
Journal of Scientific Computing (2022) 90:10
https://doi.org/10.1007/s10915-021-01670-1

Convergence of Relaxed Inertial Subgradient Extragradient
Methods for Quasimonotone Variational Inequality Problems

G. N. Ogwo1 · C. Izuchukwu1,2 · Y. Shehu3 ·O. T. Mewomo1

Received: 17 December 2020 / Revised: 19 April 2021 / Accepted: 9 October 2021 /
Published online: 20 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In this paper, we present two new relaxed inertial subgradient extragradient methods for
solving variational inequality problems in a real Hilbert space. We establish the convergence
of the sequence generated by these methods when the cost operator is quasimonotone and
Lipschitz continuous, and when it is Lipschitz continuous without any form of monotonicity.
The methods combine both the inertial and relaxation techniques in order to achieve high
convergence speed, and the techniques used are quite different from the ones in most papers
for solving variational inequality problems. Furthermore, we present some experimental
results to illustrate the profits gained from the relaxed inertial steps.

Keywords Variational inequality problems · Quasimonotone · Relaxation technique ·
relaxed inertial · Subgradient extragradient method · Extragradient method

Mathematics Subject Classification 47H09 · 47H10 · 49J20 · 49J40

B Y. Shehu
yekini.shehu@zjnu.edu.cn

G. N. Ogwo
graceogwo@aims.ac.za; 219095374@stu.ukzn.ac.za

C. Izuchukwu
izuchukwuc@ukzn.ac.za; izuchukwu_c@yahoo.com

O. T. Mewomo
mewomoo@ukzn.ac.za

1 School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban,
South Africa

2 DSI-NRF Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS),
Johannesburg, South Africa

3 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01670-1&domain=pdf
http://orcid.org/0000-0001-9224-7139

10 Page 2 of 35 Journal of Scientific Computing (2022) 90 :10

1 Introduction

Let C be a nonempty closed and convex subset of a real Hilbert space H with inner product
〈· , ·〉, and associated norm || · ||. Let A : H → H be a continuous mapping. The Variational
Inequality Problem (VIP) is formulated as:

Find x ∈ C such that 〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1.1)

The VIP is a fundamental problem in optimization and known to have numerous applications
in diverse fields (see, for example [16,17,19,20,24,26,27] and the references therein). Its
theory provides a simple, natural and unified framework for a general treatment of unrelated
problems. The VIP was first considered for the purpose of modeling problems in mechanics
by Stampacchia [41] (also independently by Fichera [16]).
One of the simplest methods for solving VIP (1.1) is the following gradient-projection
method:

xn+1 = PC(xn − λAxn), n ≥ 1. (1.2)

This method converges strongly to a unique solution of the VIP (1.1) if A is η-strongly

monotone and L-Lipschitz continuous, with λ ∈
(
0, 2η

L2

)
. However, if A is monotone and

Lipschitz continuous, the gradient-projection methodmay fail to converge. For instance, take
C = R

2 and A to be a rotation with π
2 angle. Then, A is monotone and Lipschitz continuous

with (0, 0) being the unique solution of (1.1). But the sequence {xn} generated by (1.2)
satisfies ||xn+1|| > ||xn ||, ∀n. Thus, the gradient-projection method does not always work
for monotone and Lipschitz continuous operators.
In [28], Korpelevich proposed a method in finite dimensional spaces which converges to
a solution of the VIP (1.1) when the operator is monotone and Lipchitz continuous. This
method which is known as the extragradient method is given as:

⎧
⎪⎨
⎪⎩

x1 ∈ C,

yn = PC(xn − λn Axn)

xn+1 = PC(xn − λn Ayn), n ≥ 1,

(1.3)

where λn ∈ (
0, 1

L

)
. Since the introduction of the extragradient method, many authors have

studied it in infinite dimensional spaces when A is monotone (see [5,9,19]) and when A is
pseudomonotone (see [36,48]).
However, the major drawback of this method is that it requires two projections onto the
feasible set C per iteration, which can be costly if C has complex structure. In this case, PC
may not have a closed form formula, and a minimization problem has to be solved twice per
iteration in implementing (1.3). Hence, the efficiency of the method may be affected.
To overcome this setback, Censor et al. [12] introduced the following subgradient extragra-
dient method: x1 ∈ H,

⎧⎪⎨
⎪⎩

yn = PC(xn − λn Axn)

Tn := {w ∈ H : 〈xn − λn Axn − yn, w − yn〉 ≤ 0},
xn+1 = PTn (xn − λn Ayn), n ≥ 1.

(1.4)

They proved that {xn} generated by (1.4) converges weakly to a solution of problem (1.1)
when A is monotone and Lipschitz continuous.

123

Journal of Scientific Computing (2022) 90 :10 Page 3 of 35 10

Unlike (1.3), Algorithm (1.4) requires only one projection onto C per iteration since the
second projection is onto a half space Tn , which has an explicit formula. Hence, subgradi-
ent extragradient methods are less computationally expensive than extragradient methods.
This method has also been considered by many authors for solving the VIP (1.1) in infinite
dimensional spaces, when A is monotone [1,10,11,25,30] and when A is pseudomonotone
[45,51].

In recent years, algorithms with fast convergence rate have been of great interest. To
accelerate the convergence of iterative methods for solving (1.1) and other related opti-
mization problems, there exist different modifications of such iterative methods. In this
paper, we consider the two very important modifications, namely; inertial and relaxation
techniques. The inertial technique is based upon a discrete analogue of a second order dis-
sipative dynamical system and is known for its efficiency in improving the convergence
rate of iterative methods. The method was first considered by Polyak [38] for solving the
smooth convex minimization problems. It was later made very popular by Nesterov’s accel-
eration gradient method [35], and was further developed by Beck and Teboulle in the case
of structured convex minimization problem [6]. Since then, many authors have employed
the use of inertial techniques for improving the convergence of their iterative methods (see
for example [14,15,18,21,31,32,34,37–40,46,47] and the references therein). On the other
hand, the relaxation technique has proven to be an essential ingredient in the resolution of
optimization problems due to the improved convergence rate that it contribute to iterative
schemes. Moreover, both inertial and relaxation techniques naturally come from an explicit
discretization of a dynamical system in time (see, for example [4,49]).

Some authors have considered incorporating these two techniques into known methods in
order to achieve high convergence speed of the resulting methods (see, [3,4]). Also, in [23],
the influence of inertial and relaxation techniques on the numerical performance of iterative
schemes was studied.

Given the importance of these two techniques (inertial and relaxation) for solving opti-
mization problems, our aim in this paper is to incorporate the inertial and relaxation techniques
into Algorithm (1.4), when A is not necessarily pseudomonotone. That is, we design two
new relaxed inertial subgradient extragradient methods, and prove that they converge weakly
to a solution of VIP (1.1) when the operator A is quasimonotone and Lipschitz continu-
ous, and when it is Lipschitz continuous without any form of monotonicity. The techniques
employed in this paper are quite different from the ones used in most papers (see for example
[14,15,22,31,32,34,37–40,44,46,47]). Moreover, the assumptions on the inertial and relax-
ation factors in this paper, are weaker than those in many papers for solving VIPs. Finally,
we provide some numerical implementations of our methods and compare them with other
methods, in order to show the profits gained from the inertial and relaxation techniques.

The rest of the paper is organized as follows: Sect. 2 contains basic definitions and results
needed in subsequent sections. In Sect. 3, we present and discuss the proposed methods. The
convergence analysis of these methods are investigated in Sect. 4. In Sect. 5, we perform
some numerical analysis of our methods in comparison with other methods in the literature.
We then conclude in Sect. 6.

2 Preliminaries

In this section,we recall someconcepts and results needed in subsequent sections.Henceforth,
we denote the weak convergence of {xn} to a point x∗ by xn⇀x∗.

123

10 Page 4 of 35 Journal of Scientific Computing (2022) 90 :10

Let H be a real Hilbert space and A : H → H be a mapping. Then, A is said to be

(i) L−Lipschitz continuous, if there exists L > 0 such that

‖Ax − Ay‖ ≤ L‖x − y‖, ∀x, y ∈ H,

(ii) L-strongly monotone, if there exists L > 0 such that

〈Ax − Ay, x − y〉 ≥ L‖x − y‖2, ∀x, y ∈ H,

(iii) Monotone, if
〈
Ax − Ay, x − y

〉 ≥ 0, ∀x, y ∈ H,

(iv) Pseudomonotone, if

〈Ay, x − y〉 ≥ 0 �⇒ 〈Ax, x − y〉 ≥ 0, ∀x, y ∈ H,

(v) Quasimonotone, if

〈Ay, x − y〉 > 0 �⇒ 〈Ax, x − y〉 ≥ 0, ∀x, y ∈ H,

(vi) Sequentially weakly-strongly continuous, if for every sequence {xn} that converges
weakly to a point x , the sequence {Axn} converges strongly to Ax,

(vii) Sequentially weakly continuous, if for every sequence {xn} that converges weakly to a
point x , the sequence {Axn} converges weakly to Ax .

Clearly, (i i) �⇒ (i i i) �⇒ (iv) �⇒ (v). But the converses are not always true.
Let V I (C, A) be the solution set of problem (1.1) and � be the solution set of the following
problem:

Find x ∈ C such that 〈Ay, y − x〉 ≥ 0, ∀y ∈ C. (2.1)

Then, � is a closed and convex subset of C, and since C is convex and A is continuous, we
have the following relation

� ⊆ V I (C, A). (2.2)

Lemma 2.1 [50] Let C be a nonempty closed and convex subset of H. If either

(1) A is pseudomonotone on C and V I (C, A) �= ∅,

(ii) A is the gradient of G, where G is a differential quasiconvex function on an open set
K ⊃ C and attains its global minimum on C,

(iii) A is quasimonotone on C, A �= 0 on C and C is bounded,
(iv) A is quasimonotone on C, A �= 0 on C and there exists a positive number r such that, for

every x ∈ C with ‖x‖ ≥ r , there exists y ∈ C such that ‖y‖ ≤ r and 〈Ax, y − x〉 ≤ 0,
(v) A is quasimonotone on C, int C is nonempty and there exists x∗ ∈ V I (C, A) such that

Ax∗ �= 0.

Then, � is nonempty.

Recall that for a nonempty closed and convex subset C of H, the metric projection denoted
by PC (see [43]), is a map defined on H onto C which assigns to each x ∈ H, the unique
point in C, denoted by PCx such that

||x − PCx || = inf{||x − y|| : y ∈ C}.

123

Journal of Scientific Computing (2022) 90 :10 Page 5 of 35 10

It is well known that PC is characterized by the inequality

〈x − PCx, y − PCx〉 ≤ 0, ∀y ∈ C. (2.3)

Following Attouch and Cabot [3, pages 5, 10], we note that if xn+1 = xn + θn(xn − xn−1),
then for all n ≥ 1, we have that

xn+1 − xn =
⎛
⎝

n∏
j=1

θ j

⎞
⎠ (x1 − x0),

which implies that

xn = x1 +
⎛
⎝

n−1∑
j=1

l∏
j=1

θ j

⎞
⎠ (x1 − x0).

Thus, {xn} converges if and only if x1 = x0 or if
∞∑
l=1

l∏
j=1

θ j < ∞.

Therefore, we assume henceforth that

∞∑
l=i

⎛
⎝

l∏
j=i

θ j

⎞
⎠ < ∞ ∀i ≥ 1. (2.4)

Hence, we can define the sequence {ti } in R by

ti :=
∞∑

l=i−1

⎛
⎝

l∏
j=i

θ j

⎞
⎠ = 1 +

∞∑
l=i

⎛
⎝

l∏
j=i

θ j

⎞
⎠ , (2.5)

with the convention
i−1∏
j=i

θ j = 1 ∀i ≥ 1.

Remark 2.2 (See also [3]).
Assumption (2.4) ensures that the sequence {ti } given by (2.5) is well-defined, and

ti = 1 + θi ti+1, ∀i ≥ 1. (2.6)

The following proposition provides a criterion for ensuring assumption (2.4).

