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Abstract

Tensor robust principal component analysis (TRPCA), which aims to recover the underlying
low-rank multidimensional datasets from observations corrupted by noise and/or outliers, has
been widely applied to various fields. The typical convex relaxation of TRPCA in literature
is to minimize a weighted combination of the tensor nuclear norm (TNN) and the £-norm.
However, owing to the gap between the tensor rank function and its lower convex envelop
(i.e., TNN), the tensor rank approximation by using the TNN appears to be insufficient. Also,
the ¢1-norm generally is too relaxing as an estimator for the £p-norm to obtain desirable
results in terms of sparsity. Different from current approaches in literature, in this paper,
we develop a new non-convex TRPCA model, which minimizes a weighted combination of
non-convex tensor rank approximation function and the weighted £ ,-norm to attain a tighter
approximation. The resultant non-convex optimization model can be solved efficiently by the
alternating direction method of multipliers (ADMM). We prove that the constructed iterative
sequence generated by the proposed algorithm converges to a critical point of the proposed
model. Numerical experiments for both image recovery and surveillance video background
modeling demonstrate the effectiveness of the proposed method.
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1 Introduction

With the rapid development of science and technology, more and more complex datasets
are obtainable and appear to be multi-dimensional in nature [22,39]. For example, a color
image, consisting of three color channels (red, green, blue), is a three-dimensional data. A
greyscale video consisted of two pixel variables and a time variable is modeled as a three-
dimensional dataset, while a color video comprised of color images is characterized as a
four-dimensional dataset. Mathematically, multi-dimensional data can be formulated as a
tensor [22], which is a natural generalization of a matrix. Employing tensor models to handle
various multi-dimensional datasets has become increasingly valuable since the tensor repre-
sentation maintains the spatial structure information among individual entries and provides a
more suitable characterization for datasets. Quite often, many real-world multi-dimensional
datasets can be approximated by low dimensional subspaces due to the underlying correlation
inside the datasets [34]. Low rank properties not only greatly simplify the data representation
but also allow us to process multi-dimensional datasets more efficiently. Therefore, the study
of low-rank optimization problems under the tensor framework becomes not only important
but also critical in many applications.

As one of the important applications of the low-rank matrix optimization, robust principal
component analysis (RPCA) [4] has been widely used in many areas including subspace clus-
tering [24], machine learning [7], face recognition [13], etc. In the past, common approaches
by using RPCA for multi-dimensional datasets are to directly restructure the datasets into
matrices or vectors. However, such approaches result in the loss of structural information that
may be critical in data characterization. Recently, tensor robust principal component analy-
sis (TRPCA) has been developed [25,31] to handle the multi-dimensional datasets. Suppose
that we are given an observed tensor data X € RV *N2XN3 and know that it can be split as
X = L+ &, where L and £ are low rank and sparse parts of X, respectively. TRPCA is used
to extract £ and £ from X, its mathematical model can be formulated as

I}:lig rank(£) + All€llp, s.t. X =L+E, (L.1)
where X is a positive regularization parameter used to balance the low rank and sparse terms,
II€llo denotes the number of nonzero entries of £. The key to solve the above optimization
problem is to use a suitable tensor rank characterization. However, one of the major challenges
for the tensor lies in that the characterizations of the tensor rank are not always tractable.
Based on problems at hand, many tensor rank definitions have been proposed [8,15,22,36]
and have led to different tensor rank minimization models while each has its limitation and
applicable scope. For example, the CANDECOMP/PARAFAC (CP) rank [15] of a tensor
X, defined as the minimum number of rank-one tensors required to express X, is generally
NP-hard to compute [40,53]. Although many approaches have successfully recovered some
special low CP rank tensors (see e.g., [19]), it is often a challenge to determine the CP rank
and its best convex relaxation. The Tucker rank of the Mth-order tensor X is defined to be
an M-dimension vector whose i-th component is the rank of the mode-i unfolding matrix
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of X [8,22]. Liu et al. [25] introduced a tractable convex method for the Tucker rank tensor
completion problem by defining the sum of the nuclear norms (SNN) of all unfolding matrices
of the tensor. Numerical experiments on TRPCA by using SNN was presented in [29] by
Lu et al. However, the solution of the above model appears to be suboptimal since SNN is
not the convex envelope of the sum of ranks of all those unfolding matrices. The tensor train
(TT) rank [36] is composed by ranks of matrices formed by a well-balanced matricization
scheme, i.e., matricize the tensor along one or a few modes. Bengua et al. [1] developed a
TT rank tensor completion method for color images and videos. Yang et al. [45] applied the
TT nuclear norm (TTNN) to the TRPCA problem with good numerical results. However, the
performance of the TT-based methods is always unsatisfactory when the third-dimension of
the data is large (such as for the hyperspectral images).

Recently, the tensor singular value decomposition (t-SVD) developed by Kilmer et al. [20]
has attracted considerable interests. Based on the definition of tensor-tensor product (denoted
as “x "), t-SVD decomposes a tensor X’ into one f-diagonal tensor S multiplied by two
orthogonal tensors I/ and V: X = U S * VT . By using the discrete Fourier transform (DFT),
the t-SVD can be easily obtained by computing certain matrix SVDs in the Fourier domain.
With the framework of the t-SVD, Kilmer et al. provided a new tensor rank definition named
tubal rank [21]. Compared with other tensor decompositions, the t-SVD has been shown to
be more robust in maintaining the intrinsic correlative structure of the multi-dimensional data
[29]. Based on the t-SVD, Lu et al. [29] proposed the following TRPCA model by replacing
the tensor tubal rank with the tensor nuclear norm (TNN) (see Sect. 2 for the definition) and
the £o-norm with the £;-norm:

rgigllﬁll*+k||5||gl, st. X=L+E, (1.2)

where || L]« denotes the TNN of £ . However, this model has some important issues needed
to address in applications. First, the gap between the tensor rank function and its lower
convex envelop (i.e., TNN) may be large, especially when some of the singular values of
the original tensor are very large. The TNN minimization method (1.2) usually penalizes the
large singular values and leads to the loss of main information [14]. Also, the £;-norm is a
coarse approximation of the £o-norm, which usually leads to undesirable results.

Inspired by the success of the non-convex matrix rank minimization models [18,37], many
non-convex tensor rank minimization models have been proposed to improve the aforemen-
tioned approaches. For instance, Jiang et al. [16] proposed to use the partial sum of the
tensor nuclear norm (PSTNN) as the approximation for the tensor tubal rank. Cai et al. [2]
established a non-convex TRPCA model by introducing a t-Gamma tensor quasi-norm as
a non-convex regularization to approximate the tensor tubal rank. Beyond TRPCA, many
non-convex rank surrogates were proposed in the tensor completion (TC) problem, e.g.,
Laplace [43], Minimax Concave Penalty (MCP) [12,49], Smoothly Clipped Absolute Devi-
ation (SCAD) [12,49], Exponential-Type Penalty (ETP) [12], and Logarithmic [42]. The
advantage of non-convex approximation model is due to that it can capture the tensor rank
more accurately than the convex setting and thus can obtain a more accurate result than con-
vex approaches. For example, in [42], the logarithmic function based non-convex surrogate is
shown to be a more accurate approximation for the Tucker rank. In [43], the laplace function
based non-convex surrogate is shown to be a better measure of the tubal rank compared with
TNN.

In this paper, we mainly focus on the non-convex approach for the TRPCA problem.
Different from existing non-convex TRPCA models, we not only propose a non-convex
approximation for the tensor tubal rank but also develop a new and suitable non-convex char-
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acterization for the sparse constraint term. The properties and advantages of the proposed two
non-convex relaxations will be illustrated in Sect. 3 with more details. The main contributions
of this paper are summarized as follows:

(a) Inthis paper, we develop a feasible non-convex TRPCA model, in which a non-convex e? -
type approximation rank function is established for a more accurate rank approximation
under the tensor framework, while at the same time, a weighted £,-norm is developed
being better capture the sparsity of the noise term without requiring p to be too small.

(b) The corresponding alternating direction method of multipliers (ADMM) is constructed
to solve the optimization model, which can be divided into two sub-problems, in which
two sub-problems can be solved effectively by the generalized soft-thresholding (GST)
operator and local linearization minimization approach, respectively. We show that the
sequence generated by the proposed algorithm converges to a KKT stationary point.

