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Abstract
The discontinuous Galerkin (DG) method is an established method for computing approxi-
mate solutions of partial differential equations in many applications. Unlike continuous finite
elements, in DG methods numerical fluxes are used to enforce inter-element conditions, and
internal/external physical boundary conditions. For elastic wave propagation in complex
media several wave types, including dissipative surface and interface waves, are simultane-
ously supported. The presence of multiple wave types and different physical phenomena pose
a significant challenge for numerical fluxes. When modelling surface or interface waves an
incompatibility of the numerical fluxwith the physical boundary condition leads to numerical
artefacts. We present a stable and arbitrary order accurate DG method for elastic waves with
a physically motivated numerical flux. Our numerical flux is compatible with all well-posed,
internal and external, boundary conditions, including linear and nonlinear frictional consti-
tutive equations for modelling spontaneously propagating shear ruptures in elastic solids and
dynamic earthquake rupture processes. By construction our choice of penalty parameters
yield an upwind scheme and a discrete energy estimate analogous to the continuous energy
estimate.We derive a priori error estimate for the DGmethod proving optimal convergence to
discontinuous and nearly singular exact solutions. The spectral radius of the resulting spatial
operator has an upper bound which is independent of the boundary and interface conditions,
thus it is suitable for efficient explicit time integration. We present numerical experiments in
one and two space dimensions verifying high order accuracy and asymptotic numerical sta-
bility.We demonstrate the potential of the method for modelling complex nonlinear frictional
problems in elastic solids with 2D dynamically adaptive meshes and non-planar topography
with 2D curvilinear elements.
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1 Introduction

High order accurate and explicit time-stable solvers are well suited for hyperbolic wave
propagation problems. See, for example, the pioneering work by Kreiss and Oliger [31].
However, because of the complexities of real geometries, internal interfaces, nonlinear bound-
ary/interface conditions and the presence of disparate spatial and temporal scales present in
real media and sources, discontinuities and sharp wave fronts become fundamental features
of the solutions. Thus, in addition to high order accuracy, geometrically flexible and adaptive
numerical algorithms are critical for high fidelity and efficient simulations of wave phenom-
ena in many applications.

Since its introduction [39], the discontinuous Galerkin method (DG method) method has
been extensively applied to hyperbolic partial differential equations (PDEs), see for example
[8,9,24,25] and references therein. It has been applied in particular to computational fluid
dynamics problems [14,28, e.g.,] and to simulate wave and fracture phenomena occurring in
geometrically complex and heterogeneous media [6,18,45,53, e.g.,]. Powerful advantages of
the DG method are the local nature of the discrete high order accurate spatial operators and
the possibility to use unstructured or boundary conforming curvilinear meshes [12,29,49].
Due to the spatial locality of the operators, the DG method lends itself to efficient parallel
numerical algorithms on modern high performance computing platforms [4,23,48,52].

Wave propagation problems often appear with nontrivial boundary conditions. Examples
include nonlocal transparent boundary conditions, local absorbing boundary conditions, and
other dynamic boundary conditions that result from local or nonlocal coupling with differ-
ential equations on the boundary. Here we focus on seismological application of the DG
method accounting for heterogeneous and geometrically complex solid Earth models as well
as linear and nonlinear friction laws to describe earthquake rupture physics. Exploration seis-
mology and natural earthquake hazard mitigation increasingly rely on multi-scale (0–20 Hz)
and multi-physics (non-linear rheology, fluid and heat transport, dynamic rupture sources)
simulations. Seismic waves propagate over hundreds to thousands of kilometres interacting
with complicated geological structure and topography and are generated by seismic source
processes acting on scales down to centimetres. Dynamic earthquake sources modelled as
non-linear frictional failure on a pre-defined fault can be treated as an internal boundary
condition [11,15,22,27]. Non-linear boundary conditions and material behavior may lead
to very large gradients in the numerical solution. In particular, for spontaneously propagat-
ing shear ruptures in elastic solids, the particle velocity can be discontinuous and the shear
stress nearly singular at the rupture tip. Accurate and efficient numerical simulation of these
problems require carefully designed and provably stable numerical methods.

A crucial component of any DG method is the numerical flux [10,26] which is inherited
from finite volume and finite difference methods [20,43], and exchanges information across
element boundaries based on approximate or exact solutions of the Riemann problem. Due to
its simplicity and robustness, the Rusanov flux [43] (also called local Lax–Friedrichs flux) is
widely used. Other established numerical fluxes include the centred flux, Godunov flux, Roe
flux, and the Engquist–Osher flux. The choice of a numerical flux is critical for accuracy and
stability of the DG method [28,30,36]. For example, including nonlinear frictional failure in
elastodynamic wave propagation solvers by direct adaption of a Godunov flux introduces a
very selective numerical dissipation avoiding spurious high-frequency oscillations [35] due to
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the favourable upwind property of theGodunov flux for first order hyperbolic problems [7,30,
51]. However, issues of numerical instability may arise when interesting linear or nonlinear
physical phenomena occur at internal and external boundaries motivating the development
of numerical fluxes consistent with the underlying physics.

In this study we develop a new DG flux incorporating the physical boundary conditions
acting at element boundaries. The new physically motivated numerical flux is designed to
be compatible with all well-posed and energy stable physical boundary conditions, includ-
ing linear and nonlinear friction laws. Elastic wave propagation problems in complex media
include surface and interface waves, thus several wave types and wave speeds are simulta-
neously present. In such applications, we confirm in preliminary numerical studies that the
Rusanov flux [43] can lead to numerical instabilities, for example, when Rayleigh surface
waves need to be captured. Such incompatibility can lead to (longtime) numerical instabilities
which will eventually destroy numerical accuracy.

We present a novel approach to couple DG elements in elastic solids in a provably stable
manner. All DG inter-element interfaces are treated as frictional interfaces with associated
frictional strength. Classical inter-element interfaces where slip is not permitted have infinite
frictional strength, and can never be broken by any load of finite magnitude. Other interfaces
have finite frictional strength and are governed by a generic friction law [2,3,41,42,44]. An
analogous method has been proposed to model rupture dynamics in a finite difference frame-
work [15]. However, static and dynamic adaptive mesh refinement, natural to DG methods,
is challenging with finite difference methods. More importantly, we extend their approach
by using physical conditions, such as friction, to couple locally adjacent DG elements within
the global domain. External boundaries of the domain are closed with general linear energy-
stable boundary conditions. We design a numerical flux obeying the eigen-structure of the
PDE and the underlying physics at the internal and external DG element boundaries. This
work initialises the development of a unified provably stable and robust adaptive DG frame-
work for the numerical treatment of (1) nonlinear frictional sliding in elastic solids, (2)
coupling classical DG inter-element interfaces in elastic solids where slip is not permitted,
and (3) numerical enforcement of external well-posed boundary conditions modeling various
geophysical phenomena.

For clarity, wewill focus on the one space dimensional (1D) problem.We remark thatmost
of the difficulties we hope to alleviate often appear in higher (2D and 3D) space dimensions.
While the 1D problem is sufficient to demonstrate the fundamentals of our idea, the analysis
and implementation can be readily extended aswe here demonstrate in numerical experiments
in 1D and 2D. We note, that the proposed physics based flux is formulated using derived
quantities such as tractions and particle velocities rotated into local orthogonal coordinates.
The numerical flux construction, in 2D and 3D, completely avoids the eigen-decomposition
of coefficient matrices. We refer the reader to [17,40] for further discussion on extension to
multiple dimensions.

Since the elastic wave equation is hyperbolic it can be decomposed into characteristics
as natural carriers of information. The holy grail of prescribing well-posed boundary condi-
tions is to ensure that boundary data preserve the amplitude of the outgoing characteristics.
Boundary conditions can then be enforced by modifying the amplitude of the incoming
characteristics [21].

In order to generate boundary and interface data, we solve a Riemann-like problem and
constrain the solution such that the amplitude of the outgoing characteristics is preserved and
that the solution satisfies physical boundary and interface conditions (eg., a force balance and
friction law). The solution is exact and unique. To communicate data across internal and exter-
nal element boundaries, we penalize the numerical boundary/interface data against incoming

123



51 Page 4 of 32 Journal of Scientific Computing (2021) 88 :51

characteristics only. Next we construct a flux fluctuation vector obeying the structure of the
underlying PDE. Finally, we append the flux fluctuation vector to the discretized PDE. By
construction our choice of penalty parameters yield an upwind scheme and a discrete energy
estimate analogous to the continuous energy estimate. Furthermore, we derive a priori error
estimates for the presented DG method proving optimal convergence. Under certain condi-
tions our numerical flux is equivalent to the classical Godunov flux [20] which is used in
previous work on elasticity [13,51, e.g.,] and frictional shear motion [34]. For example, in 1D
and in the absence of slip and external boundary conditions the physics based interface data
matches the exact solution of the Riemann problem for a hyperbolic PDE. However, since
dynamic boundary conditions dissipate energy, the coupled initial-boundary value problem
(IBVP) is no longer purely hyperbolic and the proposed numerical flux fluctuation differs
completely from the Godunov flux.

We present numerical experiments corroborating the continuous accuracy and stability
analysis using a Lagrange basis with Gauss–Legendre–Lobatto (GLL) quadrature nodes and
Gauss–Legendre (GL) quadrature nodes, respectively.Weverify in 2Dnumerical experiments
the extension of our method to multiple spatial dimensions as well as high order accuracy
for a Rayleigh surface wave. We also simulate dynamic earthquake rupture in 1D and 2D to
demonstrate the robustness and versatility of the method.

This paper is structured as follows. In Sect. 2 we define the problem and derive continuous
energy estimates. Boundary and interface data are constructed in Sect. 3. In Sect. 4, we
present the new DG boundary and inter-element procedures from the integral formulation
to numerical approximations. Numerical stability is proven in Sect. 5. In Sect. 6, we derive
an error equation and a priori error estimate, proving optimal convergence. In Sect. 7, we
present 1D and 2D numerical examples. We draw conclusions and suggest future work in
Sect. 8.

