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Abstract
In this work we address the analysis of the stationary generalized Burgers-Huxley equation (a
nonlinear elliptic problemwith anomalous advection) and propose conforming, nonconform-
ing and discontinuous Galerkin finite element methods for its numerical approximation. The
existence, uniqueness and regularity of weak solutions are discussed in detail using a Faedo-
Galerkin approach and fixed-point theory, and a priori error estimates for all three types of
numerical schemes are rigorously derived. A set of computational results are presented to
show the efficacy of the proposed methods.

Keywords A priori error analysis · Conforming finite element method · Non-conforming
finite element · Discontinuous Galerkin · Stationary generalized Burgers-Huxley equation

Mathematics Subject Classification 65N15 · 65N30 · 35J66 · 65J15

1 Introduction

The Burgers-Huxley equation is a special type of nonlinear advection-diffusion-reaction
problems that are of importance in applications in mechanical engineering, material sciences,
and neurophysiology. Some examples include, for instance, particle transport [27], dynamics
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of ferroelectric materials [36], action potential propagation in nerve fibers [33], wall motion
in liquid crystals [34], and many others (see also [12,23] and the references therein).

Our starting point is the following stationary form of the generalized Burgers-Huxley
equation with Dirichlet boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

−νΔu + αuδ
d∑

i=1

∂u

∂xi
− βu(1 − uδ)(uδ − γ ) = f , in Ω,

u = 0, on ∂Ω,

(1.1)

where it is assumed that Ω ⊂ R
d (d = 2, 3) is an open bounded and simply connected

domain with Lipschitz boundary ∂Ω . Here ν > 0 is the constant diffusion coefficient, α > 0
is the advection coefficient, and β > 0, δ ≥ 1, γ ∈ (0, 1) are model parameters modulating
the interplay between non-standard nonlinear advection, diffusion, and nonlinear reaction
(or applied current) contributions.

The global solvability of the stationary and non-stationary one-dimensional Burgers-
Huxley equation has been recently established in [23] and its stochastic counterpart in [22]. In
this paper we extend the analysis of [23] to the multi-dimensional case. Drawing inspiration
from the techniques usually employed for the analysis of steady stateNavier-Stokes equations
(cf. [30, Ch. II], [29, Ch. 10]), we use a Faedo-Galerkin approximation, Brouwer’s fixed-
point theorem, and compactness arguments to derive the existence and uniqueness of weak
solutions to the two- and three-dimensional stationary generalized Burgers-Huxley equation
in bounded domains with Lipschitz boundary and under a minimal regularity assumption.
For the case of domains that are convex or have C2−boundary, we employ the elliptic regu-
larity results available in, e.g., [5,13], and establish that the weak solution of (1.1) satisfies
u ∈ H2(Ω) ∩ H1

0 (Ω).
The recent literature relevant to the construction and analysis of discretizations for (1.1)

and closely related problems is very diverse. For instance, numerical methods specifically
designed to capture boundary layers in singularly perturbed generalized Burgers-Huxley
equations have been studied in [18], different types of finite differences have been used in [20,
26,28,32], spectral, B-spline andChebyshevwavelet collocationmethods have been advanced
in [1,7,15,35], numerical solutions obtained with the Adomian decomposition method were
analyzed in [14], homotopy perturbation techniques were used in [21], Strang splittings
were proposed in [8], meshless radial basis functions were studied in [17], generalized finite
differences and finite volume schemes have been analyzed in [9,37] for the restriction of
(1.1) to the diffusive Nagumo (or bistable) model, and a finite element method satisfying
a discrete maximum principle was introduced in [12] (the latter reference is closer to the
present study). Although there is a growing interest in developing numerical techniques
for the generalized Burgers-Huxley equation, it appears that the aspects of error analysis
for finite element discretizations have not been yet thoroughly addressed. Then, somewhat
differently from themethods listed above (where we stress that such list is far from complete),
here we propose a family of schemes consisting of conforming finite elements (CFEM),
non-conforming finite elements (NCFEM) and discontinuous Galerkin methods (DGFEM).
Following the assumptions adopted for the continuous problem, we rigorously derive a priori
error estimates indicating first-order convergence of the CFEM. In contrast, for NCFEM and
DGFEM the solvability of the discrete problem does not follow from the continuous problem,
but separate conditions are established to ensure the existence of discrete solutions in these
cases. The minimal assumptions on the domain are also used to prove first-order a priori
error bounds for NCFEM and DGFEM, and we briefly comment about L2−estimates. We
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also include a set of computational tests that confirm the theoretical error bounds and which
also show some properties of the model equation.