(c) Extensive numerical experiments with several benchmark datasets are given to demon-
strate the robustness and the efficiency of the proposed model, compared with some
related existing approaches.

The rest of the paper is organized as follows. Related notations and definitions are given in
Sect. 2. In Sect. 3, the proposed non-convex TRPCA model is presented. Meanwhile, based
on the ADMM algorithm, we provide a detailed process for solving the proposed model. In
Sect. 4, we analyze the convergence of the proposed algorithm. The numerical results are
shown in Sect. 5. The paper ends with concluding remarks in Sect. 6.

2 Preliminaries

In this section, we first introduce some basic tensor notations used in this paper and then
present the t-SVD algebraic framework. More details about tensors and the t-SVD can be
found in [20,38].

2.1 Notation

The fields of real numbers and complex numbers are denoted by R and C, respectively.
Throughout this paper, scalars, vectors, matrices, and tensors are denoted by lowercase letters
(e.g., x), boldface lowercase letters (e.g., X), boldface capital letters (e.g., X), and boldface
calligraphy letters (e.g., X), respectively.

For a third-order tensor X, its (i, j, k)-th entry is denoted by X (i, j, k) or Xj;;. We use
Matlab notations X (i, :, :), X(:, i, :), and X(:, :, i) to denote the i-th horizontal, lateral, and
frontal slices of X', respectively. For simplicity, X (3, :, i) is denoted by X;. The (i, j)-th tube of
X, denoted by the Matlab notation X'(i, j, :), is a vector obtained by fixing the first two indices
and varying the third one. The inner product of two same size tensors X, ) € RNV1XN2xNs
is defined as (X,)) := ZlN:l] Zj\z] Z,ivi] X;jkYijk. The Frobenius norm, the ¢;-norm,
and the infinity norm of a third-order tensor X are defined as | X||f := (Zi,j,k |X,-jk|2)%,
1 X]le, := Zi,j,k | Xijkl, and [| X |loo := maX; jx |Xijkl, respectively.

For a third-order tensor X', we use X = fft(X, [ 1, 3) to denote the DFT along the third
dimension (by using the Matlab command fft).

- 1
Itis noted that the N3 x N3 DFT matrix Fy, is not unitary, but Fy, = «/TF N3 1S unitary.
3

In later theoretical analysis we see that Fy, may be replaced by the unitary matrix F N3 -
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2.2 Review of the t-SVD

The t-SVD was first proposed by Kilmer et al. [20] and has been widely used in TC [17,28,
35,41,43,47-49,51,52], image multi-view subspace clustering [46] and TRPCA [2,6,29].

For a third-order tensor X € RV *N2xNs five block-based operations bcirc(-), unfold(-),
fold(-), bdiag(-) and unbdiag(-) are defined as follows:

X Xy, X0
X X ... X3
beirc(X) = . . o,
_XN3 XN371 N Xl
- X,
X2
unfold(X) = | . |, fold(unfold(X)) = X,
_XN3
mX,
Xo
bdiag(X) = _ , unbdiag(bdiag(X)) = X.
L XN3

Definition 1 (t-product [20]) The t-product X % ) of X € RN *N2xN3 apd ) g RN2xNax N3
is a tensor Z € RV XN4xN3 given by

Z = X % Y = fold(bcirc(X) unfold())). @2.1)

Remark 1 Different from direct unfolding the tensor X’ along the third mode, the block
circulant matrix beirc(X’) of X keeps the order of frontal slices of X" in a circulant way that
maintains the structure of X" in terms of the frontal direction.

It is well known that the circulant matrix can be diagonalized by DFT [20], Kilmer et al. gave
a similar property for block-circulant matrix as follows.

Property 1 [20] For a tensor X € RN >*N2XN3 jrs block circulant matrix beirc(X) can be
block-diagonalized by DFT as follows:

bdiag(¥) = (FM ® INI) beirc(X) (FNK ® IN2> , 2.2)

~ 1
where Fy, = ﬁF N3» Fvy is an N3 x N3 DFT matrix, F’I‘\,3 denotes its conjugate transpose,

the notation @ represents the Kronecker product, and Iy is an N x N identity matrix.
Remark 2 From Property 1, t-product Z = X % ) in (2.1) implies
unfold(Z) = bcirc(X) unfold()’)
= (Fy, @ Ly) ((Frs @ I beire(X) (Fy, @1Ty,) ) ((Fr, @ Ly,) unfold())
= (Fy, ® Iy,) bdiag(:X) unfold (D).
(2.3)
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Then left multiplying both sides of (2.3) by Fy, ® Iy, gives
unfold(£) = bdiag(X) unfold(Y). (2.4)
The equation (2.4) is equivalent to
Zi =X Yy, k=1,...,Ns, (2.5)

which means the t-product (2.1) in the original domain can be computed by the matrix multi-
plication of the frontal slices in the Fourier domain. This greatly simplifies the computational
procedure.

Remark 3 [29] Since Fy, ® Iy, and F}, ® I, in (2.2) are unitary matrices, it follows from
(2.2) that ‘

2 _ 1 ool D112
XN = E” bdiag(X) ||

Definition 2 (Identity tensor and f -diagonal tensor [20]) The identity tensor Z € RN1*N1x N3
is the tensor whose first frontal slice is an identity matrix and other frontal slices are all zeros.
A tensor is called f-diagonal if each frontal slice is a diagonal matrix.

Definition 3 (Tensor transpose and orthogonal tensor [20]) The transpose of a tensor X’ €
RN1XN2XN3 g the tensor X7 e RM2 XN *N3 gbtained by transposing each frontal slice of X
and then reversing the order of transposed frontal slices 2 through N3, i.e., unfold(xX7) =
X1, Xn;, - . X517, A tensor Q € RNXNixNs g orthogonal if it satisfies Q ol =

oTx9=1.

Based on the above definitions, we now restate the factorization strategy [20] for the
third-order tensor.

Lemmal (t-SVD) For X € RN *N2XNs the +-SVD of X is given by
X=UxSxVT, (2.6)

where Y € RNVNIXN; ) e RN2XN2xXN3 e orthogonal tensors, and S € RNV XN3 g gp
f-diagonal tensor.

Remark 4 According to Remark 2, we have Xk = fjkék\?,{ fork = 1,..., N3, where Xk,

ﬁk, Sk and Vk are frontal slices of X S U R S and f}, respectively. This means the t-SVD can
be obtained by computing several matrix SVDs in the Fourier domain.

Definition 4 (Tensor tubal rank [21]) Given a tensor X € RN1XN2xN3 its tybal rank is
defined as the number of nonzero singular tubes of the f-diagonal tensor S, i.e.,

rank, (X) = #{i, S@i,i,:) # 0}, Q@.7)

where S comes from the t-SVD of X = 1/*S*VT and the notation “#” denotes the cardinality
of a set.

Definition 5 (7-SVD based TNN [29]) The TNN of X € RN1*N2xNs is ojven by

1 N3 1 N3 min{N1,N2}
1¥le = 5 D Xl = v > 2 X, (2.8)
k=1 k=1 i=1
where o; (Xk) is the i-th singular value of matrix Xk and o (Xk) > > amin{Nl,Nz}()A(k)

forallk =1,..., N3.
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3 The TRPCA Model and Algorithms

In this section, we first give the motivation and then propose a non-convex TRPCA model
based on some non-convex functions. Finally, an algorithm for solving the model is estab-
lished.

3.1 Motivation

e Motivation for the low rank part:

In this paper, to overcome the disadvantages of the model (1.2), we propose to use a non-
convex but smooth e”-type function to approximate the tensor tubal rank. The e”-type
function used in [37] is for the matrix rank approximation, and we will adopt it under t-
SVD framework for tensor rank approximation. The e? -type function is given by

erx
$p(x)=——, x €0,+00), (3.1
Yy +x
where y is a positive parameter. It can be seen that ¢ is a smooth, monotonously increasing
and concave function. Using the e” -type function ¢ (x), a non-convex surrogate for an M x N
matrix X is given by [37]:

min{M,N}
IXller := Y ¢@(X)), y>0, (3.2)
i=1
where 0; (X) is the i-th singular value of X and 01(X) > -+ > opin{m,n)(X). For a third-
order tensor X € RN *N2xN3 e define a non-convex surrogate for the tubal rank as

N3

1 A
[XNi—er = I > IXkller. v >0, (3.3)
k=1

where X is the k-th frontal slice of X = fft(X, [ ], 3) = [Xi] - - - | Xy, ] obtained by applying
FFT on X along the third mode.

