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Abstract
One of the most successful methods for solving a polynomial (PEP) or rational eigenvalue
problem (REP) is to recast it, by linearization, as an equivalent but larger generalized eigen-
value problemwhich can be solved by standard eigensolvers. In this work, we investigate the
backward errors of the computed eigenpairs incurred by the application of the well-received
compact rational Krylov (CORK) linearization. Our treatment is unified for the PEPs or REPs
expressed in various commonly used bases, including Taylor, Newton, Lagrange, orthogonal,
and rational basis functions. We construct one-sided factorizations that relate the eigenpairs
of theCORK linearization and those of the PEPs or REPs.With these factorizations, we estab-
lish upper bounds for the backward error of an approximate eigenpair of the PEPs or REPs
relative to the backward error of the corresponding eigenpair of the CORK linearization.
These bounds suggest a scaling strategy to improve the accuracy of the computed eigenpairs.
We show, by numerical experiments, that the actual backward errors can be successfully
reduced by scaling and the errors, before and after scaling, are both well predicted by the
bounds.
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1 Introduction

Given a matrix-valued function F(λ) : Ω ⊆ C �→ C
n×n , the nonlinear eigenvalue problem

(NEP) is to find eigenvalues λ ∈ Ω and nonzero right eigenvectors x and left eigenvectors y
so that

F(λ)x = 0 and y∗F(λ) = 0. (1)

In this article, we confine our discussion to regular NEPs, namely, those where det F(λ) is
not identically zero on Ω .

One of the most widely-adopted numerical methods for solving such nonlinear eigenvalue
problems is linearization, where the nonlinear eigenvalue problem (1) is first approximated
by a proxy polynomial eigenvalue problem (PEP) or rational eigenvalue problem (REP)

F(λ) ≈ Rm(λ) = D0b0(λ) + D1b1(λ) + · · · + Dmbm(λ), (2)

where Dj ∈ C
n×n are constant coefficient matrices,1 before (2) is further reformulated as a

generalized eigenvalue problem to which standard eigensolvers can be applied. In the rest of
this paper, we will slightly abuse the notations by also denoting an eigenvalue, the associated
right, and the associated left eigenvectors of Rm(λ) by λ, x , and y, respectively. Here, b j (λ)’s
are polynomial basis functions of various kinds or rational basis functions [12,22] and satisfy
recurrence relations as follows.

• When Rm(λ) is a degree m truncated Taylor series expansion of F(λ) at λ = σ , b j (λ)’s
satisfy a two-term recurrence relation

b j+1(λ) = λ − σ

β j+1
b j (λ),

with b0(λ) = 1/β0, where β j are nonzero scaling constants.
• When Rm(λ) is a Newton interpolant with nodes σ0, σ1, . . . , σm , b j (λ)’s satisfy a two-

term recurrence relation

b j+1(λ) = λ − σ j

β j+1
b j (λ), (3)

with b0(λ) = 1/β0.
• When b j (λ)’s are the Lagrange cardinal polynomials, that is,

b j (λ) = 1

β j

m∏

i=0
i �= j

(λ − σi ),

definedby the interpolation nodesσ0, σ1, . . . , σm , Rm(λ)becomes aLagrange interpolant
and the cardinal polynomials also satisfy a two-term recurrence relation

β j (λ − σ j )b j (λ) = β j+1(λ − σ j+1)b j+1(λ).

• Rm(λ) becomes a series of orthogonal polynomials when b j (λ)’s are orthogonal poly-
nomials defined by a three-term recurrence relation

b j+1(λ) = λb j (λ) + α j b j (λ) + γ j b j−1(λ)

β j+1
(4)

for j ≥ 0 with b−1(λ) = 0 and b0(λ) = 1/β0.

1 Throughout this paper, we assume that the coefficient matrix Dm of the highest order term is nonzero.
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• Given interpolation nodes {σ j }mj=0 ∈ Ω ⊂ C and nonzero poles {ξ j }mj=0 ⊂ C \ Ω , the
recurrence relation

b j+1(λ) = λ − σ j

β j+1(1 − λ/ξ j+1)
b j (λ) with b0(λ) = 1

β0
(5)

leads Rm(λ) to become a rational approximation.

If the first m + 1 basis functions are collected in a column vector b(λ) = [b0(λ),

b1(λ), . . . , bm(λ)]T , the recurrence relationships above can be written in a unified form

λbT (λ)Km = bT (λ)Hm, (6)

where Km, Hm ∈ C
(m+1)×m can be readily derived for each basis.

Infinitely many different linearizations can be constructed such that they share the same
eigenstructure with the PEP or REP, in the sense that such a linearization has the same eigen-
values as the PEP or REP and the eigenvectors of the PEP or REP can be easily obtained
from those of the linearization. The most commonly used linearizations include the com-
panion [10] and arrowhead [1] linearizations. In the last decade, as a generalization of the
NLEIGS method [13] the compact rational Krylov (CORK) linearization [22] has been pro-
posed and has attracted much attention since it has a unified and simple structure that covers
many well-established linearizations, e.g., the companion linearization. It also enjoys the
absence of spurious eigenvalues that one may see in other linearizations, e.g., the arrowhead
linearization, and, therefore, has a smaller dimension. Moreover, the Kronecker structures
in the CORK linearization (see (7) below) allow speedup in the solution of linear systems
arising in the shift-and-invert step in Krylov subspace methods [22].

Specifically, the CORK linearization is an mn × mn pencil given by

Lm(λ) = Am − λBm,

where

Am =
[
A0 A1 · · · Am−1

HT
m−1 ⊗ In

]
and Bm =

[
B0 B1 · · · Bm−1

KT
m−1 ⊗ In

]
. (7)

Here, the horizontal lines are used to separate the top block rows from the lower parts which
areKronecker-structured. The n×nmatrices {A j }m−1

j=0 and {Bj }m−1
j=0 are obtained by rewriting

Rm(λ) in (2) as

g(λ)Rm(λ) =
m−1∑

j=0

b j (λ)(A j − λBj ), (8)

where g(λ) = λ−σm and g(λ) = 1−λ/ξm for the Lagrange and rational cases, respectively,
and g(λ) = 1 for all other bases. For a summary of A j and Bj in various bases, see [22,
Table 1]. We spell out Am and Bm in Table 1 to facilitate the discussion in the rest of this
article.