We have organized the remainder of the paper as follows: Sect. 2 contains notational
conventions and it presents thewell-posedness and regularity analysis of (1.1), also discussing
possible modifications to the proofs of existence and uniqueness of weak solutions. The
numerical discretizations are introduced and then a priori error estimates are derived for
CFEM, NCFEM and DGFEM in Sect. 3. Finally, Sect. 4 has a compilation of numerical tests
in 2D and 3D that serve to illustrate our theoretical results.

2 Solvability of the Stationary Generalized Burgers-Huxley Equation

2.1 Preliminaries

Throughout this section we will adopt the usual notation for functional spaces. In particular,
for p ∈ [1,∞) we denote the Banach space of Lebesgue p−integrable functions by

L p(Ω) :=
{

u :
∫

Ω

|u(x)|pdx < ∞
}

,

whereas for p = ∞, L∞(Ω) is the space conformed by essentially bounded measurable
functions on the domain. Moreover, for integers s ≥ 0, by Hs(Ω) we denote the standard
Sobolev spacesWs,2(Ω), endowed with the norm ‖u‖2s,Ω = ‖u‖20,Ω +∑

|i |≤s ‖∂ i u‖20,Ω . For

s = 0, we adopt the convention H0(Ω) = L2(Ω), and recall the definition of the closure of
all C∞ functions with compact support in H1(Ω) H1

0 (Ω) := {u ∈ H1(Ω) : u|∂Ω = 0 a.e.}.
If Y (M) denotes a generic normed space of functions over the spatial domain M , then the
associated normwill be at some instances denoted as ‖·‖Y (omitting the domain specification
whenever clear from the context). In addition, let H−1(Ω) be the dual space of the Sobolev
space H1

0 (Ω) with the following norm

‖u‖H−1(Ω) := sup
0 	=v∈H1

0 (Ω)

〈u, v〉
‖v‖1,Ω ,

where 〈·, ·〉 denotes the duality pairing between H1
0 (Ω) and H−1(Ω). In the sequel, we

use the same notation for the duality pairing between L p(Ω) and its dual L
p

p−1 (Ω), for
p ∈ (2,∞).

We proceed to rewrite problem (1.1) in the following abstract form:

νAu + αB(u) − βC(u) = f , (2.1)

where the involved operators are

Au = −Δu, B(u) = uδ
d∑

i=1

∂u

∂xi
, and C(u) = u(1 − uδ)(uδ − γ ).

For theDirichlet Laplacian operator A, it iswell-known that D(A) = H2(Ω)∩H1
0 (Ω) ⊂ L p ,

for p ∈ [1,∞) and 1 ≤ d ≤ 4, using the Sobolev Embedding Theorem (see, e.g., [13]) and
also A : H1

0 (Ω) → H−1(Ω). Since Ω is bounded, the embedding H1
0 (Ω) ⊂ L2(Ω) is

compact, and hence using the spectral theorem, there exists a sequence 0 < λ1 ≤ λ2 ≤
. . . → ∞ of eigenvalues of A and an orthonormal basis {wk}∞k=1 of L2(Ω) consisting of

123



52 Page 4 of 26 Journal of Scientific Computing (2021) 88 :52

eigenfunctions of A [11, p. 504]. Furthermore, we have the following Friedrichs-Poincaré
inequality:

√
λ1‖u‖0 ≤ ‖∇u‖0.