Proposition 2.3 [3, Proposition 3.1] Let {θn} be a sequence such that θn ∈ [0, 1) for every
n ≥ 1. Assume that

lim
n→∞

(
1

1 − θn+1
− 1

1 − θn

)
= c,

for some c ∈ [0, 1). Then,
(i) Assumption (2.4) holds, and tn+1 ∼ 1

(1−c)(1−θn)
as n → ∞,

(ii) The equivalence 1 − θn ∼ 1 − θn+1 holds true as n → ∞. Hence, tn+1 ∼ tn+2 as
n → ∞.

Remark 2.4 Using Proposition 2.3, we can see that θn = 1 − θ̄
n , θ̄ > 1, is a typical example

of a sequence satisfying assumption (2.4).

123

10 Page 6 of 35 Journal of Scientific Computing (2022) 90 :10

Indeed, we have that

lim
n→∞

(
1

1 − θn+1
− 1

1 − θn

)
= lim

n→∞

(
1

θ̄
(n + 1) − 1

θ̄
n

)
= 1

θ̄
∈ [0, 1),

which satisfies the assumption of Proposition 2.3. Hence by Proposition 2.3(i), assumption
(2.4) holds.
It is worthy of note that the example θn = 1− θ̄

n , θ̄ > 1, falls within the setting of Nesterov’s
extrapolation methods. In fact, many practical choices for θn satisfy assumption (2.4) (for
instance, see [3,6,13,35]).

The corresponding finite sum expression for {ti } is defined for i, n ≥ 1, by

ti,n :=

⎧
⎪⎨
⎪⎩

n−1∑
l=i−1

(
l∏
j=i

θ j

)
= 1 +

n−1∑
l=i

(
l∏
j=i

θ j

)
, i ≤ n,

0, otherwise.

(2.7)

In the same manner, we have that {ti,n} is well-defined and

ti,n = 1 + θi ti+1,n ∀i ≥ 1, n ≥ i + 1. (2.8)

The sequences {ti } and {ti,n} are very crucial to our convergence analysis. In fact, their
effect can be seen in the following lemma which also plays a crucial role in establishing our
convergence results.

Lemma 2.5 [3, page 42, Lemma B.1] Let {an}, {θn} and {bn} be sequences of real numbers
satisfying

an+1 ≤ θnan + bn for every n ≥ 1.

Assume that θn ≥ 0 for every n ≥ 1.

(a) For every n ≥ 1, we have

n∑
i=1

ai ≤ t1,na1 +
n−1∑
i=1

ti+1,nbi ,

where the double sequence {ti,n} is defined by (2.7).
(b) Under (2.4), assume that the sequence {ti } defined by (2.5) satisfies

∞∑
i=1

ti+1[bi]+ < ∞.

Then, the series
∑
i≥1

[ai]+ is convergent, and

∞∑
i=1

[ai]+ ≤ t1[a1]+ +
∞∑
i=1

ti+1[bi]+ ,

where [t]+ := max{t, 0} for any t ∈ R.

Lemma 2.6 [3, page 7, Lemma 2.1] Let {xn} be a sequence in H and {θn} be a sequence of
real numbers. Given z ∈ H, define the sequence {�n} by �n := 1

2‖xn − z‖2. Then

�n+1 − �n − θn(�n − �n−1) = 1

2
(θn + θ2n)‖xn − xn−1‖2 + 〈xn+1 − wn, wn − z〉

+1

2
‖xn+1 − wn‖2, (2.9)

where wn = xn + θn(xn − xn−1).

123

Journal of Scientific Computing (2022) 90 :10 Page 7 of 35 10

The following lemmas are well-known.

Lemma 2.7 Let {xn} be any sequence in H such that xn⇀x. Then,

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖,∀y �= x .

Lemma 2.8 Let x, y ∈ H. Then,

2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x − y‖2 = ‖x + y‖2 − ‖x‖2 − ‖y‖2.

3 ProposedMethods

In this section, we present ourmethods and discuss their features.We beginwith the following
assumptions under which we obtain our convergence results.

Assumption 3.1 Conditions on the inertial and relaxation factors:
Suppose that θn ∈ [0, 1) and ρn ∈ (0, 1] for all n ≥ 1 such that lim inf

n→∞ ρn > 0. Assume that

there exists ε ∈ (0, 1) such that for n large enough,

⎧⎪⎪⎨
⎪⎪⎩

2(1 − ε)
1−ρn
2ρn

(1 − θn−1) ≥ θn tn+1

(
1 + θn + 2

[
1−ρn
2ρn

(1 − θn) − 1−ρn−1
2ρn−1

(1 − θn−1)
]
+

)
, if ρn ∈ (0, 1),

(1 − ε)(1 − θn−1) ≥ θn tn+1

(
1 + θn +

[
θn−1 − θn

]
+

)
, if ρn = 1.

(3.1)

Assumption 3.2 We further make the following assumptions:

(a) � �= ∅,

(b) A is Lipschitz-continuous on H with constant L > 0,
(c) A is sequentially weakly continuous on C,
(d) A is quasimonotone on H,

(e) The set {z ∈ C : Az = 0} \ � is a finite set.

We now present the proposed methods of this paper.
When the Lipschitz constant L is known, we present the following method for solving the
VIP (1.1).

123

10 Page 8 of 35 Journal of Scientific Computing (2022) 90 :10

Algorithm 3.3 Relaxed inertial subgradient extragradient method with fixed stepsize.

Step 0: Choose sequences {θn} and {ρn} such that θn ∈ [0, 1) and ρn ∈ (0, 1] for all n ≥ 1.
Let λ ∈ (0, 1

L) and x0, x1 ∈ H be given arbitrarily. Set n := 1.
Step 1: Given the current iterates xn−1 and xn (n ≥ 1), compute

wn = xn + θn(xn − xn−1)

and

yn = PC (wn − λAwn).

If wn = yn: STOP. Otherwise, go to Step 2.
Step 2: Construct the half-space

Tn = {x ∈ H : 〈wn − λAwn − yn, x − yn〉 ≤ 0}.
Then, compute

zn = PTn (wn − λAyn)

and

xn+1 = (1 − ρn)wn + ρnzn .

Set n := n + 1 and return to Step 1.

In situations where the Lipschitz constant L is not known, we present the following method
with adaptive stepsize for solving the VIP (1.1).

Algorithm 3.4 Relaxed inertial subgradient extragradient method with adaptive stepsize
strategy.

Step 0: Choose sequences {θn} and {ρn} such that θn ∈ [0, 1) and ρn ∈ (0, 1] for all n ≥ 1.
Let λ1 > 0, μ ∈ (0, 1) and x0, x1 ∈ H be given arbitrarily. Choose a nonnegative real

sequence {dn} such that
∞∑
n=1

dn < ∞. Set n := 1.

Step 1: Given the current iterates xn−1 and xn (n ≥ 1), compute

wn = xn + θn(xn − xn−1)

and

yn = PC (wn − λn Awn).

If wn = yn: STOP. Otherwise, go to Step 2.

Step 2: Construct the half-space

Tn = {x ∈ H : 〈wn − λn Awn − yn, x − yn〉 ≤ 0}.
Then, compute

zn = PTn (wn − λn Ayn)

and

xn+1 = (1 − ρn)wn + ρnzn,

123

Journal of Scientific Computing (2022) 90 :10 Page 9 of 35 10

where

λn+1 =

⎧
⎪⎪⎨
⎪⎪⎩

min

{
μ
(‖wn−yn‖2+‖zn−yn‖2

)
2〈Awn−Ayn ,zn−yn〉 , λn + dn

}
, if 〈Awn − Ayn, zn − yn〉 > 0,

λn + dn, otherwise.

(3.2)

Set n := n + 1 and return to Step 1.

Remark 3.5 In a special case when ρn = 1, ∀n ≥ 1, we have that xn+1 = zn . Thus,
Algorithms 3.3 and 3.4 reduce to the inertial version of the subgradient extragradient method
of Censor et al. [10–12]. In such case, we have the following simple criteria which guarantee
Assumption 3.1, as well as assumption (2.4).

We give the following remarks on the difference between our proposed Algorithms 3.3 and
3.4 and [29, Algorithm 3.3] below.

Remark 3.6 The method considered in [29, Algorithm 3.3] is a subgradient extragradient
method without an inertial extrapolation step and without relation parameter. Our proposed
Algorithms 3.3 and 3.4 are combinations of subgradient extragradient method, inertial ext-
trapolation step and relaxation parameter. It can also be easily seen that [29, Algorithm 3.3]
is a special case of our proposed Algorithm 3.4 when θn = 0 and ρn = 1 in Algorithm
3.4. As pointed out in the Introduction, the aim of adding inertial extrapolation step and
relaxation parameter to [29, Algorithm 3.3] (as seen in our proposed Algorithms 3.3 and
3.4) is to increase the speed of convergence of [29, Algorithm 3.3] in terms of reduction in
the number of required iterations and CPU time. Consequently, we have given the numerical
comparisons in terms of number of iterations and CPU time of our proposed Algorithms 3.3,
3.4 and [29, Algorithm 3.3] (kindly see Tables 3, 4, 5 and Figs. 3, 4, 5 in Section 5). This is
one of the novelties of this paper.

Proposition 3.7 Assume that {θn} is a nondecreasing sequence that satisfies θn ∈ [0, 1) ∀n ≥
1 with lim

n→∞ θn = θ such that the following condition holds:

1 − 3θ > 0. (3.3)

Then, Assumptions (2.4) and 3.1 hold.

Proof Observe that θn ≤ θ, ∀n ≥ 1. Thus, we have that assumption (2.4) is satisfied and
tn ≤ 1

1−θ
, ∀n ≥ 1 (see [3]). Now, observe that 1 − 3θ > 0 implies that (1 − θ) >

θ(1+θ)
1−θ

.

This further implies that there exists ε ∈ (0, 1) such that

(1 − ε)(1 − θ) ≥ θ(1 + θ)

1 − θ
. (3.4)

Since θn ≤ θ, ∀n ≥ 1, we obtain from (3.4) that

(1 − ε)(1 − θn−1) ≥ θ(1 + θ)

1 − θ
≥ θntn+1(1 + θn), (3.5)

for some ε ∈ (0, 1). Since θn−1 ≤ θn, ∀n ≥ 1, we obtain that

θntn+1(1 + θn) = θntn+1(1 + θn + [θn−1 − θn]+).

Combining this with (3.5), we get that Assumption 3.1 is satisfied. ��

123

10 Page 10 of 35 Journal of Scientific Computing (2022) 90 :10

Proposition 3.8 Suppose that θn ∈ [0, 1), ∀n ≥ 1 and there exists c ∈ [0, 1
2) such that

lim
n→∞

(
1

1 − θn+1
− 1

1 − θn

)
= c (3.6)

and

lim inf
n→∞ (1 − θn)

2 > lim sup
n→∞

θn(1 + θn)

1 − 2c
. (3.7)

Then, Assumptions (2.4) and 3.1 hold.

Proof It follows from Proposition 2.3(i) that Assumption (2.4) holds.
Now, from (3.7), we obtain that

lim inf
n→∞ (1 − θn−1)

2 > lim sup
n→∞

θn(1 + θn)

1 − 2c
. (3.8)

Thus, there exists ε ∈ (0, 1) sufficiently small enough such that

lim inf
n→∞ (1 − θn−1)

2 > lim sup
n→∞

θn(1 + θn)

1 − 2c − ε(1 − c)
> lim sup

n→∞
θn(1 + θn)

1 − 2c
. (3.9)

This implies that

(1 + o(1))θn(1 + θn) ≤ [1 − 2c − ε(1 − c) + o(1)](1 − θn−1)
2

= [(1 − ε)(1 − c) − (2c − c + o(1))](1 − θn−1)
2

≤ [(1 − ε)(1 − c) − θn(c + o(1))](1 − θn−1)
2,

which implies that

(1 − ε)(1 − c)(1 − θn−1)
2 ≥ (1 + o(1))θn

(
1 + θn + (1 − θn−1)

2 + o
(
(1 − θn−1)

2)) .