Now we explain why we adopt the e” -type function as the non-convex surrogate for the
tubal rank. We randomly select twenty color images from Berkeley Segmentation Dataset
(BSD) [33], the size of each image is 321 x 481 x 3 or 481 x 321 x 3. For each image,
in Fig. 1a, we show the comparison of associated results coming from the tensor tubal rank
given by (2.7), the TNN given by (2.8), and the e -type approximation rank (y = 1.1) given
by (3.3). We also illustrate the distance between || - ||;—e», || - ||« and the tubal rank for each
image in Fig. 1b. It can be seen from Fig. 1 that the result obtained by (3.3) gives a tighter
approximation to the tensor tubal rank than that obtained by the TNN for each image. The
above comparison indicates that our proposed non-convex surrogate (3.3) is a more accurate
approximation of the tensor tubal rank.

The e” -type non-convex rank approximation function (3.3) has the following property.

Property2 Let X € RNN2XN3 Tpe oY type rank surrogate function (3.3) is unitarily
invariant, i.e., U % X % VT ||;—er = | X|li—er, where U € RN>NIXN3 gy ¢ RN2XN2xN3
are orthogonal tensors. In addition, lim, ¢ || X||;—.» = rank; (X).

Proof The proof of lim,, ¢ || X||;—er = rank, (X) is straightforward, we omit it here. Now
we show that the e” -type rank surrogate function (3.3) is unitarily invariant.
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Fig. 1 Comparison (3.3) with (2.7) and (2.8)

Let Z € R ™ be an orthogonal tensor. We first show that all frontal slices Zk k =
1,...,m) of Z are orthogonal matrices. Since Z x zT = zT « z = T, it follows from
Remark 2 that ZyZ!] = Z]Zy = I for k = 1,...,m. Because Z is an identity tensor,
according to the property of the Fourier transform, it is easy to see that ik is an identity
matrix fork =1, ..., m. Hence, Zk is an orthogonal matrix fork =1, ..., m.

According to Remark 2 and (3.3), we have

N3
1 A A A
td% 2 VT lher = = 5 10KV e (3.4)
k=1

Since U and V are orthogonal tensors, it follows that ﬁk and Vk are orthogonal matrices for
k =1, ..., N3. Therefore, by (3.2) and (3.3) we have

1 N3 1 N3
v k; 10XV v = v k; IXicller = 11X lr—er -
This proves the conclusion. O

e Motivation for the sparse constraint term:

It is well known that the £o-norm in the sparse constraint term is usually relaxed by using the
£1-norm due to its simplicity. The obtained solution by the £;-norm minimization is often
suboptimal to the original £p-norm minimization since the £1-norm is a coarse approximation
of the £p-norm. Some non-convex surrogates of £o-norm have been applied in the fields of
signal and image processing to find the sparsest solution (see e.g., [5,44]), but the non-convex
surrogates of £o-norm in the sparse constraint term in tensor case have not been well studied.
Recently, £,-norm (0 < p < 1) was proposed to as an approximation for the £o-norm by
using small positive p in TRPCA problem [6]. Numerical tests given by [6] showed that
non-convex £ ,-norm outperformed £-norm. However, small p will lead to the insensitivity
to tensor elements, for example, 10007 ~ 0.17 when p is small enough, and larger elements
will be misclassified as small entries in later optimization process (e.g., see Step 1 of (3.8)).
Inspired by the idea that sparsity enhancement by using the weighted £ | -norm minimization in
signal recovery [3,50], we propose to use the weighted £ ,-norm as the non-convex relaxation
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of the £g-norm. Given a tensor X € RN *N2XNs the weighted £p-norm for X is given by

1

P

1Xlw.e, = D WiplXipl)” | .~ 0<p<1, (3.5)
i,jk
where WV is a nonnegative weight tensor. It is not difficult to see

lim lim  lim X[, = [X]o-

—1e—=>0..
P Wijk— T j e

This clearly implies that the introduction of the weighted £,-norm (3.5) can allow p not
necessarily to be too small but maintain the sparse characteristics.

3.2 The Proposed Model

Equipped with the two non-convex surrogates given by (3.3) and (3.5), we establish the
following non-convex TRPCA model:

. P _
min [ Clier + HEWy ., st X =L+E, 3.6)

where the weight tensor ¥V will be updated in each iteration and the (i, j, k)-th entry of W

in the (k + 1)-th iteration is ———— here &} is the (i, j, k)-th entry of € in the k-th
|kl + €
iteration and € is a small positive constant.

We develop the ADMM to solve the proposed model (3.6). The augmented Lagrange

function of (3.6) is given by
B

Lp(L. &, M) = Ll—er + A IENYy ,, = (X = L= € M) + 21X = L = €]}
, 8 M, 1 (3.7)
= ILlmer + 2 NE Y, + FNX = £= € = T2 = 52 (M M),

where M is the Lagrange multiplier and S is the penalty parameter. According to the frame-
work of ADMM, L, £, and M are alternately updated as:

Bi
2

- M
IBx — EII% with Bk:X_gk_Tk’
k

Step 1: &1 = argg‘in)‘”g”\ljwlp +

1 1 P M
Step 2 : Ly = argmin— || L|l;—ey + | A — Ll with Ay =X — &y — —,
£ Br 2 Br
Step 3 : Myy1 = My + B (Liy1 + Eky1 — X).
(3.9)

1) Update &: Before giving the solution of Step 1, we take a look at the £,-norm mini-
mization problem for scalars which was given in [54].

Lemma 2 [54] For the given p (0 < p < 1) and A > 0, an optimal solution of the following
optimization problem

|
argmini(y — x>+ Alx|? (3.9)
X
is given by the generalized soft-thresholding (GST) operator, which is defined as

0, iflyl <775,
GST(y, %, p) = | gGST . Gst
sgn(y) - S0 (v, M), i Iyl > 7,20 (),
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1 —1
where sgn(y) denotes the signum function, ‘L'[?ST X)) = QA1 = p))ZP+Aip 21(1 — p)) =
is a threshold value, and SgST(y, M) can be obtained by solving the following equation

ST (y. ) =y +4pST¥ (. AP~ =0. (3.10)

The iterative algorithm for solving (3.9) is summarized in Algorithm 1 [54].

Algorithm 1 Generalized Soft-Thresholding (GST) [54]
Input: y, A, p, J =2or3.
1

p—1

Ity = QA1 = p) 2P +ap 2A(1 = p)) =P
2:if |y| < 7 then

3 GST(y,A, p)=0
4: else

50 k=0,xk=y|

6: for k=0,1,..., J do

7o aE D =y —ap @)yt
8: k=k+1

9: end for

10:  GST(y, A, p) = sgn(y)x®
11: end if

Output: GST(y, A, p)

According to Step 1, the (k + 1)-th iteration is
. P B 2
8l.(]’fk“‘1) - ar%mmk (Wi(JI.(,ZIE,-jkI) + > (bl(ﬁ - Ei.,-k> .
ijk

From Lemma 2, the solution with respect to &1 is given by

WP
GST | By, —*, p ], (3.11)
Bk

p
where W,f is a weight tensor whose (i, j, k)-th entry is <(k)l) , € is a small positive
&kl €

constant.
2) Update £: We first give the global convergence results for the descent algorithm [30],
which will be used to analyze the convergence of the fixed point inner iteration in Theorem

1.

Lemma 3 (Global Convergent Theorem in Chapter 7.7 of [30]) Let A be an algorithm on a
real finite-dimensional metric space X and suppose that, for a given xo, the sequence {x; )72
is generated by xp+1 € A (x) . Let a solution set ' C X be given and suppose

(i) all points x are contained in a compact set S C X,
(ii) there is a continuous function Z on X such that if x ¢ T then Z(y) < Z(x) for all
y € AWx); ifx € I then Z(y) < Z(x) forall y € A(x),
(iii) the mapping A is closed at points outside T,

then the limit of any convergent subsequence of xy is a solution.

