fig. 3 (middle). The
latter image is accessed by using the multi_squeeze operator.

The restored images determined by the nested_tATp , GG-tAT, G-GMRES, and tGM-
RES methods are displayed in Figs. 3 and 4. Relative errors, PSNR values, as well as CPU
times are shown in Table 5. The tATmethod gives restorations of the highest or nearly highest
quality; the nested_tATp method also determines accurate restorations. These methods do
not involve flattening. Solution methods that involve flattening such as the G-tATp , GG-tAT,
G-tGMRESp , and GG-tGMRES methods require the most CPU time for both noise levels.
The GAT, GG-tAT, G-GMRES, and GG-tGMRES methods require the same number of iter-
ations, which are more than the number of iterations used by the nested_tATp method,
for both noise levels. The tGMRESp method yields restorations of the worst quality for both
noise levels. The GG-tGMRES method, which works with the whole data tensor at a time,
yields the same quality restorations as the G-GMRESmethod for both noise levels. The same
conclusion can be drawn for the GG-tAT and GATmethods when the regularization operator
is the identity tensor and the identity matrix, respectively. The quality of the restorations

3 http://www.hlevkin.com/TestImages.
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Table 5 Results for Example 6.4

L Noise level Method � μ� PSNR Relative error CPU time (s)

L1 10−3 tATp – – 30.56 5.85e−02 9.31e+01

nested_tATp 9 – 30.56 5.86e−02 6.48e+01

G-tATp – – 29.47 6.64e−02 1.19e+03

GG-tAT 32 7.34e+03 29.43 6.67e−02 8.94e+02

10−2 tATp – – 27.20 8.62e−02 2.11e+01

nested_tATp 4 – 25.90 1.00e−01 2.15e+01

G-tATp – – 25.20 1.09e−01 1.01e+02

GG-tAT 9 1.51e+02 25.22 1.08e−01 7.04e+01

I 10−3 tATp – – 30.67 5.78e−02 7.57e+01

nested_tATp 9 – 30.69 5.77e−02 5.70e+01

G-tATp – – 29.44 6.66e−02 1.11e+03

GG-tAT 32 3.64e+04 29.40 6.69e−02 4.30e+02

10−2 tATp – – 27.66 8.18e−02 1.66e+01

nested_tATp 4 – 26.26 9.60e−02 2.29e+01

G-tATp – – 24.96 1.12e−01 8.27e+01

GG-tAT 9 1.15e+03 24.87 1.13e−01 3.38e+01

10−3 GAT 32 3.63e+04 29.40 6.69e−02 9.69e+01

10−2 GAT 9 1.15e+03 24.87 1.13e−01 6.22e+00

10−3 G-GMRES 32 – 29.33 6.75e−02 9.89e+01

tGMRESp – – 19.23 2.16e−01 6.97e+01

G-tGMRESp – – 29.36 6.73e−02 1.11e+03

GG-tGMRES 32 – 29.32 6.75e−02 4.26e+02

10−2 G-GMRES 9 – 24.56 1.17e−01 5.21e+00

tGMRESp – – 12.75 4.55e−01 1.05e+01

G-tGMRESp – – 24.78 1.14e−01 8.24e+01

GG-tGMRES 9 – 24.56 1.17e−01 3.31e+01

determined by the G-tATp and GG-tAT methods improves significantly with the use of the
regularization operator L1 for both noise levels.

Example 6.5 (Video restoration) This example considers the restoration of the first six con-
secutive frames of the Xylophone video from MATLAB. Each video frame is in the MP4
format and has 240 × 240 pixels.

The first six blur- and noise-free frames are stored as a tensor Xtrue ∈ R
240×6×240 using

the multi_twist operator. They are blurred by the tensor A ∈ R
240×240×240, which is

generated similarly as in Example 6.3 with its frontal slices determined by

A(i) = A2(i, 1)A2, i = 1, 2, . . . , n, N = 240, σ = 2.5 and band = 12.

The condition numbers of the frontal slices of A are cond(A(i)) = 1.4 · 107 for i =
1, 2, . . . , 12. The condition numbers of the remaining frontal slices are “infinite”.