2 Model Problem

Consider the elastic wave equation in a heterogeneous one space dimensional domain

ρ(x)
∂v

∂t
= ∂σ

∂x
,

1

μ(x)

∂σ

∂t
= ∂v

∂x
, x ∈ [0, L], t ≥ 0. (1)

The unknowns are v(x, t), the particle velocity, and σ(x, t), the stress field. The material
parameter ρ(x) is the mass density and μ(x) is the shear modulus. Define the shear wave-
speed by cs = √

μ/ρ.
For real functions u(x), v(x), define the L2-inner product, the corresponding norm

(u, v)Ω =
∫

Ω

u(x)v(x)dx, ‖u‖2Ω = (u, u)Ω , (2)

and the function space

L
2 (Ω) = {u(x) : ‖u‖Ω < ∞, ∀x ∈ Ω}. (3)

The subscript Ω in (2) and (3) denote the spatial domain, and will sometimes be omitted
when the context is clear.

In order to complete the statement of the problem (1), and define a well-posed IBVP, we
will need initial conditions at t = 0 and boundary conditions at x = 0, L . We prescribe the
initial condition

(v(x, 0), σ (x, 0)) = (v0(x), σ0(x)) ∈ L
2(0, L). (4)
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Nowwe introduce the shear impedance Zs , the left-going characteristic p, and the right-going
characteristic q defined by

p = 1

2
(Zsv + σ) , q = 1

2
(Zsv − σ) , Zs = ρcs . (5)

Note that at the left boundary, x = 0, p is the outgoing characteristic and q is the incoming
characteristic. Conversely, at the right boundary, x = L , q is the outgoing characteristic and
p is the incoming characteristic.

2.1 Boundary Conditions

In prescribing well-posed boundary conditions, we aim to ensure that all boundary data
preserve the amplitude of the outgoing characteristics. Boundary conditions can then be
enforced by modifying the amplitude of the incoming characteristics. In general, boundary
data for the incoming characteristics can be expressed as a linear combination of the outgoing
characteristics [21]. We consider the general linear well-posed boundary conditions

q = r0 p, at x = 0, and p = rLq, at x = L, (6)

with the reflection coefficients r0, rL being real numbers and |r0|, |rL | ≤ 1. Note that at
x = 0, r0 = −1 yields a clamped boundary condition, r0 = 0 yields an absorbing boundary,
and with r0 = 1 we have a free-surface boundary condition. Similarly, at x = L , rL = −1
yields a clamped wall, rL = 0 yields an absorbing boundary, and rL = 1 gives a free-surface
boundary condition. We have tacitly considered homogeneous boundary forcing, however,
the analysis carries over to the case of inhomogeneous boundary forcing. By rearranging
and collecting terms together, the boundary condition (6) can be rewritten in terms of the
primitive variables, v, σ , having

B0(v, σ, Zs, r0) := Zs

2
(1 − r0) v − 1 + r0

2
σ = 0, at x = 0,

BL(v, σ, Zs, rL) := Zs

2
(1 − rL) v + 1 + rL

2
σ = 0, at x = L.

(7)

To see that the IBVP, (1) with (6) or (7), is well-posed we seek an integral form of
the PDE (1) by multiplying the elastic wave equation by a set of arbitrary test functions
(φv(x), φσ (x)) ∈ L

2(Ω) and integrate over the whole domain. We have(
φv, ρ

∂v

∂t

)
Ω

−
(

φv,
∂σ

∂x

)
Ω

= 0, (8)

(
φσ ,

1

μ

∂σ

∂t

)
Ω

−
(

φσ ,
∂v

∂x

)
Ω

= 0. (9)

We introduce the weighted L2-norm ‖Q‖Ω P , Q = (v, σ )T and mechanical energy defined
by

‖Q‖2Ω P := E(t) = 1

2
(v, ρv)Ω + 1

2

(
σ,

1

μ
σ

)
Ω

> 0, (10)

where E(t) is the sum of the kinetic energy and the strain energy. The mechanical energy is
the weighted L2 norm of the unknown fields Q = (v, σ )T . The weighted L2-norm ‖Q‖Ω P

is equivalent to the classical L2-norm ‖Q‖Ω , that is for all Q ∈ L
2(Ω) we have

C1‖Q‖Ω ≤ ‖Q‖Ω P ≤ C2‖Q‖Ω, (11)
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σ

v

x
x0

Fig. 1 Distribution of fields across a slidding frictional interface in a 1D elastic solid. At the interface x = x0,
the particle velocity is discontinuous [[v]] 	= 0, the stress is continuous σ− = σ+ = σ but nearly singular

with C1 = min
(√

ρ/2, 1/
√
2μ

)
and C2 = max

(√
ρ/2, 1/

√
2μ

)
.

Now, replaceφv(x)with v(x, t) in (8) andφσ (x)with σ(x, t) in (9). Integrating the second
term in (8) by parts, and summing Eqs. (8)–(9), we find that the spatial derivatives vanish.
We have

d E(t)

dt
= −v(0, t)σ (0, t) + v(L, t)σ (L, t). (12)

From the boundary conditions (7), it is easy to check that v(0, t)σ (0, t) ≥ 0 and
v(L, t)σ (L, t) ≤ 0, for all |r0|, |rL | ≤ 1. The boundary terms in (12) are negative semi-
definite, −v(0, t)σ (0, t) + v(L, t)σ (L, t) ≤ 0, and dissipative. Since boundary terms are
negative semi-definite, we therefore have

d E(t)

dt
≤ 0. (13)

Thus, the mechanical energy is bounded by the initial mechanical energy for all times,
E(t) ≤ E(0). This energy loss through the boundaries is what the numerical method should
mimic.

2.2 Interface Conditions

In this section we define physical interface conditions that must be satisfied when elastic
blocks are in contact. A main idea of this study is to use friction to couple DG elements to
the global domain. Therefore, we consider a generic nonlinear friction law, accommodating
frictional slip motion.

To begin, we consider the domain Ω = Ω− ∪ Ω+, with Ω− := [0, x0], Ω+ := [x0, L],
0 < x0 < L , see Fig. 1.We denote field variables andmaterial parameters in the sub-domains
Ω± with the superscripts ±: v±, σ±, ρ±, μ±, Z±

s . Since there are two characteristics going
in and out of the interface we need exactly two interface conditions coupling the elastic
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subdomains. Define tractions T − = σ−, T + = −σ+, acting on the interface. We begin with
the force balance:

T − = −T + ⇐⇒ σ− = σ+ = σ. (14)

To complete the interface conditionwe introduce the discontinuity in particle velocity: �v� :=
v+ − v−, and define the absolute slip-rate V := ∣∣�v�

∣∣. We introduce the compressive normal
stress σn > 0 and define the frictional constitutive relation such that

σ = α�v�, α = σn
f (V )

V
≥ 0. (15)

Here f (V ) is the nonlinear friction coefficient and takes the sign of its argument V . Thus for
all V ≥ 0 we have f (V ) ≥ 0 with f (0) = 0 and f ′(V ) ≥ 0. Note that

α → ∞ �⇒ V → 0. (16)

For later use, we summarise the interface condition:

force balance: σ− = σ+ = σ,

friction law: σ = α�v�, α = σn
f (V )

V
≥ 0.

(17)

Tractions on the interface are related to particle velocities via σ = α�v�, with α ≥ 0. The
parameter α ≥ 0 is related to the nonlinear frictional strength of the interface. Note that
there are two limiting values, a locked interface: α → ∞ �⇒ [[v]] → 0, and a frictionless
interface: α → 0 ⇐⇒ σ → 0. These limiting cases are degenerate but physically feasible.

Sinceα → ∞ �⇒ [[v]] → 0, the limitα → ∞ in (17) is an alternativewayof expressing
the continuity of particle velocities across an interface, thus gives the natural condition to
be used to patch DG elements together, when slip motion is not present. However, we can
model nonlinear frictional slip motion by replacing f (V ) in (17) with an appropriate friction
law [2,41,42,44].

Remark 1 We also remark that V → 0 �⇒ α → σn f ′(0) > 0. For realistic friction laws
[41,42,44] the magnitude of α > 0 can attain very large values ranging between 102 and
1020. This parameter is grid independent, makes the problem stiff and can severely limit the
time-step of an explicit scheme.

We define the mechanical energy in each subdomain by

E±(t) = 1

2

(
v±, ρ±v±)

Ω± + 1

2

(
σ±,

1

μ± σ±
)

Ω±
> 0. (18)

The elastic wave equation with the physical interface condition (17), satisfies the energy
equation

d E(t)

dt
= −σ �v� − v−(0, t)σ−(0, t) + v+(L, t)σ+(L, t), (19)

with E(t) = E−(t) + E+(t). The interior term −σ �v� is the rate of work done by friction
during frictional slip, which is dissipated as heat. We note the negative work rate and for
α ≥ 0 we have σ �v� = α�v�2 = 1

α
σ 2 ≥ 0. At the limit α → ∞ �⇒ [[v]] → 0 or

α → 0 ⇐⇒ σ → 0, the interior term vanishes, σ [[v]] → 0. Thus, at α → ∞ or α → 0,
the energy Eq. (19) is completely equivalent to (12).

123



51 Page 8 of 32 Journal of Scientific Computing (2021) 88 :51

3 Hat-Variables

We now reformulate the boundary condition (6) and interface condition (17) by introduc-
ing transformed (hat-) variables such that we can simultaneously construct (numerical)
boundary/interface data for particle velocities and tractions. Our objective is to formulate an
inter-element procedure incorporating the physical interface condition (17) and the bound-
ary condition (7), such that a discrete energy equation analogous to (19) can be derived. The
procedure should be formulated in a unified manner such that numerical flux functions are
compatible with the general linear boundary condition (6) or (7). Furthermore, the procedure
should be efficient for explicit time stepping schemes, thus avoiding numerical stiffness for
all 0 ≤ α ≤ ∞. The numerical treatment should be applicable to higher space dimensions
(2D and 3D). The hat-variables, commonly referred to as the flux states, encode the solution
of the IBVP on the boundary/interface and are solutions of the Riemann problem constrained
against physical boundary/interface conditions (7) and (17).