The solution of the £-subproblem is given by the following theorem.
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Theorem 1 Let Ay = Uy x X * VkT be the t-SVD of Ay € RN >N2XNs Then an optimal
solution of the following minimization

1
arg min A — L%+ Ll er s (3.12)
L

isgivenby L* = UpxSk *VkT, where S, € RNN2XNs s an f-diagonal tensorand t = --. And

Br*
let 3 =[S 1= fft(Zi, [1.3), S = 81 1 = (S, [1.3), 1 < n < min [Ny, Na},

1 <i < N3. Then S',(lkr)l ; IS the limit point of the following fixed point inner iteration

ki) _ e ver )
§Ud+D _ (z R A (3.13)
n,n,i n,n,i ok, \2 ’

v+ S/,

n,n,i

where (x)1 = max {x, 0} and 3'20”01) =0.

Proof According to the Remark 3 and (3.3), the optimization problem (3.12) is equivalent to

N3
! 1 4 . A
arg min - (Z (EnAk,i — LiillF + 7Lk ||ev))

Ly i=1

N A ,
& argmin [Ag; = Legllf + Tlileiller, i=1,..., N3, (3.14)
Ly

where Ak,i and I:k,,' denote the i-th frontal slice of Ak and ﬁk, respectively. That is to
say, the tensor optimization problem (3.12) in original domain is transformed to N3 matrix
optimization problems (3.14) in Fourier domain.

Since Ay = Uy * X, *VkT, by Remark 4, we have Ak,i = ﬁkgiﬁk,inT’i fori =1,..., N3.

If ﬁ;‘ minimize (3.14), by the von Neumann trace inequality for singular values (see Theorem
1 of [18]), we have . .
L =UiSeiVi,, i=1,...,Ns, (3.15)

where gk,,- = [Sr(fi,i] is the i-th frontal slice of 3k, and

1 . Y
= argmin= (o — Eff,)q,i)z + ri (3.16)

5 .
>0 2 y+o

n,n,i

Since the objective function in (3.16) is a combination of concave and convex functions,
following the DC programming algorithm [10,18], we use a local minimization method
to solve it. That is to say, we iteratively optimize (3.16) by linearizing the concave term

Y
¢(o) = e+0 at each iteration, i.e., for the /-th inner iteration, we use the following
y+o
first-order Taylor expansion (with Big “O” truncation error) to approximate ¢ (o ):
okl yer Skl okl
$(0) =¢S5+ — g5 (@ =850 + 00 = 557,
=+ S,

where S‘r(lknl)l is the solution of (3.16) obtained in the /-th inner iteration and S’,ionol) = 0.
Therefore, (3.16) can be solved by iteratively solving the following optimization problem:

A 1 A 4

k141 . k ve

Sr(z,nj ) = arg mlIl*(O' — Efl,r)l,i)z + TTM|O'|. (317)
o>0 ()/ + Sn,n,i)
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According to the soft-thresholding operator [9], (3.17) has a closed-form solution

atkI+1) & (k) yer
Sn,n,i = (Zn,n,i - r(y_i_g(k,l))z> :
+

n,n,i
Let
& & (k ye’ & & (k
g =25, — 17— » 0=8.. <5,
(y + Sn,n,i) 4

Since ¢ (o) is concave in o, at each iteration its value decreases by an amount more than the
decrease in the value of the linearized objective function. Following Lemma 3, the iteration

S'flk;f?rl) = g(S’,(lk;l])i) converges to the local minimum S’r(lkr)l ; after a number of iterations. We
thus complete the proof. O

By summarizing the aforementioned solving process, we show the pseudocode of the
developed ADMM algorithm for solving Model (3.6) in Algorithm 2.

Algorithm 2 Solve the non-convex TRPCA Model (3.6) by ADMM

Input: The observed data X' € RN1XN2 XN, 3; balanced parameter A; error tolerance fol; maximum iteration
K ; parameters p, y, and €.
Initialize: £o = £y = Mo =0, Bo = 1074, Bax = 1019, and n = 1.1.

1: while not converged and k < K do

2§ r (5, 2 ith By = & — £ — 2 P LY
: k+1 < GS k,W,p with by = - k—Wand (Wk>ijk_ m 5
tJ

1 . M

3 Ligg < arg[r:nmi\l.Ak — LH%: + T L=y with Ay = X — &y — Tkk and T = ﬁl—k;
4 Mgy = Myt B (L1 + Eyr — A
5 Bik+1 < min {nBi, Bmax};
6:  Check the convergence conditions:

max { | L1 — Lilloo: I1€k+1 — Eklloos |1Lk41 + Exg1 — Xlloo} < 10l (3.18)
7. k=k+1.
8: end while

Output: The low rank tensor £ and the sparse tensor £.

3.3 Computational Complexity

Suppose that after finite iterations, we can get optimal solutions of the fixed point iterations
(3.10) and (3.13), respectively. Then the computation cost of the proposed algorithm mainly
lies in updating £. To update £, in each iteration, we need to compute the FFT along the third
mode, calculate singular values of all frontal slices by using SVD, and compute the inverse
FFT along the third mode.
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As we all know, for an M| x M, matrix, the computational complexity of the SVD is
O(M{M> min {M;, M>}); the computational complexity of the FFT on an M-dimension
vector is O (M log(M)).

Given an observed tensor X € RM*N2XNs To ypdate £ € RV >*N2XN3 we first cal-
culate £ = fft(L, [ 1, 3) along the third mode and the computational complexity of this
process is O (N1 N N3 log(N3)); then we compute the SVD of matrices I:,~ € RNixMN2(j =
1, ..., N3) in the Fourier domain and it will take O(NjN>N3 min{Ny, N»}); finally, cal-
culating £ = iﬁt(ﬁ,[ ], 3) along the third mode will take O(NiN2N3log(N3)). In
summary, in each iteration, the total computational complexity of the proposed Algorithm
is O(2N1 Ny N3 log(N3) + N1 N2 N3 min {Ny, Na}). For simplicity, if Ny &~ N, & N3 = N,
the cost in each iteration is O (N4).

4 Convergence Analysis of the Proposed Algorithm

In this section, we provide a theoretical guarantee for the convergence of the developed
ADMM Algorithm 2. Before giving the convergence analysis, we first show that the sequences
(L}, {Ek}, {My} generated by Algorithm 2 are bounded.

Lemma4 The sequence { My} generated by Algorithm 2 is bounded.
Proof According to (3.8), at the (k + 1)-th iteration, we have
IMestllE = IMi + B (Crtr + Er1 — X) |17

1
= Bl My + Lit1 + Exp1 — X|%

B
= B A — L1 |I%
BN A 12
= KN A — Liar
N3;|| ki — Lisrill%
g &
= 3 100 (B — 8ea) VL%
N3z 1
,62 N3
k < Q 2
=N Z 12k — Skill%
N3 min{N,N>}

2
:f]’;z (B =80 @.1)

n=1

where the fourth equality holds due to Remark 3, the fifth one follows from Theorem 1, the
sixth one holds due to the unitary invariance of the Frobenius norm.
Recall (3.16) in Theorem 1

1 elo
k . k
SIS:)H _argmlnf(a—E,(lzu) + 77—

o>0 2 )/+G
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we thus get the following KKT conditions:

* ®) e’y _
(Snnt _Ennt>+tW —n=0,
( + Sn,n,t)
(k)
55, =0 42
Sn,n,l — 0’
n =0,

where p is the Lagrange multiplier.
Ifu= sk = 0, we have

nnl
2
2
(84, — 58, = (88, ) = [ e | =
n,n,i n,n,i 2 - 2
( S(k) ) Y
nnz
_n ¢
Ifu=0, Sn’n,i;éo,wehave
2
2 eV re?)?
(30, -s0 Y = || <5
( S(k) ) 4
}’l}’ll
(k) k) e’ _ : s e
Ifu#0,8,,; =0, then 2,““ +7— —pu=0.Thismeans X", ;, =7— — u <
Y "’ Y

1124
—— dueto y, t, u are positive numbers. Noting that En oy is the n-th singular value of Ak is

A eV
then 0 < E}ikr)li < —holdsforalli =1,...,N3andn = 1, ..., min {N;, N»}. That is to
., v

. . (k) te’)?
say, in this case, (Z ) has an upper bound 5
Y

I‘lﬂl

2 re)?
As discussed above, we always have (E,(lk,)l i S(k) ) < % This implies that (4.1)
Y

has an upper bound

N1, N>}
mini N2} (te?)? e

2 N3
"Z Z v =min{N1,N2}.7

which proves the lemma. O
Lemma 5 Both sequences { Ly} and {E;} generated by Algorithm 2 are bounded.
Proof According to (3.7) and Step 3 in (3.8), we have
Lg, (Li, Exy Mi)
=Lg._, (Li, E, Mr—1)
B R L RyoAREN
B + Br—1 43)

