
Journal of Scientific Computing (2021) 88:53
https://doi.org/10.1007/s10915-021-01586-w

On the Computation of Recurrence Coefficients for Univariate
Orthogonal Polynomials

Zexin Liu1 · Akil Narayan1

Received: 30 January 2021 / Revised: 16 June 2021 / Accepted: 4 July 2021 /
Published online: 20 July 2021
© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may
apply 2021

Abstract
Associated to a finite measure on the real line with finite moments are recurrence coef-
ficients in a three-term formula for orthogonal polynomials with respect to this measure.
These recurrence coefficients are frequently inputs to modern computational tools that facil-
itate evaluation and manipulation of polynomials with respect to the measure, and such tasks
are foundational in numerical approximation and quadrature. Although the recurrence coef-
ficients for classical measures are known explicitly, those for nonclassical measures must
typically be numerically computed. We survey and review existing approaches for comput-
ing these recurrence coefficients for univariate orthogonal polynomial families and propose
a novel “predictor–corrector” algorithm for a general class of continuous measures. We com-
bine the predictor–corrector scheme with a stabilized Lanczos procedure for a new hybrid
algorithm that computes recurrence coefficients for a fairly wide class of measures that can
have both continuous and discrete parts. We evaluate the new algorithms against existing
methods in terms of accuracy and efficiency.

Keywords Orthogonal polynomials · Recurrence coefficients

Mathematics Subject Classification 33D45 · 42C10 · 65D15

1 Introduction

Univariate orthogonal polynomials are a mainstay tool in numerical analysis and scientific
computing. These polynomials serve as theoretical foundations for numerical algorithms
involving approximation and quadrature [4,12,13,22,31]. Given a positive measure μ on the

B Zexin Liu
zexin@math.utah.edu

Akil Narayan
akil@sci.utah.edu

1 Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute, The University of
Utah, Salt Lake City, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01586-w&domain=pdf
http://orcid.org/0000-0003-3409-5709

53 Page 2 of 26 Journal of Scientific Computing (2021) 88 :53

real line R, if μ has finite polynomial moments of all orders along with an infinite number
of points of increase, then a family of orthonormal polynomials {pn}∞n=0 exists, satisfying
deg pn = n, and ∫

R

pn(x)pm(x)dμ(x) = δm,n,

where δm,n is the Kronecker delta. If we further assume that each pn has a positive leading
coefficient, then these polynomials are unique. Such families are known to obey a three-term
recurrence formula,

xpn(x) = bn pn−1(x) + an+1 pn(x) + bn+1 pn+1(x), n ≥ 0, (1)

with the starting conditions p−1 ≡ 0 and p0(x) = 1/b0. The coefficients (an)∞n=1 ⊂ R and
(bn)∞n=0 ⊂ (0,∞) depend only on the (polynomial) moments of μ. In practical settings,
knowledge of these coefficients is the only requirement for implementing stable, accurate
algorithms that achieve evaluation andmanipulation of polynomials that are core components
of approximation and quadrature algorithms. For example, the n eigenvalues of the n × n
Jacobi matrix Jn are precisely the abscissae of a μ-Gaussian quadrature rule, with Jn the
symmetric tridiagonal matrix given by

Jn(μ) =

⎛
⎜⎜⎜⎜⎜⎝

a1 b1
b1 a2 b2

. . .
. . .

. . .

bn−2 an−1 bn−1

bn−1 an

⎞
⎟⎟⎟⎟⎟⎠

. (2)

Therefore, the recurrence coefficients an and bn must be computed stably and accurately.
Some classical probability measures μ give rise to classical families of orthogonal poly-

nomials pn : A Gaussian measure results in Hermite polynomials; the uniform measure on a
compact interval results in Legendre polynomials; a Beta measure corresponds with Jacobi
polynomials; and a one-sided exponential measure gives rise to Laguerre polynomials. These
classical polynomial families are among a few for which explicit formulas are available for
the recurrence coefficients an and bn , see, e.g., [12, Tables 1.1, 1.2].

However, for even modestly complicated measures μ outside this classical collection, the
task of determining these coefficients can be quite difficult. For example, an application in
which this situation arises is in polynomial Chaos methods, which are techniques in scientific
computing problems for modeling the effect of uncertainty in a model [35,38]. An output’s
dependence on a finite number of random variable inputs is modeled with polynomial depen-
dence on those inputs. With one random input, the polynomial approximation is typically
constructed using a basis of polynomials orthogonal to the distribution of the random input,
which requires building orthogonal polynomials with respect to a given, often nonclassical,
probability measure.

A simple example that illustrates how computation of orthogonal polynomials is difficult
for even fairly simple measures is furnished by the class of Freud weights,

dμ(x) = exp
(−|x |α)

dx, α > 0, (3)

with support equal to all of R. (In what follows, we will refer to μ as a measure and dμ as
a weight.) When α = 2, corresponding to the Gaussian measure (and Hermite polynomial
family), the three-term recurrence coefficients are known exactly. However, when α = 1, no
closed-form analytical formula for the coefficients an and bn exists, even though themoments

123

Journal of Scientific Computing (2021) 88 :53 Page 3 of 26 53

of μ are known explicitly in terms of well-studied special functions. (For example, note that
under a change of variable, the moments of the measure above correspond to evaluations of
the Euler Gamma function.)

In such general caseswhen no known closed-form expression for the three-term recurrence
coefficients exists, numerical methods are employed to approximate them. The main goal
of this article is to survey and extend existing methods for computing these recurrence
coefficients associated to measures for which explicit formulas are not available.

1.1 Existing Approaches

When μ is not a measure for which the coefficients have explicitly known formulas, one typ-
ically resorts to numerical methods to approximately compute these coefficients. A summary
of the methods we consider in this article is presented in Table 1, which indicates later sec-
tions in this article where we give a formal description of each algorithm. A brief description
of these procedures is given in Sect. 2, but an excellent and more detailed historical survey is
provided in [12, Section 2.6]. Below we present a nontechnical summary of the approaches
that we survey.

A classical approach to computing recurrence coefficients from moments is via determi-
nants of Hankel matrices [12, Section 2.1.1]. A second classical approach, the Chebyshev
algorithm, transforms monomial moments by expressing the recurrence coefficients in terms
of moments involving monomials and pn [2]. A more effective approach, the modified
Chebyshev algorithm, uses moments involving pn and another arbitrary set of polynomials
[7,26,33]. Yet another procedure, the Stieltjes algorithm [28], computes recurrence coeffi-
cients directly assuming moments involving pn can be computed. Finally, given a measure
with discrete support, the Lanczos algorithm can be used to compute the Jacobi matrix for
μ, yielding the recurrence coefficients; although this is typically unstable, a stable variant is
given in [25].

For very special forms of weight functions, other procedures can be derived. A primary
example of this are iterative recurrence-type algorithms resulting from discrete Painlevé
equationswhen dμ(x) ∝ exp(−xα) forα/2 ∈ N. These Painlevé equations, which determine
the recurrence coefficients for pn , are remarkably simple and direct to implement, but are
quite unstable [32]. A final approach we consider amounts to using a linear orthogonalization
procedure, such as (modified) Gram-Schmidt, to compute the expansion coefficients of pn in
terms of the monomials. However, this procedure is known to produce quite ill-conditioned
matrices, especially for large n, making the computation of pn , and hence the recurrence
coefficients, suffer roundoff errors. Therefore, although this approach has often been used
[36,37], it is less useful in the context of this article. Nevertheless, we consider one recent
related approach, an “arbitrary polynomial chaos” approach suggested in [23],which amounts
to solving a linear system involving a modified Hankel matrix.