The last fewdecades havewitnessed the success of linearization in the solution of PEPs and
REPs. The study has been focused on the linearization of PEPs represented in the monomial
basis, see, for example, [2,8,16,19]. A key question to answer is how accurate an approximate
eigenpair of the PEPs or REPs is when it is found by recovering from that of the linearization,
since a little error in the latter may lead to a much larger error in the former. In a pioneering
work [14], some upper bounds are constructed for the backward error of an approximate
eigenpair of the the PEPs expressed in themonomial basis relative to that of the corresponding
approximate eigenpair of certain companion linearizations. These bounds are shown to be
able to identify the circumstances under which the linearizations do or do not lead to larger

123



15 Page 4 of 22 Journal of Scientific Computing (2021) 89 :15

Ta
bl
e
1

A
m

an
d
B
m

fo
r
va
ri
ou
s
ba
se
s.
Fo

r
th
e
L
ag
ra
ng
e
ba
si
s,

θ
j
=

β
j/

β
j+

1

b
j(

λ
)

A
m

B
m

Ta
yl
or

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

D
0

D
1

···
D
m

−2
D
m

−1
−

σ β
m
D
m

σ
I n

β
1
I n

σ
I n

β
2
I n

. .
.

. .
.

σ
I n

β
m

−1
I n

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

0
0

···
0

−
D
m

β
m

I n
0 . .
.

. .
.

. .
.
0 I n

0

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

N
ew

to
n

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

D
0

D
1

···
D
m

−2
D
m

−1
−

σ
m

−1
β
m

D
m

σ
0
I n

β
1
I n

σ
1
I n

β
2
I n

. .
.

. .
.

σ
m

−2
I n

β
m

−1
I n

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

0
0

···
0

−
D
m

β
m

I n
0 . .
.

. .
.

. .
.
0 I n

0

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

O
rt
ho

go
na
l

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

D
0

D
1

D
2

···
D
m

−3
D
m

−2
+

γ
m

−1
β
m

D
m

D
m

−1
+

α
m

−1
β
m

D
m

−α
0
I n

β
1
I n

−γ
1
I n

−α
1
I n

β
2
I n

. .
.

. .
.

. .
.

. .
.

. .
.

β
m

−3
I n

. .
.

−α
m

−3
I n

β
m

−2
I n

−γ
m

−2
I n

−α
m

−2
I n

β
m

−1
I n

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

0
0

···
0

−
D
m

β
m

I n
0 . .
.

. .
.

. .
.
0 I n

0

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

123



Journal of Scientific Computing (2021) 89 :15 Page 5 of 22 15

Ta
bl
e
1

co
nt
in
ue
d

b
j(

λ
)

A
m

B
m

L
ag
ra
ng

e

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

σ
m
D
0

σ
m
D
1

···
σ
m
D
m

−2
σ
m
D
m

−1
+

θ m
σ
m

−1
D
m

σ
0
θ 1
I n

−σ
1
I n

σ
1
θ 2

I n
−σ

2
I n

. .
.

. .
.

σ
m

−2
θ m

−1
I n

−σ
m

−1
I n

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

D
0

D
1

···
D
m

−2
D
m

−1
+

θ m
D
m

θ 1
I n

−I
n

. .
.

. .
.

. .
.

−I
n

θ m
−1

I n
−I

n

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

R
at
io
na
l

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

D
0

D
1

..
.

D
m

−2
D
m

−1
−

σ
m

−1
β
m

D
m

σ
0
I n

β
1
I n

σ
1
I n

β
2
I n

. .
.

. .
.

σ
m

−2
I n

β
m

−1
I n

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

D
0

ξ m
D
1

ξ m
..

.
D
m

−2
ξ m

D
m

−1
ξ
m

−
D
m

β
m

I n
β
1

ξ 1
I n

I n
β
2

ξ 2
I n

. .
.

. .
.

I n
β
m

−1
ξ m

−1
I n

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

123



15 Page 6 of 22 Journal of Scientific Computing (2021) 89 :15

backward errors. However, the PEPs expressed in non-monomial bases have been proposed
due to the advantages offered by the non-monomial basis functions [1,7] and the study of the
accuracy of the eigenpairs obtained via linearization with the non-monomial basis functions
are largely missing in the literature. The only investigation, so far, on the backward error
associated to the PEPs in non-monomial bases is [17] which addresses the backward errors
of the approximate eigenpairs incurred in the arrowhead linearization of the PEPs in the
Lagrange basis. This paper aims at filling this gap.

A few preprocessing techniques have been proposed for the PEPs to gain improved accu-
racy, including the weighted balancing method in [4], the tropical scaling method due to [9],
and the simple scaling method in [14], all of which deal with the monomial basis. So far,
the only attempt to precondition the PEPs in a non-monomial basis is the work in [17], who
proposed a two-sided balancing strategy based on block diagonal similarity transformations
to improve the accuracy of an approximate eigenpair of the PEPs given in the Lagrange basis.
Following a careful backward error analysis, we propose a diagonal scaling approach in this
paper for the CORK linearization corresponding to PEPs expressed in various common non-
monomial bases and our approach is shown to be effective in improving the accuracy of the
computed eigenpairs.

Our discussion of the backward errors is based on the local backward error analysis first
suggested in [14], for which we derive the one-sided factorization which are not found before
for the aforementioned bases. This is the key to our analysis. We also note that the backward
error analysis based on the global analysis framework [18] are, in general, not suitable for
our work, since it was derived only for the right eigenpairs and the upper bounds obtained
there can hardly help us develop a scaling strategy.

After introducing a few key definitions at the beginning of Sect. 2, we give the one-
sided factorizations for the CORK linearization associated with the aforementioned basis
functions. Based on these one-sided factorizations, we develop the bounds for the backward
error of a computed eigenpair of Rm(λ) relative to that of the corresponding eigenpair of the
CORK linearization. To improve accuracy, we discuss the scaling strategy in Sect. 3, which
is justified by the improved error bounds. We verify the bounds and the idea of scaling in
Sect. 4 with a few numerical experiments and conclude in Sect. 5 with a couple of remarks.

2 Backward Errors

In this section, we relate the backward error of an approximate eigenpair of Rm(λ) to that
of the linearization Lm(λ) and further bound the former in terms of the latter. These bounds
will help identify the cases where the eigenpairs of Rm(λ) can be computed accurately via
its CORK linearization in the backward error sense.