Testing (1.1) against a smooth function v, integrating by parts, and applying the boundary
condition, we end up with the following problem in weak form: Given any f ∈ H−1(Ω),
find u ∈ H1

0 (Ω) such that

ν(∇u,∇v) + αb(u, u, v) − β〈C(u), v〉 = 〈 f , v〉, for all v ∈ H1
0 (Ω), (2.2)

where b(u, u, v) = 〈B(u), v〉. Using integration by parts, for all u ∈ H1
0 (Ω), it can be easily

verified that

b(u, u, u) =
∫

Ω

uδ
d∑

i=1

∂u

∂xi
udx =

∫

Ω

uδ+1

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ · ∇udx

= −
∫

Ω

u∇ ·
⎛

⎜
⎝uδ+1

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠

⎞

⎟
⎠ dx = −(δ + 1)

∫

Ω

uδ+1

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ · ∇udx

= −(δ + 1)b(u, u, u).

Therefore, we have

b(u, u, u) = 0, for all u ∈ H1
0 (Ω). (2.3)

2.2 Existence ofWeak Solutions

Let us first address the well-posedness of (1.1) in two dimensions.

Theorem 2.1 (Existence of weak solutions) For a given f ∈ H−1(Ω), there exists at least
one solution to the Dirichlet problem (1.1).

Proof We prove the existence result using the following steps.
Step 1 Finite dimensional system.We formulate a Faedo-Galerkin approximation method.
Let the functionswk = wk(x), k = 1, 2, . . . , be smooth, the set {wk(x)}∞k=1 be an orthogonal
basis of H1

0 (Ω) and orthonormal basis of L2(Ω). One can take {wk(x)}∞k=1 as the complete
set of normalized eigenfunctions of the operator −Δ in H1

0 (Ω). For a fixed positive integer
m, we look for a function um ∈ H1

0 (Ω) of the form

um =
m∑

k=1

ξ kmwk, ξ km ∈ R, (2.4)

and

ν(∇um,∇wk) + αb(um, um, wk) − β〈C(um), wk〉 = 〈 f , wk〉, (2.5)

for k = 1, . . . ,m. The set of equations in (2.5) is equivalent to

νAum + αPmB(um) − βPmc(um) = Pm f .

123



Journal of Scientific Computing (2021) 88 :52 Page 5 of 26 52

Equations (2.4)-(2.5) constitute a nonlinear system for ξ1m, . . . , ξmm . We invoke [30, Lem.
1.4] (an application of Brouwer’s fixed point theorem) to prove the existence of solution to
such a system. Let us consider the space W = Span {w1, . . . , wm} and the associated scalar
product [·, ·] = (∇·,∇·). Let [·] denote the norm on W , which is in turn the norm induced
by H1

0 (Ω). We define the map P = Pm as

[Pm(u), v] = (∇Pm(u),∇v) = ν(∇u,∇v) + αb(u, u, v) − β〈C(u), v〉 − 〈 f , v〉,

for all u, v ∈ W . The continuity of Pm can be verified in the following way:

|[Pm(u), v]|
≤
(

ν‖∇u‖0 + α

δ + 1
‖u‖δ+1

L2(δ+1)

)

‖∇v‖0 + β
[
(1 + γ )‖u‖δ+1

L2(δ+1) + γ ‖u‖0
]
‖v‖0

+ β‖u‖2δ+1
L2(δ+1)‖v‖L2δ+1 + ‖ f ‖H−1‖∇v‖0

≤
[(

ν + βγ

λ1

)

‖∇u‖0 +
(

α

δ + 1
+ β(1 + γ )

λ1

)

‖u‖δ+1
L2(δ+1) + β‖u‖2δ+1

L2(δ+1)

+ ‖ f ‖H−1

]

‖∇v‖0,

for all v ∈ H1
0 (Ω). Using Sobolev’s embedding, we know that H1

0 (Ω) ⊂ L p(Ω), for all
p ∈ [2,∞), and hence the continuity follows. From [30, Lem. II.1.4], we infer that if