1.2 Contributions of this Article

Several algorithms exist to compute the recurrence coefficients, but a few clear and direct
recommendations are available for researchers without substantial experience and/or knowl-
edge of the field. The main contribution of this paper is to summarize, evaluate, and extend
existing methods for computing recurrence coefficients for univariate orthogonal polyno-
mial families. We first provide a survey and comparison of many existing algorithms (see
Sect. 2). In Sect. 3.1 we propose a novel “predictor–corrector” algorithm and evaluate its util-

123

53 Page 4 of 26 Journal of Scientific Computing (2021) 88 :53

Ta
bl
e
1

A
bb

re
vi
at
io
n,

su
bs
ec
tio

n,
an
d
al
go

ri
th
m

fo
r
ea
ch

m
et
ho

d

M
et
ho
d

A
bb
re
vi
at
io
n

Se
ct
io
n

C
ita
tio

n

D
is
cr
et
e
Pa
in
le
vé

I
eq
ua
tio

ns
m
et
ho
d

D
P

2.
1

[3
2]

H
an
ke
lD

et
er
m
in
an
ts

H
D

2.
2

[1
2,

Se
ct
io
n
2.
1.
1]

A
rb
itr
ar
y
po

ly
no

m
ia
lc
ha
os

ex
pa
ns
io
n
m
et
ho

d
a
P
C

2.
3

[2
3,

Se
ct
io
n
3.
1]

M
od

ifi
ed

C
he
by

sh
ev

al
go

ri
th
m

M
C

2.
4

[1
2,

Se
ct
io
n
2.
1.
7]

St
ie
ltj
es

pr
oc
ed
ur
e

S
P

2.
5

[1
2,

Se
ct
io
n
2.
2.
3.
1]

St
ab
ili
ze
d
L
an
cz
os

al
go
ri
th
m

L
Z

2.
6

[1
2,

Se
ct
io
n
2.
2.
3.
2]

Pr
ed
ic
to
r–
co
rr
ec
to
r
m
et
ho

d
P
C

3.
1

—

Pr
ed
ic
to
r–
co
rr
ec
to
r-
L
an
cz
os

m
et
ho

d
P
C
L

3.
3

—

A
ls
o
in
cl
ud
ed

is
a
m
od
er
n
ci
ta
tio

n
th
at
ex
pl
ai
ns

ea
ch

al
go
ri
th
m

123

Journal of Scientific Computing (2021) 88 :53 Page 5 of 26 53

ity. Finally, by modifying the “multiple component” approach in [8,10], we consider a new
hybrid algorithm in Sect. 3.3 that combines our predictor–corrector scheme with a stabilized
Lanczos procedure. Our algorithm can be used to compute recurrence coefficients for the
fairly general class of measures whose differentials are given by

dμ(x) =
C∑
j=1

w j (x)1I j (x)dx +
M∑
j=1

ν jδτ j dx, (4)

whereC andM are finite (either possibly 0), δτ j is a Diracmass located at τ j ∈ R, {ν j }Mj=1 are
positive scalars, each I j is a (possibly unbounded) nontrivial interval, andw j is a continuous
(ideally smooth) non-negative function on I j . Specification of the w j , I j , τ j , and ν j is
sufficient to utilize most of the algorithms we consider, but having extra information that
characterizes w j , particularly prescribed behavior at finite endpoints of I j , will increase the
accuracy of the procedures. In other words, with I j = [� j , r j] and either of the endpoints
� j , r j is finite, we assume knowledge of exponents β j , α j > −1 such thatw j has polynomial
singular strength β j , α j at endpoints � j , r j , i.e.,

0 < lim
x↓� j

w j (x)(x − � j)
−β j < ∞, 0 < lim

x↑r j
w j (x)(r j − x)−α j < ∞. (5)

Note that our assumption that α j , β j > −1 is natural since if the inequality above is true
with, say, α j ≤ −1, then μ is not a finite measure and therefore is not a probability measure.

Note that the form of μ we assume in (4) is quite general, and includes all classical
measures, those with piecewise components, measures with discrete components, measures
with unbounded support, and measures whose densities have integrable singularities.

This paper is structured as follows: In Sect. 2 we briefly survey the existing approaches
summarized in Table 1. Section 3 contains the discussion that leads to our proposed
hybrid “PCL” algorithm: Sect. 3.1 discusses the predictor–corrector scheme; Sect. 3.2 briefly
describes how we compute moments, which leverages the specific form of the measure μ

assumed in (4) and (5); Sect. 3.3 combines these with a stabilized Lanczos procedure. Finally,
we present a wide range of numerical examples in Sect. 4, which compares many of the tech-
niques in Table 1, and demonstrates the accuracy and efficiency of the “PCL” algorithm.

2 Existing Approaches

We review here some existing methods for computing recurrence coefficients. In order to
compute the required coefficients, having some knowledge about themeasureμ is neccessary.
The following are two of the more common assumptions that one makes, with the latter
assumption being stronger:

– The (monomial) moments of all orders of μ are known, i.e., the moment sequence

mn :=
∫

xndμ(x), n ≥ 0, (6)

is known and available. In practice, the integrals can be obtained by the composite
quadrature approach introduced in Sect. 3.2, but sometimes they can also be computed
directly in terms of special functions, such as Gamma function given the Freud weights.

– General polynomial moments, i.e., ∫
q(x)dμ(x), (7)

123

53 Page 6 of 26 Journal of Scientific Computing (2021) 88 :53

are computable for a general, finite-degree polynomial q that is often identified only
partway through an algorithm.

No particular prescription exists for how the moments above are computed, but typi-
cally this is accomplished through a quadrature rule. In some “data-driven” scenarios, this
quadrature rule often comes as a Monte Carlo rule from an empirical ensemble.

We discuss six procedures below; in practice, only the last two are computationally stable,
but they are all useful for comparison purposes. Thefirst procedureworks only for very special
Freud weights, i.e., those with exponential behavior.

2.1 DP: FreudWeights and Discrete Painlevé Equations

Freudweights, named after Géza Freudwho studied them in the 1970s [5], have the following
form:

dμ(x) = |x |ρ exp(−|x |α)dx, ρ > −1, α > 0. (8)

Observe that Freud weights are symmetric, which implies that an = 0 for n ≥ 0, and
therefore only the bn coefficients need be computed. Freud gave a recurrence relation for
the recurrence coefficients bn when α = 2, 4, 6. The connection between Freud weights and
discrete Painlevé equations was first pointed out by Magnus [21]. In the case of α = 4, one
can derive the following recurrence relation for n ≥ 1 by letting xn := 2b2n :

xn+1 = 1

xn

(
n + ρ

2

(
1 + (−1)n

)) − xn − xn−1, x0 = 0, x1 = 2Γ (
3+ρ
4)

Γ (
1+ρ
4)

. (9)

See, e.g., [32, Section 2.2]. This recurrence relation is a discrete Painlevé I equation [21] that
is useful for theoretical analysis. For example, it can be used to prove Freud’s conjecture,
which is a statement about asymptotic behavior of the bn coefficients. For α = 4 in this
section, Freud’s conjecture states

lim
n→∞

bn
n1/4

= 1
4
√
12

. (10)

A more general resolution of Freud’s conjecture using alternative methods is provided in
[20].

Similarly, when α = 6, by letting yn := b2n , a fourth-order nonlinear recurrence relation
for n ≥ 2 [32, Section 2.3] is given by

6yn
(
yn−2yn−1 + y2n−1 + 2yn−1yn + yn−1yn+1 + y2n + 2yn yn+1 + y2n+1 + yn+1yn+2

)
= n + ρ

2

(
1 + (−1)n

)
,

(11)
with initial condition

y0 = 0, y1 = Γ (
3+ρ
6)

Γ (
1+ρ
6)

,

y2 = Γ (
5+ρ
6)

Γ (
3+ρ
6)

− y1, y3 = Γ (
7+ρ
6)

y2y1Γ (
1+ρ
6)

− 2(y1 + y2)Γ (
5+ρ
6)

y2y1Γ (
1+ρ
6)

+ (y1 + y2)2Γ (
3+ρ
6)

y2y1Γ (
1+ρ
6)

.

123

Journal of Scientific Computing (2021) 88 :53 Page 7 of 26 53

In this case, Freud’s conjecture states

lim
n→∞

bn
n1/6

= 1
6
√
60

. (12)

Note the computation of recursion coefficients via (9) and (11) is quite straightforward,
but is also very unstable. Nevertheless, there is a unique positive solution [19]; hence, a small
(e.g., machine roundoff) error in x1 or y1 quickly results in the loss of positivity of xn or yn .
Numerical solutions follow the exact asymptotic behavior well until large deviations from
the true solution eventually appear, cf. Fig. 1.

2.2 HD: Hankel Determinants

Orthogonal polynomials as well as their recursion coefficients are expressible in determinan-
tal form in terms of the moments of the underlying measure. Indeed, much of the classical
theory of orthogonal polynomials is moment-oriented. One classical technique to express
recurrence coefficients in terms of moments is via matrix determinants.

We introduce the Hankel determinant Δn of order n in terms of the finite moments (6),
defined as

Δ−1 = 1, Δ0 = 1, Δn = det Hn, Hn :=

⎛
⎜⎜⎜⎝

m0 m1 · · · mn−1

m1 m2 · · · mn
...

...
. . .

...

mn−1 mn · · · m2n−2

⎞
⎟⎟⎟⎠ , n ∈ N. (13)

These determinants of Gram matrices are associated to the μ-inner product, using a basis
of monomials. In addition, we define determinants Δ′

n of modified Hankel matrices, where
the modification is to replace the last column of Hn by the last column of Hn+1 with the
trailing entry removed,

Δ′
0 = 0, Δ′

1 = m1, Δ′
n =

∣∣∣∣∣∣∣∣∣

m0 m1 · · · mn−2 mn

m1 m2 · · · mn−1 mn+1
...