2.1 Definitions

We first include the definition of the normwise backward error of an approximate eigenpair
of the rational function Rm(λ) expressed in the aforementioned bases b j (λ). This definition
is extended from the definition for the monomial basis given in [14]. The case of the basis
{b j (λ)} being the Lagrange polynomials is discussed in, for example, [17] for the arrowhead
linearization.

The normwise backward error of an approximate right eigenpair (λ, x) of Rm(λ), where
λ is finite, is defined by
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ηRm (λ, x) = min
{
ε : (Rm(λ) + ΔRm(λ))x = 0, ‖ΔDj‖2 ≤ ε‖Dj‖2, 0 ≤ j ≤ m

}
,

where ΔRm(λ) = ∑m
j=0 ΔDjb j (λ). Similarly, for an approximate left eigenpair (λ, y∗) of

Rm(λ), the normwise backward error is defined by

ηRm (λ, y∗) = min
{
ε : y∗(Rm(λ) + ΔRm(λ)) = 0, ‖ΔDj‖2 ≤ ε‖Dj‖2, 0 ≤ j ≤ m

}
.

Analogues can also be drawn from themonomial case [20] to obtain equivalent but explicit
expressions for the backward errors of approximate eigenpairs (λ, x) and (λ, y∗) of Rm(λ)

in terms of the basis {b j (λ)}

ηRm (λ, x) = ‖Rm(λ)x‖2
(
∑m

j=0 ‖Dj‖2|b j (λ)|)‖x‖2 ,

ηRm (λ, y∗) = ‖y∗Rm(λ)‖2
(
∑m

j=0 ‖Dj‖2|b j (λ)|)‖y‖2 , (9)

and those of the approximate eigenpairs (λ, v) and (λ,w∗) of Lm(λ)

ηLm (λ, v) = ‖Lm(λ)v‖2
(|λ|‖Bm‖2 + ‖Am‖2)‖v‖2 ,

ηLm (λ,w∗) = ‖w∗Lm(λ)‖2
(|λ|‖Bm‖2 + ‖Am‖2)‖w‖2 . (10)

2.2 One-sided Factorizations for CORK Linearization

The key to estimating the backward error of an approximate eigenpair of Rm(λ) in terms of
that of Lm(λ) is to find an appropriate one-sided factorization that relates Rm(λ) and Lm(λ).
Specifically, the first m equations in (6), when combined with (8), lead to

Lm(λ)H(λ) = g(λ)e1 ⊗ Rm(λ), (11)

where e1 ∈ C
m×1 is the first unit vector and

H(λ) = b(λ) ⊗ In =

⎡

⎢⎢⎢⎣

b0(λ)

b1(λ)
...

bm−1(λ)

⎤

⎥⎥⎥⎦⊗ In ∈ C
mn×n,

where the notation b(λ) is reused here and in the rest of this paper to denote the same vector
in (6) but with the last entry bm(λ) dropped. Note that this right-sided factorization is valid
for any of the bases mentioned in Sect. 1.

We also need the left-sided factorization

G(λ)Lm(λ) = eT1 ⊗ (g(λ)Rm(λ)), (12)

where G(λ) ∈ C
n×mn . Unlike H(λ), G(λ) does not have a uniform expression valid for all

the aforementioned bases. We now give G(λ) below for each basis and to the best of our
knowledge this is the first time it is constructed for these bases.
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Taylor basis:

G(λ) =
[
b0(λ)In, − 1

λ−σ

m∑
j=1

b j (λ)Dj ,

− 1
λ−σ

b0(λ)
b1(λ)

m∑
j=2

b j (λ)Dj , . . . , − 1
λ−σ

b0(λ)
bm−2(λ)

m∑
j=m−1

b j (λ)Dj

]
.

Newton Basis:

G(λ) =
[
b0(λ)In, − 1

λ−σ0

m∑
j=1

b j (λ)Dj ,

− 1
λ−σ1

b0(λ)
b1(λ)

m∑
j=2

b j (λ)Dj , . . . , − 1
λ−σm−2

b0(λ)
bm−2(λ)

m∑
j=m−1

b j (λ)Dj

]
.

Orthogonal basis: To construct G(λ) in the case of orthogonal basis, we define a new
sequence of orthogonal polynomials b(k)

j (λ) that are associated with b j (λ) given in (4) by

b(k)
j+1(λ) = λb(k)

j (λ) + α j+kb
(k)
j (λ) + γ j+kb

(k)
j−1(λ)

β j+k+1
, (13)

where b(k)
j (λ) ≡ 0 for j < 0 and b(k)

0 (λ) = 1. When k = 0, b(k)
j (λ) reduces to the original

orthogonal polynomials defined in (4).2 We have not seen any discussion in the literature
about the orthogonal polynomials defined by (13) andwill simply call them the shifted orthog-
onal polynomials generated by the original orthogonal sequence or the shifted orthogonal
polynomials for short, since they are defined by a subset of the same recurrence coefficients
but with indices shifted by k. The Chebyshev polynomial of the first kind (known as Cheby-
shev T ) and the second kind (known as Chebyshev U or as ultraspherical or Gegenbauer
polynomial C (1)) serve as the simplest example. If we let b j (λ) = Tj (λ), where Tj (λ) is the

j th Chebyshev polynomial of the first kind, the new orthogonal sequence b(1)
j (λ) = Uj (λ),

i.e., the Chebyshev polynomial of the second kind, and the recurrence coefficients in (4) are

αk = 0 for all k,

βk =
{
1, k = 1,
1/2, k ∈ Z

≥2,

γk =
{
0, k = 0,
−1/2, k ∈ Z

+.

It can be verified by induction (see Appendix A) that for the orthogonal basis

G(λ) =
[
In, − 1

β1

m∑
j=1

b(1)
j−1(λ)Dj , − 1

β2

m∑
j=2

b(2)
j−2(λ)Dj , . . . ,

− 1
βk−1

m∑
j=k−1

b(k−1)
j−(k−1)(λ)Dj , . . . , − 1

βm−2

m∑
j=m−2

b(m−2)
j−(m−2)(λ)Dj ,

− 1
βm−1

m∑
j=m−1

b(m−1)
j−(m−1)(λ)Dj

]
. (14)

2 In this case, β0 is identified with 1.
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In practice, the most commonly used orthogonal polynomials for the purpose of function
approximation are the Chebyshev polynomials, for which

G(λ) =
⎡

⎣In, −
m∑

j=1

Uj−1(λ)Dj , −2
m∑

j=2

Uj−2(λ)Dj , . . . , −2
m∑

j=k−1

Uj−(k−1)(λ)Dj , . . . ,

−2
m∑

j=m−2

Uj−(m−2)(λ)Dj , −2
m∑

j=m−1

Uj−(m−1)(λ)Dj

⎤

⎦ .