3.1 Boundary Data

We will construct boundary data which satisfy the physical boundary conditions (7) exactly
and preserve the amplitude of the outgoing characteristic p at x = 0, and q at x = L . To
begin, we define the hat-variables preserving the amplitude of outgoing characteristics

1

2
(Zs(0)̂v0 + σ̂0) = p0,

1

2
(Zs(L )̂vL − σ̂L) = qL , (20)

with

p0 = 1

2
(Zs(0)v(0, t) + σ(0, t)) , qL = 1

2
(Zs(L)v(L, t) − σ(L, t)) . (21)

Since hat-variables also satisfy the physical boundary condition, we must have

Zs(0)

2
(1 − r0) v̂0 − 1 + r0

2
σ̂0 = 0,

Zs(L)

2
(1 − rL) v̂L + 1 + rL

2
σ̂L = 0. (22)

The algebraic problem for the hat-variables, defined by Eqs. (20) and (22), has a unique
solution, namely

v̂0 = (1 + r0)

Zs(0)
p0, σ̂0 = (1 − r0)p0,

v̂L = (1 + rL)

Zs(L)
qL , σ̂L = −(1 − rL)qL . (23)

The expressions in (23) define a rule to update particle velocities and tractions on the external
boundaries x = 0, L ,

v(x, t) = v̂0(x, t), σ (x, t) = σ̂0(x, t), at x = 0,

v(x, t) = v̂L(x, t), σ (x, t) = σ̂L(x, t), at x = L. (24)

It is particularly important to note that the boundary procedure (24) is equivalent to
the original boundary condition (6). To verify this, we consider a free-surface boundary
condition at x = 0, with r0 = 1. From (23) and (24) we have σ(0, t) = σ̂0(0, t) = 0, and
v(0, t) = v̂0(0, t) = v(0, t). The traction on the boundary, at x = 0, vanishes and the particle
velocity on the boundary, at x = 0, is not altered by the boundary procedure (24).
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By construction, the hat-variables v̂0, σ̂0, v̂L , σ̂L satisfy the following algebraic identities:

p̂0 = p0, q̂L = qL , (25a)

(p0)
2 − (̂q0)

2 = Zs(0)̂σ0v̂0, (qL)2 − ( p̂L )2 = −Zs(L )̂σL v̂L , (25b)

σ̂0v̂0 = 1 − r20
Zs(0)

|p0|2 ≥ 0, σ̂L v̂L = −1 − r2L
Zs(L)

|q0|2 ≤ 0. (25c)

Thefirst identity (25a) holds by definition (20).Using (25a) in (p0)2−(q̂0)2 and (qL)2−( p̂L )2

gives the second identity (25b). From the solutions of the hat-variables in (23) it is clear that
(25c) holds. The algebraic identities (25a)–(25c)will be crucial in proving numerical stability.

3.2 Interface Data

Similarly, for the interface we define the outgoing characteristics

q− := 1

2

(
Z−

s v− − σ−)
, p+ := 1

2

(
Z+

s v+ + σ+)
, (26)

that must be preserved by the interface data. By combining (26) with force balance, σ− =
σ+ = σ , we obtain

σ = Φ − η�v�, (27)

where

Φ = η

(
2

Z+
s

p+ − 2

Z−
s

q−
)

, η = Z−
s Z+

s

Z+
s + Z−

s
> 0.

Note that Φ is the stress transfer functional and η�v� is the radiation damping term [15,19].
Equation (27) arises naturally in the boundary integral formulation of linear elasticity [19].
In particular, σ = Φ is the traction on a locked interface, �v� = 0. When the interface is
slipping, �v� 	= 0, traction is altered by wave radiation according to (27).

We want to construct interface data v̂−, σ̂−, v̂+, σ̂+, and the absolute slip-rate V̂ =
|[[̂v]]| ≥ 0, such that the data satisfy the physical interface conditions (force balance +
friction law)

force balance: σ̂− = σ̂+ = σ̂ ,

friction law: σ̂ = α[[̂v]], α = σn
f (V̂ )

V̂
≥ 0, (28)

and preserve the amplitude of the outgoing characteristics

q̂− := 1

2

(
Z−

s v̂− − σ̂−) = q−, p̂+ := 1

2

(
Z+

s v̂+ + σ̂+) = p+. (29)

As before, combining both equations in (29) and enforcing force balance, σ̂− = σ̂+ = σ̂ ,
defined in (28), we obtain

σ̂ = Φ − η�̂v�.

Thus, we obtain the nonlinear algebraic problem for tractions and the slip-rate,

σ̂ = Φ − η�̂v�, σ̂ = α�̂v�, α = σn
f (V̂ )

V̂
≥ 0. (30)
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However, if the friction coefficient f (V̂ ) is linear the corresponding algebraic problems in
(30) will be linear.

We combine the two equations in (30) to

σn f (V̂ ) + ηV̂ = |Φ|, (31)

which is a nonlinear algebraic equation for the absolute slip-rate V̂ ≥ 0. We can now solve
(31) for the absolute slip-rate V̂ using any root finding algorithm, and compute α ≥ 0. The
above algebraic problem (30) has a unique solution which is solved exactly,

σ̂ = α

η + α
Φ, �̂v� = 1

η + α
Φ, α = σn

f (V̂ )

V̂
≥ 0. (32)

We therefore have

σ̂− = σ̂+ = σ̂ ,

and

v̂− = 1

Z+
s

(
2p+ − σ̂+) − �̂v�, v̂+ = 1

Z−
s

(
2q− + σ̂−) + �̂v�.

We have constructed a rule to update tractions and particle velocities on the interface, x = x0,

σ− = σ̂−, σ+ = σ̂+,

v− = v̂−, v+ = v̂+. (33)

In (33), we have equivalently redefined the physical interface condition (17).
By construction, the hat-variables v̂−, σ̂−, v̂+, σ̂+ satisfy the following algebraic identi-

ties:

p̂+ = p+, q̂− = q−, (34a)(
p+)2 − (

q̂+)2 = Z+
s σ̂ v̂+,

(
q−)2 − (

p̂−)2 = −Z−
s σ̂ v̂−, (34b)

1

Z+
s

((
p+)2 − (

q̂+)2) + 1

Z−
s

((
q−)2 − (

p̂−)2) = σ̂ �̂v� = α

(η + α)2
|Φ|2, (34c)

where

p̂− := 1

2

(
Z−

s v̂− + σ̂−)
, q̂+ := 1

2

(
Z+

s v̂+ − σ̂+)
.

The first identity (34a) holds by the definition (29). Using (34a) in
(

p+)2 − (
q̂+)2 and(

q−)2−(
p̂−)2 gives the second identity (34b). The third identity (34c) follows directly from

(34b) with σ̂ = α
η+α

Φ, v̂+ − v̂− := �̂v� = 1
η+α

Φ. The data is unique and exact. Note the
consistency at the limits: α → ∞ �⇒ [[̂v]] → 0, σ̂ [[̂v]] → 0, and α → 0 �⇒ σ̂ →
0, σ̂ [[̂v]] → 0. As before, the identities defined in (34a)–(34c) will be crucial in proving
numerical stability.

4 The Discontinuous Galerkin Method

We begin by discretizing the domain x ∈ Ω = [0, L] into K elements denoting the k-th
element by Ωk = [xk, xk+1], where k = 1, 2, . . . , K , with x1 = 0 and xK+1 = L . Next, we
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map the element Ωk to a reference element ξ ∈ Ω̃ = [−1, 1] by the linear transformation

x(ξ) = xk + Δxk

2
(1 + ξ) , Δxk = xk+1 − xk . (35)

In the reference element, Ω̃ = [−1, 1], the L2-scalar product and norm are given by

(u, v) =
∫ 1

−1
uvdξ, ‖u‖2 = (u, u) . (36)

Note that for the reference element Ω̃ , we have omitted the subscript Ω̃ in the scalar product
and denoted (u, v) := (u, v)Ω̃ . Therefore, the integral form (8)–(9) yield

K∑
k=1

(
Δk

2

(
φv, ρ

∂v

∂t

)
−

(
φv,

∂σ

∂ξ

))
= 0, (37)

K∑
k=1

(
Δk

2

(
φσ ,

1

μ

∂σ

∂t

)
−

(
φσ ,

∂v

∂ξ

))
= 0. (38)

4.1 Inter-element and Boundary Procedure, and Energy Identity

Wewill begin the development and construction of the inter-element and boundary procedure
for the continuous integral form (37)–(38). As we will see later the procedure and analysis
will naturally carry over when numerical approximations are introduced. We will end the
discussion with the derivation of an energy equation analogous to (12).

We consider the element boundaries, ξ = −1, 1, and generate boundary and interface data
v̂(ξ, t), σ̂ (ξ, t). Note that the characteristics p, q are the natural carrier of information in the
system. For an element x ∈ Ωk → ξ ∈ Ω̃ , we construct flux fluctuations by penalizing data
against incoming characteristics p and q ,

Fk(−1, t) := q − q̂ = Zs(−1)

2
(v(−1, t) − v̂(−1, t)) − 1

2
(σ (−1, t) − σ̂ (−1, t)) ,

Gk(1, t) := p − p̂ = Zs(1)

2
(v(1, t) − v̂(1, t)) + 1

2
(σ (1, t) − σ̂ (1, t)) .

(39)

Note that q is the incoming characteristic at the left element boundary ξ = −1 and p is
incoming characteristic at right element boundary ξ = 1. Therefore, Fk(−1, t) penalizes
data against the incoming characteristic at ξ = −1 and Gk(1, t) penalizes data against the
incoming characteristic at ξ = 1.