[Pm(u), u] > 0, for [u] = κ > 0,

then there exists u ∈ W , [u] ≤ κ such that Pm(u) = 0. We can then use Poincaré’s, Hölder’s
and Young’s inequalities, and (2.3) to estimate [Pm(u), u] as

[Pm(u), u]
= ν‖∇u‖20 + βγ ‖u‖20 + β‖u‖2δ+2

L2δ+2 − β(1 + γ )(uδ+1, u) − 〈 f , u〉
≥ ν

2
‖∇u‖20 + βγ ‖u‖20 + β‖u‖2δ+2

L2δ+2 − β(1 + γ )‖u‖δ+2
L2δ+2 |Ω| δ

2(δ+1) − 1

2ν
‖ f ‖2H−1

≥ ν

2
‖∇u‖20 − βδ(1 + γ )

2(δ+1)
δ

2(δ + 1)

(
δ + 2

δ + 1

) δ+2
δ |Ω| − 1

2ν
‖ f ‖2H−1 ,

where |Ω| is the Lebesgue measure of Ω . It follows that [Pm(u), u] > 0, for ‖u‖1 = κ,

where κ is sufficiently large such that

κ >

√
√
√
√2

ν

(
βδ(1 + γ )

2(δ+1)
δ

2(δ + 1)

(
δ + 2

δ + 1

) δ+2
δ |Ω| + 1

2ν
‖ f ‖2

H−1

)

. (2.6)

Note that for each f ∈ H−1(Ω), one can choose κ > 0 sufficiently large so that (2.6) is
satisfied. Thus the hypotheses of [30, Lem. 1.4] are satisfied and the existence of a solution
um ∈ W to (2.5) with [um] ≤ κ is guaranteed.
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Step 2 Uniform boundedness. Next we show that um is bounded. Multiplying (2.5) by ξ km
and then adding from k = 1, . . . ,m, we find

ν‖∇um‖20 + β‖um‖2δ+2
L2δ+2 + βγ ‖um‖20

= β(1 + γ )(uδ+1
m , um) + 〈 f , um〉

≤ β

2
‖um‖2δ+2

L2δ+2 + βδ(1 + γ )
2(δ+1)

δ

2(δ + 1)

(
δ + 2

δ + 1

) δ+2
δ |Ω| + ν

2
‖um‖21 + 1

2ν
‖ f ‖2H−1 ,

(2.7)

where we have used Hölder’s and Young’s inequalities. From (2.7), we deduce

ν‖um‖21 + β‖um‖2δ+2
L2δ+2 ≤ βδ(1 + γ )

2(δ+1)
δ

δ + 1

(
δ + 2

δ + 1

) δ+2
δ |Ω| + 1

ν
‖ f ‖2H−1 . (2.8)

Step 3 Passing to the limit. We have bounds for ‖um‖21 and ‖um‖2δ+2
L2δ+2 that are uniform

and independent of m. Since H1
0 (Ω) and L2δ+2(Ω) are reflexive, using the Banach-Alaoglu

Theorem, we can extract a subsequence {umk } of {um} such that
{
umk

w−→ u, in H1
0 (Ω), as k → ∞,

umk

w−→ u, in L2δ+2(Ω), as k → ∞.

In two dimensions we have that H1
0 (Ω) ⊂ L2δ+2(Ω), thanks to the Sobolev embedding

theorem. Since the embedding of H1
0 (Ω) ⊂ L2(Ω) is compact, one can extract a subsequence

{umk j
} of {umk } such that

umk j
→ u, in L2(Ω), as j → ∞. (2.9)

Passing to limit in (2.5) along the subsequence {mk j }, we find that u is a solution to (2.2),
provided one can show that

B(umk j
)

w−→ B(u), and C(umk j
)

w−→ C(u) in H−1(Ω), as j → ∞.