...
...

...
...

mn−1 mn · · · m2n−3 m2n−1

∣∣∣∣∣∣∣∣∣
, n = 2, 3,

Along with b0 = √
m0, the orthogonal polynomial recurrence coefficients can be computed

explicitly from these determinants, cf.[12, Theorem 2.2],

an = Δ′
n

Δn
− Δ′

n−1

Δn−1
, bn =

√
Δn+1Δn−1

Δ2
n

, n ∈ N. (14)

The formulas (14) are not practically useful as an algorithm to compute reucrrence coef-
ficients since the Hankel matrices above are typically ill-conditioned. In particular, the map
that computes recurrence coefficients from moments can be severely ill-conditioned [12,
Section 2.1.6].

2.3 aPC: “Arbitrary” Polynomial Chaos Expansions

The arbitrary polynomial chaos (aPC), like all polynomial chaos expansion techniques,
approximates the dependence of simulation model output on model parameters by expansion

123

53 Page 8 of 26 Journal of Scientific Computing (2021) 88 :53

in an orthogonal polynomial basis. As shown in [23], aPC at finite expansion order demands
the existence of only a finite number ofmoments and does not require the complete knowledge
of a probability density function. Once we construct the polynomials such that they form an
orthonormal basis for arbitrary distributions from the moment-based analysis, the recurrence
coefficients can be derived using the aPC expansion coefficients.

Our goal is, firstly, to construct the polynomials in (15) such that they form an orthonormal
basis for arbitrary distributions. Instead of the normality condition, we will first introduce an
intermediate auxiliary condition by demanding that the leading coefficients of all polynomials
be equal to 1.

We define the monic orthogonal polynomial πn(x) as

πn(x) =
n∑

i=0

c(n)
i x i , (15)

where c(n)
i are expansion coefficients, and specifically, c(n)

n = 1,∀n. The general conditions
of orthogonality for πn(x) with respect to all lower order polynomials can be written in the
following form [23, Section 3.1]:

∫
�

xk
(

n∑
i=0

c(n)
i x i

)
dμ(x) = 0, k = 0, 1, . . . , n − 1. (16)

For each n, the system of equations given by (16) defines the unknown polynomial expansion
coefficients in (15). Using finite moments in (6), the system can be reduced to

n∑
i=0

c(n)
i mi+k = 0.

Alternatively, the system of linear equations can be written in the more convenient matrix
form, ⎛

⎜⎜⎜⎜⎜⎝

m0 m1 · · · mn

m1 m2 · · · mn+1
...

...
. . .

...

mn−1 mn · · · m2n−1

0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

c(n)
0

c(n)
1
...

c(n)
n−1

c(n)
n

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0
0
...

0
1

⎞
⎟⎟⎟⎟⎟⎠

. (17)

By defining the coefficient vector c(n) =
(
c(n)
0 , c(n)

1 , . . . , c(n)
n

)T
, the normalized coefficients

c̄(n)
i can be expressed in terms of c(n) and Hankel matrices Hn+1,

c̄(n)
i = c(n)

i√
c(n)T Hn+1c(n)

. (18)

Together with b0 = √
m0 and c(0)

−1 := 0, the recurrence coefficients can be obtained from
(18) using (1),

an = c̄(n−1)
n−2 − bnc̄

(n)
n−1

c̄(n−1)
n−1

, bn = c̄(n−1)
n−1

c̄(n)
n

, n ∈ N. (19)

123

Journal of Scientific Computing (2021) 88 :53 Page 9 of 26 53

Thus, given the moments mi , we first solve for the c(n)
k via (17) and subsequently uses

(19) to compute the recurrence coefficients. As with the Hankel determinant procedure in
Sect. 2.2, this procedure is susceptible to instability since the moment matrices in (17) are
typically unstable.

2.4 MC: Modified Chebyshev Algorithm

The previous techniques have used (monomial) moments directly and suffer from numerical
stability issues. The classical Chebyshev algorithm [2] still uses monomial moments, but it
employs them through an iterative recursive approach to compute the recurrence coefficients.
The technique in this sectionmodifies the classicalChebyshev algorithmbyusingμ-moments
computed with respect to some other set of polynomials {qk}. Typically, qk is chosen as a
sequence of polynomials that are orthogonal with respect to another measure λ, where we
require that the recurrence coefficients cn, dn for λ are known. The Modified Chebyshev
algorithm is effective when λ is chosen “close” to μ.

We define the “mixed” moments as

σn,k =
∫

πn(x)qk(x)dμ(x), n, k > −1, (20)

where πn(x) are the monic orthogonal polynomials with respect to μ. We denote an, bn as
the recurrence coefficients of orthonormal polynomials pn(x) with respect to μ. They can
be used to formulate the three-term recurrence relation for monic orthogonal polynomials
πn(x),

πn+1(x) = (x − an+1)πn(x) − b2nπn−1(x). (21)

We define ck, dk as recurrence coefficients of orthonormal polynomials qk(x). Plugging
(21) into (20), the mixed moments σn,k , in turn, satisfies the recurrence relation below:

σ0,k = mk,

σn,k = dkσn−1,k−1 + (ck+1 − an)σn−1,k + dk+1σn−1,k+1 − b2n−1σn−2,k . (22)

(22) gives a routine to compute the first N recurrence coefficients, which requires as input
the first 2N − 1 modified moments {mk}2N−2

k=0 and {ck, dk}2N−1
k=0 .

Together with (21), (22) and the fact that σ−1,k = 0, we have the expression of the
recurrence coefficients,

a1 = c1 + d1σ0,1
σ0,0

, an = cn + dnσn−1,n

σn−1,n−1
− dn−1σn−2,n−1

σn−2,n−2
, n = 2, 3, ...,

b0 = √
d0m0, bn =

√
dnσn,n

σn−1,n−1
, n ∈ N. (23)

Given a positive measure μ on R, by choosing λ near μ in some sense, we expect the
algorithm is well, or better, conditioned [12, Section 2.1.3].

2.5 SP: The Stieltjies Procedure

The previous procedures have used either monomial moments or general (mixed) moments
with respect to a prescribed, fixed alternative basis qk . In constrast, the Stieltjes procedure

123

53 Page 10 of 26 Journal of Scientific Computing (2021) 88 :53

[8,29] requires “on-demand” computation of moments, i.e., the moments required are deter-
mined during the algorithm. Starting with b0 = (∫

dμ
)1/2 and p0(x) = 1/b0, a1 can be

computed from (7) with q(x) = xp0(x)2, which allows us to evaluate p1(x) by means of
(1). p1(x), in turn, can be used to generate b1. The formulae [12, Section 2.2.3]

an =
∫

xp2n−1(x)dμ, bn =
(∫

((x − an)pn−1(x) − bn−1 pn−2(x))
2dμ

) 1
2

, n ∈ N,

(24)

for the recursion coefficients provides a natural iterative framework for computing them.

2.6 LZ: A Lanczos-Type Algorithm

We assume that the measure dμ is a discrete measure with finite support, i.e., (4) holds with
C = 0 and 0 < M < ∞. We wish to compute recurrence coefficients (an, bn) up to n < M ,
ensuring that orthogonal polynomials up to this degree exist.We could also consider applying
this procedure to a finite discretization of a continuous measure; see [12, Section 2.2.3.2 and
Theorem 2.32].

The Lanczos procedure produces recurrence coefficients for the discrete measure μ,
and utilizes the Lanczos algorithm that unitarily triangularizes a symmetric matrix. With
(τ j , ν j)

M
j=1 the quadrature rule associated to the measure μ in (4), we define

√
ν := (√

ν1,
√

ν2, . . . ,
√

νM
)T

, D := diag (τ1, τ2, . . . , τM) .

We define Q as a scaled M × M Vandermonde-like matrix,

Q = diag
(√

ν
)
V , (V) j,k = p j−1(τk),

for j, k = 1, . . . , M . Then, Q is an orthogonal matrix by orthonormality of pn . The orthog-
onality and the three-term recurrence further imply that,

(
1 0T

0 Q

) (
1

√
ν
T

√
ν D

) (
1 0T

0 QT

)
=

(
1 b0eT1

b0e1 JM (μ)

)
,

where e1 = (1, 0, 0, . . .)T ∈ R
M . The Lanczos algorithm, given the middle matrix on the

left-hand side, computes the unitary triangularization above and outputs the right-hand side,
which identifies the Jacobi matrix JM in (2), and, hence, the recurrence coefficients. See
[12, Section 2.2.3.2] for more details. It is well known that the standard Lanczos algortihm
is numerically unstable, so that stabilization procedures must be employed [16,25]. We use
a “double orthogonalization” stabilization technique to avoid instability. Our results suggest
that, for discrete measures, this procedure is more accurate than all the alternatives, see
Sect. 4.3.