Remark 2 Note the uniform treatment of all DG element boundaries ξ = −1, 1, by the flux
fluctuations Fk(−1, t) and Gk(1, t). The difference between external element boundaries
x = 0, x = L and internal element boundaries 0 < x < L , is determined by the algebraic
problem yielding the corresponding hat-variables v̂, σ̂ .

Since no approximations were introduced yet, we must have v(ξ, t) ≡ v̂(ξ, t), σ(ξ, t) ≡
σ̂ (ξ, t) for ξ = ±1. Thus, at the external boundaries, x = 0, x = L , the fluctuations satisfy

F1(−1, t) ≡ B0 (v(0, t), σ (0, t), Zs(0), r0) = 0, x = 0,

G K (1, t) ≡ BL (v(L, t), σ (L, t), Zs(L), rL ) = 0, x = L.
(40)
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Next, we append the flux fluctuations, Fk(−1, t) → 0, Gk(1, t) → 0, to the integral form
(37)–(38) with specifically chosen penalty weights, having

Δk

2

(
φv, ρ

∂v

∂t

)
−

(
φv,

∂σ

∂ξ

)
+ φv(−1)Fk(−1, t) + φv(1)G

k(1, t) = 0, (41)

Δk

2

(
φσ ,

1

μ

∂σ

∂t

)
−

(
φσ ,

∂v

∂ξ

)
− φσ (−1)

Zs(−1)
Fk(−1, t) + φσ (1)

Zs(1)
Gk(1, t) = 0. (42)

The flux fluctuations vanish identically for the exact solutions that satisfy the IBVP, that is
Gk(1, t) = Fk(−1, t) = 0. However, when numerical approximations are introduced the
flux fluctuations will be proportional to the truncation error.

The penalty weights have been chosen such that the physical dimensions of all terms in
Eqs. (41)–(42) match. For instance in the stress Eq. (42), we have penalized the flux functions
by the shear admittance, 1/Zs(ξ). This is motivated by a dimensional analysis. As we will
see later, this physically motivated penalty weight is also critical for numerical stability.

Again we note that at infinite frictional strength α → ∞ �⇒ �v� = 0, the hat-variable
match the exact solutions of the Riemann problem for the hyperbolic PDE, and the numerical
flux in (41)–(42) is equivalent to the Godunov flux [20].

Remark 3 The following remarks summarise the inter-element and boundary procedure:

1. All DG inter-element faces are held together by a frictional strength, α ≥ 0.
2. Classical internal element faces where slip is not permitted have infinite frictional

strength, α → ∞.
3. Weak interfaces have finite frictional strength, α ≥ 0, the slip motion is governed by a

friction law.
4. External DG element faces, x = 0, L , are closed with the linear well-posed boundary

conditions (6).
5. We construct transformed (hat-) variables that encode the solutions of the IBVPat element

faces.
6. By construction the DG flux fluctuations, Gk(1, t), Fk(−1, t), have been designed to

satisfy the boundary condition (6) and the frictional interface condition (17) exactly.

We can now state our first main result.

Theorem 1 The weak form (41)–(42) satisfies the energy identity

d

dt
E(t) = −

K∑
k=1

(
1

Zs(−1)
|Fk(−1, t)|2 + 1

Zs(1)
|Gk(1, t)|2

)

−
K∑

k=2

αk(ξ)(
ηk(ξ) + αk(ξ)

)2 |Φk(ξ)|2 − 1 − r20
Zs(0)

|p0|2 − 1 − r2L
Zs(L)

|qL |2.
(43)

Proof As above,we replaceφv(ξ)with v(ξ, t) in (41) andφσ (ξ)withσ(ξ, t) in (42), integrate
by parts the spatial derivative term in (41) and sum the equations. We have

d

dt
Ek(t) = v(1, t)σ (1, t) − v(−1, t)σ (−1, t) − v(−1, t)Fk(−1, t) − v(1, t)Gk(1, t)

+
(

σ(−1, t)

Zs(−1)
Fk(−1, t) − σ(1, t)

Zs(1)
Gk(1, t)

)
,

(44)

where

Ek(t) = Δxk

2
(v, ρv) + Δxk

2

(
σ,

1

μ
σ

)
> 0. (45)
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Introducing E(t) = ∑K
k=1 Ek(t) and summing contributions from all elements yields

d

dt
E(t) = −

K∑
k=1

(
1

Zs(−1)

(
|Fk(−1, t)|2 + |pk(−1, t)|2 − |̂qk(−1, t)|2

))

−
K∑

k=1

(
1

Zs(1)

(
|Gk(1, t)|2 + |qk(1, t)|2 − | p̂k(1, t)|2

))
.

(46)

Using the identities (25a)–(25c) and (34a)–(34c), with

σ̂ (ξ) = αk(ξ)

ηk(ξ) + αk(ξ)
Φk(ξ), �̂v(ξ)� = 1

ηk(ξ) + αk(ξ)
Φk(ξ),

in the right hand side of (46) gives the energy identity (43). ��

Since |r0| ≤ 1, |rL | ≤ 1 and σ̂ �̂v� = αk

(ηk+αk )2
Φ2 ≥ 0, then the boundary terms in the right

hand side of (43) are negative semi-definite. The term−σ̂ �̂v� = − αk

(ηk+αk )2
Φ2 ≤ 0 represents

the rate ofworkdoneby friction at the interface,which is dissipated as heat. For exact solutions
of the IBVP the flux fluctuations vanish identically Gk(1, t) ≡ 0, Fk(−1, t) ≡ 0 and the
energy equation (43) is identical to (19). In the limit αk → ∞ �⇒ σ̂ (ξ)�̂v(ξ)� → 0, we
obtain the energy identity (12). Numerical approximations will introduce truncation errors
and Gk(1, t) 	= 0, Fk(−1, t) 	= 0. The numerical flux fluctuations Gk(1, t), Fk(−1, t)
will be proportional to the truncation error and will introduce some numerical dissipation.
However, the numerical dissipation will vanish in the limit of mesh refinement, Δxk → 0
with Δxk = xk+1 − xk , and the remaining terms in the right hand side of (43) match exactly
the physical energy rate given by the boundary condition (7) and interface condition (17).

4.2 The Galerkin Approximation

Inside the transformed element ξ ∈ [−1, 1], we approximate the solution by a polynomial
interpolant, and write

vk(ξ, t) =
N+1∑
j=1

vk
j (t)L j (ξ), σ k(ξ, t) =

N+1∑
j=1

σ k
j (t)L j (ξ), (47)

where vk
j (t), σ

k
j (t) are evolving degrees of freedom to be determined andL j ∈ P

N is the j th

interpolating polynomial of degree N . Here PN is the space of degree N ≥ 0 polynomials.
If we consider nodal basis then the interpolating polynomials satisfy L j (ξi ) = δi j , where
δi j is the Kronecker delta. The interpolating nodes ξi , i = 1, 2, . . . , N + 1 are the nodes of
a Gauss-type quadrature with

N+1∑
i=1

f (ξi )wi ≈
∫ 1

−1
f (ξ)dξ, (48)

where wi are quadrature weights. We will only use quadrature rules that are exact for all
polynomial integrand f (ξ) of degree ≤ 2N − 1. Admissible candidates are the Gauss–
Lobatto quadrature rule with the GLL nodes and the Gauss–Legendre quadrature rule with
the GL nodes. Note that, boundary nodes ξ = −1, 1 belong to the GLL quadrature nodes
but not to the GL quadrature nodes.
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The L2-scalar products and norm (36) are approximated by

(u, v)N =
N+1∑
i=1

u(ξi )v(ξi )wi , ‖v‖2N = (v, v)N . (49)

The discrete norm ‖v‖N is equivalent to the continuous norm ‖v‖ (see [5], after (5.3.2)), that
is for all v ∈ P

N we have

‖v‖ ≤ ‖v‖N ≤ √
3‖v‖. (50)

Wenowmakea classicalGalerkin approximationbychoosing test functions (φv(ξ), φσ (ξ))

∈ P
N in the same space as the basis functions, so that the residual is orthogonal to the approx-

imation space. We obtain the DG approximation of the IBVP, (1) with (7) and (17)

Δk

2

(
φv, ρ

∂vk

∂t

)
N

−
(

φv,
∂σ k

∂ξ

)
N

+ φv(−1)Fk(−1, t) + φv(1)G
k(1, t) = 0, (51)

Δk

2

(
φσ ,

1

μ

∂σ k

∂t

)
N

−
(

φσ ,
∂vk

∂ξ

)
N

− φσ (−1)

Zs(−1)
Fk(−1, t) + φσ (1)

Zs(1)
Gk(1, t) = 0, (52)

where

Gk(1, t) := Zk
s (1)

2

(
vk(1, t) − v̂k(1, t)

)
+ 1

2

(
σ k(1, t) − σ̂ k(1, t)

)
,

Fk(−1, t) := Zk
s (−1)

2

(
vk(−1, t) − v̂k(−1, t)

)
− 1

2

(
σ k(−1, t) − σ̂ k(−1, t)

)
.

Note that the discrete scalar product for the terms involving spatial derivatives are exact and
allows discrete integration by parts, that is

(
φv,

∂σ k

∂ξ

)
N

=
(

φv,
∂σ k

∂ξ

)
,

(
φv,

∂σ k

∂ξ

)
N

= −
(

∂φv

∂ξ
, σ k

)
N

+ φv(1)σ
k(1, t) − φv(−1)σ k(−1, t). (53)

The hat-variables, at the element boundaries, ξ = −1, 1, are computed as outlined in
Sects. 3.1 and 3.2. The only difference is that instead of the exact continuous solutions
used in Sect. 3.1 and 3.2, the numerical boundary/interface data for the characteristics are
generated using the elemental polynomial approximations, vk(ξ, t), σ k(ξ, t), defined in (47)
and evaluated at the boundaries, at ξ = −1, 1. However, as before, the discrete hat-variables
satisfy the same algebraic identities, (25a)–(25c) and (34a)–(34c), as the continuous exact
counterparts.