We first show that b(umk j
, umk j

, v) → b(u, u, v), for all v ∈ C∞
0 (Ω). Then, using a

density argument, we obtain that B(umk j
)

w−→ B(u) in H−1(Ω), as j → ∞. Using an
integration by parts, Taylor’s formula [10, Th. 7.9.1], Hölder’s inequality, the estimate (2.8),
and convergence (2.9), we obtain

|b(umk j
, umk j

, v) − b(u, u, v)|

=
∣
∣
∣
∣
∣

1

δ + 1

2∑

i=1

∫

Ω

(uδ+1
mk j

(x) − uδ+1(x))
∂v(x)

∂xi
dx

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

2∑

i=1

∫

Ω

(θumk j
(x) + (1 − θ)u(x))δ(umk j

(x) − u(x))
∂v(x)

∂xi
dx

∣
∣
∣
∣
∣

≤ ‖umk j
− u‖0

(
‖umk j

‖δ
L2(δ+1) + ‖u‖δ

L2(δ+1)

)
‖∇v‖L2(δ+1)

→ 0 as j → ∞, for all v ∈ C∞
0 (Ω). (2.10)
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Making use again of Taylor’s formula, interpolation and Hölder’s inequalities, and rearrang-
ing terms, we find

|(C(umk j
) − C(u), v)|

≤ (1 + γ )

∣
∣
∣
∣

∫

Ω

(uδ+1
mk j

(x) − uδ+1(x))v(x)dx

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

Ω

(umk j
(x) − u(x))v(x)dx

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

Ω

(u2δ+1
mk j

(x) − u2δ+1(x))v(x)dx

∣
∣
∣
∣

≤
(
(1 + γ )(δ + 1)

(
‖umk j

‖δ
L2(δ+1) + ‖u‖δ

L2(δ+1)

)
‖v‖L2(δ+1) + ‖v‖0

)
‖umk j

− u‖0

+ (1 + 2δ)‖umk j
− u‖

1
δ

0

(

‖umk j
‖1−

1
δ

L2(δ+1) + ‖u‖1−
1
δ

L2(δ+1)

)

×
(
‖umk j

‖2δL2(δ+1) + ‖u‖2δL2(δ+1)

)
‖v‖L∞

→ 0 as j → ∞, for all v ∈ C∞
0 (Ω). (2.11)

Moreover, u satisfies (2.2) and

ν‖u‖21 + β‖u‖2δ+2
L2δ+2 ≤ βδ(1 + γ )

2(δ+1)
δ

δ + 1

(
δ + 2

δ + 1

) δ+2
δ |Ω| + 1

ν
‖ f ‖2H−1 =: K̃ , (2.12)

which completes the existence proof. ��

2.3 Uniqueness ofWeak Solution

Theorem 2.2 (Uniqueness) Let f ∈ H−1(Ω) be given. Then, for

ν > max

{
4δα2

β
,

β

λ1

[
4δ(1 + γ )2(1 + δ)2 − 2γ

]
}

, (2.13)

where λ1 is the first eigenvalue of the Dirichlet Laplacian operator, the solution of (2.2) is
unique.

Proof We assume u and v are two weak solutions of (2.2) and define w := u − v. Then w

satisfies:

ν(∇w,∇ζ ) + α〈B(u) − B(v), ζ 〉 − β〈C(u) − C(v), ζ 〉 = 0, (2.14)

for all ζ ∈ H1
0 (Ω). Taking ζ = w in (2.14), we have

ν‖∇w‖20 = −α〈B(u) − B(v), w〉 + β〈C(u) − C(v), w〉. (2.15)

Then it can be readily seen that

β
[〈u(1 − uδ)(uδ − γ ) − v(1 − vδ)(vδ − γ ),w〉]

= −βγ ‖w‖20 − β(u2δ+1 − v2δ+1, w) + β(1 + γ )(uδ+1 − vδ+1, w). (2.16)

Let us take the term −β(u2δ+1 − v2δ+1, w) from (2.16) and estimate it using Hölder’s and
Young’s inequalities as