Lagrange basis:

G(λ) =
[
b0(λ)In,

λ − σm

λ − σ1

b0(λ)
b1(λ)

m∑
j=1

b j (λ)Dj ,

λ − σm

λ − σ2

b0(λ)
b2(λ)

m∑
j=2

b j (λ)Dj , . . . ,
λ − σm

λ − σm−1

b0(λ)
bm−1(λ)

m∑
j=m−1

b j (λ)Dj

]
.

Rational basis:

G(λ) =
[
b0(λ)In,

g(λ)

σ0 − λ

m∑
j=1

b j (λ)Dj ,
g(λ)

σ1 − λ

b0(λ)
b1(λ)

m∑
j=2

b j (λ)Dj , . . . ,

g(λ)

σm−2 − λ

b0(λ)
bm−2(λ)

m∑
j=m−1

b j (λ)Dj

]
.

What is remarkable is the striking similarity shared by theseG(λ)’s despite of basis functions.
This enables us to develop bounds for the backward error ratios in a rather unified fashion in
Theorems 2 and 3.

The following theorem serves as a generalization of its monomial counterpart given in [11]
by associating the eigensystem of Rm(λ) and that of Lm(λ) when the one-sided factorizations
(11) and (12) hold.

Theorem 1 Let Rm(λ) and Lm(λ) be matrix functions of dimensions n × n and mn × mn,
respectively. Assume that (11) and (12) hold at λ ∈ C with g(λ) �= 0 and b(λ) �= 0.

(i) If v is a right eigenvector of Lm(λ) with eigenvalue λ, then (g(λ)eT1 ⊗ In)v is a right
eigenvector of Rm(λ) with eigenvalue λ;

(ii) if w∗ is a left eigenvector of Lm(λ) with eigenvalue λ, then w∗(g(λ)e1 ⊗ In) is a left
eigenvector of Rm(λ) with eigenvalue λ provided that it is nonzero.

Proof Based on the relations (11) and (12), we have

G(λ)Lm(λ)v = eT1 ⊗ (g(λ)Rm(λ))v = Rm(λ)(g(λ)eT1 ⊗ In)v, (15)

w∗Lm(λ)H(λ) = w∗(g(λ)e1 ⊗ Rm(λ)) = w∗(g(λ)e1 ⊗ In)Rm(λ). (16)

��
Now we are in the position to investigate the backward error incurred by the CORK lin-

earization using (15) and (16).

2.3 The Bounds for Backward Error Ratios

Now we have all the ingredients for bounding the backward error of an eigenpair of Rm(λ).
The following theorem gives bounds for the backward error ratios ηRm (λ, x)/ηLm (λ, v) and
ηRm (λ, y∗)/ηLm (λ,w∗).
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Theorem 2 Let (λ, x) and (λ, y∗) be approximate right and left eigenpairs of Rm(λ) respectively
and (λ, v) and (λ, w∗) be the corresponding approximate right and left eigenpairs of Lm(λ). If
|b0(λ)| = 1, the bound for the ratio of ηRm (λ, x) to ηLm (λ, v) is given by

ηRm (λ, x)

ηLm (λ, v)
≤ |λ|‖Bm‖2 + ‖Am‖2

|g(λ)|
(∑m

j=0 ‖Dj‖2|b j (λ)|
) GU (λ)‖v‖2

‖x‖2 , (17)

where
GU (λ) = √

mmax
(
1, G̃U (λ)

)
(18)

and

G̃U (λ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
j=1:m−1

1

|β j | ×
∑

j=1:m
max

i=1:m−1

∣∣∣b(i)
j−1(λ)

∣∣∣× max
j=1:m ‖Dj‖2, orthogonal, (19a)

Q(λ) ×
m∑

j=1

|b j (λ)| × max
j=1:m ‖Dj‖2, all other bases, (19b)

with

Q(λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max
j=0:m−2

1

|λ − σ ||b j (λ)| , Taylor, (20a)

max
j=0:m−2

1

|λ − σ j ||b j (λ)| , Newton, rational, (20b)

max
j=1:m−1

|λ − σm |
|λ − σ j ||b j (λ)| , Lagrange. (20c)

The bound for the backward error of a left eigenpair (λ, y∗) relative to that of (λ,w∗) is
given by

ηRm (λ, y∗)
ηLm (λ, w∗)

≤ |λ|‖Bm‖2 + ‖Am‖2
|g(λ)|

(∑m
j=0 ‖Dj‖2|b j (λ)|

) HU (λ)‖w‖2
‖y‖2 , (21)

where
HU (λ) = √

m max
j=0:m−1

(|b j (λ)|) . (22)

Proof From (16) and (15), we have

‖Rm(λ)x‖2 ≤ 1

|g(λ)| ‖G(λ)‖2‖Lm(λ)v‖2,

‖y∗Rm(λ)‖2 ≤ 1

|g(λ)| ‖H(λ)‖2‖w∗Lm(λ)‖2,

which, along with (9) and (2.1), give

ηRm (λ, x)

ηLm (λ, v)
≤ |λ|‖Bm‖2 + ‖Am‖2

|g(λ)|
(∑m

j=0 ‖Dj‖2|b j (λ)|
) ‖G(λ)‖2‖v‖2

‖x‖2 ,

ηRm (λ, y∗)
ηLm (λ,w∗)

≤ |λ|‖Bm‖2 + ‖Am‖2
|g(λ)|

(∑m
j=0 ‖Dj‖2|b j (λ)|

) ‖H(λ)‖2‖w‖2
‖y‖2 . (23)

By Lemma 3.5 in [14] we have

‖H(λ)‖2 = ‖b(λ) ⊗ In‖2 ≤ HU (λ),
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which substituted into (23) leads to (21).
For the rational basis,

‖G(λ)‖2 ≤ √
m max

⎛

⎝1, max
j=0:m−2

1

|λ − σ j ||b j (λ)| ×
m∑

j=1

|b j (λ)|‖Dj‖2
⎞

⎠ ,

which can be further relaxed to obtain the upper bound GU (λ) given by (18), (19b), and (20b).
GU (λ) for all other bases except the orthogonal one can be derived analogously.