3 PCL: A Hybrid Predictor–Corrector Lanczos Procedure

The main goal of this section is to describe a procedure by which we compute recurrence
coefficients forμ of the form (4). The procedure entails knowledge of the continuous weights
{w j }Cj=1 and their respective supporting intervals, {I j }Cj=1, along with the discrete part of the

measure encoded by the nodes and weights
(
τ j , ν j

)M
j=1. In Sect. 3.2, we will also utilize the

123

Journal of Scientific Computing (2021) 88 :53 Page 11 of 26 53

singularity behavior of the weights w j dictated by the constants α j and β j in (5) to compute
moments.

Section 3.1 first introduces a new procedure to compute recurrence coefficients for a
measure with a continuous density using polynomial moments. Section 3.2 then discusses
our particular strategy for computing thesemoments. Finally, Sect. 3.3 introduces a procedure
based on the multiple component approach in [8] for computing recurrence coefficients for
a measure of general form (4).

3.1 PC: Predictor–Corrector Method

In this section, we describe a Stieltjes-like procedure for computing recurrence coefficients.
Although thisworks for generalmeasures, we aremainly interested in applying this technique
for measures μ that have a continuous density. The high-level algorithm, like the previous
ones we have discussed, is iterative. Suppose for some n ≥ 0 we know the coefficient tableau,

a1(μ) a2(μ) · · · an(μ)

b0(μ) b1(μ) b2(μ) · · · bn(μ).

These coefficients, via (1), define p0, . . . , pn that are orthonormal under a dμ-weighted
integral. In order to compute an+1 and bn+1, wemake educated guesses for these coefficients,
and correct them using computed moments. The procedure is mathematically equivalent to
the Stieltjes procedure: We define a new set of recurrence coefficients {̃a j , b̃ j }n+1

j=0, where

ã j = a j , b̃ j = b j , j = 0, . . . , n, (25a)

ãn+1 = an, b̃n+1 = bn, (25b)

In particular, corrections Δan+1 ∈ R and Δbn+1 > 0 exist such that

an+1 = ãn+1 + Δan+1, bn+1 = b̃n+1Δbn+1. (25c)

Our procedure will compute the corrections Δan+1 and Δbn+1. The tableau of coefficients
ãn+1 and b̃n+1

a1(μ) · · · an(μ) ãn+1(μ)

b0(μ) b1(μ) · · · bn(μ) b̃n+1(μ),

can be used with (1) to generate the polynomials p0, . . . , pn , along with p̃n+1, defined as

b̃n+1 p̃n+1 := (x − ãn+1)pn − bn pn−1. (26)

Since p̃n+1 and pn+1 were generated using the same coefficients (a j , b j) up to index j = n,
then they are both orthogonal to all polynomials of degree n − 1 or less. However, p̃n+1 is
not orthogonal to pn in general. We can choose Δan+1 to enforce this orthogonality, which
requires computing a polynomial moment.

Once an+1 = ãn+1 + Δan+1 is successfully computed, we can similarly define another
degree-(n + 1) polynomial p̂n+1 through the relation,

b̃n+1 p̂n+1 := (x − an+1)pn − bn pn−1. (27)

This polynomial differs from pn+1 by only a multiplicative constant, which can again be
determined through a moment computation and used to compute Δbn+1. We formalize the
discussion above through the following result:

123

53 Page 12 of 26 Journal of Scientific Computing (2021) 88 :53

Lemma 1 With p̃n+1 and p̂n+1 defined as in (26) and (27), respectively, let

Gn,n+1 :=
∫
R

pn(x) p̃n+1(x)dμ(x), (28a)

Gn+1,n+1 :=
∫
R

p̂2n+1(x)dμ(x), (28b)

then,

Δan+1 = Gn,n+1bn, Δbn+1 = √
Gn+1,n+1. (29)

Proof Starting from the definition (26) for p̃n+1, we replace xpn with the right-hand side of
(1), yielding,

p̃n+1 = Δbn+1

[
1

bn+1
(x − an+1) pn − bn pn−1 + Δan+1

1

bn+1
pn

]

= Δbn+1 pn+1 + Δan+1Δbn+1

bn+1
pn . (30)

Thus, due to orthogonality of {p j } j≥0, we have

Gn,n+1 =
∫

pn(x) p̃n+1(x)dμ(x)
(30)= Δan+1Δbn+1

bn+1

(25c)= Δan+1

bn
,

which shows the first relation in (29). To show the second relation, first we combine (1) and
(27) to show,

b̃n+1 p̂n+1(x) = (x − an+1)pn − bn pn−1 = bn+1 pn+1,

so that

Gn+1,n+1 =
∫

p̂2n+1(x)dμ(x) =
(
bn+1

b̃n+1

)2 ∫
p2n+1(x)dμ(x) = (Δbn+1)

2,

proving the second relation. ��

The results (29) and (29) are the proposed approach: The moments Gn,n+1 and Gn+1,n+1

in (28a) and (28b) are polynomial moments that can be computed. We can subsequently use
(29) and (25c) to compute the desired an+1 and bn+1.

The methodology of this section can then be iterated in order to compute as many recur-
rence coefficients an and bn as desired. However, wemust compute theGn,n+1 andGn+1,n+1

coefficients (which are similar to the moments required by the Stieltjes procedure). The main
difference in our algorithm is that we use moments to compute an+1 − an and bn+1/bn that
are typically close to 0 and 1, respectively, instead of simply an and bn , which in general
can be arbitrarily small or large numbers. We next summarize one particular strategy for
computing these moments assuming that a type of characterization of μ is available.

3.2 Computation of Polynomial Moments

The previous section shows that we can compute recurrence coefficients for the measure μ if
we can compute some of its moments, in particularGn,n+1 andGn+1,n+1.We briefly describe

123

Journal of Scientific Computing (2021) 88 :53 Page 13 of 26 53

in this section how we compute moments for measures of the form (4) with knowledge of
the singularity behavior in (5). The moment of a polynomial q for μ can be written as

∫
q(x)dμ(x) =

C∑
j=1

∫
I j
q(x)w j (x)dx +

M∑
j=1

ν j q(τ j),

so that the only difficult part is to compute
∫
I j
q(x)w j (x)dx for each j .

Suppose first that I j is compact, i.e., that I j = [�, r] for finite �, r . Then we rewrite the
integral as

∫
I j
q(x)w j (x)dx = r − �

2

∫ 1

−1
q(A(u))w j (A(u))du, A(u) :=

(
r − �

2

)
u + r + �

2
.

w j obeying the limiting conditions (5) with constants α j , β j implies that w j (A(u)) behaves
like (1−uα j) near u = 1, and like (1+uβ j) near u = −1. When α j = β j = 0, then a global
dx-Gaussian quadrature rule will be efficient in evaluating this integral, but the accuracy will
suffer when either constant differs from 0. To address this problem, we can further rewrite
the integral as:

∫
I j
q(x)w j (x)dx = r − �

2

∫ 1

−1
q(A(u))ω j (u)dμ(α j ,β j)(u),

where μ(α j ,β j) is a Jacobi measure on [−1, 1], and ω j is w j multiplied by the appropriate
factors,

dμ(α j ,β j)(u) = (1 − u)α j (1 + u)β j dx, ω j (u) := w j (A(u))(1 − u)−α j (1 + u)−β j .

The advantage of this formulation is that ω j is now smooth at the boundaries u = ±1,
and if in addition it is smooth on the interior of [−1, 1], then a Jacobi (α j , β j)-Gaussian
quadrature rule will efficiently evaluate the integral. Therefore, if (uk, λk)Kk=1 is a K -point
Jacobi (α j , β j)-Gaussian quadrature rule, we approximate the integral as

∫
I j
q(x)w j (x)dx ≈

K∑
k=1

λkω j (uk)q(A(uk)),

where the nodes andweights can be computed through the spectrum of JK (μ(α j ,β j)) since the
recurrence coefficients of thesemeasures are explicitly known. In particular, all the quadrature
nodes uk lie interior to [−1, 1], so that the above procedure does not require evaluation of
ω j at u = ±1. We adaptively choose K , i.e., increasing K until the difference between
approximations is sufficiently small.

