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Abstract
The unconditional stability and convergence analysis of the Euler implicit/explicit scheme
with finite element discretization are studied for the incompressible time-dependent Navier–
Stokes equations based on the scalar auxiliary variable approach. Firstly, a corresponding
equivalent system of the Navier–Stokes equations with three variables is formulated, the sta-
ble finite element spaces are adopted to approximate these variables and the corresponding
theoretical analysis results are provided. Secondly, a fully discrete scheme based on the back-
ward Eulermethod is developed, the temporal treatment is based on the Euler implicit/explicit
scheme, which is implicit for the linear terms and explicit for the nonlinear term. Hence, a
constant coefficient algebraic system is formed and it can be solved efficiently. The discrete
unconditional energy dissipation and stability of numerical solutions in various norms are
established with any restriction on the time step, optimal error estimates are also provided.
Finally, some numerical results are provided to illustrate the performances of the considered
numerical scheme.
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1 Introduction

Suppose that Ω ∈ R
2 is a bounded open set with Lipschitz continuous boundary ∂Ω .

Consider the following time-dependent incompressible Navier–Stokes equations in Ω ×
(0, T ] {

ut − νΔu + ∇ p + (u · ∇)u = f ,

∇ · u = 0,
(1)

subject to the homogeneous Dirichlet boundary condition

u|∂Ω = 0 (2)

and the initial condition

u|t=0 = u0(x). (3)

In these equations u = u(x, t) and p = p(x, t) are the velocity and pressure of the fluid at
the space-time location (x, t) ∈ Ω × (0, T ], respectively. The parameter ν = 1

Re > 0 is the
kinematic viscosity, Re is the Reynold number, f = f (x, t) is the body force, T is the final
time and u0(x) is the initial data of the fluid.

As a classical incompressible fluid model, the Navier-Stokes equations (1)–(3) have been
widely used in the field of the computational fluid dynamics [5,6,34]. Many important mod-
els are formed by coupling the Navier–Stokes equations with other equations, for example,
with the Maxwell equation form the MHD equations, with the nonlinear heat equation form
the Boussinesq equations and so on. Due to the nonlinear and incompressible properties, to
find the exact solutions of the Navier–Stokes equations becomes a difficult work. Therefore,
numerous works have devoted to the developments of efficient numerical schemes for the
Navier–Stokes equations (1)–(3), such as the nonlinear Galerkin method [1,2], the projection
method [27–29], twogridmethod [12,17] and soon. In these numerical schemes, the treatment
of nonlinear term is one of the key points. Generally speaking, the implicit and semi-implicit
schemes are unconditional stable, but we need to treat a variable coefficient algebraic discrete
problem, for example, [5,16,35] for the Navier–Stokes equations, [10,23] for theMHD equa-
tions, [18,25] for nonlinear parabolic problems. The implicit/explicit scheme is an attractive
approach to deal with the nonlinear problem, because we just need to treat the constant coef-
ficient algebraic discrete system. Furthermore, the considered problem can be split into a
series of linear subproblems, both computational size and storage requirements are reduced.
We onlymention [7] for the dissipative evolution equations, [13,24,33] for the Navier–Stokes
equations, [32] for the Cahn–Hilliard equations and the references therein. However, the sta-
bility of numerical solutions in implicit/explicit scheme holds under some restrictions on the
time steps [9,11,33]. Namely, the following condition must be satisfied

Δt ≤ C, (4)

where Δt is the time step, C > 0 is a general constant, independents of Δt and mesh size h.
The scalar auxiliary variable (SAV) method was developed by Shen and his co-authors

[20,21,30,31] for the gradient flow. This method can be considered as an extension and
improvement of the invariant energy quadratization (IEQ) method given in [36,37,39]. The
main advantages of theSAVschemecanbe list as follows: (I) unconditional energydissipation
law holds, (II) decoupled equations with constant coefficients need to be solved at each time
step, (III) numerical schemes up to second order are accurate. Hence, the SAV method has
been used to treat the gradient flow [30,31], phase field model [38] and the references therein,
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some important and interesting stability and convergence resultswere established. In recently,
the SAV method was extended to solve the incompressible Navier–Stokes equations [22],
unconditional energy dissipation of the backward Euler and BDF2 schemes were developed,
with a series of numerical examples illustrating the performances of the considered numerical
method combining the spectral method. However, the stability and convergence results of
numerical solutions in these schemes were not given. Later, Li et al presented the error
analysis of the SAV approach for the Navier–Stokes equations based on the finite difference
method in [19–21].

The aim of this paper is to establish the rigorous unconditional stability and optimal error
estimates of the Euler implicit/explicit-SAV finite element method for the Navier–Stokes
equations. We firstly develop the equivalent formulation of the Navier–Stokes equations by
introducing the scalar auxiliary variable, the convergence results with finite element dis-
cretization are recalled. Then, a fully discrete implicit/explicit SAV finite element scheme is
developed, the energy dissipation of numerical scheme, unconditional stability and the opti-
mal error estimates of numerical solutions are provided. Compared with [9,11,13,19,24,33],
the main features of this work contain: (I) The unconditional energy dissipation of numeri-
cal scheme is presented. (II) Unconditional stability results of numerical solutions in Euler
implicit/explicit scheme are developed. (III) Optimal error estimates of numerical approxi-
mations are established.

The outline of this paper can be list as follows. Section 2 is devoted to recall some basic
results of the Navier–Stokes equations and present the corresponding equivalent form in SAV
approach with finite element discretization. Section 3 gives the fully discrete implicit/explicit
SAV FEM for the Navier-Stokes equations, unconditional energy dissipation and stability
results are established. Section 4 develops the optimal error estimates of numerical solutions.
Some numerical results are presented in Sect. 5 to confirm the established theoretical findings,
and illustrate the performances of the considered numerical schemes. Finally, a conclusion
is given in Sect. 6.

2 Function Setting and the Galerkin Finite Element Method

2.1 Preliminary

Assume that Ω ⊂ R
2 satisfies the addition stated in (A1) below. Standard Sobolev spaces

and the corresponding norms are used. Denote Hi (Ω) the function with square integrable
distribution derivatives up to order i (i = 1, 2) over the domain Ω , H1

0 (Ω) is the closed
subspace of H1(Ω) consisting of the functions with zero trace on Ω . We equip the spaces
Hi (Ω)(i = 1, 2) with the norm ‖ · ‖i , Li (Ω) with the norm ‖ · ‖0 and inner product (·, ·),
H1
0 (Ω) with the scalar product (∇u,∇v) and norm ‖u‖1 = (∇u,∇u)1/2. Set

X = H1
0 (Ω)2, V = {v ∈ X; ∇ · v = 0}, M = L2

0(Ω) = {q ∈ L2(Ω);
∫

Ω

qdx = 0},
Y = L2(Ω)2, H = {v ∈ Y ; divv = 0, v · n|∂Ω = 0}, R = {the space of real numbers}.