5 Stability

In this section,wewill prove that the semi-discrete approximation (51)–(52) is asymptotically
stable.Wewill derive a discrete energy equation analogous to the continuous energy equation
(43). To begin, define the elemental discrete energy

E k(t) = Δxk

2

(
vk, ρvk

)
N

+ Δxk

2

(
σ k,

1

μ
σ k

)
N

> 0. (54)
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Definition 1 Let E (t) = ∑K
k=1 E

k(t) denote the global semi-discrete energy. The semi-
discrete approximation (51)–(52) is asymptotically stable if

d

dt
E (t) ≤ 0, ∀Δx > 0. (55)

Our second main result is the following theorem:

Theorem 2 The semi-discrete approximation (51)–(52) satisfies the energy equation

d

dt
E (t) = −

K∑
k=1

(
1

Zk
s (−1)

|Fk(−1, t)|2 + 1

Zk
s (1)

|Gk(1, t)|2
)

−
K∑

k=2

αk

(
ηk + αk

)2 |Φk |2

− 1 − r20
Z1

s (−1)
|p0|2 − 1 − r2L

Z K
s (1)

|qL |2,
(56)

with E (t) = ∑K
k=1 E

k(t), and

p0 = 1

2

(
Z1

s (−1)v1(−1, t) + σ 1(−1, t)
)
, qL = 1

2

(
Z K

s (1)vK (1, t) − σ K (1, t)
)

.

Proof As above, we replace φv(ξ) with vk(ξ, t) in (51) and φσ (ξ) with σ k(ξ, t) in (52),
integrate by parts, that is we replace the spatial derivative term in (51) by (53) and sum the
equations. We have

d

dt
E k(t) = −vk(−1, t)σ k(−1, t) + vk(1, t)σ k(1, t)

− vk(−1, t)Fk(−1, t) − vk(1, t)Gk(1, t)

+ 1

Zs(−1)
σ k(−1, t)Fk(−1, t) − 1

Zs(1)
σ k(1, t)Gk(1, t).

(57)

Introducing the global energy E (t) = ∑K
k=1 E

k(t) and summing contributions from all
elements yields

d

dt
E (t) = −

K∑
k=1

(
1

Zs(−1)

(
|Fk(−1, t)|2 + |pk(−1, t)|2 − |̂qk(−1, t)|2

))

−
K∑

k=1

(
1

Zs(1)

(
|Gk(1, t)|2 + |qk(1, t)|2 − | p̂k(1, t)|2

))
.

(58)

Using the identities (25a)–(25c) and (34a)–(34c), with

σ̂ k(ξ) = αk(ξ)

ηk(ξ) + αk(ξ)
Φk(ξ), �̂v(ξ)� = 1

ηk(ξ) + αk(ξ)
Φk(ξ),

in the right hand side of (58) gives the energy identity (56). ��
The energy equation (56) is completely analogous to the continuous equation (43) and

(19).
Note that the quantity in the right hand side of (56) are surface terms, and their units match

the energy-rate per surface area. Note that σ̂ k[[̂vk]] = αk

(ηk+αk )2
|Φk |2 → 0, for αk → ∞ or

αk → 0. This implies that the spectral radius of the discrete operator has an upper bound
which is independent ofαk ≥ 0. If we had used characteristics to directly enforce the physical
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condition (17), we will have σ k[[vk]] = αk[[vk]]2 ≥ 0, which yields an energy estimate.
However it will potentially introduce artificial numerical stiffness, for αk � 1, which will
require implicit time integration, for practical problems. The energy equation (56) is valid
for both nodal and modal polynomial basis, and for Gauss–Lobatto–Legendre nodes, with
boundary points as quadrature nodes, and Gauss–Legendre nodes, where boundary points
are not quadrature nodes.

Remark 4 Theorems 1 and 2 prove the asymptotic stability and robustness of the method.
Here, all internal DG element faces are frictional interfaces. In principle, we can allow all
adjacent elements to slide governed by a nonlinear friction law. While this will not affect
stability, the energy decay rate will increase due to heat dissipation.

The analysis here focuses on a 1D model problem, however with limited modifications
the results can be extended to multidimensional (2D and 3D) tensor product DG method
approximations of the elastic wave equation on quadrilateral and hexahedral meshes, and
also on triangular and tetrahedral meshes.

6 The Error Equation and Error Estimate

We will now derive the error equation and the error estimate for the derived DG method
(51)–(52). We will demonstrate that the physics based numerical flux designed in this study
allows to prove convergence for discontinuous and nearly singular exact solutions and in
particular when the interface is sliding, �v� 	= 0.

Let v(ξ, t), σ (ξ, t) denote the elemental exact solutions that satisfy (41)–(42), where
ξ ∈ Ω̃ = [−1, 1] and x(ξ) ∈ Ωk = [xk, xk+1]. We define the function space

Hm (
Ω̃

) =
{

v(ξ) :
∥∥∥∥∂mv

∂ξm

∥∥∥∥
2

< ∞, ∀ξ ∈ Ω̃

}
. (59)

Within the element ξ ∈ Ω̃ , we seek exact solutions (v, σ ) ∈ Hm
(
Ω̃

)
, m ≥ 1. This ensures

the exact solutions are at the least weakly differentiable within the element. Conditions across
the inter-element boundaries are given by (17). As in Fig. 1, note in particular that the particle
velocity v(ξ, t) can be discontinuous across the elements and the stress σ(ξ, t) nearly singular
at the rupture tip. Define the error in the particle velocity and the stress by

ev(ξ, t) = v(ξ, t) − vk(ξ, t), eσ (ξ, t) = σ(ξ, t) − σ k(ξ, t),

where v(ξ, t), σ (ξ, t) are the exact solutions satisfying (41)–(42) and vk(ξ, t), σ k(ξ, t) are
the numerical solutions satisfying (51)–(52).

Now denote π N (v) ∈ P
N a degree N polynomial interpolant of v(ξ, t). We split the

errors into

ev(ξ, t) =
(
π N (v) − vk(ξ, t)

)
︸ ︷︷ ︸

ek
v(ξ,t)

+
(
v(ξ, t) − π N (v)

)
︸ ︷︷ ︸

ep
v (ξ,t)

≡ ek
v(ξ, t) + ep

v (ξ, t),

eσ (ξ, t) =
(
π N (σ ) − σ k(ξ, t)

)
︸ ︷︷ ︸

ek
σ (ξ,t)

+
(
σ(ξ, t) − π N (σ )

)
︸ ︷︷ ︸

ep
σ (ξ,t)

≡ ek
σ (ξ, t) + ep

σ (ξ, t). (60)

Here ek
v(ξ, t), ek

σ (ξ, t) are the numerical errors and ep
v (ξ, t), ep

σ (ξ, t) are the interpolation
errors. The interpolation errors ep

v (ξ, t), ep
σ (ξ, t) are independent of the approximate solutions
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vk(ξ, t), σ k(ξ, t) and is the sum of the series truncation error and the aliasing error. The norm
of the interpolation error converges to zero spectrally fast as [5] (5.4.33)

‖ep
v ‖L2(Ω̃) ≤ C N−m |v|Hm;N (Ω̃), (61)

where

|v|2
Hm;N (Ω̃)

=
m∑

n=min(m,N+1)

∥∥∥∥∂nv

∂ξn

∥∥∥∥
2

. (62)

The generalisation of (61) for ‖ · ‖Hn(Ω̃), 1 ≤ n ≤ m is [5] (5.4.34)

‖ep
v ‖Hn(Ω̃) ≤ C N γmn |v|Hm;N (Ω̃), (63)

where γmn = 2n − m − 1/2 for GL nodes and γmn = n − m for GLL nodes. On a phys-
ical element Ωk = [xk, xk+1], as opposed to a reference element ξ ∈ Ω̃ = [−1, 1], the
interpolation error is bounded by [5] (5.4.42)

‖ep
v ‖Hn(Ωk ) ≤ CΔxmin(m,N )−n

k N γmn |v|Hm;N (Ωk ), (64)

for n = 0, 1.
We write v = π N (v) + ep

v , σ = π N (σ ) + ep
σ , from (41)–(42) we have

Δxk

2

(
φv, ρ

∂π N (v)

∂t

)
= −

(
∂φv

∂ξ
, π N (σ )

)
− Δxk

2

(
φv, ρ

∂ep
v

∂t

)
+ Δxk

2

(
φv,

∂ep
σ

∂x

)

− φv (−1)
(
σ (−1, t) + Fk (−1, t)

)

− φv (1)
(

Gk (1, t) − σ (1, t)
)

, (65)

Δxk

2

(
φσ ,

1

μ

∂π N (σ )

∂t

)
=

(
φσ ,

∂π N (v)

∂ξ

)
− Δxk

2

(
φσ ,

1

μ

∂ep
σ

∂t

)
+ Δxk

2

(
φσ ,

∂ep
σ

∂x

)

+ φσ (−1)

Zs(−1)
Fk(−1, t) − φσ (1)

Zs(1)
Gk(1, t). (66)

Through (64), the gradients of the interpolation errors are bounded and spectrally small,
namely

∥∥∥∥∂ep
v

∂x

∥∥∥∥
Ωk

≤ CΔxmin(m,N )−1
k N γm1 |v|Hm;N (Ωk ),

∥∥∥∥∂ep
σ

∂x

∥∥∥∥
Ωk

≤ CΔxmin(m,N )−1
k N γm1 |σ |Hm;N (Ωk ).