3.3 PCL: A Hybrid Predictor–Corrector Lanczos Method

The full procedure we describe in this section combines the strategies in Sects. 3.1 and 3.2,
along with the (stabilized) Lanczos procedure in Sect. 2.6. Assuming that we a proiri know
that the first N recurrence coefficients {an, bn}N−1

n=0 are required for μ, then the main idea
here is to construct a fully discrete measure ν whose moments up to degree 2N − 2 match
those of μ.

We accomplish this as follows:Recall that the continuous densities {w j }Cj=1 of themeasure
μ in (4) are known, along with their boundary singularity behavior in (5). Then for each j ,

123

53 Page 14 of 26 Journal of Scientific Computing (2021) 88 :53

the PC procedure in Sects. 3.1 and 3.2 can be used to compute the first N + 1 recurrence
coefficients forw j , {a j,n, b j,n}Nn=0. Using these recurrence coefficients, an N -point Gaussian
quadrature rule (x j,k, λ j,k)

N
k=1 can be computed that exactly integrates all polynomials up to

degree 2N − 1 with respect to the weight w j :

∫
I j
q(x)w j (x)dx =

N∑
k=1

λ j,kq
(
x j,k

)
, deg q ≤ 2N − 1.

After this quadrature rule is computed for every j = 1, . . . ,C , the discretemeasure ν, defined
as

ν :=
C∑
j=1

N∑
k=1

λ j,kδx j,k +
M∑
j=1

ν jδτ j , (31)

and hasmoments thatmatch those ofμ up to degree 2N−1.Once this procedure is completed,
we employ the Lanczos procedure in Sect. 2.6 to compute the first N recurrence coefficients
for ν, which equal those for μ. The main reason we employ the Lanczos scheme (as opposed
to any other approach) is that, for discrete measures, the Lanczos procedure appears more
empirically stable than all other procedures we consider, cf. Sect. 4.5.

Note that if C = 1 and M = 0, then the Lanczos procedure is not needed at all since
(a1,n, b1,n)

N−1
n=0 are the desired coefficients, and if C = 0, then only the Lanczos procedure

need be queried since no quadrature is required.
The above is essentially a complete description of thePCL algorithm.However, we include

one additional adaptive procedure to ensure correct computation of themoments. Let {Ns}s≥0

be an increasing sequence of positive integers. A strategy for determining the sequence of
Ns can be found in [11,12],

N0 = N , Ns = Ns−1 + Δs, s = 1, 2, . . . ,

Δ1 = 1, Δs = 2� s
5 �N , s = 2, 3,

We define νs as the measure (31) with N ← Ns . We use PCL to compute numerical approx-
imations {a[s]

n , b[s]
n }n≥0 to the recurrence coefficients for νs . (I.e., we use PC to compute the

Ns-point quadrature rule (x j,k, λ j,k)
Ns
k=1 and subsequently use LZ to compute the recurrence

coefficients for νs .) With the (approximate) coefficients for νs and νs−1, if the condition∣∣∣b[s]
n − b[s−1]

n

∣∣∣ ≤ ε|b[s]
n |, n = 0, 1, . . . , N − 1,

is satisfied, then we return the computed coefficients for νs . Otherwise, we set s ← s + 1
and test the condition above again. This adaptive procedure is similar to those employed
in [11,12]. In our computations we set ε = 10−12, and we set an upper limit of Ns as
Nmax
s = 10N for all s, which will usually be satisfactory.

4 Numerical Experiments

We now present numerical examples to illustrate the performance of our algorithm by com-
puting the first N three-term recurrence coefficients for different types of measures μ. Our
results will consider all the algorithms in Table 1: the first six in Sect. 2 and the last two
new procedures proposed in Sect. 3. We implement all the algorithms in Python. All the

123

Journal of Scientific Computing (2021) 88 :53 Page 15 of 26 53

computations are carried out on a MacBook Pro laptop with a 3.1 GHz Intel(R) Core(TM)
i5 processor and 8 GB of RAM.

Examples can be classified according to whether we have a way to compute the exact
recurrence coefficients. When this is the case, we define {ân, b̂n}N−1

n=0 as the first N exact
coefficients and {an, bn}N−1

n=0 as coefficients that are computed from any particular algorithm.
The error eN can be denoted by an �2-type norm,

eN =
(
N−1∑
n=0

[(
an − ân

)2 +
(
bn − b̂n

)2]) 1
2

. (32)

If the exact coefficients are not available, we consider another error metric. If {pn(x)}N−1
n=0

is a polynomial basis produced through the three-term recurrence (1) using the computed
coefficients by {an, bn}N−1

n=0 , then let A be an N × N matrix with entries

(A)m,n =
∫
R

pn−1(x)pm−1(x)dμ(x), n,m = 1, . . . , N ,

which equals δn,m if ân = an and b̂n = bn . The new error indicator fN we compute is

fN = ‖A − I‖F , (33)

where ‖ · ‖F is the Frobenius norm on matrices and I is the N × N identity matrix.
The computational timing results that measure efficiency are averaged over 100 runs of

any particular algorithm.

4.1 FreudWeights

One computational strategy for determining the recurrence coefficients for Freud weights
of the form (3) on the entire real line is to use the (“non-modified”) Chebyshev algorithm,
which requires monomial moments and employs a recurrence similar to (22). The monomial
moments of (3) are explicitly computable as simple evaluations of the Euler Gamma function,
but numerical instabilities typically develop in such an approach due to roundoff error; to
combat this limitation, computations may be completed in variable precision arithmetic,
resulting in a procedure that correctly computes the recurrence coefficients [14]. In this
section, we use this VPA procedure to generate recurrence coefficients treated as “exact” for
use in computing errors. In particular, we employ the sr_freud.m routine from [6] that
utilizes variable-precision arithmetic in Matlab [17].

We compute recurrence coefficients using the DP, HD, aPC, and MC methods for Freud
exponents α = 4, 6. The DP recursion for each of the two cases is simple, given by (9) and
(11), respectively. For the MC method, we use Hermite orthogonal family for qk in (20) that
is orthogonal with respect to λ. The top two plots in Fig. 1 show that each of these methods
is not computationally useful since instabilities develop quickly. In contrast, both the SP
and PC approaches can effectively compute recurrence coefficients, which we show in the
bottom two plots of Fig. 1. In terms of efficiency, Table 2 illustrates that the “exact” VPA
procedure is several orders of magnitude more expensive than all other approaches, and that
SP and PC are competitive. Code that reproduces this example is available in the routine
ex_freud_4.py and ex_freud_6.py from [18].

123

53 Page 16 of 26 Journal of Scientific Computing (2021) 88 :53

Fig. 1 Example for Sect. 2.1: the top two plots are recursion coefficients bN computed by DP, HD, aPC, MC
and Freud conjecture in (10) and (12). The two plots at the bottom show errors eN of SP and PC

Table 2 Example for Sect. 2.1: elapsed time (s) for Freud weight when α = 4 (subcolumns on the left) and
α = 6 (subcolumns on the right)

Method N = 20 N = 40 N = 60 N = 80 N = 100

VPA 18.86 19.13 99.38 101.10 293.44 300.41 631.20 633.20 1196.29 1362.86

SP 0.24 0.21 0.75 0.63 1.60 1.32 2.72 2.24 4.12 3.42

PC 0.25 0.22 0.75 0.65 1.60 1.34 2.72 2.27 4.12 3.40

4.2 Piecewise SmoothWeight

We consider the measure dμ(x) = w(x)dx on [−1, 1], where

ω(x) =
{

| x |γ (x2 − ξ2)p(1 − t2)q , x ∈ [−1,−ξ] ∪ [ξ, 1]
0, elsewhere, 0 < ξ < 1, p > −1, q > −1, γ ∈ R.

For certain choices of γ, p, q , there is theory regarding the resulting orthogonal polyno-
mials [1], and such weights arise in applications [34]. In the special cases γ = ±1, p =
q = ±1/2, closed-form representations for the recurrence coefficients can be computed [9].
For example, the exact formula for the recurrence coefficients for the case γ = 1, p = q =
−1/2, η = (1 − ξ)/(1 + ξ) is given by

b̂0 = √
π, b̂1 =

√
1 + ξ2

2
,

123

Journal of Scientific Computing (2021) 88 :53 Page 17 of 26 53

b̂2n =
√

(1 − ξ2)(1 + η2n−2)

4(1 + η2n)
, b̂2n+1 =

√
(1 + ξ2)(1 + η2n+2)

4(1 + η2n)
, n ∈ N,

with ân = 0 for all n.
A Legendre orthogonal family for qk in (20) that is orthogonal with respect to λ is chosen

for the MC method. For the choice γ = 1, p = q = −1/2 and ξ = 1/10, Table 3 illustrates
the accuracy and cost of the algorithms HD, aPC, MC, SP, and PC. We observe that only the
SP and PC approaches yield reasonable accuracy, with PC being slightly more accurate. We
omit results for other choices of (γ, p, q), which produce nearly identical results. The results
from this table can be produced from ex_pws.py in [18].