−β(u2δ+1 − v2δ+1, w) = −β(|u|2δ(u − v) + |u|2δv − |v|2δu, w + |v|2δ(u − v),w)

≤ −β

2
‖uδw‖20 − β

2
‖vδw‖20. (2.17)
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Next, we take the term β(1+ γ )(uδ+1 − vδ+1, w) from (2.16) and estimate it using Taylor’s
formula, Hölder’s and Young’s inequalities as

β(1 + γ )(uδ+1 − vδ+1, w)

≤ β

4
‖uδw‖20 + β

4
‖vδw‖20 + β

2
22δ(1 + γ )2(δ + 1)2‖w‖20. (2.18)

Combining (2.17)-(2.18) and substituting the result back into (2.16), we obtain

β
[
(u(1 − uδ)(uδ − γ ) − v(1 − vδ)(vδ − γ ),w)

]

≤ −βγ ‖w‖20 − β

4
‖uδw‖20 − β

4
‖vδw‖20 + β

2
22δ(1 + γ )2(δ + 1)2‖w‖20. (2.19)

On the other hand, we derive a bound for −α〈B(u) − B(v), w〉 integrating by parts, using
Taylor’s formula, Hölder’s and Young’s inequalities:

−α〈B(u) − B(v), w〉 = α

δ + 1

(

(uδ+1 − vδ+1)

(
1
1

)

,∇w

)

≤ ν

2
‖∇w‖20 + 22δα2

4ν
‖uδw‖20 + 22δα2

4ν
‖vδw‖20. (2.20)

Combining (2.19)-(2.20), and substituting that back in (2.15), we further have

[
ν

2
+ 1

λ1

(

βγ − β

2
22δ(1 + γ )2(δ + 1)2

)]

‖∇w‖20

+
(

β

4
− 22δα2

4ν

)

‖uδw‖20 +
(

β

4
− 22δα2

4ν

)

‖vδw‖20 ≤ 0. (2.21)

It should also be noted that

‖u − v‖2δ+2
L2δ+2 =

∫

Ω

|u(x) − v(x)|2δ|u(x) − v(x)|2dx
≤ 22δ−1(‖uδ(u − v)‖20 + ‖vδ(u − v)‖20).

Thus from (2.21), it is immediate to see that

[
ν

2
+ 1

λ1

(

βγ − β

2
4δ(1 + γ )2(δ + 1)2

)]

‖∇w‖20

+ 1

22δ+1

(

β − 4δα2

ν

)

‖w‖2δ+2
L2δ+2 ≤ 0,

and for the condition given in (2.21), the uniqueness readily follows. ��
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2.4 Possible Modifications in the Proofs, and a Regularity Result

Remark 1 If one uses Gagliardo-Nirenberg interpolation inequality to estimate the term
−α〈B(u) − B(v), w〉, then it can be easily seen that

−α〈B(u) − B(v), w〉 ≤ α‖∇w‖0‖w‖L2(δ+1)

(‖u‖δ
L2(δ+1) + ‖v‖δ

L2(δ+1)

)

≤ Cα

λ
1

2(δ+1)
1

(‖u‖δ
L2(δ+1) + ‖v‖δ

L2(δ+1)

) ‖∇w‖20

≤ 2Cα

λ
1

2(δ+1)
1

√

K̃

β
‖∇w‖20, (2.22)

where C is the constant appearing in the Gagliardo-Nirenberg inequality. Combining (2.19)
and (2.22), and substituting it in (2.15), we get

⎡

⎣ν + 1

λ1

(

βγ − β

2
22δ(1 + γ )2(δ + 1)2

)

− 2Cα

λ
1

2(δ+1)
1

√

K̃

β

⎤

⎦ ‖∇w‖20 ≤ 0,

Thus the uniqueness follows provided

ν + βγ

λ1
>

β

λ1
22δ−1(1 + γ )2(δ + 1)2 + 2Cα

λ
1

2(δ+1)
1

√

K̃

β
, (2.23)

where K̃ is defined in (2.12).