(3.10)

Now, observe from (3.6) that

θn−1 − θn + c(1 − θn−1)(1 − θn) = o ((1 − θn−1)(1 − θn)) ,

which implies from Proposition 2.3(ii) that

θn−1 − θn = −c(1 − θn−1)(1 − θn) + o ((1 − θn−1)(1 − θn))

= −c(1 − θn−1)
2 + o(1 − θn−1)

2 as n → ∞.

This implies that

|θn−1 − θn | = | − c(1 − θn−1)
2 + o(1 − θn−1)

2|
≤ c(1 − θn−1)

2 + o(1 − θn−1)
2 as n → ∞. (3.11)

Combining (3.10) and (3.11), we obtain that

(1 − ε)(1 − c)(1 − θn−1)
2 ≥ (1 + o(1)) θn (1 + θn + [θn−1 − θn]+) . (3.12)

By Proposition 2.3, we have that tn+1 ∼ tn ∼ 1
(1−c)(1−θn−1)

as n → ∞. Hence, (3.12) is
equivalent to

(1 − ε)(1 − c)(1 − θn−1)
2 ≥ θn

(1 − c)(1 − θn−1)
tn+1 (1 + θn + [θn−1 − θn]+) ,

which further implies Assumption 3.1. ��

123

Journal of Scientific Computing (2022) 90 :10 Page 11 of 35 10

When ρn �= 1, then we have the following proposition which provides some criteria for
ensuring Assumption 3.1, as well as Assumption (2.4).

Proposition 3.9 (See for example, [3, Proposition 3.3])
Suppose that θn ∈ [0, 1) and ρn ∈ (0, 1) for all n ≥ 1. Assume that there exist c ∈ [0, 1)
and c̄ ∈ [c, 1) such that

lim
n→∞

(
1

1 − θn+1
− 1

1 − θn

)
= c,

lim
n→∞

γn+1 − γn

γn(1 − θn)
= c̄

and

lim inf
n→∞ γn(1 − θn)

2 > lim sup
n→∞

θn(1 + θn)

1 − c̄
,

where γn = 1−ρn
2ρn

. Then, Assumptions (2.4) and 3.1 hold.

Remark 3.10 It is worthy of note that many practical choices for the inertial and relaxation
factors θn and ρn , respectively, satisfy Assumption 3.1. In fact, similar conditions as in
Propositions 3.7–3.9 have already been used in the literature to ensure the convergence of
inertial and relaxationmethods (see [31,46,47] and the references therein). Thus, Assumption
3.1, as well as assumption (2.4) are much more weaker than the assumptions in those papers.

Moreover, we shall give in Sect. 5, some typical examples of θn and ρn which satisfy the
conditions in Propositions 3.7–3.9 (therefore, satisfying assumption (2.4) and Assumption
3.1). Then, we check the sensitivity of both θn and ρn in order to find numerically, the
optimum choice of these parameters with respect to the convergence speed of our proposed
methods.

4 Convergence Analysis

Lemma 4.1 Let {xn} be a sequence generated by Algorithm 3.3 such that Assumption 3.2(a)-
(b) hold. Then,

�n+1 − �n − θn(�n − �n−1)

≤ 1

2
(θn+θ2n)‖xn−xn−1‖2−γn‖xn+1−wn‖2−ρn

2
(1−λL)

[||wn−yn ||2+||zn−yn ||2
]
,

where γn := 1−ρn
2ρn

and �n := 1
2‖xn − z‖2, ∀z ∈ �.

Proof Let z ∈ �. Since xn+1 − wn = ρn(zn − wn), we obtain

〈xn+1 − wn, wn − z〉 = ρn〈zn − wn, wn − zn〉 + ρn〈zn − wn, zn − z〉
= −ρn‖zn − wn‖2 + ρn〈zn − wn, zn − z〉
=−ρ−1

n ‖xn+1−wn‖2+ρn〈zn−wn+λAyn, zn − z〉−λρn〈Ayn, zn−z〉
≤ −ρ−1

n ‖xn+1 − wn‖2 + λρn〈Ayn, z − zn〉, (4.1)

where the last inequality follows from z ∈ � ⊆ Tn and the characteristic property of PTn
(see (2.3)).

123

10 Page 12 of 35 Journal of Scientific Computing (2022) 90 :10

Now, using (4.1) in Lemma 2.6, we obtain

�n+1 − �n − θn(�n − �n−1)

≤ 1

2
(θn+θ2n)‖xn−xn−1‖2−ρ−1

n ‖xn+1−wn‖2+λρn〈Ayn, z − zn〉 + 1

2
‖xn+1 − wn‖2

= 1

2
(θn + θ2n)‖xn − xn−1‖2 + ρn − 1

2ρn
‖xn+1 − wn‖2 − 1

2ρn
‖xn+1 − wn‖2

+ λρn〈Ayn, z − zn〉
= 1

2
(θn + θ2n)‖xn − xn−1‖2 + ρn − 1

2ρn
‖xn+1 − wn‖2 + λρn〈Ayn, z − zn〉

− 1

2ρn
· ρ2

n‖wn − zn‖2

= 1

2
(θn + θ2n)‖xn − xn−1‖2 + ρn − 1

2ρn
‖xn+1 − wn‖2 + λρn〈Ayn, z − zn〉

− ρn

2
‖wn − yn‖2 − ρn

2
‖yn − zn‖2 − ρn〈wn − yn, yn − zn〉, (4.2)

where the last equality follows from Lemma 2.8.
Since yn ⊂ C and z ∈ �, we get from (2.1) that 〈Ayn, yn − z〉 ≥ 0,∀n ≥ 1. That is
〈Ayn, yn − zn + zn − z〉 ≥ 0,∀n ≥ 1. This implies that

λ〈Ayn, z − zn〉 − 〈wn − yn, yn − zn〉 ≤ λ〈Ayn, yn − zn〉 − 〈wn − yn, yn − zn〉
= 〈λAyn − wn + yn, yn − zn〉. (4.3)

Substituting (4.3) into (4.2), we obtain that

�n+1 − �n − θn(�n − �n−1)

≤ 1

2
(θn + θ2n)‖xn − xn−1‖2 + ρn − 1

2ρn
‖xn+1 − wn‖2

−ρn

2

(‖wn − yn‖2 + ‖yn − zn‖2
) + ρn〈λAyn − wn + yn, yn − zn〉

= 1

2
(θn + θ2n)‖xn − xn−1‖2 + ρn − 1

2ρn
‖xn+1 − wn‖2 − ρn

2

(‖wn − yn‖2 + ‖yn − zn‖2
)

+ρn〈wn − λAwn − yn, zn − yn〉 + λρn〈Awn − Ayn, zn − yn〉
≤ 1

2
(θn + θ2n)‖xn − xn−1‖2 + ρn − 1

2ρn
‖xn+1 − wn‖2 − ρn

2

(‖wn − yn‖2 + ‖yn − zn‖2
)

+λρn〈Awn − Ayn, zn − yn〉, (4.4)

where the last inequality follows from the definition of Tn .
Now, from the Lipschitz continuity of A, we obtain

〈Awn − Ayn, zn − yn〉 ≤ L||wn − yn ||||zn − yn ||
= L

2

[||wn − yn ||2 + ||zn − yn ||2 − (||wn − yn || − ||zn − yn ||)2
]

≤ L

2

(||wn − yn ||2 + ||zn − yn ||2
)
. (4.5)

Substituting (4.5) into (4.4), we obtain the desired conclusion. ��

123

Journal of Scientific Computing (2022) 90 :10 Page 13 of 35 10

Lemma 4.2 Let {xn} be a sequence generated by Algorithm 3.3 such that Assumption (2.4)
and Assumption 3.2(a)-(b) hold. Then, the following inequality holds:

n−1∑
i=1

ti+1,n

[(
2γi (1 − θi)

2 − (θi + θ2i)
) ‖xi − xi−1‖2 + 2γi (1 − θi)

(
‖xi+1 − xi‖2 − ‖xi − xi−1‖2

)]
≤ 2t1|�1 − �0| + 2�0,

where ti,n is as defined in (2.7).

Proof By Lemma 2.8, we obtain

‖xn+1 − wn‖2 = ‖xn+1 − xn − (xn − xn−1) + (1 − θn)(xn − xn−1)‖2
= ‖xn+1 − 2xn + xn−1‖2 + (1 − θn)

2‖xn − xn−1‖2
+2(1 − θn)〈xn+1 − 2xn + xn−1, xn − xn−1〉

= ‖xn+1 − 2xn + xn−1‖2 + (1 − θn)
2‖xn − xn−1‖2

+(1 − θn)
[‖xn+1 − xn‖2 − ‖xn − xn−1‖2 − ‖xn+1 − 2xn + xn−1‖2

]

= θn‖xn+1 − 2xn + xn−1‖2 + (1 − θn)
2‖xn − xn−1‖2

+(1 − θn)
[‖xn+1 − xn‖2 − ‖xn − xn−1‖2

]

≥ (1 − θn)
2‖xn − xn−1‖2 + (1 − θn)

[‖xn+1 − xn‖2 − ‖xn − xn−1‖2
]
.

(4.6)

Using (4.6) in Lemma 4.1, and noting that 1 − λL > 0, we obtain

�n+1 − �n − θn(�n − �n−1) ≤ 1

2
(θn + θ2n)‖xn − xn−1‖2 − γn(1 − θn)

2‖xn − xn−1‖2

− γn(1 − θn)
[
‖xn+1 − xn‖2 − ‖xn − xn−1‖2

]

=
[1
2
(θn + θ2n) − γn(1 − θn)

2
]
‖xn − xn−1‖2

− γn(1 − θn)
[
‖xn+1 − xn‖2 − ‖xn − xn−1‖2

]
.

This together with Lemma 2.5(a) imply that

�n − �0 =
n∑

i=1

(�i − �i−1)

≤ t1,n(�1 − �0)

+
n−1∑
i=1

ti+1,n

[(1
2
(θi + θ2i) − γi (1 − θi)

2
)

‖xi − xi−1‖2 − γi (1 − θi)
(
‖xi+1 − xi‖2 − ‖xi − xi−1‖2

)]
.

123

10 Page 14 of 35 Journal of Scientific Computing (2022) 90 :10

Noting that t1,n ≤ t1, we obtain

n−1∑
i=1

ti+1,n

[(
2γi (1 − θi)

2 − (θi + θ2i)
) ‖xi − xi−1‖2 + 2γi (1 − θi)

(
‖xi+1 − xi‖2 − ‖xi − xi−1‖2

)]

≤ 2t1,n(�1 − �0) + 2(�0 − �n)

≤ 2t1|�1 − �0| + 2�0 − 2�n .

Using �n = 1
2‖xn − z‖2 ≥ 0, ∀n ≥ 1 in the above inequality, we obtain the desired

conclusion ��

Lemma 4.3 Let {xn} be a sequence generated by Algorithm 3.3 such that Assumptions (2.4)
and 3.2(a)-(b) hold. Then, the following inequality holds:

n−1∑
i=1

2γi−1(1 − θi−1) − θi ti+1

(
1 + θi + 2

[
γi (1 − θi) − γi−1(1 − θi−1)

]
+

)
‖xi − xi−1‖2

≤ 2
[
t1|�1 − �0| + �0 + t1γ0(1 − θ0)‖x1 − x0‖2

]
.