We refer readers to [6,14,34] for details on these spaces. We denote the Stokes operator by
A = −PΔ, where P is L2-orthogonal projection of Y onto H and the domain of A by
D(A) = H2(Ω)2 ∩ V . As mentioned above, an additional assumption about the domain Ω

is needed (see [1,16,34]).

123



1 Page 4 of 20 Journal of Scientific Computing (2022) 90 :1

(A1). Assume that Ω is smooth so that the unique solution (v, q) ∈ X × M of the steady
Stokes problem

−νΔv + ∇q = g, div v = 0 x ∈ Ω, v|∂Ω = 0,

for any prescribed f ∈ Y , exists and satisfies

‖v‖2 + ‖q‖1 ≤ C1‖g‖0,
where C1 > 0 is a generic constant depending on the data ν and Ω .

We remark that the validity of assumption (A1) is known (see [1,6,14,34]) if ∂Ω is of C2

or if Ω is a convex polygon in 2D. Furthermore, it is well known that (see [11,14])

‖v‖H2 ≤ C1‖Av‖0, v ∈ D(A).

The following Poincáre inequalities hold

‖v‖20 ≤ γ0‖v‖21, ∀v ∈ X , ‖v‖21 ≤ γ0‖v‖22 ≤ ‖Av‖20, ∀v ∈ D(A),

where γ0 is a positive constant depending only on Ω .
Some assumptions about the prescribed data for problem (1) are needed [1,10,12,16].
(A2). The initial data u0(x) and the body force f satisfy, for the positive constant C2,

u0 ∈ H2(Ω)2 ∩ V , f ∈ L∞(0, T ; H1(Ω)2) with ‖Au0‖0 + ‖ f ‖1 ≤ C2.

The continuous bilinear forms a(·, ·) on X × X and d(·, ·) on X × M are defined by

a(u, v) = ν(∇u,∇v), d(v, q) = −(v,∇q) = (q, divv) ∀ u, v ∈ X , q ∈ M .

Define the trilinear form b(·, ·, ·) on X × X × X with ∇ · u = 0 by

b(u, v, w) = ((u · ∇)v,w) + 1

2
((∇ · u)v,w) = 1

2
((u · ∇)v,w) − 1

2
((u · ∇)w, v).

The following important estimates of the trilinear form b(·, ·, ·) can be found in [6,9,11,
13,34] with C3 is a positive constant depending on Ω

b(u, v, v) = 0, b(u, v, w) = −b(u, w, v), ∀ u ∈ V , v, w ∈ X , (5)

|b(u, v, w)| + |b(v, u, w)| + |b(w, u, v)|
≤ C3

2
(‖u‖1/20 ‖u‖1/21 ‖v‖1 + ‖u‖1‖v‖1/20 ‖v‖1/21 )‖w‖1/20 ‖w‖1/21 , ∀ u, v, w ∈ V , (6)

|b(u, v, w)| + |b(v, u, w)| + |b(w, u, v)|
≤ C3

2
(‖Av‖1/20 ‖v‖1/21 ‖u‖1/20 ‖u‖1/21 +‖Av‖1/20 ‖v‖1/20 ‖u‖1)‖w‖0, ∀ u, v ∈ V , w ∈ X ,

(7)

|b(u, v, w)| + |b(v, u, w)| + |b(w, u, v)|
≤ C3

3
(‖u‖1/20 ‖Av‖1/20

+‖v‖1/20 ‖Au‖1/20 + ‖u‖1/21 ‖v‖1/21 )‖Au‖1/20 ‖Av‖1/20 ‖w‖−1, ∀ u, v, w ∈ V . (8)

With above notations, the variational formulation of problem (1) reads as: for all (v, q) ∈
X × M , find (u, p) ∈ L∞(0, T ; H) ∩ L2(0, T ; X) × L2(0, T ; M) such that{

(ut , v) + a(u, v) − d(v, p) + d(u, q) + b(u, u, v) = ( f , v),

u(0) = u0.
(9)
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The following regularity results can be obtained with simple modification to the argument
given in [8,14,15] under the compatibility conditions.

Theorem 2.1 Under the assumptions (A1) and (A2), problem (9) admits a unique solution
(u, p) satisfying the following estimates for all t ∈ [0, T ]

‖∇u(t)‖0 + ‖ut‖0 + ‖Au‖0 + ‖p‖1 +
( ∫ t

0
(‖utt‖20 + ‖Aut‖20 + ‖pt‖21)ds

)1/2 ≤ C4,

where C4 is a generic positive constant depending on the data ν,Ω,C1,C2,C3 and T , which
may take different values at its different places.

2.2 Galerkin Finite Element Method

From now on, let 0 < h < 1 be a real positive parameter. The finite element subspace
(Xh, Mh) of (X , M) is characterized by Th = Th(Ω), a partitioning of Ω into triangles K
or quadrilaterals K , assumed to be uniformly regular as h → 0. For further details, we can
refer to [6,34]. Define the subspace Vh of Xh given by

Vh = {vh ∈ Xh : d(vh, qh) = 0, ∀qh ∈ Mh}.
Set Ph : Y → Vh denotes the L2-orthogonal projection, it can be defined by

(Phu, vh) = (u, vh), ∀ u ∈ Y , vh ∈ Vh .

With above statements, a discrete analogue Ah = −PhΔh of the Stokes operator A = −PΔ

is defined by (−Δhuh, vh) = (∇uh,∇vh) for all uh, vh ∈ Xh . The restriction of Ah to Vh
is invertible, with the inverse A−1

h . The discrete operator Ah was first introduced in [14] to
analyze and obtain the optimal estimates for the transient Navier–Stokes equations.

We set that the finite element spaces Xh and Mh approximating the velocity and pressure
are assumed to satisfy the followingdiscrete inf-sup condition:There exists a positive constant
β > 0 independent of h, such that

d(vh, qh) ≥ β‖vh‖1‖qh‖0, ∀ vh ∈ Xh, qh ∈ Mh . (10)

We give an example of the spaces Xh and Mh such that the condition (10) is satisfied. For
any nonnegative integer l, we denote by Pl(K ) the space of polynomials of degrees less than
or equal to l on K .