Remark 2 For δ = 1 (that is, for the classical Burgers-Huxley equation), we obtain a simpler
condition than (2.13) for the uniqueness of weak solution. In this case, the estimate (2.19)
becomes (see [23])

β
[
(u(1 − u)(u − γ ) − v(1 − v)(v − γ ),w)

]

≤ −β/4‖uw‖20 − β/4‖vw‖20 + β(2 + 3γ + 2γ 2)‖w‖20. (2.24)

Similarly, we estimate the term −α〈B(u) − B(v), w〉 as
−α〈B(u) − B(v), w〉 = −α[b(w,w,w) + b(w, v,w) + b(v,w,w)]

= αb(v,w,w) ≤ ν

2
‖∇w‖20 + α2

2ν
‖vw‖20. (2.25)

Thus, as an immediate consequence we have that
[

ν

2
− β(2 + 3γ + 2γ 2)

λ1

]

‖∇w‖20 + β/4‖uw‖20 +
(

β/4 − α2

2ν

)

‖uw‖20 ≤ 0,

and hence for

ν > max

{
2β(2 + 3γ + 2γ 2)

λ1
,
2α2

β

}

,

the uniqueness holds.
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To conclude, one can use the Ladyzhenskaya inequality to estimate−α〈B(u)− B(v), w〉.
Then, the bound (2.25) becomes

−α〈B(u) − B(v), w〉 = αb(v,w,w) = α

2∑

i=1

∫

Ω

∂v(x)

∂xi
w2(x)dx

≤
√

2

λ1
α‖∇v‖0‖∇w‖20 ≤

√

2K̃

λ1ν
α‖∇w‖20, (2.26)

where K̃ is defined in (2.12). Thus, combining (2.24) and (2.26), we have
⎡

⎣ν −
√

2K̃

λ1ν
α − β

λ1
(1 + γ + γ 2)

⎤

⎦ ‖∇w‖20 + β‖uw‖20 + β‖uw‖20 ≤ 0,

and hence the uniqueness follows in this case for ν >

√
2K̃
λ1ν

α + β
λ1

(1 + γ + γ 2).

Remark 3 For the three-dimensional case, since the proof of Theorem 2.1 involves only
interpolation inequalities (see (2.10) and (2.11)), we infer that (1.1) has a weak solution for
all 1 ≤ δ < ∞. Sobolev’s inequality yields H1

0 (Ω) ⊂ L2δ+2(Ω), for all 1 ≤ δ ≤ 2 and
hence, in three dimensions, the definition of weak solution given in (2.2) makes sense for
all v ∈ H1

0 (Ω) ∩ L2δ+2(Ω), for 2 < δ < ∞. For (2.13), the uniqueness of weak solution
follows verbatim as in the proof of Theorem 2.2, since we are only invoking an interpolation
inequality (see (2.18)).

For 1 ≤ δ ≤ 2, the condition given in (2.23) needs to be replaced by

ν + βγ

λ1
>

β

λ1
22δ−1(1 + γ )2(δ + 1)2 + 2Cα

λ
2−δ

4(δ+1)
1

√

K̃

β
,

where K̃ is defined in (2.12). This change is needed since the estimate (2.22) should be
replaced by

−α〈B(u) − B(v), w〉 ≤ α‖∇w‖0‖w‖L2(δ+1)

(‖u‖δ
L2(δ+1) + ‖v‖δ

L2(δ+1)

)

≤ 2Cα

λ
2−δ

4(δ+1)
1

√

K̃

β
, for 1 ≤ δ ≤ 2,

after applying Holder’s, Gagliardo-Nirenberg’s and Young’s inequalities.

Theorem 2.3 (Regularity) If Ω ⊂ R
d , d = 2, 3, is either convex, or a domain with C2-

boundary and f ∈ L2(Ω), then the weak solution of (1.1) belongs to H2(Ω).