Proof Observe that

n−1∑
i=1

ti+1,n · 2γi (1 − θi)
[
‖xi+1 − xi‖2 − ‖xi − xi−1‖2

]

= 2
n−1∑
i=1

(
ti,nγi−1(1 − θi−1) − ti+1,nγi (1 − θi)

)
‖xi − xi−1‖2

+ 2t1,nγn−1(1 − θn−1)‖xn − xn−1‖2 − 2t1,nγ0(1 − θ0)‖x1 − x0‖2

≥ 2
n−1∑
i=1

(
ti,nγi−1(1 − θi−1) − ti+1,nγi (1 − θi)

)
‖xi − xi−1‖2

− 2t1,nγ0(1 − θ0)‖x1 − x0‖2

≥ 2
n−1∑
i=1

(
ti,nγi−1(1 − θi−1) − ti+1,nγi (1 − θi)

)
‖xi − xi−1‖2

− 2t1γ0(1 − θ0)‖x1 − x0‖2, (4.7)

where the last inequality follows from t1,n ≤ t1.
Now, using (4.7) in Lemma 4.2, we obtain that

n−1∑
i=1

ti+1,n
(
2γi (1 − θi)

2 − (θi + θ2i)
)‖xi − xi−1‖2

+ 2
n−1∑
i=1

(
ti,nγi−1(1 − θi−1) − ti+1,nγi (1 − θi)

)‖xi − xi−1‖2

≤ 2t1|�1 − �0| + 2�0 + 2t1γ0(1 − θ0)‖x1 − x0‖2.

123

Journal of Scientific Computing (2022) 90 :10 Page 15 of 35 10

That is
n−1∑
i=1

[
ti+1,n(2γi (1 − θi)

2 − (θi + θ2i) − 2γi (1 − θi)) + 2ti,nγi−1(1 − θi−1)
]‖xi − xi−1‖2

≤ 2
[
t1|�1 − �0| + �0 + t1γ0(1 − θ0)‖x1 − x0‖2

]
. (4.8)

Now, recall from (2.8) that ti,n = 1 + θi ti+1,n for all i ≥ 1 and n ≥ i + 1. Hence, we have

2ti,nγi−1(1 − θi−1) = 2
[
γi−1(1 − θi−1) + θi ti+1,nγi−1(1 − θi−1)

]
.

This implies that

ti+1,n

[
2γi (1 − θi)

2 − (θi + θ2i) − 2γi (1 − θi)
]

+ 2ti,nγi−1(1 − θi−1)

= ti+1,n
[
2γi (1 − θi)

2 − (θi + θ2i) − 2γi (1 − θi) + 2θiγi−1(1 − θi−1)
]

+ 2γi−1(1 − θi−1)

= 2γi−1(1 − θi−1) + ti+1,n

(
− 2γiθi (1 − θi) − (θi + θ2i) + 2θiγi−1(1 − θi−1)

)

= 2γi−1(1 − θi−1) − θi ti+1,n

(
2γi (1 − θi) + 1 + θi − 2γi−1(1 − θi−1)

)

≥ 2γi−1(1 − θi−1) − θi ti+1,n

(
1 + θi + 2

[
γi (1 − θi) − γi−1(1 − θi−1)

]
+

)

≥ 2γi−1(1 − θi−1) − θi ti+1

(
1 + θi + 2

[
γi (1 − θi) − γi−1(1 − θi−1)

]
+
)
, (4.9)

where the last inequality follows from ti+1,n ≤ ti+1.

Now, using (4.9) in (4.8), we obtain that the desired conclusion. ��
Lemma 4.4 Let {xn} be a sequence generated by Algorithm 3.3 such that Assumptions (2.4),
3.1 and 3.2(a)-(b) hold. Then,

∞∑
n=1

θntn+1‖xn − xn−1‖2 < ∞.

Proof Without loss of generality, wemay assume that inequality (3.1) holds true for all n ≥ 1.
That is,
⎧⎨
⎩
2εγn−1(1 − θn−1) ≤ 2γn−1(1 − θn−1) − θn tn+1

(
1 + θn + 2

[
γn (1 − θn) − γn−1(1 − θn−1)

]
+
)
, if ρn ∈ (0, 1),

ε(1 − θn−1) ≤ (1 − θn−1) − θn tn+1

(
1 + θn +

[
θn−1 − θn

]
+
)
, if ρn = 1,

(4.10)

where γn = 1−ρn
2ρn

, for all n ≥ 1.
At this point, we divide our proof into two cases.
Case 1: Suppose that ρn ∈ (0, 1), ∀n ≥ 1. Then, using (4.10) in Lemma 4.3, we obtain

n−1∑
i=1

εγi−1(1 − θi−1)‖xi − xi−1‖2 ≤ t1|�1 − �0| + �0 + t1γ0(1 − θ0)‖x1 − x0‖2. (4.11)

Now, taking limit as n → ∞ in (4.11), we obtain that

∞∑
i=1

γi−1(1 − θi−1)‖xi − xi−1‖2 < ∞. (4.12)

123

10 Page 16 of 35 Journal of Scientific Computing (2022) 90 :10

Again, from (4.10), we obtain that

1

2
θntn+1 ≤ γn−1(1 − θn−1) − 1

2
θntn+1

(
θn + 2

[
γn(1 − θn) − γn−1(1 − θn−1)

]
+
)

− εγn−1(1 − θn−1)

≤ γn−1(1 − θn−1). (4.13)

Using (4.13) in (4.12), we obtain

∞∑
i=1

θi ti+1‖xi − xi−1‖2 < ∞.

Case 2: Suppose that ρn = 1, ∀n ≥ 1. Then, xn+1 = zn and γn = 0, ∀n ≥ 1.
Setting x = wn − yn and y = xn+1 − yn in Lemma 2.8, and using its result in Lemma 4.1,
we obtain

�n+1 − �n − θn(�n − �n−1) ≤ 1

2
(θn + θ2n)‖xn − xn−1‖2

−1

2

[||wn − yn + xn+1 − yn ||2 + ||wn − xn+1||2
]

≤ 1

2
(θn + θ2n)‖xn − xn−1‖2 − 1

2
||wn − xn+1||2. (4.14)

Now, using (4.6) in (4.14), and repeating the same line of proof as in Lemma 4.2, we get

n−1∑
i=1

ti+1,n

[(
(1−θi)

2−(θi+θ2i)
) ‖xi−xi−1‖2+(1−θi)

(
‖xi+1 − xi‖2 − ‖xi−xi−1‖2

)]

≤ 2t1|�1 − �0| + 2�0. (4.15)

Similar to (4.7), we have

n−1∑
i=1

ti+1,n(1 − θi)
[
‖xi+1 − xi‖2 − ‖xi − xi−1‖2

]

≥
n−1∑
i=1

(
ti,n(1 − θi−1) − ti+1,n(1 − θi)

)
‖xi − xi−1‖2 − t1(1 − θ0)‖x1 − x0‖2.(4.16)

Also, using (4.16) in (4.15), and repeating the same line of proof as in Lemma 4.3, we get

n−1∑
i=1

(1 − θi−1) − θi ti+1

(
1 + θi +

[
θi−1 − θi

]
+

)
‖xi − xi−1‖2

≤ 2t1|�1 − �0| + 2�0 + t1(1 − θ0)‖x1 − x0‖2. (4.17)

Using (4.10) in (4.17), and repeating the same line of proof as in Case 1, we obtain

∞∑
i=1

θi ti+1‖xi − xi−1‖2 < ∞,

which yields the desired conclusion. ��
Lemma 4.5 Let {xn} be a sequence generated by Algorithm 3.3 such that Assumption (2.4),
Assumptions 3.1 and 3.2(a)-(b) hold. Then,

123

Journal of Scientific Computing (2022) 90 :10 Page 17 of 35 10

(a) lim
n→∞ ‖xn − z‖ exists for all z ∈ �, and consequently, {xn} is bounded.

(b) lim
n→∞

[‖wn − yn‖2 + ||zn − yn ||2
] = 0,

(c) lim
n→∞ ‖xn − wn‖ = 0.

Proof (a) From Lemma 4.1, we obtain

�n+1 − �n ≤ θn

(
�n − �n−1

)
+ 1

2

(
θn + θ2n

)
‖xn − xn−1‖2

− ρn

2
(1 − λL)

[||wn − yn ||2 + ||zn − yn ||2
]

≤ θn

(
�n − �n−1

)
+ θn‖xn − xn−1‖2

− ρn

2
(1 − λL)

[||wn − yn ||2 + ||zn − yn ||2
]

(4.18)

≤ θn

(
�n − �n−1

)
+ θn‖xn − xn−1‖2, (4.19)

where the second inequality follows from θ2n ≤ θn and the third inequality follows from
1 − λL > 0.

Now, applying Lemmas 2.5(b) and 4.4 in (4.19), we obtain that
∞∑
n=1

[
�n −�n−1

]
+ < ∞.

Since �n = 1
2‖xn − z‖2, we get that lim

n→∞ ‖xn − z‖2 exists. Hence, {xn} is bounded.

(b) By applying Lemma 2.5(a) in (4.18), we obtain that

�n − �0 =
n∑

i=1

(
�i − �i−1

)

≤ t1,n
(
�1 − �0

)
+

n−1∑
i=1

ti+1,n

[
θi‖xi − xi−1‖2

− ρi

2
(1 − λL)

[||wi − yi ||2 + ||zi − yi ||2
]]

≤ t1
(
�1 − �0

) +
n−1∑
i=1

ti+1θi‖xi − xi−1‖2 −
n−1∑
i=1

ti+1,n

ρi

2
(1 − λL)

[||wi − yi ||2 + ||zi − yi ||2
]]

,

which implies that

n−1∑
i=1

ti+1,n
ρi

2
(1 − λL)

[||wi − yi ||2 + ||zi − yi ||2
]]

≤ �0 − �n + t1(�1 − �0) +
n−1∑
i=1

ti+1θi‖xi − xi−1‖2

≤ �0 + t1|�1 − �0| +
n−1∑
i=1

ti+1θi‖xi − xi−1‖2

< ∞,

123

10 Page 18 of 35 Journal of Scientific Computing (2022) 90 :10

where the last inequality follows from Lemma 4.4.
Since ti+1,n = 0 for i ≥ n, letting n tend to ∞, the monotone convergence theorem then
implies that

∞∑
i=1

ti+1
ρi

2
(1 − λL)

[||wi − yi ||2 + ||zi − yi ||2
]]

< ∞. (4.20)

Since lim inf
n→∞ ρn > 0, there exists M > 0 such that ρn ≥ M for n large enough.

Now, replacing i with n in (4.20) and noting that tn ≥ 1,∀n ≥ 1, we obtain from

(4.20) that
∞∑
n=1

M
2 (1 − λL)

[||wn − yn ||2 + ||zn − yn ||2
]

< ∞, which further gives that

lim
n→∞

[||wn − yn ||2 + ||zn − yn ||2
] = 0.

(c) Since wn = xn + θn(xn − xn−1), we obtain from Lemma 4.4 that

∞∑
n=1

tn+1‖wn − xn‖2 ≤
∞∑
n=1

θntn+1‖xn − xn−1‖2 < ∞.

Noting that tn ≥ 1,∀n ≥ 1, we conclude immediately that lim
n→∞ ‖wn − xn‖ = 0.

��

Lemma 4.6 Let {xn} be a sequence generated by Algorithm 3.3 such that Assumption (2.4),
Assumptions 3.1 and 3.2(a)-(d) hold. If x∗ is one of the weak cluster points of {xn}, then we
have at least one of the following: x∗ ∈ � or Ax∗ = 0.

Proof By Lemma 4.5(a), we can choose a subsequence of {xn} denoted by {xnk } such that
xnk⇀x∗ ∈ H. Also, from Lemma 4.5(b),(c), we obtain that lim

n→∞ ‖yn − xn‖ = 0. Hence, we

can choose a subsequence {ynk } of {yn} such that ynk⇀x∗.Note that x∗ ∈ C since {ynk } ⊂ C.

We now consider two possible cases.

Case 1: Suppose that lim sup
k→∞

‖Aynk‖ = 0. Then, lim
k→∞ ‖Aynk‖ = lim inf

k→∞ ‖Aynk‖ = 0. Also,

by the sequentially weakly continuity of A on C, we obtain that Aynk⇀Ax∗. Thus, by the
weakly lower semicontinuity of ‖ · ‖, we have that

0 < ‖Ax∗‖ ≤ lim inf
k→∞ ‖Aynk‖ = 0, (4.21)

which implies that Ax∗ = 0.