Example (The MINI element + piecewise constant space)

Xh = {vh ∈ C0(Ω)2 ∩ X; vh |K ∈ P1(K )2 ⊕ span{27λ1λ2λ3}, ∀ K ∈ Th},
Mh = {qh ∈ C0(Ω) ∩ M; qh |K ∈ P1(K ), ∀ K ∈ Th},
Rh = {sh ∈ C0(Ω) ∩ R; sh |K ∈ P0(K ), ∀ K ∈ Th}.

where λ1, λ2 and λ3 are the barycenter coordinates of the reference element. Other example,
such as the Taylor-Hood element for Xh and Mh , we can refer to [6,34].

The Galerkin finite element method for problem (9) is defined as follows: Find (uh, ph) ∈
L2(0, T ; Xh) × L2(0, T ; Mh), for all t ∈ (0, T ] and (vh, qh) ∈ Xh × Mh , such that{

(uht , vh) + a(uh, vh) − d(vh, ph) + d(uh, qh) + b(uh, uh, vh) = ( f , vh),
uh(0) = u0h = Phu0.

(11)
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Theorem 2.2 (See [6,8,10]) Under the assumptions (A1)-(A2), problem (11) admits a unique
solution (uh, ph). Furthermore, for all t ∈ (0, T ] it holds that

‖∇uh‖0 + ‖uht‖0 + ‖Ahuh‖0 + ‖∇uht‖0 +
( ∫ t

0
(‖uhtt‖20 + ‖Ahuht‖20)ds

)1/2 ≤ C4,

‖u − uh‖0 + h(‖∇(u − uh)‖0 + ‖p − ph‖0) ≤ C4h
2.

2.3 The Scalar Auxiliary Variable Approach

This subsection develops the equivalent form of the Navier–Stokes equations based on the
scalar auxiliary variable approach. The finite element discretization is considered and the
corresponding stability and convergence analysis results are also presented.

Firstly, we introduce the following scaler energy variable

E(t) = C0 + 1

2
‖u(x, t)‖20, (12)

where C0 > 0 is a fixed constant. Denote

S(t) = √
E(t). (13)

It follows from (13) and ∇ · u = 0 that problem (1) can be transformed into⎧⎪⎨
⎪⎩
ut − νΔu + ∇ p + S(t)√

E(t)
(u · ∇)u = f ,

∇ · u = 0,
St = 1

2S(t)

∫
Ω

(ut + S(t)√
E(t)

(u · ∇)u) · udx .
(14)

The Galerkin finite element method for (14) reads as: for all (vh, qh, sh) ∈ Xh ×Mh ×Rh ,

find (uh, ph, Sh) ∈ Xh × Mh × Rh with uh(0) = Phu0 and Sh(0) =
√
C0 + 1

2‖uh(0)‖20,
such that⎧⎨
⎩

(uht , vh) + a(uh, vh) − d(vh, ph) + d(uh, qh) + Sh (t)√
Eh(t)

b(uh, uh, vh) = ( f , vh),

(Sht , sh) = 1
2Sh(t)

(
(uht , uh) + Sh(t)√

Eh(t)
b(uh, uh, uh), sh

)
.

(15)

From (15), we can find the numerical solutions uh, ph and Sh , then the discrete scaler
energy variable Eh is obtained. Furthermore, from (12) it holds

Eh(t) = C0 + 1

2
‖uh(t)‖20. (16)

From the second equation of (15) and (5), one finds that

Sht = 1

2Sh
(uht , uh) with Sh(0) =

√
C0 + 1

2
‖uh(0)‖20.

This is an ODE, it is easy to obtain that

Sh(t) =
√
C0 + 1

2
‖uh(t)‖20. (17)
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Combining (16) and (17), problem (15) transforms into (11), by Theorem 2.2, we have

|S − Sh | =
∣∣∣
√
C0 + 1

2
‖u‖20 −

√
C0 + 1

2
‖uh‖20

∣∣∣ = 1

2

|‖u‖20 − ‖uh‖20|√
C0 + 1

2‖u‖20 +
√
C0 + 1

2‖uh‖20
≤ 1

4
√
C0

(‖u‖0 + ‖uh‖0)‖u − uh‖0 ≤ C4h
2, (18)

|Sht | = | 1

2Sh
(uht , uh)| = 1

2
√
C0 + 1

2‖uh(t)‖20
|(uht , uh)|

≤ 1

2
√
C0

‖uht‖0‖uh‖0 ≤ C4, (19)

∫ t

0
|Shtt |2ds ≤ 1

4C0

∫ t

0

(
‖uhtt‖20‖uh‖20 + ‖uht‖40 + 1

4C2
0

‖uht‖40‖uh‖40
)
ds ≤ C4. (20)

3 Fully Discrete Euler Implicit/Explicit-SAVMethod

In this section we consider the time discretization of the Galerkin finite element method with
the scalar auxiliary variable. We choose an integer N and define the time step Δt = T

N and
the discrete times tn = nΔt, n = 0, 1, .., N . The Euler implicit/explicit scheme applied to
the spatially discrete problem (15) consists of determining functions (un+1

h , pn+1
h , Sn+1

h ) ∈
Xh × Mh × Rh as solutions of the recursive linear equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(dtu

n+1
h , vh) + a(un+1

h , vh) − d(vh, p
n+1
h ) + Snh√

En
h
b(unh, u

n
h, vh) = ( f n+1, vh),

d(un+1
h , qh) = 0,

(dt S
n+1
h , sh) = 1

2Sn+1
h

(
(dtu

n+1
h , un+1

h ) + Snh√
En
h
b(unh, u

n
h, u

n+1
h ), sh

)
,

(21)

with dtϕ
n+1
h = ϕn+1

h −ϕn
h

Δt , ϕn
h takes unh or Snh , u

0
h = Phu0, f n+1 = f (tn+1), S0h =√

C0 + 1
2‖u0h‖20.

Based on the definition (16) of Eh , we have

En
h = C0 + 1

2
‖unh‖20 ≥ C0. (22)

Theorem 3.1 With f = 0, scheme (21) is unconditional energy dissipation in the sense that

|Sn+1
h |2 + |Sn+1

h − Snh |2 ≤ |Snh |2.