We use the regularization operator L = L2 ∈ R
239×240×240 and determine the reg-

ularization parameter(s) by the bisection method over the interval [10−5, 107] using the
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Fig. 5 True image (left), blurred and noisy image with noise level δ̃ = 10−3 (middle), and restored image
determined by 8 iterations with the tATp method (right)

Fig. 6 Restored images by the nested_G-tATp (left), G-tGMRESp (middle), and tGMRESp (right) for
δ̃ = 10−3

discrepancy principle with η = 1.1. The blurred and noisy frames are generated by
B = A ∗ Xtrue + E ∈ R

240×6×240 with the “noise” tensor E ∈ R
240×6×240 defined by

(6.1).
The true third frame is displayed in Fig. 5 (left), and the blurred and noisy third frame is

shown in Fig. 5 (middle) using the squeeze operator. Similarly, the restored images of the
third frame determined by the G-tATp , nested_tATp , G-tGMRES, and tGMRES methods
are shown in Figs. 5 and 6.

The relative errors, PSNR values, and CPU times are displayed in Table 6. The tATp and
nested_tATp methods, which do not involve flattening, are seen to yield restorations of
the highest quality for all noise levels. The tGMRES method is the fastest for δ̃ = 10−2

and 10−3, but gives the worst restorations for all noise levels. Solution methods that involve
flattening, such as G-tATp , GG-tAT and G-tGMRESp and GG-tGMRES methods, are the
slowest for δ̃ = 10−3.

7 Conclusion

This paper extends the standard Arnoldi iteration for matrices to third order tensors and
describes several algorithms based on this extension for solving linear discrete ill-posed
problemswith a t-product structure. The solutionmethods are based on computing a few steps
of the extended Arnoldi process, which is referred to as the t-Arnoldi process. The global t-
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Table 6 Results for Example 6.5

Noise level Method � μ� PSNR Relative error CPU time (s)

10−3 tATp – – 34.07 4.15e−02 5.25e+01

nested_tATp 10 – 33.81 4.27e−02 4.64e+01

G-tATp – – 33.27 4.54e−02 4.63e+02

GG-tAT 22 7.46e+02 33.24 4.56e−02 2.03e+02

tGMRESp – – 27.21 9.13e−02 3.19e+01

G-tGMRESp – – 33.17 4.60e−02 4.07e+02

GG-tGMRES 22 – 33.21 4.58e−02 9.77e+01

10−2 tATp – – 30.75 6.07e−02 2.03e+01

nested_tATp 3 – 25.64 1.09e−01 1.80e+01

G-tATp – – 27.22 9.12e−02 6.92e+01

GG-tAT 8 2.16e+02 27.22 9.12e−02 2.57e+01

tGMRESp – – 15.67 3.45e−01 8.23e+00

G-tGMRESp – – 26.82 9.55e−02 5.28e+01

GG-tGMRES 8 – 26.82 9.55e−02 1.19e+01

10−1 tATp – – 24.69 1.22e−01 1.38e+01

nested_tATp 2 – 21.25 1.81e−01 1.69e+01

G-tATp – – 21.17 1.83e−01 5.24e+00

GG-tAT 2 1.04e+01 21.17 1.83e−01 1.60e+00

tGMRESp – – 0.45 1.99e+00 3.46e+00

G-tGMRESp – – 19.21 2.29e−01 3.16e+00

GG-tGMRES 2 – 19.21 2.29e−01 6.80e−01

Arnoldi and generalized global t-Arnoldi processes also are considered. Differently from the
t-Arnoldi process, the latter processes involve flattening. Both Tikhonov regularization and
regularization by truncated iteration are considered. The latter gives rise to an extension of
the standard GMRESmethod, referred to as the tGMRES and global tGMRESmethods. The
discrepancy principle is used to determine the number of iterations with the t-Arnoldi, global
t-Arnoldi, and generalized global t-Arnoldi processes, as well as the regularization parameter
inTikhonov regularization and the number of iterations by theArnoldi-type andGMRES-type
methods. The effectiveness of the proposed methods is illustrated by applications to image
and video restorations. Solution methods such as tAT, tATp , and nested_tATp , that avoid
matricization or vectorization of discrete ill-posed problems for tensors, show great promise
in terms of speed and quality of the computed restorations determined by their relative errors
and PSNR values when compared to solution methods that matricize or vectorize.
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