Case 2: Suppose that lim sup
k→∞

‖Aynk‖ > 0. Then, without loss of generality, we can choose

a subsequence of {Aynk } still denoted by {Aynk } such that lim
k→∞ ‖Aynk‖ = M > 0. Also by

the characteristics property of PC, we obtain for all x ∈ C that

〈wnk − λAwnk − ynk , x − ynk 〉 ≤ 0.

This implies that

1

λ
〈wnk − ynk , x − ynk 〉 + 〈Awnk , ynk − wnk 〉 ≤ 〈Awnk , x − wnk 〉. (4.22)

123

Journal of Scientific Computing (2022) 90 :10 Page 19 of 35 10

Thus, we obtain from Lemma 4.5(b) that

0 ≤ lim inf
k→∞ 〈Awnk , x − wnk 〉 ≤ lim sup

k→∞
〈Awnk , x − wnk 〉 < ∞, ∀x ∈ C. (4.23)

Now, note that

〈Aynk , x − ynk 〉 = 〈Aynk − Awnk , x − wnk 〉 + 〈Awnk , x − wnk 〉 + 〈Aynk , wnk − ynk 〉.
(4.24)

Moreover, since A is Lipschitz continuous on H, we obtain from Lemma 4.5(b) that
lim
k→∞ ‖Awnk − Aynk‖ = 0. Hence, we obtain from Lemmas 4.5(b), (4.23) and (4.24) that

0 ≤ lim inf
k→∞ 〈Aynk , x − ynk 〉 ≤ lim sup

k→∞
〈Aynk , x − ynk 〉 < ∞, ∀x ∈ C. (4.25)

Based on (4.25), we consider two cases under Case 2, as follows:
Case A: Suppose that lim sup

k→∞
〈Aynk , x − ynk 〉 > 0,∀x ∈ C. Then, we can choose a subse-

quence of {ynk } denoted by {ynk j } such that lim
j→∞〈Aynk j , x − ynk j 〉 > 0. Thus, there exists

j0 ≥ 1 such that 〈Aynk j , x − ynk j 〉 > 0,∀ j ≥ j0, which by the quasimonotonicity of A
on H, implies 〈Ax, x − ynk j 〉 ≥ 0,∀x ∈ C, j ≥ j0. Thus, letting j → ∞, we obtain that

〈Ax, x − x∗〉 ≥ 0,∀x ∈ C. Hence, x∗ ∈ �.

Case B: Suppose that lim sup
k→∞

〈Aynk , x − ynk 〉 = 0,∀x ∈ C. Then, by (4.25), we obtain that

lim
k→∞〈Aynk , x − ynk 〉 = 0,∀x ∈ C, (4.26)

which implies that

〈Aynk , x − ynk 〉 + |〈Aynk , x − ynk 〉| + 1

k + 1
> 0,∀x ∈ C. (4.27)

Also, since lim
k→∞ ‖Aynk‖ = M > 0, there exists k0 ≥ 1 such that ‖Aynk‖ > M

2 ,∀k ≥ k0.

Therefore, we can set qnk = Aynk
‖Aynk ‖2 ,∀k ≥ k0. Thus, 〈Aynk , qnk 〉 = 1,∀k ≥ k0. Hence, by

(4.27), we obtain

〈
Aynk , x + qnk

[
|〈Aynk , x − ynk 〉| + 1

k + 1
− ynk

]〉
> 0,

which by the quasimonotonicity of A on H, implies

〈
A
(
x + qnk

[
|〈Aynk , x − ynk 〉| + 1

k + 1

])
, x + qnk

[|〈Aynk , x − ynk 〉| + 1

k + 1

] − ynk

〉
≥ 0.

123

10 Page 20 of 35 Journal of Scientific Computing (2022) 90 :10

This further implies that

〈Ax, x + qnk

[
|〈Aynk , x − ynk 〉| + 1

k + 1

]
− ynk 〉

≥ 〈Ax, A(x+qnk
[|〈Aynk , x−ynk 〉|+

1

k+1

]
), x+qnk

[|〈Aynk , x−ynk 〉|+
1

k+1

]−ynk 〉

≥ −‖Ax−A(x+qnk

[
|〈Aynk , x−ynk 〉|+

1

k+1

]
)‖ · ‖x+qnk

[
|〈Aynk , x−ynk 〉| + 1

k + 1

]

− ynk‖
≥ −L‖qnk

[
|〈Aynk , x − ynk 〉| + 1

k + 1

]
‖ · ‖x + qnk

[
|〈Aynk , x − ynk 〉| + 1

k + 1

]
− ynk‖

= −L

‖Aynk‖
(
|〈Aynk , x − ynk 〉| + 1

k + 1

)
· ‖x + qnk

[
|〈Aynk , x − ynk 〉| + 1

k + 1

]
− ynk‖

≥ −2L

M

(
|〈Aynk , x − ynk 〉| + 1

k + 1

)
M1, (4.28)

for some M1 > 0, where the existence of M1 follows from the boundedness of {x +
qnk

[
|〈Aynk , x− ynk 〉|+ 1

k+1

]
− ynk }.Note from (4.26) that lim

k→∞

(
|〈Aynk , x− ynk 〉|+ 1

k+1

)
=

0.Hence, letting k → ∞ in (4.28), we get that 〈Ax, x−x∗〉 ≥ 0,∀x ∈ C. Therefore, x∗ ∈ �.

��
Lemma 4.7 Let {xn} be a sequence generated by Algorithm 3.3 such that Assumption (2.4),
Assumption 3.1 and 3.2(a)-(d) hold. Then {xn} has at most one weak cluster point in �.

Proof Suppose on the contrary that {xn} has at least two weak cluster points in �. Let x∗ ∈ �

and x̄ ∈ � be any two weak cluster points of {xn} such that x∗ �= x̄ . Also, let {xn j } be a
subsequence of {xn} such that xn j ⇀x̄, as j → ∞. Then, by Lemmas 4.5(a) and 2.7, we
have

lim
n→∞ ‖xn − x̄‖ = lim

j→∞ ‖xn j − x̄‖
= lim inf

j→∞ ‖xn j − x̄‖
< lim inf

j→∞ ‖xn j − x∗‖
= lim

n→∞ ‖xn − x∗‖
= lim inf

k→∞ ‖xnk − x∗‖
< lim inf

k→∞ ‖xnk − x̄‖ = lim
n→∞ ‖xn − x̄‖,

which is a contradiction. Therefore, {xn} has at most one weak cluster point in �. ��
Using similar line of arguments as in [29, Lemma 3.5], we obtain the following weak con-
vergence result.

Theorem 4.8 Let {xn} be a sequence generated by Algorithm 3.3 such that assumption (2.4),
Assumptions 3.1 and 3.2(a)-(e) hold. Then {xn} converges weakly to an element of V I (C, A).

Proof By Assumption 3.2(e), {x ∈ C : Ax = 0} \ � is a finite set. Hence, by Lemma 4.6 and
Lemma 4.7, we have that {xn} has finite weak cluster points in V I (C, A). Let x1, x2, · · · , xm

123

Journal of Scientific Computing (2022) 90 :10 Page 21 of 35 10

be the weak cluster points of {xn}, and let {xink } be a subsequence of {xn} such that xink⇀xi ,
as k → ∞. Then, we obtain

lim
k→∞

〈
xink , x

i − x j
〉
=
〈
xi , xi − x j

〉
,∀ j �= i . (4.29)

Now, for j �= i, set q = β−1(xi − x j), where β = ‖xi − x j‖. Then,
〈xi , q〉 = β−1〈xi , xi − x j 〉

= β−1
(
‖xi‖2 − 〈xi , x j 〉

)

= β−1
[
‖xi‖2 − 1

2
‖xi‖2 − 1

2
‖x j‖2 + 1

2
‖xi − x j‖2

]

= 1

2β

(
‖xi‖2 − ‖x j‖2

)
+ 1

2
β

>
1

2β

(
‖xi‖2 − ‖x j‖2

)
+ 1

4
β. (4.30)

For sufficiently large k, we obtain from (4.29) and (4.30) that

xink ∈
{
x : 〈x, q〉 >

1

2β

(
‖xi‖2 − ‖x j‖2

)
+ 1

4
β
}
. (4.31)

Hence, there exists N1 > N (N ∈ N) such that

xink ∈ Bi :=
m⋂

j=1, j �=i

{
x :

〈
x,

xi − x j

‖xi − x j‖
〉
>

1

2‖xi − x j‖
(
‖xi‖2 − ‖x j‖2

)
+ ε0

}
,∀n ≥ N1,

(4.32)

where

ε0 = min
{1
4
‖xi − x j‖ : i, j = 1, 2, · · · ,m, i �= j

}
.

Now, fromLemma4.5(b),weobtain that lim
n→∞ ‖zn−wn‖ = 0.Since xn+1−wn = ρn(zn−wn)

and {ρn} is bounded, we obtain that lim
n→∞ ‖xn+1 − wn‖ = 0. This together with Lemma

4.5(c), imply that lim
n→∞ ‖xn+1 − xn‖ = 0. Hence, there exists N2 > N1 > N such that

‖xn+1 − xn‖ < ε0,∀n ≥ N2.

Claim: {xn} has only one weak cluster point in V I (C, A).

Suppose on the contrary that {xn} has more than one weak cluster points in V I (C, A). Then,
there exists N3 ≥ N2 > N1 > N such that xN3 ∈ Bi and xN3+1 ∈ B j , where

B j :=
m⋂

i=1,i �= j

{
x :

〈
− x,

x j − xi

‖x j − xi‖
〉
<

1

2‖x j − xi‖
(
‖xi‖2 − ‖x j‖2

)
− ε0

}
,

i, j ∈ {1, 2, · · · ,m} and m ≥ 2. (4.33)

In particular, we have

‖xN3+1 − xN3‖ < ε0. (4.34)

Since xN3 ∈ Bi and xN3+1 ∈ B j , we obtain that

〈
xN3 ,

xi − x j

‖xi − x j‖
〉
>

1

2‖xi − x j‖
(
‖xi‖2 − ‖x j‖2

)
+ ε0 (4.35)

123

10 Page 22 of 35 Journal of Scientific Computing (2022) 90 :10

and
〈
− xN3+1,

xi − x j

‖x j − xi‖
〉
>

1

2‖xi − x j‖
(
‖x j‖2 − ‖xi‖2

)
+ ε0. (4.36)

Adding (4.35) and (4.36), and using (4.34), we obtain

2ε0 <
〈
xN3 − xN3+1,

xi − x j

‖xi − x j‖
〉
≤ ‖xN3+1 − xN3‖ < ε0, (4.37)

which is not possible. Hence, our claim holds. That is, {xn} has only one weak cluster point
in V I (C, A). Therefore, we conclude that {xn} converges weakly to an element of V I (C, A).

��
Remark 4.9 (i) The conclusion of Theorem 4.8 still hold even if λ ∈ (0, 1

L) in Algorithm
3.3 is replaced with a variable stepsize λn such that 0 < infn≥1 λn ≤ supn≥1 λn < 1

L .

However, choosing this variable stepsize still requires the knowledge of the Lipschitz
constant L .

(ii) When the Lipschitz constant is not known, we refer to Algorithm 3.4, where the choice of
λn does not depend on its knowledge. Note from the stepsize λn in (3.2), that lim

n→∞ λn = λ

and λ ∈ [min{μ
L , λ1}, λ1 + d], where d = ∑∞

n=1 dn (see also [29, Lemma 3.1]).
(iii) When dn = 0, then the stepsize λn generated by Algorithm 3.4 is similar to that in [52].

We recall that the stepsize in [52] is monotone non-increasing, thus, their methods may
depend on the choice of the initial stepsize λ1. However, the stepsize given in (3.2) is
non-monotonic and hence, the dependence on the initial stepsize λ1 is reduced.

In the light of the above remark,we analyze the convergence ofAlgorithm3.4 inwhat follows.