Proof Choosing vh = un+1
h Δt, qh = pn+1

h Δt and sh = 2Sn+1
h Δt in (21), adding them

together, using the fact 2(a − b, a) = |a|2 − |b|2 + |a − b|2, we have
|Sn+1

h |2 − |Snh |2 + |Sn+1
h − Snh |2

= Δt(dtu
n+1
h + Snh√

En
h

(unh · ∇)unh, u
n+1
h ) = −Δtν‖∇un+1

h ‖20 ≤ 0.

Then we finish the proof. ��
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Thanks to Theorem 3.1, we know that the total discrete energy of the Navier–Stokes
equations in Euler implicit/explicit-SAV scheme (21) is dissipative.

The following classical discrete Gronwall lemma can be found in [26,27].

Lemma 3.2 Let c and ak, bk, ck, dk, for integers k ≥ 0, be non-negative numbers such that

an + Δt
n∑

k=0

bk ≤ Δt
n−1∑
k=0

dkak + Δt
n−1∑
k=0

ck + c, ∀ n ≥ 1.

Then

an + Δt
n∑

k=0

bk ≤ exp(Δt
n−1∑
k=0

dk)(Δt
n−1∑
k=0

ck + c), ∀ n ≥ 1.

Theorem 3.3 Under the Assumptions (A1)-(A2), ∀0 ≤ m ≤ N, for problem (21) it holds

|Sm+1
h |2 +

m∑
n=0

|Sn+1
h − Snh |2 + 1

2
Δtν

m∑
n=0

‖∇un+1
h ‖20 ≤ M0, (23)

‖um+1
h ‖20 +

m∑
n=0

‖un+1
h − un‖20 + Δtν

m∑
n=0

‖∇un+1
h ‖20 ≤ M1, (24)

where M0=|S0h |2+Δt
2ν

∑m
n=0‖ f n+1‖20, M1=

(
‖u0h‖20+ 2γ0

ν
Δt

∑m
n=0‖ f n+1‖20

)
exp

(
4C2

3M
2
0

ν2C0

)
.

Proof Taking vh = un+1
h Δt, qh = pn+1

h Δt and sh = 2Sn+1
h Δt in problem (21), adding the

resulting equations together, we obtain

|Sn+1
h |2 − |Snh |2 + |Sn+1

h − Snh |2 + Δtν‖∇un+1
h ‖20 = ( f n+1, un+1

h )Δt

≤ Δt

2ν
‖ f n+1‖20 + ν

2
Δt‖∇un+1

h ‖20.

Eliminating the last term and summing from n = 0 to m, we obtain (23).
Choosing vh = 2un+1

h Δt, qh = 2pn+1
h Δt in problem (21), one finds

‖un+1
h ‖20 − ‖unh‖20 + ‖un+1

h − unh‖20 + 2Δtν‖∇un+1
h ‖20 + 2Δt

Snh√
En
h

b(unh, u
n
h, u

n+1
h )

= 2Δt( f n+1, un+1
h ). (25)

We can treat the trilinear term and right-hand side term as follows

|2Δt
Snh√
En
h

b(unh, u
n
h, u

n+1
h )| ≤ 2C3Δt

|Snh |√
En
h

‖unh‖L4‖∇un+1
h ‖L2‖unh‖L4

≤ 2C3Δt
|Snh |√
En
h

‖unh‖0‖∇unh‖0‖∇un+1
h ‖0

≤ ν

2
Δt‖∇un+1

h ‖20 + 2C2
3Δt

C0ν
|Snh |2‖unh‖20‖∇unh‖20,

|2Δt( f n+1, un+1
h )| ≤ 2Δt‖ f n+1‖0‖un+1

h ‖0 ≤ ν

2
Δt‖∇un+1

h ‖20 + 2γ0
ν

Δt‖ f n+1‖20.
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Combining above inequalities with (25), summing from n = 0 tom and using (22), one finds

‖um+1
h ‖20 +

m∑
n=0

‖un+1
h − unh‖20 + Δtν

m∑
n=0

‖∇un+1
h ‖20

≤ ‖u0h‖20 + 2γ0
ν

Δt
m∑

n=0

‖ f n+1‖20 + 2C2
3

C0ν
Δt

m∑
n=0

|Snh |2‖∇unh‖20‖unh‖20.

With the help of (23) and Lemma 3.2, we complete the proof (24). ��
Theorem 3.4 Under the Assumptions (A1)-(A2), ∀0 ≤ m ≤ N, for problem (21) it holds

‖∇um+1
h ‖20 + ν

2
Δt‖Ahu

m+1
h ‖20 +

m∑
n=0

‖∇(un+1
h − unh)‖20 + ν

2
Δt

m∑
n=0

‖Ahu
n+1
h ‖20 ≤ M2,

where M2 = (‖∇u0h‖20 + ν
2Δt‖Ahu0h‖20 + 2Δt

ν

∑m
n=0 ‖ f n+1‖20) exp

(
4C4

3M
3
0M1

ν4C2
0

)
.

Proof It follows from vh = −2Ahu
n+1
h Δt ∈ Vh, qh = 0 in the first equation of (21) that

‖∇un+1
h ‖20 − ‖∇unh‖20 + ‖∇(un+1

h − unh)‖20 + 2Δtν‖Ahu
n+1
h ‖20

= 2Δt
Snh√
En
h

b(unh, u
n
h, Ahu

n+1
h ) − 2Δt( f n+1, Ahu

n+1
h ). (26)

For the right-hand side terms, thanks to (22) and the Cauchy inequality, we have∣∣∣∣∣2Δt
Snh√
En
h

b(unh, u
n
h, Ahu

n+1
h )

∣∣∣∣∣
≤ 2C3Δt

|Snh |√
En
h

‖unh‖1/20 ‖∇unh‖0‖Ahu
n
h‖1/20 ‖Ahu

n+1
h ‖0

≤ ν

2
Δt‖Ahu

n+1
h ‖20 + 2C2

3

νC0
Δt |Snh |2‖unh‖0‖∇unh‖20‖Ahu

n
h‖0

≤ ν

2
Δt‖Ahu

n+1
h ‖20 + ν

2
Δt‖Ahu

n
h‖20 + 2C4

3

ν3C2
0

Δt |Snh |4‖unh‖20‖∇unh‖40,

|2Δt( f n+1, Ahu
n+1
h )|

≤ 2Δt‖ f n+1‖0‖Ahu
n+1
h ‖0 ≤ ν

2
Δt‖Ahu

n+1
h ‖20 + 2Δt

ν
‖ f n+1‖20.