=L (L, &, Mi—1) + =5 [ My — My |3
it 2(Bi1)? "
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Since

Erp1 = argminLg, (Lk, €, My),
&

Lyy1 = argminLg, (L, Eq1, M),
L

we have

Lp, (L1, Ek+1, Mi) < Lp, (Lies Egr1, Mi) < Lg, (Li, Ex, M)

_l’_
= Ly, (L € Me) + 2P vy — 4.4)
2 (Br-1)
Iterating (4.4) k times, we can obtain
1 + 1
Liy (Crss 8t Mo) = Ly (£1, €1, Mo)+Z%IIMz Mi1l3
i—1
_l’_
<Lﬂ0(£o,51,Mo>+Zﬁ’ Pt i — Mo 12
2(/31 1)
1 + 1
< Lg, (Lo, &, Mo)+2§(ﬁﬂ)§ IMi = Miall7 (45)
i=1 i—1

l+ 1
—n ||F+Z’Z(ﬁﬁ);|wl Mi1ll%

k
Bo ( 2) Bi + Bi—1
<Poux M= M|z ) 3B
|| I% + max I 1z YT

Since { M} is bounded, it fqllows that the quantity max; ||[M; — M,;_; ||2F is also bounded.
Notice that 8; = nBi_1 = n'Bo, n = 1.1, Bp = 10~4, then

Zﬂi"‘ﬂi 1=n+1i L _ 41D
=l 2B8p(n—1)

28— 2P
is bounded, and hence Lg, (L1, Ek+1, M) has upper bound.
On the other hand, we have

i=1

Lg, (Li+1s Exv1, Mi) + =— 2/3 IIMkIIF
B » Bk My 5
= Larilli-er + MErtl, e, + 5 1x41 = X+ Egr + Ellp (4.6)
and noting that each term on the right-hand side of the equation (4.6) is nonnegative, we thus
obtain the sequences {Ly 1} and {E1} are bounded. m]

Lemma6 [23] Suppose F : RN *N2 5 R s represented as F(X) = f o o(X), where
X € RV ity the SVD is X = Udiag(o(X))VT, and f is differentiable. Then the
gradient of F(X) at X is
IF(X)
0X

= Udiag(®)V7,

where § = —3-’5;)’) ly

=0(X)-
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Lemma7 [32] For the £, regularized unconstrained nonlinear programming model

min [Fx) == fx) + x5}, 4.7

where )k > 0, p € (0, 1), [Ix]|, := (Z;’zl |x,~|”)l/p, [ is a smooth function with L y-Lipschitz
continuous gradient in R", that is

IVFfx) = VfWl2 < Lyllx=yl2, ¥x,y € R",
and f is bounded below in R". Then the following statements and results hold:

(i) Let X* be a local minimizer of (4.7) and X* = diag (x*). Then x* is a first-order
stationary point, that is, X*V f (x*) + Ap |x*|” = 0 holds at x*, where |x*|’ =
(Ixf1P, -+, |x¥17)T is an n dimensional vector.

(ii) Letx* be afirst-order stationary point of (4.7) satisfying F (x*) < F (XO)+61fors0me
x" € R" and a tiny €| > 0. Defining f = infyer f () and supp(x*) = {i : x} # 0},
then

1
I-p

Ap
\/2Lf [F (x0) + e —i]

With the help of the preceding results, we can now present the convergence analysis of
Algorithm 2.

|x1*| z , Vi € supp(x™).

Theorem 2 Let the sequence Py = {L, E, My} be generated by Algorithm 2. Then the
accumulation point P* = {L*, £*, M*} of Py is a KKT stationary point, i.e., P* satisfies
the following KKT conditions:

0 €L li—er +M*, dop-lIETYy, + (M) =0, LT+ =X.

Proof From Lemmas 4 and 5, the sequence Py = {Lk, &, My} generated by Algorithm
2 is bounded. According to the Bolzano-Weierstrass theorem, the sequence {Pi} has at
least one convergent subsequence, thus there must be at least one accumulation point P* =
{L*, £*, M*} for the sequence Py. Without loss of generality, we assume that {Px} converges
to P*.

By (3.8), we have

(M1 — My) Bk = Lit1 + Ek1 — X (4.8)
Taking the limit on both sides of the above formula gives:
lim (Lry1+ E1 — &) = lim (M1 — My) /B =0, 4.9)
k—o00 k—o00
and hence we have
L+ EF =X, (4.10)
By
Ly =argminLg, (L, Ei1, Mg),
L
we have

0 €0lLlli—er gy, + Mi+ Bk (Lit1 + Ekv1 — X)

4.11)
= I Llr—erl gy, + Mt
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From Lemma 6, we know

T
MLnsller o ye ye A
# = U, », diag - S - > Vzm
(r+adn) (v +ouda)
forall nz =1, ..., N3, where n = min { Ny, N,}. Noting that — > = — holds

(r+adu) 7
for the given y > 0 and any o; (I:m) (i=1,...,n). Thus

3L,
” 113||eV ”2 <n

[ < ;
L.,

ny=1,..., N3.

Therefore, it is easily to see that

OLlier _ [ 3ILiler ALl
oL oL, oLy,

is bounded. Using L=rC X3 FM and the chain rule [7] give

A Lllr—er 2

|3llﬁllr—er e’
oL 4

= 2
X3F*N3||F§n-N3-7.

=
From (4.11), let k — oo, we have
0€ L reer + M*. (4.12)
Similarly, since

Er1 = argmin Lg, (Lx, €, My),
£

according to Lemma 7, we have the following first-order optimality condition
o p o NErliyy,e, + kst Mikt = B (Likr — Li)) = 0. (4.13)

Noting that S < Bnax = 1019, then when k — oo, we have Bk (Lx+1 — Lx) — 0. By
(4.13), we have

. . * 1P * EA
hep € Iy, + (€7, M) =0,
which together with (4.10) and (4.12) give the assertion. ]

Theorem 3 The series {Ly} and {E} generated by Algorithm 2 are Cauchy sequences, and
converge to some critical points of Lg (L, €, M).

Proof We first show that {&} is a Cauchy sequence. From the third equation in (3.8), we
have

1

t—1

g,:X—L,Jrﬁ (M — M)
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Thus,
E+1 —ElF
= ||& X—-L IM 1/\/1 ! M — M
—” t+1 — - I_E t _E Y_E( t l‘—])”F (414)
1 1
<&+1 =Bl + 1M+ — M; — M;i—1) lF.
B Br—1
By (3.8), we have
(t+1) - ) P B0 2 415
i = argmins (Wikies)” + 5 (b5 — &) 4.15)
ijk
it follows from Lemma 7 that
p
Ap- (Wi(;lhgi(jf:l)o + B - gi(]f]jl) . (gi(;:l) - bfj){) =0. (4.16)

From (4.15) and (4.16), it is easy to see that Ei(;,:rl) = 0 if and only if »® —o.

ij
If Sl.(;,jl) # 0, we have

P\ 2 P
2 (rep- (WIEG™) (W) i

(1) _ (0 ik ik ik
( - —b:. ) = <
k k 1 —
1] 17 /St . gl(]t]j ) ﬂt
since 0 < p < 1. Noting that l(jt,)( =—p € is a given constant. Thus we have
IE; jkl + €
) 2p 1 2p
(wWh) " = ) 4.17)
On the other hand, according to the second result of Lemma 7, Si(;,jl) # 0 has a lower bound,
which is denoted by §. Thus we can obtain the following inequality
2p—2
1 -
(150" = @2 “.18)

Denoting the upper bounds in inequalities (4.17) and (4.18) by M and M>, respectively.
Therefore,

(gﬁ’*l) _ b(r))z - 22 My - M

it 0D 2o,

o ) < o
ij ij ﬁtz ij
1f £ = 0, we also have b{%), = 0. And thus we have
2 oMM
W+D _ 0 1M
(gijk - bijk) =0=s—p
Bi
In conclude, we have
A/ (N\N2N3) - My - My 1
1E+1 = ElF < + — Ml F
Br B
+ ! MllF + ! M1l
F+— ~1llr,
B! B!
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where N1 x Ny x Nj is the size of the tensor X'. Noting that {M,} is a bounded sequence
and 11 =npr,n = 1.1, By = 10~*, we thus have

m
m (& —Ellr < lim Y &1 —&llF =0
m,n— 00 m,n— o0 —n

for any n < m. We thus proved {&,} is a Cauchy sequence.
Next, we prove that {£,} is a Cauchy sequence. From the third equation in (3.8), we have