Lemma 4.10 Let {xn} be a sequence generated by Algorithm 3.4 such that Assumption 3.2(a)-
(b) hold. Then,

�n+1 − �n − θn(�n − �n−1)

≤ 1

2
(θn + θ2n)‖xn − xn−1‖2 − γn‖xn+1 − wn‖2 − ρn

2

(
1 − λn

μ

λn+1

)

[||wn − yn ||2 + ||zn − yn ||2
]
,

where γn := 1−ρn
2ρn

and �n := 1
2‖xn − z‖2, ∀z ∈ �.

Proof By following the same line of proof used in obtaining (4.4), we have

�n+1 − �n − θn(�n − �n−1)

≤ 1

2
(θn + θ2n)‖xn − xn−1‖2 + ρn − 1

2ρn
‖xn+1 − wn‖2 − ρn

2

(‖wn − yn‖2 + ‖yn − zn‖2
)

+λnρn〈Awn − Ayn, zn − yn〉. (4.38)

If 〈Awn − Ayn, zn − yn〉 ≤ 0, then we obtain the conclusion of Lemma 4.10 immediately
from (4.38).
In the case that 〈Awn − Ayn, zn − yn〉 > 0, we obtain from (3.2) that

〈Awn − Ayn, zn − yn〉 ≤ μ

2λn+1

(
‖wn − yn‖2 + ‖zn − yn‖2

)
. (4.39)

Substituting (4.39) into (4.38), we obtain the desired conclusion. ��

123

Journal of Scientific Computing (2022) 90 :10 Page 23 of 35 10

Lemma 4.11 Let {xn} be a sequence generated by Algorithm 3.3 such that assumption (2.4)
and Assumption 3.2(a)-(b) hold. Then, the following inequality holds:

n−1∑
i=1

ti+1,n

[(
2γi (1 − θi)

2 − (θi + θ2i)
) ‖xi − xi−1‖2 + 2γi (1 − θi)

(
‖xi+1 − xi‖2 − ‖xi − xi−1‖2

)]
≤ 2t1|�1 − �0| + 2�0,

where ti,n is as defined in (2.7).

Proof By following the same line of proof used in obtaining (4.6), we have

‖xn+1 − wn‖2 ≥ (1 − θn)
2‖xn − xn−1‖2 + (1 − θn)[‖xn+1 − xn‖2 − ‖xn − xn−1‖2

]
. (4.40)

Also, by Remark 4.9(ii), we obtain that limn→∞ λn
μ

λn+1
= μ ∈ (0, 1). Thus, there exists

n0 ≥ 1 such that ∀n ≥ n0, 0 < λn
μ

λn+1
< 1. Hence, we get from Lemmas 4.10 and (4.40)

that

�n+1 − �n − θn(�n − �n−1) ≤ 1

2
(θn + θ2n)‖xn − xn−1‖2 − γn‖xn+1 − wn‖2

≤
[1
2
(θn + θ2n) − γn(1 − θn)

2
]
‖xn − xn−1‖2

−γn(1 − θn)
[
‖xn+1 − xn‖2 − ‖xn − xn−1‖2

]
, ∀n ≥ n0.

The remaining part of the proof is the same as the proof of Lemma 4.2. ��
In similar manner, we have that Lemmas 4.3 to 4.7 hold for Algorithm 3.4. Thus, we have
the following theorem whose proof is the same as the proof of Theorem 4.8.

Theorem 4.12 Let {xn} be a sequence generated by Algorithm 3.4 such that Assumption (2.4),
Assumptions 3.1 and 3.2(a)-(e) hold. Then {xn} converges weakly to an element of V I (C, A).

Remark 4.13 From our analyses, one can see that Assumption 3.1 is mainly used to guarantee
the summation:

∞∑
n=1

θntn+1‖xn − xn−1‖2 < ∞ (4.41)

obtained in Lemma 4.4. Thus, if we assume that (4.41) directly, then we do not need Assump-
tion 3.1 for the convergence of our methods.
In the case where ρn = 1, ∀n ≥ 1, our methods correspond to the inertial subgradient
extragradient methods. Note that if θn ∈ [0, θ] for every n ≥ 1, where θ ∈ [0, 1), then
tn ≤ 1

(1−θ)
∀n ≥ 1. Under these settings, (4.41) is guaranteed by the condition

∞∑
n=1

θn‖xn − xn−1‖2 < ∞. (4.42)

Thus, instead of Assumption 3.1, we may assume directly that θn ∈ [0, θ], ∀n ≥ 1 and
that condition (4.42) holds. Recall that this condition has been used by numerous authors to
ensure convergence of inertial methods (see, for example, [2,15,31,32,34] and the references
therein).

123

10 Page 24 of 35 Journal of Scientific Computing (2022) 90 :10

Remark 4.14 Note that we did not make use of Assumption 3.2(c)-(e) in the proof of Lemmas
4.1–4.5. Suppose thatH is a finite dimensional Hilbert space, then under Assumption 3.2(a)-
(b), we get from Lemma 4.5(a) that there exists a subsequence {xnk } of {xn} such that {xnk }
converges to some point x∗. By Lemma 4.5(b)(c), we get

lim
k→∞ ‖wnk − ynk‖ = 0

and

lim
k→∞ ‖wnk − xnk‖ = 0.

Thus, by the definition of yn and the continuity of A, we have

x∗ = lim
k→∞ xnk = lim

k→∞ ynk = lim
k→∞ PC (wnk − λAwnk) = PC (x∗ − λAx∗),

which implies that x∗ ∈ V I (C, A).
Now, replacing z by x∗ in Lemma 4.5(a), we obtain that lim

n→∞ ‖xn − x∗‖2 exists. Since x∗ is
a cluster point of {xn}, we obtain that {xn} converges to x∗.
In summary, in a finite dimensional Hilbert space, our methods require that � �= ∅ and the
operator A only needs to be Lipschitz continuous without any form of monotonicity.
To achieve this (convergence without any form of monotonicity) in infinite dimensional
Hilbert space, we replace Assumption 3.2(d)-(e) with the following:

(d)* If xn⇀x∗ and lim sup
n→∞

〈Axn, xn〉 ≤ 〈Ax∗, x̄〉, then lim
n→∞〈Axn, xn〉 = 〈Ax∗, x∗〉.

(e)* The set V I (C, A) \ � is a finite set.

In fact, we have the following theorem.

Theorem 4.15 Let {xn} be a sequence generated by Algorithm 3.3 (or Algorithm 3.4) such
that Assumptions (2.4), 3.1 and 3.2(a)-(c) and conditions (d)*-(e)* hold. Then {xn} converges
weakly to an element of V I (C, A).

Proof First notice that Assumption 3.2(d) was used only after (4.25) in order to establish the
conclusion of Lemma 4.6.
But from (4.25), we have that

0 ≤ lim inf
k→∞ 〈Aynk , x − ynk 〉, ∀x ∈ C.

Now, let {ck} be a sequence of positive numbers such that lim
k→∞ ck = 0 and 〈Aynk , x − ynk 〉+

ck > 0, ∀k ≥ 0, x ∈ C. Then,

〈Aynk , x〉 + ck > 〈Aynk , ynk 〉, ∀k ≥ 0, x ∈ C. (4.43)

Note that ynk⇀x∗ and x∗ ∈ C. Thus, we have in particular,

〈Aynk , x∗〉 + ck > 〈Aynk , ynk 〉, ∀k ≥ 0. (4.44)

Taking limit as k → ∞ in (4.44), and using the sequentially weakly continuity of A, we
obtain that

〈Ax∗, x∗〉 ≥ lim sup
k→∞

〈Aynk , ynk 〉,

123

Journal of Scientific Computing (2022) 90 :10 Page 25 of 35 10

which by condition (d)* and (4.43) implies that

〈Ax∗, x∗〉 = lim
k→∞〈Aynk , ynk 〉

= lim inf
k→∞ 〈Aynk , ynk 〉

≤ lim
k→∞

(〈Aynk , x〉 + ck
) = 〈Ax∗, x〉.

This further implies that x∗ ∈ V I (C, A).
Now, using condition (e)* and following similar line of proof as in Lemma 4.7 and Theorem
4.15, we get that {xn} converges weakly to x∗. ��
Remark 4.16 (i) If xn⇀x∗ and A is sequentiallyweakly-strongly continuous, then A satisfies

condition (d)*.
(ii) In the numerical experiments, we do not need to consider condition (e) (or (e)*). First

note that whenever ||yn − wn || < ε, Algorithms 3.3 and 3.4 terminate in a finite step
of the iterations (and yn is the solution of the VIP (1.1)). But from Lemma 4.5(b),
lim
n→∞ ||yn − wn || = 0 and condition (e) (or (e)*) was not used in establishing it.

We now give some remarks regarding the contributions and novelties of this paper.

Remark 4.17 (1) If we set the inertial factor θn = 0 and relaxation factor ρn = 1, then our
Algorithm 3.4 reduces to [29, Algorithm 3.3]. Note that these parameters (factors) play
vital role in improving the convergence rate of iterative methods. In fact, their influence
with regards to the numerical performance of iterative schemes was discussed in [23].
Moreover, the benefits gained from incorporating the steps of these two parameters in
our algorithms, are further verified in Sect. 5. Thus, bearing in mind the importance of
these two parameters in iterative algorithms, we can see that our methods significantly
improve the methods in [29].

(2) In the study of inertial methods for solving VIPs (even for monotone mappings), the
inertia parameter is usually restricted in [0, 1

3) and/or required to be nondecreasing with
an upper bound (see, for example, [2,31,46,47]). In many cases, to ensure convergence,
authors usually require the inertial parameter to depend on the knowledge of the Lipschitz
constant of the cost operator which sometimes is very difficult to estimate in practice
(see, for instance, [8]). Another condition usually imposed on the inertial parameter in the
literature, is condition (4.42), which rely on the sequence {xn}. One of the novelties of this
paper is that we derived a general condition (Assumption 3.1) which is weaker than the
above conditions used in the literature for ensuring the convergence of inertial methods
for VIPs. As a result, we developed a different technique to ensure the convergence of
our proposed Algorithms 3.3 and 3.4.

(3) In addition to (2) above, bearing inmind theNestrov’s accelerated scheme ([35]), another
novelty of this paper, is that the assumptions on the inertial and relaxation parameters in
Algorithms 3.3 and 3.4 allow the case where inertial factor θn converges to the limit very
close to 1 (see Remark 2.4 and the choices in Experiment 1 of Sect. 5), which is very
crucial in the study of inertial methods. This is actually where the relaxation effect and
the parameter ρn come into play, as crucial ingredients of our methods. Thus, the novelty
of this paper is not only in improving the convergence speed of the methods in [29] but
to also provide weaker conditions on the inertial parameter in methods for solving VIPs
and offer a different but unified technique in proving their convergence. Furthermore,
we employed condition (Assumption 3.1) where joint adjustments of the inertial and
relaxation parameters play crucial role (for instance, see Experiment 1). Indeed, this is

123

10 Page 26 of 35 Journal of Scientific Computing (2022) 90 :10

a new perspective in the study of inertial methods for VIPs. Moreover, our study offers
many possibilities for future research in this direction; like how to modify Assumption
3.1 so that inertial factor θn is allowed to converge to 1.

(4) The method of proof of our proposed Algorithms 3.3 and 3.4 is different from the method
of proof of [29, Algorithm 3.3]. For example, we use different arguments to show that
the sequence {xn} is bounded in Lemma 4.5 (different from the arguments used in [29,
Lemma 3.2]). We also use different arguments in Lemmas 4.1, 4.2, 4.3, and 4.4.