Combining above inequalities with (26) and summing from n = 0 to m, we get

‖∇um+1
h ‖20 + ν

2
Δt‖Ahu

m+1
h ‖20 +

m∑
n=0

‖∇(un+1
h − unh)‖20 + ν

2
Δt

m∑
n=0

‖Ahu
n+1
h ‖20

≤ ‖∇u0h‖20 + ν

2
Δt‖Ahu

0
h‖20 + 2Δt

ν

m∑
n=0

‖ f n+1‖20

+Δt
m∑

n=0

2C4
3

ν3C2
0

|Snh |4‖unh‖20‖∇unh‖20‖∇unh‖20.

With the help of (23), (24) and Lemma 3.2, we obtain the desired results. ��
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Theorem 3.5 Under the Assumptions (A1)-(A2), ∀0 ≤ m ≤ N, for problem (21) it holds

‖Ahu
m+1
h ‖20 +

m∑
n=0

‖Ah(u
n+1
h − unh)‖20 + Δtν

m∑
n=0

‖A
3
2
h u

n+1
h ‖20 ≤ M3,

where M3 = (‖Ahu0h‖20 + 2Δt
ν

∑m
n=0 ‖ f n+1‖21) exp

(
4C2

3M0M2

ν2C0

)
.

Proof Taking vh = 2A2
hu

n+1
h Δt ∈ Vh, qh = 0 in the first equation of (21), one finds that

‖Ahu
n+1
h ‖20 − ‖Ahu

n
h‖20 + ‖Ah(u

n+1
h − unh)‖20 + 2Δtν‖A

3
2
h u

n+1
h ‖20

= 2Δt( f n+1, A2
hu

n+1
h ) − 2Δt

Snh√
En
h

b(unh, u
n
h, A

2
hu

n+1
h ). (27)

For the right-hand side terms, by (8), (22) and the Cauchy inequality, we have

∣∣∣∣∣2Δt
Snh√
En
h

b(unh, u
n
h, A

2
hu

n+1
h )

∣∣∣∣∣
≤ 4C3

3
Δt

|Snh |√
En
h

(
‖unh‖1/20 ‖Ahu

n
h‖3/20 + ‖∇unh‖0‖Ahu

n
h‖0

)
‖A2

hu
n+1
h ‖−1

≤ ν

2
Δt‖A

3
2
h u

n+1
h ‖20 + C2

3

νC0
Δt |Snh |2(‖unh‖0‖Ahu

n
h‖0 + ‖∇unh‖20)‖Ahu

n
h‖20,

|2Δt( f n+1, A2
hu

n+1
h )|

≤ 2Δt‖ f n+1‖1‖A2
hu

n+1
h ‖−1 ≤ ν

2
Δt‖A

3
2
h u

n+1
h ‖20 + 2Δt

ν
‖ f n+1‖21.

Combining above inequalities with (27) and summing from n = 0 to m we obtain

‖Ahu
m+1
h ‖20 +

m∑
n=0

‖Ah(u
n+1
h − unh)‖20 + Δtν

m∑
n=0

‖A
3
2
h u

n+1
h ‖20

≤ ‖Ahu
0
h‖20 + 2Δt

ν

m∑
n=0

‖ f n+1‖21

+ C2
3

νC0
Δt

m∑
n=0

|Snh |2(‖unh‖0‖Ahu
n
h‖0 + ‖∇unh‖20)‖Ahu

n
h‖20.

With the help of (23), Theorem 3.4 and Lemma 3.2, we finish the proof. ��
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4 Error Estimates of the Euler Implicit/Explicit-SAV Scheme

This section is devoted to establish the convergence results of fully discrete implicit/explicit-
SAV finite element scheme (21). Firstly, we discrete the Navier–Stokes equations (15) on
n + 1th time level to obtain⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(dtuh(tn+1), vh)+a(uh(tn+1), vh)−d(ph(tn+1), vh)+ Sh (tn+1)√
Eh (tn+1)

b(uh(tn+1), uh(tn+1), vh)

+d(uh(tn+1), qh) = ( f n+1, vh) + ( 1
Δt

∫ tn+1
tn

(tn − t)uhtt dt, vh),

(dt Sh(tn+1), sh) =
(

1
2Sh (tn+1)

(dtuh(tn+1) + 1
Δt

∫ tn+1
tn

(t − tn)uhtt dt, uh(tn+1)), sh
)

+( 1
2
√

Eh (tn+1)
b(uh(tn+1), uh(tn+1), uh(tn+1)), sh) + ( 1

Δt

∫ tn+1
tn

(tn − t)Shtt dt, sh).

(28)

Denote the errors

enu = uh(tn) − unh, enp = ph(tn) − pnh , enS = Sh(tn) − Snh .

The following error equations can be obtained by combining (21) with (28)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(dt en+1
u , vh) + a(en+1

u , vh) − d(en+1
p , vh) + Sh (tn+1)√

Eh (tn+1)
b(uh(tn+1), uh(tn+1), vh)

− Snh√
En
h
b(unh, u

n
h, vh) + d(en+1

u , qh) = ( 1
Δt

∫ tn+1
tn

(tn − t)uhtt dt, vh),

(dt e
n+1
S , sh) =

(
1

2Sh (tn+1)
(dtuh(tn+1), uh(tn+1)) − 1

2Sn+1
h

(dtu
n+1
h , un+1

h ), sh
)

+
(

1
2
√

Eh (tn+1)
b(uh(tn+1), uh(tn+1), uh(tn+1)) − Snh

2Sn+1
h

√
En
h
b(unh, u

n
h, u

n+1
h ), sh

)
+ 1

Δt

( ∫ tn+1
tn

(tn − t)Shtt dt + 1
2Sh (tn+1)

(
∫ tn+1
tn

(t − tn)uhtt dt, uh(tn+1)), sh
)
,

(29)

Lemma 4.1 Under the Assumptions (A1)–A2) and e0u = 0, for all m ≥ 1, we have

‖em+1
u ‖20 +

m∑
n=0

‖en+1
u − enu‖20 + ν

2
Δt‖∇em+1

u ‖20 + ν

2
Δt

m∑
n=0

‖∇en+1
u ‖20

≤ C5

(
Δt2 + Δt

m∑
n=0

|enS |2
)

,

where C5 > 0 is a constant depending on the data ν,Ω,C1,C2,C3,C4 and T , which may
take different values at its different places.