4.3 Transformed Discrete Chebyshev

In the previous example, we compute the recurrence coefficients of “continuous” orthogonal
polynomials with respect to μ on bounded or unbounded supports. We now consider the
support of μ that consists of a discrete set of points.

Given a positive number M , we define the nodes τ j = (j − 1)/M and ν j = 1/M for
j = 1, 2, . . . , M . Then, the transformed discrete Chebyshev [12, Example 2.26] measure is
given as

dμ(x) =
M∑
j=1

1

M
δ j−1

M
dx, j = 1, 2, . . . , M,

i.e., an equally spaced and equally weighted discrete measure on [0, 1). The recurrence
coefficients are known explicitly if a linear transformation of variables is applied to the
discrete Chebyshev measure with canonical support points [12, Section 1.5.2]. For a given
size of supports, M , with b̂0 = 1,

ân = M − 1

2M
, b̂n =

√√√√ 1 − (n
M)

2

4(4 − (n
M)

2
)
, n = 1, 2, . . . , M − 1.

In Fig. 2, the methods HD, aPC and MC are omitted since their instabilities develop very
quickly. An NaN value appears when the required number of recurrence coefficients, N ,
is less than 20. We compare the SP, LZ and PC approaches on measure support sizes
M = 40, 80, 160, 320. We observe that the LZ approach is effective for all choices of
M , and when N is comparable to M , the SP and PC approaches become inaccurate. The
lower two plots of Fig. 2 show that when M is notably larger than N , all three approaches
produce good results. In particular, all the numerical results in this subsection are produced
by ex_discrete_cheb.py in [18].

4.4 Discrete Probability Density Function

High-dimensional integration is a common problem in scientific computing arising from,
for example, the need to estimate expectations in uncertainty quantification [27,30]. Many
integrands for such integrals found in scientific computing applications map a large number
of input variables to an output quantity of interest, but admit low-dimensional ridge structure
that can be exploited to accelerate integration.A ridge function [24] is a function f : Rm → R

123

53 Page 18 of 26 Journal of Scientific Computing (2021) 88 :53

Ta
bl
e
3

E
xa
m
pl
e
fo
r
Se
ct
.4
.2
:e
rr
or
s
e N

(s
ub

co
lu
m
ns

on
th
e
le
ft
)
an
d
el
ap
se
d
tim

e
(s
)
(s
ub

co
lu
m
ns

on
th
e
ri
gh

t)
w
he
n

γ
=

1,
p

=
q

=
−1

/
2

M
et
ho

d
N

=
20

N
=

40
N

=
60

N
=

80
N

=
10

0

H
D

6.
05

e–
02

0.
00

3
—

—
—

—
—

—
—

—

a
P
C

6.
05

e–
02

0.
00

1
—

—
—

—
—

—
—

—

M
C

2.
34

e–
15

0.
00

1
1.
00

e+
00

0.
00

6
—

—
—

—
—

—

S
P

4.
73

e–
14

0.
10

2.
85

e–
13

0.
28

3.
85

e–
13

0.
57

3.
99

e–
13

0.
93

4.
62

e–
13

1.
39

P
C

9.
08

e–
15

0.
10

1.
80

e–
14

0.
29

3.
13

e–
14

0.
57

5.
14

e–
14

0.
94

7.
27

e–
14

1.
40

H
er
e
—

m
ea
ns

a
N
aN

va
lu
e
du

e
to

th
e
nu

m
er
ic
al
ov
er
flo

w
fr
om

th
e
in
st
ab
ili
ty

of
th
e
co
rr
es
po

nd
in
g
m
et
ho

d

123

Journal of Scientific Computing (2021) 88 :53 Page 19 of 26 53

Fig. 2 Example for Sect. 4.3: the first three plots compute errors eN for different N portion of distinct M and
the last two plots for the same N but for distinct M

of the form

f (x) = g(aT x),

where a ∈ R
m is a constant vector called the ridge direction and g : R → R is the ridge

profile. For such functions, we clearly have that f depends only on a scalar variable y :=
aT x. In applications, we frequently wish to integrate f with respect to some m-dimensional
probability measure ρ on x, which can be simplified by integrating over the scalar variable
y with respect to the univariate measure μ that is the push-forward of ρ under the map
x �→ aT x. Thus, the goal is to compute recurrence coefficients for μ.

In practice the multivariate measure ρ is known, but computing the univariate measure μ

exactly is typically not feasible. However, an approximation to μ can be furnished using the
procedure in [15, Section 2.2] that randomly generates M i.i.d. samples {x j }Mj=1 from ρ, and
defines μ as a discrete measure supported on the projection of these samples onto the real
line:

dμ(x) =
M∑
j=1

1

M
δτ j dx, τ j := aT x j .

To compute quadrature rules with respect to this measure, we take ρ as the uniform measure
on the m-dimensional hypercube [−1, 1]m . Let m = 25, and a ∈ R

25 is chosen randomly.
We then test for M = 100, 300.

Since we do not have an expression for the exact recurrence coefficients, we measure
errors using the metric fN in (33). As shown in Table 4, the computed recursion coefficients

123

53 Page 20 of 26 Journal of Scientific Computing (2021) 88 :53

Ta
bl
e
4

E
xa
m
pl
e
fo
r
Se
ct
.4
.4
:e
rr
or
s
f N

w
he
n
M

=
10

0
(s
ub

co
lu
m
ns

on
th
e
le
ft
)
an
d
M

=
30

0
(s
ub

co
lu
m
ns

on
th
e
ri
gh

t)

M
et
ho

d
N

=
20

N
=

40
N

=
60

N
=

80
N

=
10

0

H
D

1.
69

e–
07

1.
24

e–
07

—
—

—
—

—
—

—
—

a
P
C

7.
72

e–
08

3.
80

e–
08

2.
03

e+
05

7.
67

e+
05

1.
35

e+
27

3.
90

e+
25

5.
85

e+
47

2.
71

e+
55

4.
75

e+
67

9.
70

e+
72

M
C

3.
02

e–
09

3.
60

e–
09

—
—

—
—

—
—

—
—

S
P

2.
74

e–
15

3.
39

e–
15

9.
26

e–
15

8.
53

e–
15

5.
94

e–
10

2.
62

e–
14

4.
00

e+
00

5.
20

e–
14

7.
48

e+
00

9.
37

e–
14

L
Z

4.
75

e–
15

3.
87

e–
15

2.
95

e–
14

1.
10

e–
14

3.
45

e–
09

1.
73

e–
14

1.
86

e+
68

3.
38

e–
14

2.
50

e+
68

9.
29

e–
14

P
C

3.
96

e–
15

4.
54

e–
15

1.
17

e–
14

9.
57

e–
15

1.
03

e–
09

1.
50

e–
14

4.
00

e+
00

2.
47

e–
12

7.
48

e+
00

1.
41

e–
13

H
er
e
—

m
ea
ns

a
N
aN

va
lu
e
du

e
to

th
e
nu

m
er
ic
al
ov
er
flo

w
fr
om

th
e
in
st
ab
ili
ty

of
th
e
co
rr
es
po

nd
in
g
m
et
ho

d

123

Journal of Scientific Computing (2021) 88 :53 Page 21 of 26 53

are not as accurate when N is closer to M , no matter what method is used. However, the
methods SP, LZ and PC all perform better when M is large enough.Code that reproduces
this example is available in the routine ex_discrete_convolution.py in [18].

4.5 Multiple Component: ChebyshevWeight Function Plus a Discrete Measure

The measure to be considered is the normalized Jacobi weight function on [−1, 1] with a
discrete M-point measure added to it,

dμ(x) = (β J
0)−1(1 − x)α(1 + x)βdx +

M∑
j=1

ν jδτ j dx, α, β > −1, ν j > 0, (34)

where β J
0 = ∫ 1

−1(1− x)α(1+ x)βdx . The orthogonal polynomials belonging to the measure
(34) are explicitly known only in very special cases. The case of one mass point at one end
point, that is, M = 1, τ1 = −1, has been studied and the recurrence coefficients can be
computed with rather technical formulas [3,11]. The exact recursion coefficients for N =
1, 7, 18, 40 are given in [12, Table 2.11]. For each of these particular N , we compute the

fixed-N error, donated by e f
N =

((
aN − âN

)2 +
(
bN − b̂N

)2)1/2

.