1
Liy1 =X =&+ l? (Migp1 — My).
t

Thus,
1Ler1 — LellF

1 1
= ||X—5[+] +E(M[+] _M[)_£1+ (5[+TM[71>
1

t—1
1
- gt‘l‘ﬁt_]Mt—l lF

1
= | (X —& = Mt—l) —Li+ & —&Eq
Bi—1
+ ! (M M) + ! M|l
ﬂt t+1 t ,Bz—l t—1IlF
S NA—1 = Lellr + & — EallF

1 1 1
T IMitllF + —IMellp + — M1l F.
B t+11lF B tIF B, t—1llF

Proceeding as in the proof of Lemma 4, we can easily obtain the following inequality

_|_

1 min{N;, Np}-e?
B? v? '

Since {&;} is a Cauchy sequence, {M,} is a bounded sequence, it yields that

2
A -1 — Ll <

m
lim Ly — Lullp < lim > (L1 — Liflr =0
m,n— 00 m,n— 00 p

for any n < m. We thus proved {L} is a Cauchy sequence.
It follows from Theorem 2 that the limit points of sequences {Lx} and {&} converge to
some critical points of Lg (£, £, M). This completes the proof. O

5 Numerical Experiments

In this section, to verify the efficiency of the proposed model, we will report the experiment
results on two kinds of problems, i.e., image recovery from observations corrupted by random
noise and background modeling for surveillance video, where image recovery including color
image, brain magnetic resonance image (brain MRI) and gray video sequence. We compare
the proposed model (3.6) (denoted by “t-e¥-WW”) with four existing models: the sum of the
nuclear norms of all unfolding matrices of the tensor based model (denoted by “SNN”) [25],
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the t-SVD based nuclear norm model (denoted by “TNN”) [29], the t-SVD based partial
sum of the nuclear norm model (denoted by “PSTNN”) [16], the t-SVD based t-Gamma
tensor quasi-norm model (denoted by “t-y”’) [2]. Besides, to show the effectiveness of the
weighted £,,-norm, we also compare the proposed model (3.6) with the following £ ,-norm

based model ) »
I?l;:l 1L\ i—er +)‘”€”£,,’ s.t. X=L+E, 5.1

1
where ||€||f;p = (Zi.j,k IEi,j,k|P) "and0 < p < 1. For simplicity, we denote the model
(5.1) by “t-e¥”.

We first normalize the gray-scale value of the tested tensor to [0, 1]. The observed tensor
is then obtained by randomly setting some pixels into random values in the range [0, 1]. All
experiments are implemented in the Matlab R2019a Windows 10 environment and run on a
desktop computer (AMD Ryzen 7-3750H, @ 2.3GHz, 16G RAM).

5.1 Parameter Setting

The ADMM has been widely used to solve the problems of tensor completion and TRPCA
[2,11,16,26,27,41]. There are different choices for initialization parameters in different mod-
els. For the TNN, PSTNN, and t-y models, parameters will be adjusted according to the
authors’ suggestions [2,16,29]. For SNN, numerical experiments on TRPCA by using SNN
was performed by Lu et al. [29]. Thus, parameter setting for the SNN will be adjusted accord-
ing to [29]. For the proposed t-¢”-WW model (3.6) and the competing t-e” model (5.1), the
parameters are tuned according to the parameter analysis given below.

The proposed t-e¥ -V model involves seven parameters: A is the regularization parameter,
which is used to balance the low rank and the sparse parts, respectively; B is the Lagrange
penalty parameter; fol is the error tolerance; K is the maximum permission iterative number
of times; y is a positive parameter in the proposed non-convex rank approximation function;
0 < p < 1and e > 0 are two parameters in the weighted £ ,-norm. The t-¢” model involves
six parameters: A, 3, tol, K, y, p. For these two models, parameters S, tol and K are set
consistent with [2] for a fair comparison, i.e., 8 is initialized to 10~* and iteratively increased
by Br+1 = nPr with n = 1.1; tol and K are set as tol = 1078 and K = 500, respectively.
For other parameters (A, y, p, € for the t-¢”-V model and A, y, p for the t-¢¥ model), we
illustrate their effect on image restoration by using two color images Bear and Horse (they
are randomly selected from the BSD [33]).

e The regularization parameter A has been studied in many literatures. For the TNN model
(1.2), when the low rank and sparse components satisfy certain assumptions, regulariza-
tion parameter is A7 yy = 1/+/max(Ny, N2) N3 in theory to guarantee correct recovery
(more details can be found in Theorem 4.1 of [29]). Therefore, A7y is as a good rule of
thumb, which can then be adjusted to obtain the best possible results in different models.

— For the task of color image recovery in our experiments, the size of each color image
is 481 x 321 x 3 or 321 x 481 x 3. According to [29], Aryn = 0.0263. Therefore,
we search for the best value of A nearby 0.0263 for the t-¢” and t-e” -V models.
The effect of the parameter A on image restoration (Bear) with respect to PSNR,
SSIM and RSE values (see Sect. 5.3 for the definitions) are shown in Fig.2. We can
see that the noise levels and the best parameter value of X are in inverse proportion,
i.e., the higher the noise level, the smaller A is the better choice. Meanwhile, we can
see that the best parameter value of A in the t-e” -V model is smaller than that in
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[*noise level = 30% —noise level = 20% —noise level = 10%
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Fig.2 The effect of the parameter A on image restoration (Bear) with respect to PSNR, SSIM and RSE values.
The first row is for the t-¢¥ model, the second row is for the t-¢¥ -V model

the t-e¥ model. Therefore, in the experiment of color image recovery, A is selected
from [0.01, 0.06] and [0.01, 0.03] with increment of 0.002 for the t-¢¥ and t-e¥-WW
models, respectively.

— When the third-dimension of the data is large (such as brain MRI data, video data,
hyperspectral data), A7 y is usually very small. And thus a small A would be better. In
our experiments, both brain MRI and video data are medium sizes and Aryny < 0.01,
thus the parameter X is selected from [0.001, 0.01] with increment of 0.001 for the
t-e¥ and t-e” -)¥V models when we conduct the experiments on brain MRI and videos.

e The effect of the parameter p on image restoration (Bear) with respect to PSNR, SSIM,
RSE values are shown in Fig. 3. It can be seen from Fig. 3 that the best parameter value
of p for t-e¥ and t-e¥ -V models are bigger than 0.5. Therefore, in the experiments, p is
selected from [0.5, 1] with increment of 0.1 for the two models.

e For different noise levels, the effect of the parameter y on image restoration (Bear) with
respect to PSNR are shown in Fig. 4. For the t-e¥ model, when y > 2, the curves begin
to decline. Therefore, [0.1, 2] can be as a reference range for y in the t-e¥ model. For
the t-e” -V model, the curves reach their peaks at 1.5, 1.8 and 2.2, respectively. And
after reaching the peaks, the curves begin to decline slowly. Therefore, [1.5, 3] can be
as a reference range for y in the t-e¥-WW model. Therefore, in the experiments, y is
selected from [0.1, 2] and [1.5, 3] with increment of 0.1 for the t-¢” and t-e¥ -V models,
respectively.

e For the t-¢”-V model, the influence of the parameter € on image restoration (Bear and
Horse) with respect to PSNR are plotted in Fig. 5. It can be observed that when € = 0.1,
the curves get their peaks; when € > 0.1, the curves gradually tend to be stable. Therefore,
in the experiments, we fixed € to 0.1.