Proof Taking vh = 2en+1
u Δt, qh = 2en+1

p Δt in problem (29), we have

‖en+1
u ‖20−‖enu‖20+2Δt

Sh(tn+1)√
Eh(tn+1)

b(uh(tn+1), uh(tn+1), e
n+1
u )−2Δt

Snh√
En
h

b(unh, u
n
h, e

n+1
u )

+2Δtν‖∇en+1
u ‖20 + ‖en+1

u − enu‖20 = 2(
∫ tn+1

tn
(tn − t)uhtt dt, e

n+1
u ). (30)

For the right-hand side term, by the Hölder inequality, one finds∣∣∣∣2
(∫ tn+1

tn
(tn − t)uhtt dt, e

n+1
u

)∣∣∣∣ ≤ ν

4
Δt‖∇en+1

u ‖20 + 4γ0
ν

Δt2
∫ tn+1

tn
‖uhtt‖20dt .
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For the trilinear terms, we have

2Δt
∣∣∣ Sh(tn+1)√

Eh(tn+1)
b(uh(tn+1), uh(tn+1), e

n+1
u ) − Snh√

En
h

b(unh, u
n
h, e

n+1
u )|

= 2Δt
∣∣∣b(uh(tn+1), uh(tn+1), e

n+1
u ) − b(uh(tn), uh(tn), e

n+1
u ) + b(uh(tn), uh(tn), e

n+1
u )

−b(unh, u
n
h, e

n+1
u )+ enS√

Eh(tn)
b(unh, u

n
h, e

n+1
u )+Snh

( 1√
Eh(tn)

− 1√
En
h

)
b(unh, u

n
h, e

n+1
u )

∣∣∣.
By the Taylor expansion, (6), (7) and (22), we have

2Δt
∣∣∣b(uh(tn+1), uh(tn+1), e

n+1
u ) − b(uh(tn), uh(tn), e

n+1
u )

∣∣∣
= 2Δt2

∣∣∣b(uht (tn), uh(tn+1), e
n+1
u ) + b(uh(tn), uht (tn), e

n+1
u )

∣∣∣
≤ 2C3Δt2‖uht‖0(‖Ahuh(tn+1)‖0 + ‖Ahuh(tn)‖0)‖∇en+1

u ‖0
≤ ν

4
Δt‖∇en+1

u ‖20 + 8C2
3

ν
Δt3‖uht‖20(‖Ahuh(tn+1)‖20 + ‖Ahuh(tn)‖20),

2Δt
∣∣∣b(uh(tn), uh(tn), en+1

u )−b(unh, u
n
h, e

n+1
u )

∣∣∣=2Δt
∣∣∣b(enu , uh(tn), en+1

u )+b(unh, e
n
u , e

n+1
u )

∣∣∣
≤ 2C3Δt‖∇en+1

u ‖0‖enu‖1/20 ‖∇enu‖1/20 (‖∇unh‖0 + ‖∇uh(tn)‖0)

≤ ν

4
Δt‖∇en+1

u ‖20 + ν

2
Δt‖∇enu‖20 + 8C4

3

ν3
Δt(‖∇unh‖20 + ‖∇uh(tn)‖20)2‖enu‖20,

2Δt | enS√
Eh(tn)

b(unh, u
n
h, e

n+1
u )| ≤ 2C3√

C0
Δt |enS |‖∇unh‖0‖∇en+1

u ‖0‖∇unh‖0

≤ ν

8
Δt‖∇en+1

u ‖20 + 8C2
3

ν
Δt

|enS |2
C0

‖∇unh‖40,

2Δt |Snh (
1√

Eh(tn)
− 1√

En
h

)b(unh, u
n
h, e

n+1
u )|

= 2Δt |Snh | |En
h − Eh(tn)|√

Eh(tn)
√
En
h (

√
Eh(tn) + √

En
h )

|b(unh, unh, en+1
u )|.

Based on the definitions of En
h , Eh(tn) and the following fact that

|En
h − Eh(tn)| = 1

2
(‖unh‖20 − ‖uh(tn)‖20) ≤ ‖enu‖0

(√
En
h + √

Eh(tn)
)
,

one finds

2Δt |Snh (
1√

Eh(tn)
− 1√

En
h

)b(unh, u
n
h, e

n+1
u )| ≤ 2C3

C0
Δt |Snh |‖enu‖0‖∇en+1

u ‖0‖∇unh‖20

≤ ν

8
Δt‖∇en+1

u ‖20+
8C2

3

C2
0ν

Δt |Snh |2‖∇un‖40‖enu‖20.

Combining above inequalities with (30), summing from n = 0 to m, using Lemma 3.2 and
Theorems 3.3–3.4, we finish the proof. ��
Lemma 4.2 Under the Assumptions (A1)-(A2) and e0u = 0, for all m ≥ 0, it holds

ν‖∇em+1
u ‖20 + Δt

m∑
n=0

‖dt en+1
u ‖20 ≤ C5

(
Δt2 + Δt

m∑
n=0

|enS |2
)
.
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Proof Taking vh = 2dt en+1
u Δt ∈ Vh, qh = 0 in problem (29), one finds

ν(‖∇en+1
u ‖20 − ‖∇enu‖20 + ‖∇(en+1

u − enu)‖20) + 2Δt‖dt en+1
u ‖20

−2Δt
Snh√
En
h

b(unh, u
n
h, dt e

n+1
u ) + 2Δt

Sh(tn+1)√
Eh(tn+1)

b(uh(tn+1), uh(tn+1), dt e
n+1
u )

= 2

(∫ tn+1

tn
(tn − t)uhtt dt, dt e

n+1
u

)
. (31)

For the trilinear terms and right-hand side term, we can treat them as follows

2Δt | Snh√
En
h

b(unh, u
n
h, dt e

n+1
u ) − Sh(tn+1)√

Eh(tn+1)
b(uh(tn+1), uh(tn+1), dt e

n+1
u )|

= 2Δt
∣∣∣ Snh − Sh(tn)√

En
h

b(unh, u
n
h, dt e

n+1
u ) − b(enu , u

n
h, dt e

n+1
u ) − b(uh(tn), e

n
u , dt e

n+1
u )

+(b(uh(tn) − uh(tn+1), uh(tn), dt e
n+1
u ) + b(uh(tn+1), uh(tn) − uh(tn+1), dt e

n+1
u )