In the case of the orthogonal basis,

‖G(λ)‖2 ≤ √
mmax

⎛

⎝1, max
j=1:m−1

1

|β j | ×
m∑

j=1

(
max

i=1:m−1

∣∣∣b(i)
j−1(λ)

∣∣∣
)

‖Dj‖2
⎞

⎠ ≤ GU (λ),

which leads to (18) and (19a). ��

In particular, we furnish the following corollary which gives the bound for ηRm (λ, x)
/ηLm (λ, v) when b j (λ) are Chebyshev polynomials Tj (λ) for that is the most commonly used
orthogonal basis in practice.

Corollary 1 Let (λ, x) and (λ, v) be approximate right eigenpairs of Rm(λ) and Lm(λ),
respectively. If {b j (λ)}m−1

j=0 is the Chebyshev basis, the bound for the backward error ratio
ηRm (λ, x)/ηLm (λ, v) is given by (17) with

GU (λ) = √
mmax

(
1,m(m + 1) max

j=1:m ‖Dj‖2
)

.

Proof Since |Uj (λ)| ≤ j + 1,

‖G(λ)‖2 ≤ √
m max

⎛

⎝1, 2
m∑

j=1

∣∣Uj−1(λ)
∣∣× max

j=1:m ‖Dj‖2
⎞

⎠ ≤ GU (λ).

��

3 Scaling the Linearization

It is ideal if the ratiosηRm (λ, x)/ηLm (λ, v) andηRm (λ, y∗) /ηLm (λ,w∗) are roughly 1.When this
is the case, an eigenpair of Rm(λ)would have accuracy comparable to that of the linearization. In
practice, however, the ratios ηRm (λ, x)/ηLm (λ, v) and ηRm (λ, y∗) /ηLm (λ,w∗) are often much
larger than 1 and certain scaling techniques are employed to precondition the linearization so
that the backward errors can be reduced. Based on the bounds derived in the last section, we
now develop a simple diagonal scaling approach for the CORK linearization formed from PEPs
and REPs expressed in any of the aforementioned bases. To see how it works, we let

S =

⎡

⎢⎢⎢⎣

1
s

. . .

s

⎤

⎥⎥⎥⎦⊗ In ∈ C
mn×mn,
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where s = max
j=1:m(‖Dj‖2). By (16) and (15), we have

ŵ∗L̂m(λ)H(λ) = y∗Rm(λ),

Ĝ(λ)L̂m(λ)v = Rm(λ)x,

where Ĝ(λ) = G(λ)S−1, L̂m(λ) = SLm(λ), x = (g(λ)eT1 ⊗ In)v, y∗ = w∗(g(λ)e1 ⊗ In) and
ŵ∗ = w∗S−1. Now we restate Theorem 2 with G(λ), Lm(λ), and w∗ replaced by their hatted
counterparts. The proof is omitted as it is similar to that of Theorem 2.

Theorem 3 The backward error ηRm (λ, x) of an approximate right eigenpair (λ, x) of Rm(λ)

relative to the backward error ηRm (λ, v) of the corresponding approximate eigenpair (λ, v) of
L̂m(λ) can be bounded by

ηRm (λ, x)

ηL̂m
(λ, v)

≤ (|λ|‖B̂m‖2 + ‖Âm‖2)
|g(λ)|

(∑m
j=0 ‖Dj‖2|b j (λ)|

) GS(λ)‖v‖2
‖x‖2 , (24)

where Âm = SAm, B̂m = SBm,

GS(λ) = √
mmax

(
1, G̃S(λ)

)

and

G̃S(λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
j=1:m−1

1

|β j | ×
m∑

j=1

max
i=1:m−1

∣∣∣b(i)
j−1(λ)

∣∣∣ , orthogonal,

Q(λ) ×
m∑

j=1

|b j (λ)|, all other bases.

Here, Q(λ) is given in (20).
The backward error ratio ηRm (λ, y∗)/ηL̂m

(λ, ŵ∗) of an approximate left eigenpair (λ, y∗)
of Rm(λ) can be bounded by

ηRm (λ, y∗)
ηL̂m

(λ, ŵ∗)
≤ |λ|‖B̂m‖2 + ‖Âm‖2

|g(λ)|
(∑m

j=0 ‖Dj‖2|b j (λ)|
) HU (λ)‖ŵ‖2

‖y‖2 , (25)

where HU (λ) is given by (22).

Remark 1 For the Chebyshev basis, the bound ηRm (λ, x)/ηL̂m
(λ, v) for the backward error

ratio of a right eigenpair is similar to that given in Corollary 1 but with GU (λ) replaced by
GS(λ) = √

mmax (1,m(m + 1)).

Let us now compare the ratios given by Theorems 2 and 3. For the backward error ratio of a
right eigenpair, we consider the case with G̃U (λ) > 1, which is very common in practice. The
quantities ‖Am‖2, ‖Bm‖2, and GU (λ) in (17) now become ‖Âm‖2, ‖B̂m‖2, and GS(λ) in (24)
respectively. If we bound ‖Am‖2, ‖Bm‖2, ‖Âm‖2, and ‖B̂m‖2 from above, we have

‖Am‖2 ≤ √
2max

(√
m max

j=0:m−1
‖A j‖2, ‖Hm−1‖2

)
,

‖Bm‖2 ≤ √
2max

(√
m max

j=0:m−1
‖Bj‖2, ‖Km−1‖2

)
,
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whereas

‖Âm‖2 ≤ √
2max

(√
m max

j=0:m−1
‖A j‖2, s‖Hm−1‖2

)
,

‖B̂m‖2 ≤ √
2max

(√
m max

j=0:m−1
‖Bj‖2, s‖Km−1‖2

)
.

(26)

When
√
m max

j=0:m−1
‖A j‖2 and

√
m max

j=0:m−1
‖Bj‖2 prevail in the max operators in (26),

‖Âm‖2 and ‖B̂m‖2 stay the same after scaling, as we often see in practice (see Sect. 4). In case
of s‖Hm−1‖2 and s‖Km−1‖2 being dominant, ‖Âm‖2 and ‖B̂m‖2 would be larger than ‖Am‖2
and ‖Bm‖2, respectively, by a factor O(s) at most. On the other hand, the scaling reduces the
norm of G(λ) by a factor O(s) for sure, as can be seen from the upper bounds of GU (λ) and
GS(λ)

GU (λ) ≤ √
m

m∑

j=0

|b j (λ)|max

(
1, Q(λ) × max

j=1:m ‖Dj‖2
)

,

GS(λ) ≤ √
m

m∑

j=0

|b j (λ)|max

(
1, Q(λ)

)
.