(67)

The time derivatives of the interpolation errors are also bounded by (67) through (1).
Restrict φv, φσ ∈ P

N we have

Δxk

2

(
φv, ρ

∂π N (v)

∂t

)
N

= −
(

∂φv

∂ξ
, π N (σ )

)
N

− φv (−1)
(
π N (σ ) (−1, t) + Fk (−1, t)

)

− φv (1)
(

Gk (1, t) − π N (σ ) (1, t)
)

+ Δxk

2

(
φv, ρ

(
∂ep

v (ξ, t)

∂t
+ I

k
v

))
− Δxk

2

(
φv, ρI

k
v

)
N

+ Δxk

2

(
φv,

∂ep
σ (x, t)

∂x

)
,

(68)
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Δxk

2

(
φσ ,

1

μ

∂π N (σ )

∂t

)
N

=
(

φσ ,
∂π N (v)

∂ξ

)
N

+ φσ (−1)

Zs(−1)
Fk(−1, t) − φσ (1)

Zs(1)
Gk(1, t)

+ Δxk

2

(
φσ ,

1

μ

(
∂ep

σ (ξ, t)

∂t
+ I

k
σ

))
− Δxk

2

(
φσ ,

1

μ
I

k
σ

)
N

+ Δxk

2

(
φσ ,

∂ep
v (x, t)

∂x

)
, (69)

where

I
k
v = ∂

∂t

(
π N (v) − π N−1

(
π N (v)

))
,

I
k
σ = ∂

∂t

(
π N (σ ) − π N−1

(
π N (σ )

))
.

Here, π N−1
(
π N (v)

)
is the L2-projection of π N (v) ∈ P

N onto P
N−1, the space of poly-

nomials of degree N − 1. For quadrature rules, such as Gauss–Legendre or Gauss–Lobatto
quadrature, that are exact for polynomial integrands of degree 2N − 1, using N + 1 nodes,
we have the identity

(
φv, ρ

∂π N (v)

∂t

)
−

(
φv, ρ

∂π N (v)

∂t

)
N

=
(
φv, ρI

k
v

)
−

(
φv, ρI

k
v

)
N

.

Thus, Iv and Iσ are spectrally small through [5] (5.5.29)
∣∣(φv, ρv) − (φv, ρv)N

∣∣ ≤ C N−m |v|Hm;N
ρ (Ω̃)

‖φv‖L2
ρ(Ω̃)

= C N−m |v|Hm;N (Ω̃)‖φv‖L2(Ω̃).

The equality follows from the equivalence of weighted norms.
Subtracting (51)–(52) from (68)–(69) gives the error equation

Δxk

2

(
φv, ρ

∂ek
v

∂t

)
N

= −
(

∂φv

∂ξ
, ek

σ

)
N

+ Δxk

2

(
φv, ρT

k
v

)

− Δxk

2

(
φv, ρI

k
v

)
N

+ Δxk

2

(
φv, τ

k
v

)

− φv (−1)
(

ek
σ (−1, t) + Fk

k (−1, t)
)

− φv (1)
(

Gk
k (1, t) − ek

σ (1, t)
)

, (70)

Δxk

2

(
φσ ,

1

μ

∂ek
σ

∂t

)
N

=
(

φσ ,
∂ek

v

∂ξ

)
N

+ φσ (−1)

Zs(−1)
Fk

k (−1, t) − φσ (1)

Zs(1)
Gk

k(1, t)

+ Δxk

2

(
φσ ,

1

μ
T

k
σ

)
− Δxk

2

(
φσ ,

1

μ
I

k
σ

)
N

+ Δxk

2

(
φσ , τ k

σ

)
,

(71)

with

Tv = ∂ep
v

∂t
+ Iv, τ k

v = ∂ep
σ

∂x
, Tσ = ∂ep

σ

∂t
+ Iσ , τ k

σ = ∂ep
v

∂x
,

Gk(1, t) = Gk
k(1, t) + Gk

p(1, t), Fk(−1, t) = Fk
k (−1, t) + Fk

p(−1, t),
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where

Gk
k(1, t) :=

(
Zs

2

(
ek
v − êk

v

)
+ 1

2

(
ek
σ − êk

σ

)) ∣∣∣
ξ=1

,

Gk
p(1, t) :=

(
Zs

2

(
ep
v − ê p

v

) + 1

2

(
ep
σ − ê p

σ

)) ∣∣∣
ξ=1

,

Fk
k (−1, t) :=

(
Zs

2

(
ek
v − êk

v

)
− 1

2

(
ek
σ − êk

σ

)) ∣∣∣
ξ=−1

,

Fk
p(−1, t) :=

(
Zs

2

(
ep
v − ê p

v

) − 1

2

(
ep
σ − ê p

σ

)) ∣∣∣
ξ=−1

.

Here Fk
k (−1, t), Gk

k(1, t) are fluxfluctuations for the numerical error and Fk
p(−1, t),Gk

p(1, t)

are flux fluctuations for the interpolation error. Note that Fk
p(−1, t), Gk

p(1, t) are independent

of the numerical solution with ep
v = ê p

v , ep
σ = ê p

σ and vanish identically Fk
p(−1, t) ≡ 0,

Gk
p(1, t) ≡ 0.

At the external boundaries x = 0, L the errors ek
v, êk

v and ek
σ , êk

σ satisfy the algebraic
identities (25a)–(25c). Similarly, at the internal interfaces 0 < xk < L , the errors ek

v, êk
v and

ek
σ , êk

σ satisfy the identities defined in (34a)–(34c) with

α := ᾱk = f ′ (θk
)

≥ 0, 0 ≤ θk ≤ |�̂ek
v�|,

for a generic friction law. The case of a locked interface is obtained with ᾱk → +∞.
Now introduce the discrete energy for the numerical error

‖ek(t)‖2N P ≡ E k
e (t) = Δxk

2

((
ek
v, ρek

v

)
N

+
(

ek
σ ,

1

μ
ek
σ

)
N

)
, (72)

and the energy for the truncation error

‖τ k(t)‖2N P−1 ≡ E k
τ (t) = Δxk

2

((
τ k
v ,

1

ρ
τ k
v

)
N

+
(
τ k
σ , μτ k

σ

)
N

)
. (73)

Our third main result is the following theorem:

Theorem 3 The semi-discrete error Eqs. (70)–(71) satisfy the energy estimate

d

dt
‖e(t)‖2N P + BTe ≤ {‖T(t)‖N P + ‖I(t)‖N P + ‖τ(t)‖N P−1

} ‖e(t)‖N P , (74)

with ‖e(t)‖2N P = ∑K
k=1 ‖ek(t)‖2N P , ‖τ(t)‖2

N P−1 = ∑K
k=1 ‖τ k(t)‖2

N P−1 and

BTe =
K∑

k=1

(
1

Zk
s (−1)

|Fk
k (−1, t)|2 + 1

Zk
s (1)

|Gk
k(1, t)|2

)
+

K∑
k=2

ᾱk

(
ηk + ᾱk

)2 |Φk |2

+ 1 − r20
Z1

s (−1)
|p0|2 + 1 − r2L

Z K
s (1)

|qL |2,

p0 = 1

2

(
Zs(−1)e1v(−1, t) + e1σ (−1, t)

)
, qL = 1

2

(
Z K

s (1)eK
v (1, t) − eK

σ (1, t)
)

,

ᾱk = f ′ (θk
)

, 0 ≤ θk ≤ |�̂ek
v�|.
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Proof Similarly as above, by replacing φv(ξ) with ek
v(ξ, t) in (70) and φσ (ξ) with ek

σ (ξ, t)
in (71) and sum the equations together, we have

d

dt
‖ek(t)‖2N P = −ek
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ek
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(75)

Introducing ‖e(t)‖2N P = ∑K
k=1 ‖ek(t)‖2N P , summing contributions from all elements and

using the Cauchy-Schwarz inequality yield

d

dt
‖e(t)‖2N P ≤ −

K∑
k=1

(
1

Zk
s (−1)

(
|Fk

k (−1, t)|2 + |pk(−1, t)|2 − |̂qk(−1, t)|2
))

−
K∑

k=1

(
1

Zk
s (1)

(
|Gk

k(1, t)|2 + |qk(1, t)|2 − | p̂k(1, t)|2
))

+
K∑

k=1

(
‖ek(t)‖P‖Tk(t)‖P + ‖ek(t)‖N P‖Ik(t)‖N P + ‖ek(t)‖P‖τ k(t)‖P−1

)
.

(76)

Using the equivalence of norms (50) and the identities (25a)–(25c), (34a)–(34c), with

êk
σ (ξ) = ᾱk(ξ)

ηk(ξ) + ᾱk(ξ)
Φk(ξ), �̂v(ξ)� = 1

ηk(ξ) + ᾱk(ξ)
Φk(ξ),

K∑
k=1

|ak ||bk |

≤
√√√√ K∑

k=1

|ak |2
√√√√ K∑

k=1

|bk |2,

in the right hand side of (76) give the energy estimate (74). ��
As suggested in [30], one should not throw away the dissipation contributed by the

boundary and interface terms. Advancing the arguments as in [30] using Theorem 3 with
BTe ≥ 0 proves that the numerical method is error bounded. Note that the “truncation” error{‖T(t)‖N P + ‖I(t)‖N P + ‖τ(t)‖N P−1

}
is spectrally small, and for GLL nodes it is of the

same asymptotic order with the truncation error obtained in [30]. For exact solutions that are
sufficiently smooth locally, we expect the optimal convergence of the error to zero.

Finally, the physics based numerical flux designed in this study allows us to prove con-
vergence for smooth solutions, and for discontinuous and nearly singular exact solutions, in
particular when the interface is slidding, �v� 	= 0.

7 Numerical Experiments

We will perform 1D and 2D numerical experiments to verify numerical stability and accu-
racy. Lagrange polynomial bases are used with GLL and GL quadrature nodes, respectively.
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Numerical solutions are evolved using the explicit one-step ADER (arbitrary high-order
derivative) time-stepping scheme [11,14,34,46] reaching locally the same order of accuracy
as the spatial discretization. For polynomial approximation of degree N we expect an optimal
asymptotic convergence rate of N + 1. We will proceed later to 2D verifying the accuracy
of the method for Raleigh surface waves. We will demonstrate the extension of our method
to 2D curvilinear elements and 2D dynamically adaptive meshes for dynamic earthquake
rupture propagation. Some presented examples use the high performance computing toolkit
ExaHyPE [40], which combines the ADER-DG method with space time adaptive Cartesian
meshes (AMR, [50]).