+Sh(tn)(
1√
En
h

− 1√
Eh(tn)

)b(unh, u
n
h, dt e

n+1
u )

∣∣∣
≤ 2Δt

∣∣∣ enS√
En
h

b(unh, u
n
h, dt e

n+1
u ) − b(enu , u

n
h, dt e

n+1
u ) − b(uh(tn), e

n
u , dt e

n+1
u )

∣∣∣
+2Δt2

∣∣∣(b(uht (tn), uh(tn), dt en+1
u ) + b(uh(tn+1), uht (tn), dt e

n+1
u )

∣∣∣
+2Δt

|Sh(tn)|‖enu‖0√
En
h

√
Eh(tn)

|b(unh, unh, dt en+1
u )|

≤ 4

5
Δt‖dten+1

u ‖20 + 5C2
3

C0
‖∇unh‖20‖Ahu

n
h‖20Δt |enS |2

+5C2
3

C2
0

|Sh(tn)|2‖∇unh‖20‖Ahu
n
h‖20Δt‖enu‖20

+5C2
3 (‖Ahu

n
h‖20 + ‖Ahuh(tn)‖20)Δt‖∇enu‖20 + 5C2

3Δt3‖∇uht‖20(‖Ahuh(tn)‖20
+‖Ahuh(tn+1)‖20),
2

∣∣∣∣
(∫ tn+1

tn
(tn − t)uhtt dt, dt e

n+1
u

)∣∣∣∣ ≤ 1

5
Δt‖dt en+1

u ‖20 + 5Δt2
∫ tn+1

tn
‖uhtt‖20dt .

Combining above inequalities with (31), summing from n = 0 to m, using Lemmas 3.2, 4.1
and Theorems 3.3–3.5, we complete the proof. ��

Lemma 4.3 Under the Assumptions (A1)-(A2), e0S = 0 and Δt ≤ C0
C2
4+4

, for all m ≥ 0, it

holds

|em+1
S |2 + 1

C2
4 + 4

m∑
n=0

|en+1
S − enS |2 ≤ C5Δt2.
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Proof Choosing sh = 2en+1
S Δt in the second equation of problem (29), we have

|en+1
S |2 − |enS |2 + |en+1

S − enS |2

= Δten+1
S

( 1

Sh(tn+1)
(dtuh(tn+1), uh(tn+1)) − 1

Sn+1
h

(dtu
n+1
h , un+1

h )
)

+Δten+1
S

( 1√
Eh(tn+1)

b(uh(tn+1), uh(tn+1), uh(tn+1)) − Snh
Sn+1
h

√
En
h

b(unh, u
n
h, u

n+1
h )

)

+2en+1
S

∫ tn+1

tn
(tn − t)Shtt dt + en+1

S

Sh(tn+1)
(

∫ tn+1

tn
(tn − t)uhtt dt, uh(tn+1)). (32)

We are now in the position of treating the right-hand side terms one by one

∣∣∣Δten+1
S

( 1

Sh(tn+1)
(dtuh(tn+1), uh(tn+1)) − 1

Sn+1
h

(dtu
n+1
h , un+1

h )
)∣∣∣

= Δt |en+1
S |

∣∣∣( 1

Sh(tn+1)
− 1

Sn+1
h

)(dtuh(tn+1), uh(tn+1))

+ 1

Sn+1
h

[
(dtuh(tn+1), e

n+1
u ) + (dt e

n+1
u , un+1

h )
]∣∣∣

≤ Δt |en+1
S |

[ |en+1
S |

Sh(tn+1)S
n+1
h

‖uht‖0‖uh(tn+1)‖0

+ 1

Sn+1
h

(
‖uht‖0‖en+1

u ‖0 + ‖dt en+1
u ‖0‖un+1

h ‖0
)]

≤ 1

C0
Δt |en+1

S |2
(
‖uht‖0‖uh(tn+1)‖0 + 1

)
+Δt

2
‖uht‖20‖en+1

u ‖20+
Δt

2
‖dt en+1

u ‖20‖un+1
h ‖20,∣∣∣Δten+1

S

( 1√
Eh(tn+1)

b(uh(tn+1), uh(tn+1), uh(tn+1)) − Snh
Sn+1
h

√
En
h

b(unh, u
n
h, u

n+1
h )

)∣∣∣
= Δt |en+1

S |√
En
h

| Snh
Sn+1
h

|
∣∣∣Δtb(uh(tn), uh(tn), uht (tn)) + b(enu , uh(tn), uh(tn+1))

+b(unh, e
n
u , uh(tn+1)) + b(unh, u

n
h, e

n+1
u )

∣∣∣
≤ C3

C0
Δt |Snh ||en+1

S |
(
Δt‖∇uh(tn)‖0‖Ahuh(tn)‖0‖uht (tn)‖0 + ‖∇unh‖20‖∇en+1

u ‖0
+‖enu‖0(‖∇uh(tn)‖0 + ‖∇unh‖0)‖Ahuh(tn+1)‖0

)

≤ 3

2C0
Δt |en+1

S |2 + C2
3

2C0
Δt |Snh |2

(
Δt2‖∇uh‖20‖Ahuh‖20‖uht‖20 + ‖∇unh‖40‖∇en+1

u ‖20
+‖enu‖20(‖∇uh(tn)‖20 + ‖∇unh‖20)‖Ahuh‖20

)
,

∣∣∣ en+1
S

Sh(tn+1)

( ∫ tn+1

tn
(tn − t)uhtt dt, uh(tn+1)

)∣∣∣
≤ Δt

4C0
|en+1

S |2 + Δt2
∫ tn+1

tn
‖uhtt‖20dt‖uh(tn+1)‖20,
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∣∣∣2en+1
S

∫ tn+1

tn
(tn − t)Shtt dt

∣∣∣ ≤ 2|en+1
S |Δt

3
2 (

∫ tn+1

tn
|Shtt |2dt)1/2

≤ Δt

4C0
|en+1

S |2 + 4C0Δt2
∫ tn+1

tn
|Shtt |2dt .

Combining above inequalities with (32), summing from n = 0 to m, using Theorems 2.2,
3.3–3.5, Lemmas 3.2, 4.1–4.2 and the condition Δt ≤ C0

C2
4+4

, we complete the proof. ��

Combining Theorem 2.2, (18) with Lemmas 4.1–4.3 and the inf-sup condition, we finally
obtain the optimal error estimates of numerical solutions in Euler implicit/explicit-SAV
scheme (29) for the Navier–Stokes equations.