With ‖Am‖2 and ‖Bm‖2 unchanged or amplified by a factor which can be canceled out by
the reduction in GU (λ), the bound for the backward error ratio ηRm (λ, x)/ηL̂m

(λ, v) is usually
reduced, as we hope. In the meantime, the term ‖w‖2/‖y‖2 in (21) is replaced by ‖ŵ‖2/‖y‖2,
which is smaller than ‖w‖2/‖y‖2 when s > 1. Since it is also very common in practice that
s > 1, scaling also reduces the bound of the backward error ratio for left eigenpairs. As the
bounds for the ratios reduced for both left and right eigenpairs, we expect to see improved
accuracy using the CORK linearization when it is equipped with scaling.

4 Experimental Results

In this section,we test the bounds for the backward errors of the approximate eigenpairs of Rm (λ)

computed via the CORK linearization Lm(λ) and the scaled one L̂m(λ) and the effectiveness
of the scaling approach. In our experiments, the eigenpairs of the linearizations are computed
using Matlab’s eig function with the eigenvectors of Rm(λ) recovered by Theorem 1. The
backward errors of the computed eigenpairs of Rm(λ), Lm(λ), and L̂m(λ) are obtained using
(9) and (2.1), while the upper bounds for the ratios of the backward errors are calculated using
(17), (21), (24), and (25).

4.1 Newton Basis

Our first test problem is the quadratic eigenvalue problem from a linearly damped mass-spring
system [20], drawn from the collection of nonlinear eigenvalue problems NLEVP [5]

F(λ)x = (λ2A2 + λA1 + A0)x = 0,

where the 20 × 20 matrices are A0 = 5T , A1 = 10T , A2 = I , and

T =

⎡

⎢⎢⎢⎢⎣

3 −1

−1
. . .

. . .

. . .
. . . −1
−1 3

⎤

⎥⎥⎥⎥⎦
.
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Table 2 The spring problem: norms of the relevant quantities. The entries corresponding to the
scaled ‖Am‖2 and ‖Bm‖2 are ‖Âm‖2 and ‖B̂m‖2, respectively. Note the reduction in maxGU (λ) and
max ‖w‖2/‖y‖2

‖Am‖2 ‖Bm‖2 maxGU (λ) max HU (λ) max ‖v‖2/‖x‖2 max ‖w‖2/‖y‖2
Unscaled 2.0 × 103 1.0 × 100 2.3 × 103 7.0 × 100 5.1 × 101 5.0 × 101

Scaled 3.8 × 103 6.5 × 101 3.6 × 101 7.0 × 100 5.1 × 101 1.2 × 100

0 5 10 15 20 25 30 35 40

eigenvalue index

100

101

102

103

104

105

bound (unscaled)
bound (scaled)
ratio (unscaled)
ratio (scaled)

(a) Left eigenpairs.

0 5 10 15 20 25 30 35 40

eigenvalue index

100

102

104

106
bound (unscaled)
bound (scaled)
ratio (unscaled)
ratio (scaled)

(b) Right eigenpairs.

Fig. 1 The spring problem: actual backward error ratios ηRm (λ, y∗)/ηLm (λ, w∗) and ηRm (λ, x)/
ηLm (λ, v) and their bounds

0 5 10 15 20 25 30 35 40

eigenvalue index

10-16

10-15

10-14

10-13

10-12

10-11

unscaled
scaled

(a) Left eigenpairs.

0 5 10 15 20 25 30 35 40

eigenvalue index

10-16

10-15

10-14

10-13

10-12

10-11

unscaled
scaled

(b) Right eigenpairs.

Fig. 2 The spring problem: backward errors of the computed eigenpairs, before and after scaling

We interpolate F(λ) at the nodes {−50, −25, 0} using the Newton basis (3) where β j =
1 for j = 0, 1, 2. By the discussion in Sect. 3, we expect that the scaling reduces GU (λ)

and ‖w‖2/‖y‖2 while it keeps other quantities in the bounds relatively unchanged and this is
confirmed by Table 2. The largest GU (λ) and ‖w‖2/‖y‖2 for all the eigenvalues are reduced
by a factor of 102 and 101, respectively. These reductions lead us to expect smaller bounds for
the ratios ηRm (λ, x)/ηLm (λ, v) and ηRm (λ, y∗)/ηLm (λ,w∗). In Fig. 1, we display the bounds
on these ratios for both the unscaled and the scaled linearizations, along with the actual ratios.
The actual ratios are well predicted by the bounds. The reduced ratios in Fig. 1 further suggest
improved accuracy and this is indeed what we see in Fig. 2, where we show the backward errors,
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Table 3 The 10-degree problem:
norms of the coefficient matrices

‖D0‖2 ‖D1‖2 ‖D2‖2 ‖D3‖2 ‖D4‖2 ‖D5‖2
O
(
105

)
O
(
102

)
O
(
103

)
O
(
102

)
O
(
102

)
O
(
101

)

‖D6‖2 ‖D7‖2 ‖D8‖2 ‖D9‖2 ‖D10‖2
O
(
102

)
O
(
10−1

)
O
(
102

)
O
(
100

)
O
(
101

)

Table 4 The 10-degree problem: norms of the relevant quantities

‖Am‖2 ‖Bm‖2 maxGU (λ) max HU (λ) max ‖v‖2/‖x‖2 max ‖w‖2/‖y‖2
Unscaled 2.1 × 107 1.8 × 107 3.2 × 1013 8.4 × 104 3.5 × 104 1.3 × 106

Scaled 1.7 × 109 1.8 × 108 1.7 × 105 8.4 × 104 3.5 × 104 1.0 × 100

0 200 400 600 800 1000

eigenvalue index

10-18

10-16

10-14

10-12

10-10

10-8

10-6

unscaled
scaled

(a) Left eigenpairs.

0 200 400 600 800 1000

eigenvalue index

10-16

10-14

10-12

10-10

10-8

10-6

unscaled
scaled

(b) Right eigenpairs.

Fig. 3 The 10-degree problem: backward errors of the computed eigenpairs, before and after scaling

with and without scaling. Scaling reduces the actual backward error ratios by 1 to 3 orders of
magnitude.