7.1 One Space Dimension

We will now present numerical examples in 1D. First, we show an example of wave prop-
agation in a heterogeneous medium with material properties varying within each element
for which we lock all interior element boundaries, α → ∞. Second, we model dynamic
earthquake rupture across a nonlinear frictional fault and wave propagation emitted by the
sliding elastic solids.

7.1.1 Wave Propagation in a Heterogeneous Medium

We consider a 1D domain, 0 ≤ x ≤ L = 10 km, with the heterogeneous shear wave velocity
profile cs = c0+cε(x). The component c0 is a mean velocity and the perturbation component
cε(x) models small scale heterogeneity. We use the mean shear wave velocity c0 = 3343
m/s, density ρ = 2700 kg/m3, typical for crustal rocks, and set cε(x) = ε sin(nπx/L). The
velocity perturbation oscillates n = 20 times in the domain, with the amplitude ε = 0.1
km/s.

We have chosen the initial and boundary conditions to match the exact solution

ve(x, t) = cos (kπ t) sin
( n

L
πx + a0

)
, σe(x, t) = n

Lk
sin (kπ t) cos

( n

L
πx + a0

)
.(77)

We chose the phase shift a0 = 10, temporal wave number k = 2 s−1, and the spatial wave
number n/L = 2km−1, such that the wavelength is in consonance with that of the small
scale heterogeneity. At the left boundary, x = 0, we set a traction boundary condition
σ(0, t) = σe(0, t), and at the right boundary x = L , we set a velocity boundary condition
v(L, t) = ve(L, t).

We discretize the domain with uniform elements of size Δx = L/K km, where K is the
number of elements used. Material parameters vary within each element. We set the time
step to

Δt = C F L

maxx(cs(x))(2N + 1)
Δx, with C F L = 0.5. (78)

We use polynomial degree N = 4 and K = 80 elements, resulting in 400 degrees of
freedom (DoF) for each unknown field. The spatial resolution equates to 8 elements per
wavelength. We evolve the solutions until t = 100 s. The numerical relative error at t = tn
is defined by

error(tn) =
√∑

i

(|vn
i − ve(xi , tn)|2 + |σ n

i − σe(xi , tn)|2)

maxtn

√(∑
i

(|ve(xi , tn)|2 + |σe(xi , tn)|2))
, (79)
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Fig. 2 1Dwave propagation simulation in a heterogeneousmedium usingGL andGLL nodes. Particle velocity
at t = 100 s and time history of the numerical error using N = 4 (polynomial degree) and K = 80 number
of elements

Table 1 1D wave propagation
simulation in a heterogeneous
medium using GL and GLL
nodes varying resolution (DoFs).
Numerical errors and
convergence rate at t = 100 s

DoF Error (GLL) Rate (GLL) Error (GL) Rate (GL)

100 9.6094e−02 – 1.9066e−02 –

200 4.0376e−03 4.5729 8.0204e−04 4.5712

400 1.3010e−04 4.9556 2.5693e−05 4.9642

800 4.0939e−06 4.9900 8.0751e−07 4.9917

1600 1.2816e−07 4.9975 2.5271e−08 4.9979

where vn
i , σ n

i is the numerical solution and ve(xi , tn), σe(xi , tn) is the exact solution at x = xi ,
t = tn . Here xi are given by GLL nodes or GL nodes. The numerical solution (at t = 100 s)
superimposed with the analytical solution, and the respective errors are shown in Fig. 2. The
errors remain bounded throughout the simulation time, with GLL node errors differing from
GL node errors by a factor 4. The error bound can be related to the discrete error estimate
(74), consistent to the 1D scalar advection analysis in [30].

For various resolutions (DoF) of the same model, Table 1 reports the numerical errors and
shows optimal N + 1 convergence rates. For a fixed number of elements, K = 80, and various
polynomial degrees N = 2, 4, 6, 8, 10wefind spectral convergence of the discretization error
as shown in Fig. 3.

7.1.2 Dynamic Rupture in 1D

We will now model the dynamic earthquake rupture process in 1D and the emitted seismic
waves. The domain is 0 ≤ x ≤ L = 60 km, with homogeneous material properties, cs =
3464 m/s, ρ = 2670 kg/m3, and μ = ρc2s = 32.0381 GPa.

We prescribe an embedded fault with finite but high static frictional resistance.
The evolving friction coefficient is governed by a linear slip-weakening friction law [3]

which is widely used, e.g., to model megathrust earthquake dynamics [37,47],

f (S) =
{

fs − ( fs − fd) S
dc

, if S ≤ dc,

fd , if S ≥ dc,
(80)
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Fig. 3 1D wave propagation in a heterogeneous medium using GL and GLL nodes. Spectral convergence rate
at t = 100 s

Table 2 Friction parameters for
the 1D dynamic rupture problem
following [22]

fs fd dc (m) σn (MPa) τ0 (MPa)

0.677 0.525 0.4 120 81.6

where fs and fd are the static and dynamic friction coefficients, dc is the critical slip-distance.
The slip S evolves according to

d S

dt
= V , (81)

where V = |�v�| is the slip-rate. We introduce the peak frictional strength on the fault
τp = fsσn and the residual frictional strength on the fault τr = fdσn , where σn > 0 is the
compressive normal stress. By (80), as soon as the load on the fault exceeds the peak strength
τp , the fault will begin to slip and the strength on the fault will weaken linearly with slip
S, until slip reaches the critical slip-distance S = dc. When the fault is fully weakened its
residual strength is τr . Here, no mechanism arrests rupture and the fault will continue to slip
after yielding.

Our friction parameters (Table 2) follow [22] assuming τ0 = 81.6MPa as the initial load,
and τp = fsσn = 81.24MPa and τr = fdσn = 63MPa. Since τ0 > τp , the initiation of
rupture will be instantaneous.

We discretize the 1D domain [0, L] into 400 DG elements with N = 3 polynomial degree
approximation on GL nodes. The effective sub-cell grid spacing is h = Δx/(N + 1) =
L/1600. We define a frictional interface at x = 30 km governed by the slip-weakening
friction law (80) with the parameters (Table 2). All other DG interfaces remain locked at
infinite frictional strength, α → ∞. We use the time-step (78) to simulate for t = 8 s.
Snapshots of 1D particle velocity and stress (Fig. 4) illustrate that the particle velocity is
discontinuous across the fault interface, with the discontinuity corresponding to slip-rate V ,
while the stress field is continuous but nearly singular for t ≤ 0.45 s. This is comparable
to the hypothetical field distribution in Fig. 1. At future times t > 0.45 s the stress drop
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Fig. 4 Snapshots of 1D velocity and stress fields for the dynamic rupture example using the DG method

Fig. 5 1D dynamic rupture comparing the DG scheme to an SBP finite difference scheme. Evolution of
slip-rate V , shear stress τ and slip S at the fault

Δτ = τ0 − τr propagates from the fault into the adjacent elastic solids carried by radiated
elastic waves.

We compare our DG scheme to an SBP finite difference schemewith uniform grid spacing
h = L/1600. The SBP operator is 6th order accurate in the interior with 3rd order accurate
boundary closure, yielding a 4th order accurate scheme, globally. In the finite difference
scheme friction is only used at the fault.

In Fig. 5, we display the evolution of slip-rate V , shear stress τ and slip S at the fault. Both
schemes agree well, in particular in terms of accumulated slip. During instantaneous rupture
initiation shear stress weakens and slip-rate increases exponentially, respectively. When the
fault is fully weakened, τ = τr , slip-rate saturates at V ∼ 4 m/s, which governs rupture until
the simulation is terminated.

The corresponding wave fields of the DG method and SBP method agree equally well
(Fig. 6). However, the SBP method exhibits high frequency oscillations trailing the disconti-
nuities. In 2D and 3D such spurious oscillations will not only appear within the medium but
also across the fault surface due to large (temporal and spatial) gradients in the slip-rate and
stress fields.
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Fig. 6 1D dynamic rupture comparing the DG scheme to an SBP finite difference scheme. Snapshots of the
velocity and stress fields at t = 8s

7.2 Two Space Dimensions

This section presents 2D numerical experiments including accuracy verification for Rayleigh
surfacewaves, using curvilinearmeshing for non-planar free surface topography and dynamic
earthquake rupture on a dynamically adaptive Cartesian mesh.

7.2.1 Accuracy of Rayleigh Surface Waves

Here we demonstrate the effectiveness of the method for computing surface waves in an
elastic medium. The 2D elastic wave equation in a half-plane −∞ < x < ∞, 0 ≤ y < ∞,
with the free-surface boundary condition at y = 0, σxy(x, 0, t) = 0, σyy(x, 0, t) = 0, can
support surface waves. We consider specifically Rayleigh surface waves, see [1,16,32,38].
For a constant coefficients x-periodic problem with the free-surface boundary condition at
y = 0, the displacement field satisfies the Rayleigh wave solution

(
ux (x, y, t)
uy(x, y, t)

)
= e−ω

√
1−ξ̃2 y

(
cos (ω (x + cr t))√

1 − ξ̃2 sin (ω (x + cr t))

)

+
(

ξ̃2

2
− 1

)
e−ω

√
1−ξ̃2μ/(2μ+λ)y

(
cos (ω (x + cr t))

sin (ω (x + cr t))/
√
1 − ξ̃2μ/ (2μ + λ)

)
.