Theorem 4.1 Under the Assumptions of Lemmas 4.2 and 4.3, for all m ≥ 0 it holds

‖em+1
u ‖20 + |em+1

S |2 + h2(‖∇em+1
u ‖20 + Δt

m∑
n=0

‖en+1
p ‖20) ≤ C5(Δt2 + h4). (33)

5 Numerical Experiments

In this section, we present some numerical results to illustrate the performances of the fully
discrete Euler implicit/explicit-SAV finite element scheme (21) for the Navier–Stokes equa-
tions. Due to we treat the nonlinear terms explicitly, so we can split the considered problems
into a Stokes equations and a quadratic algebraic equation in one variable. It means that we
can solve problem (21) as follows:

(dtu
n+1
h , vh) + a(un+1

h , vh) − d(vh, p
n+1
h ) + d(un+1

h , qh)

= ( f n+1, vh) − Snh√
En
h

b(unh, u
n
h, vh), (34)

and

(dt S
n+1
h , sh) = 1

2Sn+1
h

(
(dtu

n+1
h , un+1

h ) + Snh√
En
h

b(unh, u
n
h, u

n+1
h ), sh

)
, (35)

with u0h = Phu0, S0h =
√
C0 + 1

2‖uh(0)‖20.
Firstly, we solve the Stokes equations (34) with unh, S

n
h and for all n ≥ 0.

Secondly, taking vh = un+1
h Δt, qh = pn+1

h Δt and sh = 2Sn+1
h Δt in (21), one gets

2(Sn+1
h )2 − 2Sn+1

h Snh = Δt( f n+1, un+1
h ) − νΔt‖∇un+1

h ‖20. (36)

Solving the equation (36) with the obtained un+1
h and the quadratic formula.

Finally, we present some computational results to confirm the established theoretical
results and show the performances of the considered numerical scheme (21). The partition
of domain Ω uses the triangle mesh with stable MINI element for the velocity and pressure.
The mesh is obtained by dividingΩ into squares and then drawing a diagonal in each square.
Set Ω = [0, 1] × [0, 1], the viscosity parameter ν = 1 the final time T = 1 and choose
the following analytical solutions for the velocity u(x, t) = (u1(x, t), u2(x, t)) and pressure
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Fig. 1 The computed results of implicit/explicit-SAV scheme of vertical velocity profiles (x=0.5)with different
Re. a Re = 1000, b Re = 2500, c Re = 5000
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Fig. 2 The computed results of implicit/explicit-SAV scheme of horizontal velocity profiles (y = 0.5) with
different Re. a Re = 1000, b Re = 2500, c Re = 5000

p(x, t)

u1(x, t) = 10x2(x − 1)2y(y − 1)(2y − 1) exp(−t),

u2(x, t) = −10x(x − 1)(2x − 1)y2(y − 1)2 exp(−t),

p(x, t) = 10(2x − 1)(2y − 1) exp(−t).

The computational results of Euler implicit/explicit-SAV scheme (21) are presented in
Table 1 to verify the established results of Theorem 4.1. From these data, we can see that the
convergence orders of velocity in L2- and H1-norms are 2 and 1, respectively, which confirm
the provided theoretical findings (33) well.

The second example is a classical benchmark model: the lid-driven cavity problem. In this
test, we consider the incompressible lid-driven cavity flowproblemdefined on the unit square.
Setting f = 0 and the boundary conditionu = 0 on [{0}×(0, 1)]∪[(0, 1)×{0}]∪[{1}×(0, 1)]
and u = (1, 0)T on (0, 1) × {1}. The mesh consists of triangular element and the mesh size
h = 1

60 , Δt = 0.001, C0 = 10000, the final time T = 500 and the Taylor-Hood element is
used to approximate the velocity and pressure. Figures 1 and 2 illustrate the velocity profiles
of the lid-driven cavity problem along x = 0.5 and y = 0.5 in numerical scheme (21).
Compared with the results provided by Erturk et al in [3] and Ghia et al in [4], we can see
that the results obtained by the fully discrete implicit/explicit-SAV scheme are agree with
Ghia’s and Erturk’s.

123



Journal of Scientific Computing (2022) 90 :1 Page 17 of 20 1

Ta
bl
e
1

N
um

er
ic
al
re
su
lts

of
E
ul
er

im
pl
ic
it/
ex
pl
ic
it
SA

V
sc
he
m
e
(2
1)

w
ith

C
0

=
1.
0,

Δ
t
=

h
2

1 h
‖u

−u
n h
‖ 0

‖u
‖ 0

R
at
e

‖∇
(u

−u
n h
)‖ 0

‖∇
u
‖ 0

R
at
e

‖p
−p

n h
‖ 0

‖p
‖ 0

R
at
e

|S−
Sn h

|
|S|

R
at
e

4
0.
42

67
15

0.
75

57
80

0.
06

73
75

7
0.
02

35
67

1

8
0.
12

70
10

1.
74

83
0.
35

09
46

1.
10

67
0.
02

11
67

5
1.
67

04
0.
00

62
88

28
1.
90

60

16
0.
03

22
64

7
1.
97

69
0.
16

83
30

1.
06

00
0.
00

65
57

15
1.
69

07
0.
00

17
33

24
1.
85

92

32
0.
00

80
19

32
2.
00

84
0.
08

27
56

6
1.
02

43
0.
00

21
02

86
1.
64

07
0.
00

04
46

07
2

1.
95

81

64
0.
00

19
93

29
2.
00

83
0.
04

11
01

1
1.
00

97
0.
00

07
06

24
2

1.
57

41
0.
00

01
12

82
8

1.
98

32

123



1 Page 18 of 20 Journal of Scientific Computing (2022) 90 :1

6 Conclusion

In this paper, a fully discrete implicit/explicit numerical scheme is considered for the incom-
pressible Navier–Stokes equations. Compared with the published papers [8,9,11,13,33], the
main feature of this work is developing the unconditional stability of numerical solutions
by introducing the scalar auxiliary variable, which enriches and supplements the theoretical
findings of finite element method. Some numerical results are also provided to show the
performances of the considered numerical scheme. The constant C0 in energy variable has
an important influence on the computational results, it should be chosen carefully and exper-
imentally, for example, one needs to choose C0 ≥ 104 in the lid-driven cavity problem with
high Reynold numbers. How to design a novel SAV factor independent of the constant C0 is
a meaningful topic, and is the goal of the following works.
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