4.2 Taylor Basis

Our second test problem is a PEP of degree 10 with randomly generated coefficient matrices

F(λ) =
10∑

k=0

Dkλ
k , (27)

where the norms of the coefficient matrices Dk ∈ R
100×100 are listed in Table 3. This example

is featured by the fact that the norms vary by orders with ‖D0‖2 � ‖Dk‖2 for k > 0.
To perform the numerical experiment, we re-express (27) as a standard Taylor series about

the origin. The effect of scaling is again reflected by the significant reduction of GU (λ) and
‖w‖2/‖y‖2 in Table 4. Figure 3 clearly shows the improved accuracy brought about by scaling,
where the backward errors are reduced approximately down to O(10−14).

123



15 Page 16 of 22 Journal of Scientific Computing (2021) 89 :15

Table 5 The orr−sommerfeld problem: norms of the relevant quantities

‖Am‖2 ‖Bm‖2 maxGU (λ) max HU (λ) max ‖v‖2/‖x‖2 max ‖w‖2/‖y‖2
Unscaled 2.6 × 1010 1.2 × 1010 3.9 × 1011 1.1 × 102 1.2 × 102 3.7 × 1010

Scaled 3.1 × 1010 2.5 × 1010 1.6 × 101 1.1 × 102 1.2 × 102 1.8 × 100

0 20 40 60 80 100 120 140 160

eigenvalue index

10-10

100

1010

1020

1030

bound (unscaled)
bound (scaled)
ratio (unscaled)
ratio (scaled)

(a) Left eigenpairs.

0 20 40 60 80 100 120 140 160

eigenvalue index

100

105

1010

1015

1020

1025

bound (unscaled)
bound (scaled)
ratio (unscaled)
ratio (scaled)

(b) Right eigenpairs.

Fig. 4 The orr−sommerfeld problem: actual backward error ratios ηRm (λ, y∗)/ηLm (λ, w∗) and
ηRm (λ, x)/ηLm (λ, v) and their bounds

4.3 Orthogonal Basis

In the third example, we move to the CORK linearization when a PEP is represented in the
orthogonal basis. Specifically, we choose b j (λ) to be the Chebyshev polynomial of the first kind
Tj (λ) and test on the quadratic eigenvalue problem arising in the spatial stability analysis of
the Orr-Sommerfeld equation [21] which we, again, borrow from the collection of nonlinear
eigenvalue problems [5]:

[(
d2

dz2
− λ2

)2

− i R

{
(λU − ω)

(
d2

dz2
− λ2

)
− λU

′′
}]

φ = 0.

The choice of Chebyshev polynomials amounts to having β1 = 1, β2 = 1/2, β3 = 1/2,
γ1 = γ2 = −1/2, and α0 = α1 = α2 = 0. We sample the polynomial at Chebyshev points
of the second kind, that is σ j = cos( jπ/4), j = 0, 1, . . . , 4, in the interval [−1, 1] and the
coefficient matrices Dj are computed using Chebfun [6].

As shown in Table 5, scaling bringsmaxGU (λ) andmax ‖w‖2/‖y‖2 down by O(1010)while
other key quantities are kept on the original order and this matches the reduction of the actual
backward error ratios in Fig. 4. Figure 5 shows the backward errors are bought down to machine
precision or below.

4.4 Lagrange Basis

This example is similar to the second one but now with the Lagrange basis, particularly with
complex interpolation nodes. The matrix pencil F(λ) = ∑16

k=0 Dkλ
k is of degree 16 with

the coefficient matrices Dk ∈ R
200×200 randomly determined. Table 6 gives the norms of the

coefficient matrices, which vary widely between O(10−1) to O(108) with ‖D3‖2 and ‖D5‖2
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eigenvalue index
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(a) Left eigenpairs.
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(b) Right eigenpairs.

Fig. 5 The orr−sommerfeld problem: backward errors of Rm (λ) of the computed eigenpairs, before and
after scaling

Table 6 The 16-degree problem: norms of the coefficient matrices

‖D0‖2 ‖D1‖2 ‖D2‖2 ‖D3‖2 ‖D4‖2 ‖D5‖2 ‖D6‖2 ‖D7‖2 ‖D8‖2
O(100) O(101) O(10−1) O(108) O(10−2) O(106) O(101) O(100) O(103)

‖D9‖2 ‖D10‖2 ‖D11‖2 ‖D12‖2 ‖D13‖2 ‖D14‖2 ‖D15‖2 ‖D16‖2
O(10−3) O(104) O(105) O(10−1) O(106) O(101) O(100) O(103)

Fig. 6 The 16-degree problem:
interpolation nodes (+) and
locations of the eigenvalues (◦)

-3 -2 -1 0 1 2 3
real

-3

-2

-1

0

1

2

3

im
ag

eigenvalues
nodes

being the largest ones. We interpolate F(λ) using Lagrange interpolant with the interpolation
nodes shown in Fig. 6 by plus signs.

Table 7 shows that the largest GU (λ) and ‖w‖2/‖y‖2 are successfully reduced by 108 and
109, respectively, due to the scaling, while the changes in other quantities are relatively neg-
ligible, which implies the significant reductions of the backward errors. Figure 7 confirms the
effectiveness of scaling as the backward errors of the approximate eigenpairs of Rm(λ) are
brought down to about machine precision, despite of the high degree of this problem and the
extreme discrepancies in the magnitude of the coefficient matrices. The location of the eigen-
values computed with scaling are plotted in Fig. 6 as circles.

123



15 Page 18 of 22 Journal of Scientific Computing (2021) 89 :15

Table 7 The 16-degree problem: norms of the relevant quantities with the Lagrange basis

‖Am‖2 ‖Bm‖2 maxGU (λ) max HU (λ) max ‖v‖2/‖x‖2 max ‖w‖2/‖y‖2
Unscaled 1.8 × 1010 9.1 × 109 6.2 × 1017 2.5 × 107 1.2 × 108 2.0 × 109

Scaled 4.6 × 1011 2.3 × 1011 4.7 × 109 2.5 × 107 3.0 × 108 1.0 × 100

0 200 400 600 800 1000 1200 1400 1600

eigenvalue index

10-20

10-15

10-10

10-5

100

unscaled
scaled

(a) Left eigenpairs.
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(b) Right eigenpairs.