5 Numerical Experiments

In this section, we give some numerical examples to show the implementation of our proposed
methods (Algorithms 3.3 and 3.4). We also compare our new methods with Algorithms 3.1
and 3.3 in [29], and Algorithm 2.1 in [50].
The codes are written in Matlab 2016 (b) and performed on a personal computer with an
Intel(R) Core(TM) i5-2600 CPU at 2.30GHz and 8.00 Gb-RAM. In Tables 1, 2, 3, 4, 5, “Iter.”
means the number of iterations while “CPU” means the CPU time in seconds.
In our computations, we define TOLn := ||yn − wn || for Algorithms 3.3 and 3.3. While for
Algorithms 3.1 and 3.3 in [29], we define TOLn := ‖yn − xn‖/min{λn, 1} and for Algorithm
2.1 in [50], we define TOLn := ‖xn − zn‖ = ‖xn − PC(xn − Axn)‖ (as done in [29] and
[50], respectively). Then, we use the stopping criterion TOLn < ε for the iterative processes,
where ε is the predetermined error. These choices of stopping criterion for these methods are
the best to be able to terminate the algorithms based on the examples we consider. As done
in [29], we take ε = 10−6 for all Algorithms.
We choose μ = 0.5, dn = 100

(n+1)1.1
and λ1 = 1 for Algorithm 3.4 and Algorithms 3.1 and

3.3 in [29]; λ = 1
2L for Algorithm 3.3; γ = 0.4 and σ = 0.99 for Algorithm 2.1 in [50].

These choices are the same as in [29,50] and are optimal values for these parameters.

Example 5.1 Let C = [−1, 1] and

Ax =
⎧
⎨
⎩
2x − 1, x > 1,
x2, x ∈ [−1, 1],
−2x − 1, x < −1.

Then, A is quasimonotone and 2-Lipschitz continuous. Also, � = {−1} and V I (C, A) =
{−1, 0}.

Example 5.2 Let C = {x ∈ R
2 : x21 + x22 ≤ 1, 0 ≤ x1} and A(x1, x2) = (−x1ex2 , x2).

Then, A may not be quasimonotone. We can also check that (1, 0) ∈ � and V I (C, A) =
{(1, 0), (0, 0)} (see [29, Section 4]), which by Remark 4.14 satisfy our assumptions. This
example was also tested in [29].

Example 5.3 We next consider the following problem which was also considered in [29,33,
42].
Let C = [0, 1]m and Ax = (f1x, f2x, · · · , fmx),
where fi x = x2i−1 + x2i + xi−1xi + xi xi+1 − 2xi−1 + 4xi + xi+1 − 1, i = 1, 2, · · · ,m,

x0 = xm+1 = 0.

We test these examples under the following experiments.

123

Journal of Scientific Computing (2022) 90 :10 Page 27 of 35 10

Table 1 Numerical results for
Example 1 (Experiment 1)

ρn Algorithm 3.3 Algorithm 3.4

1 CPU Iter. 0.0016 7 0.0015 3
1
20 + 1

(n+1)2
CPU Iter. 0.0022 13 0.0027 6

1
20 + 2

(n+1)3
CPU Iter. 0.0026 8 0.0020 9

1
20 + 3

(n+1)4
CPU Iter. 0.0028 11 0.0028 12

1
20 + 5

(n+1)4
CPU Iter. 0.0597 21 0.0146 20

Experiment 1
In this first experiment, we check the behavior of our methods by fixing the inertial parameter
and varying the relaxation parameter.We do this in order to check the effects of the relaxation
parameter on our methods.
For Example 1: We take θn = 3n+1

10n+5 with ρn = 1 (which by Proposition 3.7, satisfies

Assumptions (2.4) and 3.1), and θn = 19
20 − 1

(n+1)
1
2
with ρn ∈ { 1

20 + 1
(n+1)2

, 1
20 + 2

(n+1)3
, 1

20 +
3

(n+1)4
, 1
20 + 5

(n+1)4
} (which also satisfies Assumptions (2.4) and 3.1 by Proposition 3.9).

Also, we take x1 = 1 and x0 = 0.5 for this example. Since the Lipshitz constant is known
for this example, we use Algorithms 3.3 and 3.4 for the experiment and obtain the numerical
results listed in Table 1 and Fig. 1. From the table and graph, we can see that ρn = 1 performs
better than other choices made for Algorithms 3.3 and 3.4.

For Example 2 and Example 3: We take θn = 9.9
10 − 1

n+1 with ρn = 1 (which by Proposition

3.8 (see also Remark 2.4), satisfies Assumption (2.4) and 3.1), and θn = 9
10 − 1

(n+1)
1
3

with ρn ∈ { 1
10 + 1

n+1 ,
1
11 + 1

n+1 ,
1
12 + 1

n+1 ,
1
13 + 1

n+1 }. Also, we take x1 = (0.1, 0.5)
and x0 = (0.2, 0.1) for Example 2 while for Example 3, we choose x1 and x0 randomly
with m = 50. For these examples, we use Algorithm 3.4 for the experiment and obtain
the numerical results listed in Table 2 and Fig. 2. From the table and graph, we can see
that the ρn = 1

11 + 1
n+1 performs better than other choices made for Example 2 while

ρn = 1
10 + 1

n+1 performs better for Example 3, which validates the benefits sometimes
brought by the relaxation parameter.

Experiment 2
In this experiment, we compare our methods with Algorithms 3.1 and 3.3 in [29], and Algo-
rithm 2.1 in [50]. Here, we randomly choose the θn and ρn from Experiment 1, and then,
consider the following cases for the starting points in each example.

For Example 1: Case I: x1 = 0.2, x0 = 0.1 and Case II: x1 = 0.6, x0 = 0.2.

For Example 2: Case I: x1 = (1, 0.5), x0 = (0.2, 0.1) and Case II: x1 = (0.1, 0.2),
x0 = (0.3, 0.5).

For Example 3: Case I: m = 100 and Case II: m = 150 (x1 and x0 are randomly taken).
We use Algorithms 3.1 and 3.4 for the comparison in Example 1while we use only Algorithm
3.4 for the comparison in Example 2 and Example 3. The numerical results are given in Tables
3, 4, 5 and Figs. 3, 4, 5. The results show that our methods perform better than Algorithms
3.1 and 3.3 in [29], and Algorithm 2.1 in [50].

123

10 Page 28 of 35 Journal of Scientific Computing (2022) 90 :10

Number of iterations
0 5 10 15 20 25

TO
L

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Alg. 3.3 (
n
=1)

Alg. 3.3 (
n
=1/20+1/(n+1)2)

Alg. 3.3 (
n
=1/20+2/(n+1)3)

Alg. 3.3 (
n
=1/20+3/(n+1)4)

Alg. 3.3 (
n
=1/20+5/(n+1)4)

Number of iterations
0 5 10 15 20

TO
L

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Alg. 3.4 (
n
=1)

Alg. 3.4 (
n
=1/20+1/(n+1)2)

Alg. 3.4 (
n
=1/20+2/(n+1)3)

Alg. 3.4 (
n
=1/20+3/(n+1)4)

Alg. 3.4 (
n
=1/20+5/(n+1)4)

Fig. 1 The behavior of Algorithms 3.3 and 3.4 for Example 1 (Experiment 1)

Table 2 Numerical results for
Algorithm 3.4 (Experiment 1)

ρn Example 2 Example 3

1 CPU Iter. 0.0123 20 0.0232 68
1
10 + 1

n+1 CPU Iter. 0.0162 23 0.0107 39
1
11 + 1

n+1 CPU Iter. 0.0050 16 0.0304 45
1
12 + 1

n+1 CPU Iter. 0.0149 30 0.0346 51
1
13 + 1

n+1 CPU Iter. 0.0163 45 0.0257 71

Number of iterations
0 10 20 30 40 50

TO
L

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Alg. 3.4 (
n
=1)

Alg. 3.4 (
n
=1/10+1/(n+1))

Alg. 3.4 (
n
=1/11+1/(n+1))

Alg. 3.4 (
n
=1/12+1/(n+1))

Alg. 3.4 (
n
=1/13+1/(n+1))

Number of iterations
0 10 20 30 40 50 60 70 80

TO
L

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Alg. 3.4 (
n
=1)

Alg. 3.4 (
n
=1/10+1/(n+1))

Alg. 3.4 (
n
=1/11+1/(n+1))

Alg. 3.4 (
n
=1/12+1/(n+1))

Alg. 3.4 (
n
=1/13+1/(n+1))

Fig. 2 The behavior of Algorithm 3.4 for Examples 2 and 3 (Experiment 1)

123

Journal of Scientific Computing (2022) 90 :10 Page 29 of 35 10

Ta
bl
e
3

N
um

er
ic
al
re
su
lts

fo
r
E
xa
m
pl
e
1
(E

xp
er
im

en
t
2)

C
as
es

A
lg
or
ith

m
3.
3

A
lg
or
ith

m
3.
4

A
lg
or
ith

m
3.
1
in

[2
9]

A
lg
or
ith

m
3.
3
in

[2
9]

A
lg
or
ith

m
2.
1
in

[5
0]

I
C
PU

It
er
.

0.
02

23
79

5
0.
02

89
92

2
0.
06

12
10

02
0.
06

21
99

8
0.
09

23
18

48

II
C
PU

It
er
.

0.
02

44
78

8
0.
02

72
93

6
0.
06

72
99

6
0.
06

62
99

2
0.
09

00
18

28

123

10 Page 30 of 35 Journal of Scientific Computing (2022) 90 :10

Ta
bl
e
4

N
um

er
ic
al
re
su
lts

fo
r
E
xa
m
pl
e
2
(E

xp
er
im

en
t
2)

C
as
es

A
lg
or
ith

m
3.
4

A
lg
or
ith

m
3.
1
in

[2
9]

A
lg
or
ith

m
3.
3
in

[2
9]

A
lg
or
ith

m
2.
1
in

[5
0]

I
C
PU

It
er
.

0.
00

36
16

0.
02

00
55

0.
01

49
52

0.
17

80
92

7

II
C
PU

It
er
.

0.
00

62
44

0.
01

85
80

0.
01

81
77

0.
12

89
14

27

123

Journal of Scientific Computing (2022) 90 :10 Page 31 of 35 10

Ta
bl
e
5

N
um

er
ic
al
re
su
lts

fo
r
E
xa
m
pl
e
3
(E

xp
er
im

en
t
2)

C
as
es

A
lg
or
ith

m
3.
4

A
lg
or
ith

m
3.
1
in

[2
9]

A
lg
or
ith

m
3.
3
in

[2
9]

A
lg
or
ith

m
2.
1
in

[5
0]

I
C
PU

It
er
.

0.
00

49
37

0.
09

31
65

0.
09

11
62

0.
20

21
95

2

II
C
PU

It
er
.

0.
00

41
42

0.
09

16
56

0.
09

00
54

0.
21

02
24

27

123

10 Page 32 of 35 Journal of Scientific Computing (2022) 90 :10

Number of iterations
0 500 1000 1500 2000

TO
L

10-6

10-5

10-4

10-3

10-2

10-1

100

Alg. 3.3
Alg. 3.4
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.3)
Ye and He (Alg. 2.1)

Number of iterations
0 500 1000 1500 2000

TO
L

10-6

10-5

10-4

10-3

10-2

10-1

Alg. 3.3
Alg. 3.4
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.3)
Ye and He (Alg. 2.1)

Fig. 3 The behavior of TOLn for Example 1 (Experiment 2): Left: Case I; Right: Case II

Number of iterations
0 200 400 600 800 1000

TO
L

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

Alg. 3.4
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.3)
Ye and He (Alg. 2.1)

Number of iterations
0 500 1000 1500

TO
L

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

Alg. 3.4
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.3)
Ye and He (Alg. 2.1)

Fig. 4 The behavior of TOLn for Example 2 (Experiment 2): Left: Case I; Right: Case II

Remark 5.4 From Tables 3, 4, 5 and Figs. 3, 4, 5, one can see that our proposed Algorithms
3.3 and 3.4 are more efficient than [29, Algorithm 3.3] and outperform [29, Algorithm 3.3] in
terms of number of iterations and CPU time based on our test problems due to the presence
of inertial extrapolation step in Algorithms 3.3 and 3.4.