Since our experiments involve different applications associated with various datasets, we thus
adjust the above parameters slightly to obtain the best performance results. For the sake of
readability, we list all parameter settings for different models and different datasets in tables
in the corresponding section.
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Fig.3 The effect of the parameter p on image restoration (Bear) with respect to PSNR, SSIM and RSE values.
The first row is for the t-e¥ model, the second row is for the t-e” -V model
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Fig.4 The effect of the parameter y on image restoration (Bear) with respect to PSNR values. The first row
is for the t-e” model, the second row is for the t-e¢” -V model

5.2 Convergence Test

In this subsection, we perform the convergence test for the proposed t-e¢” -1V model and the
competing t-e” model with the application to color Tiger image recovery (the Tiger image
can be seen in Fig.9). Figure 6 shows the curve of PSNR versus outer iteration numbers,
residual (given by (3.18)) versus outer iteration numbers, and RSE (given by (5.2)) versus
outer iteration numbers, respectively. It can be observed that as the number of iterations
increases, the curves gradually tend to be stable. This clearly demonstrates the convergence
of the proposed t-e¥ -V and the competing t-¢” models as shown in Theorem 3.
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the t-e¥ -)V model
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Fig.6 Convergence test on color Tiger image with different noise levels by PSNR values, residual, and RSE,
respectively. The first and second rows are the convergence test for the t-e? and t-e” -V models, respectively
(Color figure online)

5.3 Image Recovery

In this subsection, we conduct numerical experiments on image recovery including color
image, brain MRI and gray video sequence. The results are illustrated in Sects.5.3.1, 5.3.2
and 5.3.3, respectively.

Some quantitative assessment indexes including the relative square error (RSE), peak
signal-to-noise ratio (PSNR), structural similarity index (SSIM) are adopted to evaluate
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Table 1 The parameter setting for color image recovery

Noise level Model p y A
30%, 20%, 10% SNN - - [15, 15, 1.5]
TNN - - ATNN & 0.0263
PSTNN - - ATNN & 0.0263
t-y - min {N, No} ~ 17.9165 ATNN ~ 0.0263
30% t-e” 0.6 1.1 0.016
t-eV-W 0.9 2.3 0.014
20% t-e” 0.7 1.2 0.026
t-eV-W 0.9 2.1 0.014
10% t-e” 0.7 1.1 0.038
t-eV-W 0.9 2.4 0.024

the quality of the recovered images. The RSE and PSNR between the recovered tensor
£ € RN1XN2XNs and the original tensor £ € RV *N2XN3 are defined as follows:

. L—LC
RSE(Z, £) = w, (5.2)
L1l F
s NN N3||I L2
PSNR(Z, £) := 10log;, Lﬂlznw . (5.3)
£ — L%

SSIM measures the similarity of two images in luminance, contrast and structure, which is

defined as
(2uLug, +c1) (20p4 + 2)

(M% + M% + cl> (aﬁ + O'I% + cz)

SSIM(L, L) := , (5.4)

where up, and pj represent the mean values of the original data matrix L and the recovered
data matrix L, respectively, O'E and o]% represent the standard variances of L and L, respec-

tively, oy ; represents the covariance of L and L,c 1, c2 > 0 are two constants to stabilize the
division with weak denominator. For tensor data, the SSIM value is obtained by calculating
the average SSIM values for all frontal slices. As we can see, lower RSE value, higher PSNR
and SSIM values mean better image quality.

5.3.1 Color Image

In this section, we select thirty color images from the Berkeley Segmentation Dataset (BSD)
[33] for the test. These images are different natural scenes and objects in real life and all have
size 321 x 481 x 3 or 481 x 321 x 3. For each image, we test three different noise levels:
30%, 20%, 10%. The parameter setting for color image recovery is listed in Table 1.

In Table 2, we list the average PSNR, SSIM, RSE values of the results recovered by
different models for thirty color images. From the quantitative assessment results, we can
see that the t-e? -)V model always achieves the best recovery performance for different noise
levels. For each image, the PSNR, SSIM and RSE obtained by different models are shown
in Figs. 7 and 8, respectively. It can be seen that the results obtained by the proposed t-e? -)V
model reaches higher PSNR, SSIM and lower RSE values in most cases.
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Table 2 The average PSNR, SSIM and RSE values for restoring results of different models for thirty color
images corrupted by different noise levels

Noise level Index SNN TNN PSTNN t-y t-e” t-e¥-W
30% PSNR 25.7517 26.7283 26.6856 28.5309 31.4776 32.5711
SSIM 0.7620 0.8091 0.7877 0.8148 0.9218 0.9249
RSE 0.1226 0.1089 0.1085 0.0896 0.0652 0.0576
20% PSNR 27.4504 28.8543 30.0291 31.8479 36.4109 37.3344
SSIM 0.8593 0.8988 0.9091 0.9307 0.9649 0.9757
RSE 0.1008 0.0852 0.0744 0.0594 0.0368 0.0330
10% PSNR 28.9491 30.9027 32.2806 34.5938 42.7264 43.4984
SSIM 0.9089 0.9438 0.9529 0.9678 0.9901 0.9925
RSE 0.0848 0.0674 0.0576 0.0434 0.0180 0.0163

The boldface number implies the best and the underline number indicates the second best

Noise level = 30%

5 10 15 20 25 30
Image index

Noise level = 20%

5 10 15 20 25 30
Image index

Noise level = 10%

5 10 15 20 25 30
Image index

Fig.7 The PSNR values obtained by different models for thirty color images with different noise levels. From
top to bottom: the noise levels are 30%, 20% and 10%, respectively (Color figure online)

Figure 9 further exhibits the visual results on three sample color images, where only noise
level 30% is shown exemplarily. From Fig.9, we can see that the proposed t-¢¥ -V model
preserves image details (such as animal’s eyes, the edge of the pyramid) better than other
models.

Based on the above comparison, we have the following conclusions: First, among all com-
peting models, the Tucker rank based SNN shows the worst recovery performance because
the SNN is a loose convex relaxation of the sum of the Tucker rank. Second, the t-SVD based
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Fig. 8 The SSIM and RSE values obtained by different models for thirty color images with different noise
levels. From top to bottom: the noise levels are 30%, 20% and 10%, respectively (Color figure online)

models can obtain better results because the t-SVD framework make more efficient use of the
spatial structure of the tensor data. Third, among all competing non-convex models, t-¢” and
t-e¥ -V can achieve better recovery performance compared with PSTNN and t-y . The reason
is that both the tensor rank and the sparse constraint term in the t-e¥ and t-e” -/ models are
measured by the non-convex functions. This demonstrates the superiority of the non-convex
models. Finally, the proposed t-e¥-}V can achieve the best performance and recover more
details because the weighted £ ,-norm is a more accurate relaxation of the £o-norm compared
with the £ ,-norm. This shows the effectiveness of the proposed model.
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L

(f) Observed D t-v (r) t-e”

Fig.9 The recovered results on three sample color images with the noise level is 30%
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Table 3 The parameter setting for brain MRI recovery

Noise level Model p y A

40%, 30%, 20%, 10% SNN - - [200, 2, 20]
TNN - - ATNN A 0.005
PSTNN - - ATNN & 0.005
t-y - L ~ 13.4536 ATNN A~ 0.005

/min {N}, N2}

40% t-e? 0.5 4 0.010
t-eV-W 0.9 4 0.005

30% t-e” 0.5 39 0.010
t-e¥-W 0.9 3.8 0.005

20% t-e? 0.5 3.7 0.010
t-e¥V-W 0.9 3.7 0.005

10% t-e¥ 0.6 3.1 0.010
t-eV-W 0.9 3.6 0.006

Table 4 The PSNR, SSIM and RSE values for restoring results of different models for MRI corrupted by
different noise levels

Noise level Index SNN TNN PSTNN t-y t-e” t-e¥-W
40% PSNR 20.7066 23.7179 16.3206 10.5769 34.2151 35.4236
SSIM 0.5818 0.4440 0.2678 0.0896 0.9307 0.9443
RSE 0.3089 0.2184 0.5134 0.9915 0.0655 0.0570
30% PSNR 21.7595 29.4889 24.8836 11.8221 37.6826 38.5430
SSIM 0.7236 0.7993 0.5312 0.1234 0.9670 0.9704
RSE 0.2736 0.1124 0.1916 0.8590 0.0440 0.0398
20% PSNR 22.6284 31.7847 34.5152 13.6897 41.2392 41.8638
SSIM 0.7931 0.9479 0.9105 0.1802 0.9838 0.9847
RSE 0.2476 0.0863 0.0631 0.6928 0.0292 0.0272
10% PSNR 23.4936 33.4494 37.8814 41.0253 45.6415 46.2240
SSIM 0.8398 0.9737 0.9817 0.9876 0.9934 0.9949
RSE 0.2241 0.0712 0.0428 0.0298 0.0176 0.0165

The boldface number implies the best and the underline number indicates the second best

5.3.2 Brain MRI

In this section, we conduct experiments on brain MRI', whose size is 181 x 217 x 181. The
noise levels are set to be 40%, 30%, 20% and 10%, respectively. The parameter setting for
brain MRI recovery is listed in Table 3.