Fig. 7 The 16-degree problem: backward errors of computed eigenpairs, before and after scaling

Table 8 The railtrack−rep problem: norms of the relevant quantities

‖Am‖2 ‖Bm‖2 maxGU (λ) max HU (λ) max ‖v‖2/‖x‖2 max ‖w‖2/‖y‖2
Unscaled 1.4 × 1011 2.1 × 1010 2.5 × 1011 1.8 × 100 1.6 × 100 8.1 × 107

Scaled 6.1 × 1011 2.4 × 1011 1.4 × 100 1.8 × 100 1.6 × 100 1.0 × 100

4.5 Rational Basis

We test the rational basis using the railtrack−rep problem which is a rational eigenvalue
problem arising from the study of the vibration of rail tracks [15]:

F(λ)x =
(
λAT + B + λ−1A

)
x = 0,

where A and B are 1005× 1005 complex matrices and B = BT is complex symmetric. In this
example, we are particularly interested in eigenvalues with modulus between 3 and 10. In fact,
F(λ) can be recast in the rational basis as

F(λ) ≈ R2(λ) = b0(λ)D0 + b1(λ)D1 + b2(λ)D2,

where b j (λ)’s are given by (5). The pole locations ξ1 = 1 and ξ2 = ∞ and the parameters
β0 = 1, β1 = 0.78, and β2 = 9.2 are all found by using the RK Toolbox [3].

As seen from Table 8, the magnitudes of maxGU (λ) and max ‖w‖2/‖y‖2 fall down by
orders of 1011 and 107, respectively. The reduction of the error ratios is displayed in Fig. 8,
where we see the ratios are made roughly 106 times smaller by scaling for both the left and the
right eigenpairs. The actual backward errors are brought down from somewhere between 10−10

and 10−8 to the level of machine precision, as shown in Fig. 9.
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(a) Left eigenpairs.
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(b) Right eigenpairs.

Fig. 8 The railtrack−rep problem: actual backward error ratios ηRm (λ, y∗)/ηLm (λ, w∗) and
ηRm (λ, x)/ηLm (λ, v) and their bounds
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(a) Left eigenpairs.
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(b) Right eigenpairs.

Fig. 9 The railtrack−rep problem: backward errors of Rm (λ) of computed eigenpairs, before and after
scaling

5 Closing Remarks

In this work, we have performed a backward error analysis for the PEPs and REPs solved by the
CORK linearization, which has not been seen in the literature. This investigation has made two
novel contributions. The first is that we established upper bounds for the ratios of the backward
errors of approximate eigenpairs of Rm(λ) to those of the CORK linearization based on the
one-sided factorization which are newly constructed and our treatment is given in a unified
framework for all commonly-used bases. The second is a simple scaling approach, suggested by
these bounds. Our analysis and this scaling approach are backed up by the numerical experiments
in the last section which show an overall effectiveness and efficacy for reducing the backward
errors.
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A Proof of (14)

We now show thatG(λ) given by (14) satisfies (12) withLm(λ) corresponding to the orthogonal
basis and g(λ) = 1. To simplify the notation,we drop the argumentλ of the basis function b(k)

j (λ)

in the rest of this proof.
We shall concentrate on showing that the product of G(λ) and the kth column of Lm(λ) is

kth column of eT1 ⊗ Rm(λ), that is

Dk−1 −
m∑

j=k−1

b(k−1)
j−(k−1)Dj + λ + αk−1

βk

m∑

j=k

b(k)
j−k D j + γk

βk+1

m∑

j=k+1

b(k+1)
j−(k+1)Dj = 0, (28)

which is true if

b(k−1)
0 = 1, (29a)

λ + αk−1

βk
b(k)
j−k + γk

βk+1
b(k+1)
j−(k+1) = b(k−1)

j−(k−1), k ≤ j ≤ m, (29b)

both hold.
Equation (29a) is given by the definition of the orthogonal basis. We now show (29b) by

induction.
For j = k, (29b) reads

λ + αk−1

βk
b(k)
0 + γk

βk+1
b(k+1)
−1 = b(k−1)

1 ,

which reduces to
λ + αk−1

βk
b(k−1)
0 = b(k−1)

1 , (30)

since b(k+1)
−1 = 0 and b(k)

0 = b(k−1)
0 = 1. Equation (30) is the recurrence relation (13) with 0

and k − 1 in place of j and k, respectively.
For j = k + 1, (29b) becomes

λ + αk−1

βk
b(k)
1 + γk

βk+1
b(k+1)
0 = b(k−1)

2 . (31)

To show (31), we substitute b(k)
1 = λ+αk

βk+1
b(k)
0 into to have

λ + αk

βk+1

(
λ + αk−1

βk
b(k−1)
0

)
+ γk

βk+1
b(k−1)
0 = b(k−1)

2 ,

where b(k−1)
0 = b(k)

0 = b(k+1)
0 = 1 is used. Since the terms in the parentheses, by the recurrence

relation, are just b(k−1)
1 , the task is boiled down to verify

λ + αk

βk+1
b(k−1)
1 + γk

βk+1
b(k−1)
0 = b(k−1)

2 .
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This is, again, a variant of the recurrence relation of (13).
Now suppose that (29b) and

λ + αk−1

βk
b(k)
j+1−k + γk

βk+1
b(k+1)
j+1−(k+1) = b(k−1)

j+1−(k−1) (32)

both hold for any k − 1 ≤ j ≤ m − 2. By the recurrence relation (13), we have

(λ + α j+1)b
(k−1)
j−k+2 + γ j+1b

(k−1)
j−k+1 = β j+2b

(k−1)
j−k+3,

where we now substitute (29b) and (32) for b(k−1)
j−(k−1) and b(k−1)

j+1−(k−1) respectively to have
(

λ + αk−1

βk
b(k)
j−k+2 + γk

βk+1
b(k+1)
j−k+1

)
β j+2 = b(k−1)

j−k+3β j+2, (33)

where we have used two variants of the recurrence relation

(λ + α j+1)b
(k)
j−k+1 + γ j+1b

(k)
j−k = β j+2b

(k)
j−k+2,

(λ + α j+1)b
(k+1)
j−k + γ j+1b

(k+1)
j−k−1 = β j+2b

(k+1)
j−k+1.

Dropping β j+2’s in (33) yields

λ + αk−1

βk
b(k)
j+2−k + γk

βk+1
b(k+1)
j+2−(k+1) = b(k−1)

j+2−(k−1).

This, by induction, shows (29b), which, along with (29a), verifies (28).
The proofs for the first and the last two columns of G(λ)Lm(λ) are essentially the same,

though the structures of Lm(λ) for these columns are slightly different from that of a general
kth column.
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