(82)

Hereω > 0, cr = ξ̃
√

μ is the Rayleigh phase velocity, and ξ̃ satisfies the Rayleigh dispersion
relation

√
1 − ξ̃2

√
1 − ξ̃2μ

(2μ + λ)
−

(
ξ̃2

2
− 1

)2

= 0. (83)

Note that for all μ > 0 and λ ≥ 0 we must have 0.763 < ξ̃2 < 0.913. Thus, the Rayleigh
surface wave propagates in the x-direction and decays exponentially in the y-direction. The
velocity field can be extracted from (82), by taking the time derivative of the displacement
field, giving

vx (x, y, t) = ∂ux (x, y, t)

∂t
, vy(x, y, t) = ∂uy(x, y, t)

∂t
. (84)
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Table 3 Relative L2-norm numerical errors of the particle velocity and convergence rate at t = 1.0 s with
λ/μ = 1

Δx Error (GLL) Rate (GLL) Error (GL) Rate (GL)

1 3.1560e−01 – 1.0210e−01 –

0.5 2.3600e−02 3.7395 3.7000e−03 4.7803

0.25 6.8522e−04 5.1077 9.8056e−05 5.2436

0.125 2.2145e−05 4.9515 3.2188e−06 4.9290

0.0625 6.9068e−07 5.0029 1.0016e−07 5.0062

Table 4 Relative L2-norm numerical errors of the stress field and convergence rate at t = 1.0 s with λ/μ = 1

Δx Error (GLL) Rate (GLL) Error (GL) Rate (GL)

1 2.7980e−01 – 1.1370e−01 –

0.5 1.8400e−02 3.9253 4.0000e−03 4.8344

0.25 8.8761e−03 4.3750 1.4461e−04 4.7849

0.125 2.7906e−05 4.9913 4.4875e−06 5.0101

0.0625 8.2938e−07 5.0724 1.3488e−07 5.0561

The stress field canbeobtain from (82), by combining the spatial gradients of the displacement
field with the stiffness tensor of elastic material, as prescribed by Hooke’s law.

We consider the x-periodic rectangular domain, 0 ≤ x ≤ 1 km, 0 ≤ y ≤ 10 km, with
ω = 2π . The solution is 1-periodic in the x-direction, at y = 0 we have the free-surface
boundary condition and at y = 10 km we prescribe a Dirichlet condition for the velocity
fields.

We use the N = 4 degree polynomial approximation on GL and GLL nodes separately,
and evaluate numerical accuracy, on a sequence of uniformly refined meshes. We consider
the relative L2-norm error of the particle velocity vector and the stress vector, separately.
First we consider a Poisson solid with ρ = 1000 kg/m3, λ = 1000 MPa, μ = 1000 MPa,
with λ/μ = 1. Numerical errors are at the final time t = 1 s are shown in Tables 3 and 4
for the particle velocity and the stress field respectively. In the asymptotic regime the errors
converge optimally (at the rate N + 1).

High-order accuracy becomes essential for surface wave propagation in almost incom-
pressible elastic materials, that is when λ/μ � 1, as shown in [16,32]. Thus, we next increase
λ/μ = 100, with ρ = 1000 kg/m3, λ = 100,000MPa, μ = 1000MPa. The relative L2-
norm errors (Tables 5 and 6) reveal that the particle velocity error amplitudes seemunaffected,
while stress field error amplitudes increase by a factor of 4. As in the case of λ/μ = 1 also
λ/μ = 100 leads to optimal convergence in the asymptotic regime.

7.2.2 2D Curvilinear Non-planar Free-Surface Topography

We demonstrate potential of the method for including geometrically complex free surface
topography using curvilinear mesh and coordinate transformation. Consider the 2D isotropic
elastic medium, with −10 ≤ x ≤ 10 km, 0 ≤ y ≤ ỹ(x)km, and

ỹ(x) = 10 + 0.1x + sin (4πx/20 + 3.34) cos (2π (x/20 − 0.5) + 3.34) .
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Table 5 Relative L2-norm numerical errors of the particle velocity and convergence rate at t = 1.0 s with
λ/μ = 100

Δx Error (GLL) Rate (GLL) Error (GL) Rate (GL)

1 3.4170e−01 – 1.0800e−01 –

0.5 2.1400e−02 3.9994 3.4000e−03 4.9698

0.25 6.9680e−04 4.9383 1.0752e−04 5.0024

0.125 2.3167e−05 4.9104 3.4860e−06 4.9469

0.0625 7.2740e−07 4.9934 1.1024e−07 4.9828

Table 6 Relative L2-normnumerical errors of the stress field and convergence rate at t = 1.0 swithλ/μ = 100

Δx Error (GLL) Rate (GLL) Error (GL) Rate (GL)

1 4.0050e−01 – 1.7220e−01 –

0.5 3.7900e−02 3.4034 1.0600e−02 4.0188

0.25 2.2000e−03 4.0728 5.2501e−04 4.3387

0.125 9.2341e−05 4.6063 1.8313e−05 4.8414

0.0625 3.0247e−06 4.9321 5.5659e−07 5.0401

We use transfinite interpolation to propagate points from the boundaries into the domain,
resulting in a curvilinear mesh obeying the topography. To ensure efficient numerical treat-
ment, we map the mesh and the PDE to a regular Cartesian mesh. We discretise the
transformed domain into a tensor-product of DG elements, and discretise each element using
GLL nodes. In the physical space the DG elements are curved (Fig. 7).

We consider homogeneous crustal rock material properties with ρ = 2700 kg/m3,
cp = 6000 m/s, and cs = 3343 m/s. In the transformed domain, however, the medium
is heterogeneous and anisotropic. At the top boundary y = ỹ(x)we set a free-surface bound-
ary condition, while at all other boundaries we set the incoming characteristic to zero. We
initialize the normal stress (σxx , σyy) with a Gaussian perturbation centered at x = 0 km,
y = 6 km, while the shear stress (σxy) and the particle velocity vector (vx , vy) are initially
set to zero. The initial condition generates pressure wave perturbation only.

Snapshots of the absolute divergence:
∣∣∣ ∂vx

∂x + ∂vy
∂ y

∣∣∣, and the absolute curl:
∣∣∣ ∂vy

∂x − ∂vx
∂ y

∣∣∣,
of the particle velocity vector (Fig. 8) show the evolution of the wave field as well as its
interaction with the non-planar topography. Initially, for t ≤ 2.3 s, the absence of shear wave
perturbation in the initial data implies that the curl of the velocity vector vanishes identically.
However, as timeprogresses andwaves increasingly interactwith the free-surface topography,
shear waves are generated due to mode conversions (Fig. 8 for t ≥ 0.62 s). We evolve the
wave field for a sufficiently long time, t ≤ 100 s, without observing instabilities.

7.2.3 Dynamic Earthquake Ruptures on a Dynamically Adaptive Mesh

Our final 2Dnumerical experimentmodels dynamic earthquake rupture following an adaptive
mesh refinement strategy and demonstrates the robustness of the method. The domain spans
(x, y) ∈ [0, 30 km] × [0, 20 km]. The fault is a vertical line, at x = 15 km, subdividing two
isotropic, homogeneous elastic solids with material properties of cp = 6000 m/s, cs = 3464
m/s, ρ = 2670 kg/m3. It is governed by a slip-weakening friction law, (80), with fs = 0.677,
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Fig. 7 2D curvilinear free-surface topography example. Graphical representations of the physical and curvi-
linear transformed computational meshes
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Fig. 8 Complex topography. Snapshots of the wave field, from left to right, at t = 0.23, 0.62, 1.01, 1.40 s.
The top panel is the absolute divergence of the particle velocity vector and the lower panel is the absolute curl
of the particle velocity vector

fd = 0.525, and dc = 0.40 m.We assign uniform initial prestress as σ 0
xy = 70MPa, σ 0

yy = 0
MPa, σ 0

xx = 120 MPa.
At t = 0 we discretize the domain uniformly with the element size Δx = 30/21 km,

Δy = 20/14 km, and consider degree N = 5 polynomial approximation on GL nodes. The
peak frictional strength on the fault is τp = fsσn = 81.24 MPa. We initiate rupture by
over-stressing (τ0 = 81.6 MPa) the element located at y = 7.5 km depth.

The root mean square of the particle velocity, v =
√

v2x + v2y , defines the mesh refinement

criterion for seismic wave fields in the domain. Whenever v exceeds 50 cm/s the mesh is
refined in one level, leading to 3 times smaller elements than the original coarsemesh (Fig. 9).
On the fault, we define an adaptive mesh refinement criterion based on monitoring the slip
rate V . Once slip-rates at any point exceed a threshold of V = 1cm/s we activate dynamic,
two-level mesh refinement (Fig. 10) resulting in 9 times smaller fault elements than in the
initial coarse mesh.

8 Summary and Outlook

We present a provably stable DG method for the linear elastic wave equation incorporating
physical interface and boundary conditions acting at element boundaries. All DG element
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t = 0.1 s t = 1.0 s t = 2.0 s

t = 3.0 s t = 4.0 s t = 5.0 s

Fig. 9 2D dynamic earthquake rupture on a dynamically adaptive mesh. The snapshots of the particle velocity
vy are taken at t = 0.1, 1, 2, 3, 4, 5 s. Initially, the two elements closest the hypocenter are refined, then
adaptive mesh refinement tracks the rupture front and the accompanying elastic waves

Fig. 10 2D dynamic earthquake rupture on a dynamically adaptive mesh. A zoom-in snapshot of the particle
velocity vy at t=1s, showing multiple levels of mesh refinement

interfaces are treated as frictional interfaces with an associated frictional strength. Classical
element interfaces are assigned infinite frictional strength and can thus never be broken by
any load of finite magnitude. Weak interfaces where frictional slip can be accommodated can
be assigned a finite nonlinear frictional strength governed by generic nonlinear friction laws.
External boundaries of the domain are closed with general linear well-posed and energy-
stable boundary conditions.

We derive a physics based numerical flux that is compatible with all well-posed boundary
and interface conditions. By construction, our flux implementation is upwind and yields
energy identity analogous to the continuous energy estimate. We present 1D numerical
experiments to demonstrate stability, higher-order accuracy and optimal convergence for
polynomial degrees N ≤ 10. In 2D numerical examples we demonstrate our method in
various challenging seismological applications.

We provide the 1D numerical implementation as a Jupyter Python Notebook which is
publicly available at Seismolive [33] (http://seismo-live.org/), an online educational collec-
tion for computational seismology. The method has been recently extended to 3D [17], and
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is implemented in ExaHyPE [40], a simulation engine for hyperbolic PDEs on adaptive
Cartesian meshes. ExaHyPE is open source: https://exahype.eu/exahype-engine.
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