Table 5 shows results for the HD, aPC, MC, SP, and PC approaches for the measure μ

above. In addition, we compute results using the LZ approach; note that the LZ approach
cannot directly be utilized on the measure (34) since this measure has an infinite number of
support points. Instead, the LZ results shown in Table 5 first use the discretization approach
as described in Sect. 2.6, which replaces the continuous part of μ with a discrete Gaussian
quadrature measure. The reason we include this test in Table 5 is that it motivates the PCL
algorithm: if one can discretize measures, then the LZ approach is frequently more accurate
than alternative methods.

We generate the first 40 recursion coefficients for α = −0.6, β = 0.4 of the Jacobi
parameters in two cases: one mass at τ1 = −1 with strength ν1 = 0.5 and a single mass point
of strength ν1 = 1 at τ1 = 2. The results, produced by routineex_multi_component.py
from [18], are shown in Table 5. SP, LZ, PC and even MC produce essentially identical results
withinmachine precision in the first case. However, matters change significantly when amass
point is placed outside [−1, 1], regardless of whether or not the other mass points on [−1, 1]
are retained [12, Example 2.39]. SP and PC become extremely unstable; this empirical
superiority of the LZ approach for discrete measures is the reason why the last step of the
PCL algorithm in Sect. 3.3 is to utilize the Lanczos algorithm.

4.6 General Multiple Component: ContinuousWeight Function Plus a Discrete
Measure

In the previous example, we studied the case of a combination of Chebyshev weight and
discrete measure. A quadrature for Chebyshev is trivial because it is one of the classical
weights so that we can obtain the quadrature by known recursion coefficients. However, if the
continuousweight is not of classical form, thenwe employ thePCL algorithm in Sect. 3.3:We
use PC to compute recursion coefficients, leading to Gaussian quadrature nodes and weights
for the continuous part, which is then combined with the discrete part as input to the LZ
algorithm.

123

53 Page 22 of 26 Journal of Scientific Computing (2021) 88 :53

Ta
bl
e
5

E
xa
m
pl
e
fo
r
Se
ct
.4
.5
:e
rr
or
s
e
f N
w
ith

on
e
m
as
s
at

τ 1
=

−1
w
ith

ν
1

=
0.
5
(s
ub

co
lu
m
ns

on
th
e
le
ft
)
an
d

τ 1
=

2
w
ith

ν
1

=
1
(s
ub

co
lu
m
ns

on
th
e
ri
gh

t)

M
et
ho

d
N

=
1

N
=

7
N

=
18

N
=

40

H
D

3.
71

e–
14

2.
22

e–
11

3.
64

e–
12

1.
81

e–
09

1.
72

e–
04

—
—

—

a
P
C

3.
71

e–
14

2.
22

e–
11

3.
54

e–
12

1.
81

e–
09

1.
67

e–
04

—
—

—

M
C

3.
71

e–
14

2.
22

e–
11

3.
63

e–
12

8.
90

e–
11

3.
02

e–
12

2.
90

e+
00

3.
87

e–
12

1.
84

e+
00

S
P

3.
71

e–
14

2.
22

e–
11

3.
63

e–
12

5.
44

e–
13

3.
03

e–
12

3.
80

e–
12

3.
90

e–
12

2.
48

e–
06

L
Z

3.
70

e–
14

2.
22

e–
11

3.
63

e–
12

5.
44

e–
13

3.
03

e–
12

3.
80

e–
12

3.
90

e–
12

2.
10

e–
12

P
C

3.
71

e–
14

2.
22

e–
11

3.
63

e–
12

5.
44

e–
13

3.
02

e–
12

3.
80

e–
12

3.
90

e–
12

2.
49

e–
06

H
er
e
—

m
ea
ns

a
N
aN

va
lu
e
du

e
to

th
e
nu

m
er
ic
al
ov
er
flo

w
fr
om

th
e
in
st
ab
ili
ty

of
th
e
co
rr
es
po

nd
in
g
m
et
ho

d

123

Journal of Scientific Computing (2021) 88 :53 Page 23 of 26 53

Ta
bl
e
6

E
xa
m
pl
e
fo
r
Se
ct
.4
.6
:
er
ro
rs

f N
by

pr
oc
ed
ur
e
in

3.
3
w
ith

N
s

=
N

fo
r
al
l
s
(s
ub

co
lu
m
ns

on
th
e
le
ft
)
an
d
by

P
C
L
,i
.e
.w

ith
a
ad
ap
tiv

e
pr
oc
ed
ur
e
(s
ub

co
lu
m
ns

on
th
e

ri
gh

t)
w
he
n
M

=
20

,
40

,
80

,
16

0,
32

0

M
N

=
20

N
=

40
N

=
60

N
=

80
N

=
10

0

20
1.
09

e–
14

7.
47

e–
15

6.
48

e–
14

1.
63

e–
14

1.
46

e–
10

6.
61

e–
13

2.
41

e–
03

5.
63

e–
12

1.
66

e+
07

3.
27

e–
09

40
6.
50

e–
15

1.
05

e–
14

2.
50

e–
14

3.
28

e–
14

9.
34

e–
11

9.
52

e–
14

8.
54

e–
03

1.
84

e–
13

1.
95

e+
09

3.
05

e–
11

80
8.
80

e–
15

5.
11

e–
15

1.
39

e–
14

4.
74

e–
14

1.
68

e–
11

3.
90

e–
14

4.
48

e–
03

8.
97

e–
14

5.
10

e+
08

4.
95

e–
11

16
0

7.
73

e–
15

7.
13

e–
15

1.
43

e–
14

3.
99

e–
14

2.
90

e–
11

7.
03

e–
14

1.
88

e–
03

1.
24

e–
13

2.
34

e+
09

2.
25

e–
11

32
0

7.
24

e–
15

8.
39

e–
15

1.
98

e–
14

1.
68

e–
14

3.
80

e–
11

3.
86

e–
14

6.
82

e–
03

6.
65

e–
14

9.
63

e+
08

7.
14

e–
11

123

53 Page 24 of 26 Journal of Scientific Computing (2021) 88 :53

We consider the positive half-range Hermite measure plus a transformed discrete Cheby-
shev measure defined on (−1, 0],

dμ(x) = e−x2 +
M∑
j=1

ν jδτ j dx, τ j := − j − 1

M
, ν j := 1

M
.

Using the PCL algorithm, for M = 20, 40, 80, 160, 320, we generate the first 100 recur-
sion coefficients. Table 6 shows that the coefficients are more accurate when an adaptive
procedure is applied to determine Ns , no matter what M is. The results here are produced by
routine ex_gmulti_component.py in [18].

5 Summary and Extensions

In this paper, we summarize several existing numerical methods for computing these recur-
rence coefficients associated to measures for which explicit formulas are not available. We
propose a novel “predictor–corrector” algorithm and study the accuracy and efficiency by
comparing with existing methods for fairly general measures. The method makes predictions
for the next coefficients and correct them iteratively. Finally, we introduce a hybrid algorithm
that combines the “predictor–corrector” algorithm and the (stabilized) Lanczos procedure. It
can be used to compute recurrence coefficients for a generalmeasurewithmultiple continuous
and discrete components.

The predictor–corrector algorithm outperforms many other methods and is competitive
with the Stieltjes procedurewhen a continuousmeasure is given. For a discretemeasure, it can
compute accurate coefficients only when the discrete support M is large enough. However,
the (stabilized) Lanczos procedure requires empirically appears to be superior for discrete
measures. Based on this observation, we propose a “predictor–corrector-Lanczos” algorithm
is that is a hybrid of the predictor–corrector and Lanczos schemes, and applies to a fairly
general class of measures.

We focus on the computation of recurrence coefficients for univariate orthogonal poly-
nomial families. Thus, a natural extension of this work would be to adapt the approaches to
address the same problem for multivariate polynomials, for which the formulations can be
substantially more complex. Such investigations are the focus of ongoing work.

Acknowledgements This work was supported by the National Institute of Biomedical Imaging and Bioengi-
neering of the National Institutes of Health under grant number U24EB029012, and under National Science
Foundation awards DMS-1720416 and DMS-1848508. This material is based upon work supported by both
the National Science Foundation under Grant No. DMS-1439786 and the Simons Foundation Institute Grant
Award ID 507536 while A. Narayan was in residence at the Institute for Computational and Experimental
Research in Mathematics in Providence, RI, during the Spring 2020 semester

Declarations

Conflicts of interest The authors have no conflicts of interest to declare that are relevant to the content of this
article.