Table 4 shows the numerical results obtained by six models for recovering the brain MRI.
It can be seen that when the noise level is 40%, PSTNN and t-y always yield unsatisfactory
results. With the decrease of the noise levels, although the performance of SNN and TNN are
increase steadily, they do not perform well for the lower noise levels (such as 10%). In contrast,
t-e¥ and t-e¥ -V always have powerful recovery performance for different noise levels. In

1 https://brainweb.bic.mni.mcgill.ca/.
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(a) Original (e) SNN

(¢) Original (g) SNN

(h) t‘ | ) t-e” (p) t-e"-W

Fig. 10 The recovered results on brain MRI with the noise levels are 40% and 30%, respectively. The first two
rows: noise level is 40%. The last two rows: noise level is 30%

(d) Observed

particular, the proposed t-e” - model always achieves the best in terms of three assessment
indexes for different noise levels, which further shows the robustness and unbiasedness of
the proposed non-convex model.

Apart from quantitative assessment, we also show the visual comparison of one slice of
the brain MRI recovered by different models in Fig. 10, where only noise levels 40% and
30% are shown exemplarily. Obviously, when the noise level is high, both the PSTNN and
the t-y fail to remove the noise. Although the SNN and TNN can remove most of the noise,
the images obtained by them are very fuzzy. In contrast, the t-e¥ and t-e¥-)V can recover
most information of the images while the images obtained by t-¢¥ -V are almost the same
as the original ones.
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Table 5 The parameter setting for gray video recovery

Noise level Model p y A

40%, 30%, 10% SNN - - [200, 2, 20]
TNN - - ATNN & 0.0062
PSTNN - - ATNN & 0.0062
t-y - N ~ 12.50 ATNN = 0.0062

J/min {N1, No}

40% t-e” 0.8 1.3 0.005
t-eV-W 0.9 3 0.003

30% t-e” 0.8 1.3 0.005
t-e¥-W 0.9 2.8 0.003

10% t-e” 0.7 1.1 0.004
t-e¥-W 0.9 3 0.006

5.3.3 Gray Video Sequence

In this section, two gray videos®> Grandma (144 x 176 x 150) and MotherDaughter (144 x
176 x 150) are chosen for the test. For each video, we test three different noise levels: 40%,
30%, 10%. The parameter setting for gray video recovery is listed in Table 5.

In Table 6, we report the PSNR, SSIM, and RSE values obtained by six models for the
two gray videos in different noise levels. Figure 11 also exhibits the visual comparison on
one frame for the two gray videos, where only noise level 40% is shown exemplarily. For
different noise levels and the two videos, it can be observed from Table 6 that the t-¢” -WW
always achieve best in terms of three assessment indexes. From Fig. 11, we can see that the
recovery images by the SNN, TNN, PSTNN, and t-y are very fuzzy while the t-e¥ and t-e” -
W can obtain clear recovery images. In particular, owing to the two non-convex relaxations,
the t-e”-WW perfectly preserves more detailes such as the eyes and the mouth. The above
comparison shows the feasibility and effectiveness of the proposed model.

5.4 Video Background Modeling

In this subsection, the proposed model is applied to solve the background modeling problem.
The task of background modeling aims to separate the foreground objects from the back-
ground. This is the pre-process step in many vision applications such as surveillance video
processing, moving target detection and segmentation [33]. Surveillance videos from a fixed
camera can be naturally modeled by TRPCA since the frames of the background are highly
correlated and thus can be considered as a low rank tensor and the moving foreground objects
occupy only a small part of the image pixels and thus can be regarded as sparse errors. In our
work, we select three color video sequences: highway (240 x 360), pedestrians (240 x 360)
and PETS2006 (576 x 720) from CD.net dataset in the baseline category, where the numbers
in the parentheses denote the frame size. We only choose the frames from 900 to 1000 for
these video sequences to reduce the computational time. For each sequence with color frame

B http://trace.eas.asu.edu/yuv/.
3 http://jacarini.dinf.usherbrooke.ca/dataset2012/.
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(a) Original

L

(d) Obser (h).t- . a tl-7 p) t-e-W

Fig. 11 The recovered results on gray videos with noise levels is 40%. The first two rows: Grandma. The last
two rows: MotherDaughter

size h x w x 3 and frame number k, we reshape it to the (hw) x k x 3 tensor for the test.
The parameter setting for video background modeling is listed in Table 7.

The F-Measure is used to assess the performance of the results of the background modeling,
which is defined by

Precision - Recall

F-Measure =2 ———F———,
Precision + Recall
where
Recall the number of correctly classified foreground pixels

ecall =

the number of foreground pixels in ground truth
.. the number of correctly classified foreground pixels

Precision = .

the number of pixels classified as foreground
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Table 7 The parameter setting for Video Background Modeling

Data name Model p y A
highway SNN - - [200, 2, 20]
pedestrians
PETS2006
highway TNN - - ATNN & 0.002
PSTNN - - ATNN ~ 0.002
t-y - L ~ 0.2985 ATNN = 0.002
min {N, No}
t-e” 0.1 1 0.01
t-e¥-W 0.1 2 0.01
pedestrians TNN - - ATNN & 0.002
PSTNN - - ATNN =~ 0.002
t-y - N ~ (0.2985 ATNN ~ 0.002
J/min {N1, N>}
t-e” 0.1 1 0.1
t-e¥-W 0.1 2 0.1
PETS2006 TNN - - ATNN = 8.9652e-04
PSTNN - - ATNN =~ 8.9652¢-04
t-y - ﬁl,/\b} ~ 0.2985 ATNN ~ 8.9652¢e-04
t-e¥ 0.1 1 0.05
t-e¥-W 0.1 2 0.05

Table 8 The F-Measure of the results of the background modeling obtained by different models

Video SNN TNN PSTNN t-y t-e” t-e¥-W
highway 0.7879 0.8610 0.7959 0.8961 0.8968 0.8970
pedestrians 0.9608 0.9607 0.8737 0.9634 0.9794 0.9825
PETS2006 0.4077 0.7396 0.6807 0.8045 0.8714 0.8747

In Table 8, we report the F-Measure obtained by different models for video background
modeling. Obviously, compared with the SNN, the F-Measures of other competing models
are high, which indicates that the t-SVD has a better performance in maintaining the spatial
structure of the multi-dimensional data.

Figure 12 displays the background images and the foreground images separated by differ-
ent models. We can see that the background images obtained by the SNN, TNN and PSTNN
always have obvious foreground ghosting. It indicates that these models can not remove the
sparse foreground component effectively. Although the t-y model can get the clean back-
ground images in the highway and pedestrians videos, a twisted foreground image can be
found in the PETS2006 video. In addition, we can see that the results obtained by the t-¢¥ and
t-e¥-¥V models are almost same. But from Table 8, the background modeling results obtained
by the t-e” -V model outperform those obtained by the t-e¥ model in terms of F-Measure.

In summary, the proposed model shows strong background modeling capability, producing
satisfying results both in visualization and in quantitative assessment.
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Original SNN TNN PSTNN t-v t-e” t-eV-W

Fig. 12 The background modeling results obtained by different models. From left to right: original frames,
the background modeling results obtained by the SNN, TNN, PSTNN, t-y, t-¢”, and t-e¥ -V, respectively.
Rows 1 and 2 are samples of highway; rows 3 and 4 are samples of pedestrians; rows 5 and 6 are samples of
PETS2006

6 Concluding Remarks

In this paper, we present a new non-convex approach for the TRPCA problem. Different from
existing non-convex TRPCA models, we not only propose a novel non-convex relaxation for
the tensor tubal rank but also introduce a new and suitable non-convex sparsity measura-
tion for the sparse constraint term rather than by the £{-norm commonly used in literature.
It is well known that convergence analysis of the non-convex optimization algorithm is a
challenging problem, and we are able to show that the sequence generated by the proposed
algorithm always converges to a KKT stationary point. The numerical experiments for prac-
tical applications are given to demonstrate that the proposed non-convex model outperforms
the existing approaches.
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