6 Conclusion

We propose and study two new subgradient extragradient methods with relaxed inertial
steps for solving the variational inequality problems in real Hilbert spaces when the cost
operator is not necessarily pseudomonotone. The first method is proposed when the Lipschitz
constant of the cost operator is known while the second method which involves adaptive
stepsize strategy, is proposed when the Lipschitz constant of the operator is not available.
The techniques employed in this paper are quite different from the ones used in most papers,

123

Journal of Scientific Computing (2022) 90 :10 Page 33 of 35 10

Number of iterations
0 200 400 600 800 1000

TO
L

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Alg. 3.4
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.3)
Ye and He (Alg. 2.1)

Number of iterations
0 500 1000 1500 2000 2500

TO
L

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Alg. 3.4
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.3)
Ye and He (Alg. 2.1)

Fig. 5 The behavior of TOLn for Example 3 (Experiment 2): Left: Case I; Right: Case II

and the assumptions on the inertial and relaxation factors, are weaker than those in many
papers for solving variational inequality problems. The benefits brought from the relaxation
are further verified in Experiment 1, and as seen in Experiment 2, our methods performs
better when compared with other methods for solving the non-pseudomonotone variational
inequality problems.

Acknowledgements The authors are grateful to the anonymous referees and the handling Editor for their
insightful comments which have improved the earlier version of the manuscript greatly. The first author
acknowledges with thanks the scholarship and financial support from the University of KwaZulu-Natal
(UKZN)Doctoral Scholarship. The research of the second author is wholly supported by theNational Research
Foundation (NRF) South Africa (S& F-DSI/NRF Free Standing Postdoctoral Fellowship; Grant Number:
120784). The second author also acknowledges the financial support from DSI/NRF, South Africa Center
of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) Postdoctoral Fellowship. The fourth
author is supported by the National Research Foundation (NRF) of South Africa Incentive Funding for Rated
Researchers (Grant Number 119903). Opinions expressed and conclusions arrived are those of the authors and
are not necessarily to be attributed to the CoE-MaSS and NRF. This paper is dedicated to the loving memory
of late Professor Charles Ejike Chidume (1947–2021).

Declarations

Declaration The authors declare that they have no competing interests.

References

1. Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient extragradient method with
self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization
(2020). https://doi.org/10.1080/02331934.2020.1723586

2. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization
of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

3. Attouch, H., Cabot, A.: Convergence of a relaxed inertial proximal algorithm for maximally monotone
operators. Math. Program. (2019). https://doi.org/10.1007/s10107-019-01412-0

4. Attouch, H., Cabot, A.: Convergence of a relaxed inertial forward-backward algorithm for structured
monotone inclusions. Appl. Math. Optim. 80(3), 547–598 (2019)

123

https://doi.org/10.1080/02331934.2020.1723586
https://doi.org/10.1007/s10107-019-01412-0

10 Page 34 of 35 Journal of Scientific Computing (2022) 90 :10

5. Apostol, R.Y., Grynenko, A.A., Semenov, V.V.: Iterative algorithms for monotone bilevel variational
inequalities. J. Comput. Appl Math. 107, 3–14 (2012)

6. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2(1), 183–202 (2009)

7. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion. Appl.
Math. Comput. 256, 472–487 (2015)

8. Dong, Q.L., Lu, Y.Y., Yang, J.: The extragradient algorithmwith inertial effects for solving the variational
inequality. Optimization 65, 2217–2226 (2016)

9. Ceng, L.C., Hadjisavvas, N., Wong, N.-C.: Strong convergence theorem by a hybrid extragradient-like
approximation method for variational inequalities and fixed point problems. J. Glob. Optim. 46, 635–646
(2010)

10. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities
in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

11. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the varia-
tional inequality problem in Hilbert space. Optim. Meth Softw. 26, 827–845 (2011)

12. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational
inequality problem in Euclidean space. Optimization 61, 1119–1132 (2011)

13. Chambolle, A., Dossal, Ch.: On the convergence of the iterates of the fast iterative shrinkage/thresholding
algorithm. J. Optim. Theory Appl. 166, 968–982 (2015)

14. Cholamjiak, W., Cholamjiak, P., Suantai, S.: An inertial forward-backward splitting method for solving
inclusion problems inHilbert spaces. J. Fixed Point TheoryAppl. (2018). https://doi.org/10.1007/s11784-
018-0526-5

15. Chuang, C.S.: Hybrid inertial proximal algorithm for the split variational inclusion problem in Hilbert
spaces with applications. Optimization 66(5), 777–792 (2017)

16. Fichera, G.: Sul pproblem elastostatico di signorini con ambigue condizioni al contorno. Atti Accad. Naz.
Lincei Rend. Cl. Sci. Fis. Mat. Natur. 34 (1963), 138-142

17. Gibali, A., Jolaoso, L.O., Mewomo, O.T., Taiwo, A.: Fast and simple Bregman projection methods for
solving variational inequalities and related problems in Banach spaces. Results Math., 75 (2020), Art.
No. 179, 36 pp

18. Godwin, E.C., Izuchukwu, C., Mewomo, O.T.: An inertial extrapolation method for solving generalized
split feasibility problems in real Hilbert spaces. Boll. Unione Mat. Ital. (2020). https://doi.org/10.1007/
s40574-020-00

19. He, B.-S., Yang, Z.-H., Yuan, X.-M.: An approximate proximal-extragradient type method for monotone
variational inequalities. J. Math. Anal. Appl. 300, 362–374 (2004)

20. Izuchukwu, C., Mebawondu, A.A., Mewomo, O.T.: A new method for solving split variational inequality
problems without co-coerciveness. J. Fixed Point Theory Appl.,22 (4), (2020), Art. No. 98, 23 pp

21. Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: An inertial method for solving generalized split feasibility
problems over the solution set of monotone variational inclusions. Optimization (2020). https://doi.org/
10.1080/02331934.2020.1808648

22. Izuchukwu, C., Okeke, C.C., Mewomo, O.T.: Systems of Variational Inequalities and multiple-set split
equality fixed point problems for countable families of multivalued type-one demicontractive-type map-
pings. Ukraïn. Mat. Zh. 71(11), 1480–1501 (2019)

23. Iutzeler, F., Hendrickx, J.M.: A generic online acceleration scheme for optimization algorithms via relax-
ation and inertia. Optim. Methods Softw. 34(2), 383–405 (2019)

24. Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: Strong convergence theorem for solving pseudo-
monotone variational inequality problem using projection method in a reflexive Banach space. J. Optim.
Theory Appl. 185(3), 744–766 (2020)

25. Khan, S.H., Alakoya, T.O., Mewomo, O.T.: Relaxed projection methods with self-adaptive step size for
solving variational inequality and fixed point problems for an infinite family of multivalued relatively
nonexpansive mappings in Banach Spaces. Math. Comput. Appl.,25 (2020), Art. 54, 25 pp

26. Khobotov, E.N.: Modification of the extragradient method for solving variational inequalities and certain
optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1989)

27. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications.
Academic Press, New York (1980)

28. Korpelevich, G.M.: An extragradient method for finding sadlle points and for other problems. Ekon. Mat.
Metody 12, 747–756 (1976)

29. Liu anad, H., Yang, J.: Weak convergence of iterative methods for solving quasimonotone variational
inequalities. Comput. Optim. Appl., 77 (2), (2020) 491-508

30. Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for
solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163(2), 399–412 (2014)

123

https://doi.org/10.1007/s11784-018-0526-5
https://doi.org/10.1007/s11784-018-0526-5
https://doi.org/10.1007/s40574-020-00
https://doi.org/10.1007/s40574-020-00
https://doi.org/10.1080/02331934.2020.1808648
https://doi.org/10.1080/02331934.2020.1808648

Journal of Scientific Computing (2022) 90 :10 Page 35 of 35 10

31. Lorenz,D.A., Pock,T.:An inertial forward-backward algorithm formonotone inclusions. J.Math. Imaging
Vis. 51, 311–325 (2015)

32. Mainge, P.E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219(1),
223–236 (2008)

33. Malitsky, Y.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim.
25(1), 502–520 (2015)

34. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J.
Comput. Appl. Math. 155, 447–454 (2003)

35. Nesterov, Y.: Amethod of solving a convex programming problemwith convergence rate O(1/k2). Soviet
Math. Doklady 27, 372–376 (1983)

36. Noor, M.: Extragradient Methods for pseudomonotone variational inequalities. J. Optim. Theory Appl.
117, 475–488 (2003)

37. Ochs, P., Brox, T., Pock, T.: iPiasco: inertial proximal algorithm for strongly convex optimization. J.
Math. Imaging Vis 53, 171–181 (2015)

38. Polyak, B.T.: Some methods of speeding up the convergence of iterates methods. U.S.S.R Comput. Math.
Phys.,4 (5) (1964), 1-17

39. Shehu, Y., Li, X.H., Dong, Q.L.: An efficient projection-typemethod formonotone variational inequalities
in Hilbert spaces. Numer. Algorithms 84, 365–388 (2020)

40. Shehu, Y., Vuong, P.T., Zemkoho, A.: An inertial extrapolation method for convex simple bilevel opti-
mization. Optim Methods. Softw. (2019). https://doi.org/10.1080/10556788.2019.1619729

41. Stampacchia, G.: Variational inequalities. In: Theory and Applications of Monotone Opera-
tors,Proceedings of the NATO Advanced Study Institute, Venice, Italy (Edizioni Odersi, Gubbio, Italy,
1968), 102–192

42. Sun, D.: A new step-size skill for solving a class of nonlinear projection equations. J. Comput. Math. 13,
357–368 (1995)

43. Taiwo, A., Alakoya, T.O., Mewomo, O.T.: Halpern-type iterative process for solving split common fixed
point and monotone variational inclusion problem between Banach spaces. Numer. Algorithms (2020).
https://doi.org/10.1007/s11075-020-00937-2

44. Taiwo, A., Owolabi, A.O.-E., Jolaoso, L.O., Mewomo, O.T., Gibali, A.: A new approximation scheme
for solving various split inverse problems. Afr. Mat. (2020). https://doi.org/10.1007/s13370-020-00832-
y

45. Thong, D.V., Hieu, D.V.: A strong convergence of modified subgradient extragradient method for solving
bilevel pseudomonotone variational inequality problems. Optimization 69, 1313–1334 (2019)

46. Thong,D.V., Hieu, D.V.: Inertial subgradient extragradient algorithmswith line-search process for solving
variational inequality problems and fixed point problems. Numer. Algorithms 80, 1283–1307 (2019)

47. Thong, D.V., Hieu, D.V.: An inertial method for solving split common fixed point problems. J. Fixed
Point Theory Appl. 19(4), 3029–3051 (2017)

48. Vuong, P.T.:On theweak convergenceof the extragradientmethod for solvingpseudomonotonevariational
inequalities. J. Optim. Theory Appl. 176, 399–409 (2018)

49. Xia, Y.,Wang, J.: A generalmethodology for designing globally convergent optimization neural networks.
IEEE Trans. Neural Netw. 9(6), 1331–1343 (1998)

50. Ye, M., He, Y.: A double projection method for solving variational inequalities without monotonicity.
Comput. Optim. Appl. 60(1), 141–150 (2015)

51. Yang, J.: Self-adaptive inertial subgradient extragradient algorithm for solving pseudomonotone varia-
tional inequalities. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1634257

52. Yang, J., Liu, H., Zexian, L.: Modified subgradient extragradient algorithms for solving monotone varia-
tional inequalities. Optimization 67, 2247–2258 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1080/10556788.2019.1619729
https://doi.org/10.1007/s11075-020-00937-2
https://doi.org/10.1007/s13370-020-00832-y
https://doi.org/10.1007/s13370-020-00832-y
https://doi.org/10.1080/00036811.2019.1634257

	Convergence of Relaxed Inertial Subgradient Extragradient Methods for Quasimonotone Variational Inequality Problems
	Abstract
	1 Introduction
	2 Preliminaries
	3 Proposed Methods
	4 Convergence Analysis
	5 Numerical Experiments
	6 Conclusion
	Acknowledgements
	References