123

Journal of Scientific Computing (2021) 88 :53 Page 25 of 26 53

References

1. Barkov, G.I.: Some systems of polynomials orthogonal in two symmetric intervals. Izvestiya Vysshikh
Uchebnykh Zavedenii. Matematika 4, 3–16 (1960)

2. Chebyshev, P..L.: Sur l’interpolation par laméthode desmoindres carrés.Mémoires de lÁcadémie Impéri-
ale des sciences de St.-Pétersbourg 1(15), 1–24 (1859)

3. Chihara, T.S.: An introduction to orthogonal polynomials. Courier Corporation (2011)
4. Freud, G.: Orthogonal Polynomials. Pergamon Press (1971)
5. Freud, G.: On the coefficients in the recursion formulae of orthogonal polynomials. In: Proceedings of

the Royal Irish Academy. Section A: Mathematical and Physical Sciences, pp. 1–6. JSTOR (1976)
6. Gautschi, W.: https://www.cs.purdue.edu/archives/2002/wxg/codes/sr_freud.m
7. Gautschi, W.: A survey of gauss-christoffel quadrature formulae, em “eb christoffel-the influence of his

work in mathematics and physical sciences"(pl butzer e f. fehér, eds.) pp. 72-147 (1981). https://doi.org/
10.1007/978-3-0348-5452-8_6

8. Gautschi, W.: On generating orthogonal polynomials. SIAM J. Sci. Stat. Comput. 3(3), 289–317 (1982).
https://doi.org/10.1137/0903018

9. Gautschi, W.: On some orthogonal polynomials of interest in theoretical chemistry. BIT Numer. Math.
24(4), 473–483 (1984)

10. Gautschi, W.: Algorithm 726: ORTHPOL—a package of routines for generating orthogonal polynomials
and Gauss-type quadrature rules. ACMTrans. Math. Softw. 20(1), 21–62 (1994). https://doi.org/10.1145/
174603.174605

11. Gautschi, W.: Algorithm 726: Orthpol-a package of routines for generating orthogonal polynomials and
gauss-type quadrature rules. ACM Trans. Math. Softw. (TOMS) 20(1), 21–62 (1994)

12. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, USA
(2004)

13. Gautschi, W.: Orthogonal polynomials, quadrature, and approximation: computational methods and soft-
ware (in Matlab). In: Marcellán, F., Assche, W. V. (eds.) Orthogonal Polynomials and Special Functions,
no. 1883 in Lecture Notes in Mathematics, pp. 1–77. Springer, Heidelberg (2006). https://doi.org/10.
1007/978-3-540-36716-1_1

14. Gautschi,W.: Variable-precision recurrence coefficients for nonstandard orthogonal polynomials. Numer.
Algorithms 52(3), 409–418 (2009)

15. Glaws, A., Constantine, P.G.: Gaussian quadrature and polynomial approximation for one-dimensional
ridge functions. SIAM J. Sci. Comput. 41(5), S106–S128 (2019)

16. Gragg, W.B., Harrod, W.J.: The numerically stable reconstruction of jacobi matrices from spectral data.
Numerische Mathematik 44(3), 317–335 (1984)

17. https://www.mathworks.com/help/symbolic/vpa.html
18. https://github.com/ZEXINLIU/Univariate_ttr_examples
19. Lew, J.S., Quarles, D.A., Jr.: Nonnegative solutions of a nonlinear recurrence. J. Approx. Theory 38(4),

357–379 (1983)
20. Lubinsky, D.S., Mhaskar, H.N., Saff, E.B.: A proof of Freud’s conjecture for exponential weights. Constr.

Approx. 4(1), 65–83 (1988). https://doi.org/10.1007/BF02075448
21. Magnus, A.P.: Freud’s equations for orthogonal polynomials as discrete painlevé equations.

arXiv:math/9611218 pp. 7–8 (1996)
22. Nevai, P.G.: Orthogonal Polynomials. American Mathematical Society (1980)
23. Oladyshkin, S., Nowak, W.: Data-driven uncertainty quantification using the arbitrary polynomial chaos

expansion. Reliab. Eng. Syst. Saf. 106, 179–190 (2012). https://doi.org/10.1016/j.ress.2012.05.002
24. Pinkus, A.: Ridge Functions, vol. 205. Cambridge University Press (2015)
25. Rutishauser, H.: On Jacobi rotation patterns. Proc. Symp. Appl. Math. 15, 219–239 (1963)
26. Sack, R.A., Donovan, A.F.: An algorithm for Gaussian quadrature given modified moments. Numerische

Mathematik 18(5), 465–478 (1971). https://doi.org/10.1007/BF01406683
27. Smith, R..C.: Uncertainty Quantification: Theory, Implementation, andApplications, vol. 12. Siam (2013)
28. Stieltjes, T.J.: Quelques recherches sur la théorie des quadratures dites mécaniques. Annales scientifiques

de l’École Normale Supérieure 1, 409–426 (1884)
29. Stieltjes, T.J.: Some research on the theory of so-called mechanical quadratures. Scientific annals of the

’Ecole Normale Sup é rieure 1, 409–426 (1884)
30. Sullivan, T.J.: Introduction to Uncertainty Quantification, vol. 63. Springer (2015)
31. Szegö, G.: Orthogonal Polynomials, 4th edn. American Mathematical Soc (1975)
32. Van Assche, W.: Discrete Painlevé equations for recurrence coefficients of orthogonal polynomials. In:

Difference Equations, Special Functions and Orthogonal Polynomials, pp. 687–725. World Scientific
(2007)

123

https://www.cs.purdue.edu/archives/2002/wxg/codes/sr_freud.m
https://doi.org/10.1007/978-3-0348-5452-8_6
https://doi.org/10.1007/978-3-0348-5452-8_6
https://doi.org/10.1137/0903018
https://doi.org/10.1145/174603.174605
https://doi.org/10.1145/174603.174605
https://doi.org/10.1007/978-3-540-36716-1_1
https://doi.org/10.1007/978-3-540-36716-1_1
https://www.mathworks.com/help/symbolic/vpa.html
https://github.com/ZEXINLIU/Univariate_ttr_examples
https://doi.org/10.1007/BF02075448
http://arxiv.org/abs/math/9611218
https://doi.org/10.1016/j.ress.2012.05.002
https://doi.org/10.1007/BF01406683

53 Page 26 of 26 Journal of Scientific Computing (2021) 88 :53

33. Wheeler, J.C.: Modified moments and Gaussian quadratures. Rocky Mountain J. Math. 4(2), 287–296
(1974). https://doi.org/10.1216/RMJ-1974-4-2-287

34. Wheeler, J.C.: Modified moments and continued fraction coefficients for the diatomic linear chain. J.
Chem. Phys. 80(1), 472–476 (1984)

35. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)
36. Witteveen, J.A., Bijl, H.: Modeling arbitrary uncertainties using Gram–Schmidt polynomial chaos. In:

44th AIAA Aerospace Sciences Meeting and Exhibit, p. 896 (2006)
37. Witteveen, J.A., Sarkar, S., Bijl, H.: Modeling physical uncertainties in dynamic stall induced fluid-

structure interaction of turbine blades using arbitrary polynomial chaos. Comput. Struct. 85(11–14),
866–878 (2007)

38. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations.
SIAM J. Sci. Comput. 24(2), 619–644 (2002). https://doi.org/10.1137/S1064827501387826

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1216/RMJ-1974-4-2-287
https://doi.org/10.1137/S1064827501387826

	On the Computation of Recurrence Coefficients for Univariate Orthogonal Polynomials
	Abstract
	1 Introduction
	1.1 Existing Approaches
	1.2 Contributions of this Article

	2 Existing Approaches
	2.1 DP: Freud Weights and Discrete Painlevé Equations
	2.2 HD: Hankel Determinants
	2.3 aPC: ``Arbitrary'' Polynomial Chaos Expansions
	2.4 MC: Modified Chebyshev Algorithm
	2.5 SP: The Stieltjies Procedure
	2.6 LZ: A Lanczos-Type Algorithm

	3 PCL: A Hybrid Predictor–Corrector Lanczos Procedure
	3.1 PC: Predictor–Corrector Method
	3.2 Computation of Polynomial Moments
	3.3 PCL: A Hybrid Predictor–Corrector Lanczos Method

	4 Numerical Experiments
	4.1 Freud Weights
	4.2 Piecewise Smooth Weight
	4.3 Transformed Discrete Chebyshev
	4.4 Discrete Probability Density Function
	4.5 Multiple Component: Chebyshev Weight Function Plus a Discrete Measure
	4.6 General Multiple Component: Continuous Weight Function Plus a Discrete Measure

	5 Summary and Extensions
	Acknowledgements
	References