Proof Let us first assume that f ∈ L2(Ω). Proceeding to multiply (2.5) by u2δm ξ km and then
adding from k = 1, . . . ,m, we get

ν(2δ + 1)‖uδ
m∇um‖20 + βγ ‖um‖2δ+2

L2δ+2 + β‖um‖4δ+2
L4δ+2

= β(1 + γ )(uδ+1
m , |um |2δum) + ( f , |um |2δum)

≤ β

2
‖um‖4δ+2

L4δ+2 + β(1 + γ )2‖um‖2δ+2
L2δ+2 + 1

β
‖ f ‖20,
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where we have used the Cauchy-Schawrz and Young inequalities. Thus, using (2.8), it is
immediate to see that

ν(2δ + 1)‖uδ
m∇um‖20 + β

2
‖um‖4δ+2

L4δ+2 ≤ (1 + γ + γ 2)K̃ + 1

β
‖ f ‖20. (2.27)

Multiplying (2.5) by λkξ
k
m and then adding from k = 1, . . . ,m, we can assert that

ν‖Aum‖20 = −α(B(um), Aum) + β(C(um), Aum) + ( f , Aum). (2.28)

Let us take the term−α(B(um), Aum) from (2.28) and estimate it using (2.27). Then,Hölder’s
and Young’s inequalities give the following bound

α|(B(um), Aum)| ≤ α‖B(um)‖0‖Aum‖0 ≤ α‖uδ
m∇um‖0‖Aum‖0

≤ ν

4
‖Aum‖20 + α2

ν
‖uδ

m∇um‖20. (2.29)

Integrating by parts and applying Hölder’s and Young’s inequalities, we find

β(C(um), Aum)

≤ −βγ ‖∇um‖20 − β(2δ + 1)

2
‖uδ

m∇um‖20 + β(1 + γ )2(δ + 1)2

2(2δ + 1)
‖∇um‖20.

Then we use the Cauchy-Schwarz and Young’s inequalities to get the estimate

|( f , Aum)| ≤ ‖ f ‖0‖Aum‖0 ≤ ν

4
‖Aum‖20 + 1

ν
‖ f ‖20. (2.30)

Combining (2.29)-(2.30) and substituting the outcome back in (2.28) gives

ν

2
‖Aum‖20 + β(2δ + 1)

2
‖uδ

m∇um‖20

≤ α2

ν
‖uδ

m∇um‖20 + β((1 + γ 2)(δ + 1)2 + 2γ δ2)

2(2δ + 1)
‖∇um‖20 + 1

ν
‖ f ‖20.

From (2.8),(2.27), we infer that um ∈ D(A). Once again invoking the Banach-Alaoglu
Theorem, we can extract a subsequence {umk } of {um} such that

{
umk

w−→ u in L4δ+2(Ω) as k → ∞,

umk

w−→ u in D(A) as k → ∞,

since the weak limit is unique. Using the compact embedding of H2(Ω) ⊂ H1(Ω), along a
subsequence, we further have

umk j
→ u in H1(Ω), as j → ∞.

Proceeding similarly as in the proof of Theorem 2.1, we obtain that u ∈ D(A) satisfies

νAu + αB(u) − βC(u) = f , in L2(Ω),

and

‖Au‖20 + ‖uδ∇u‖20 + ‖u‖4δ+2
L4δ+2 ≤ C(‖ f ‖0, ν, α, β, γ, δ).
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But, we know that

‖ f − αB(u) + βC(u)‖0
≤ ‖ f ‖0 + α‖uδ∇u‖0 + βγ ‖u‖0 + β(1 + γ )‖u‖δ+1

L2δ+2 + β‖u‖2δ+1
L4δ+2 < ∞,

and hence an application of [5, Th. 9.25] (for a domain with C2−boundary) or [13, Th.
3.2.1.2] (for convex domains) yields u ∈ H2(Ω). ��

3 Numerical Schemes and Their a Priori Error Estimates

Let the domain Ω be partitioned into a mesh (consisting of shape-regular triangular or rect-
angular cells K ) denoted by Th . We use the symbols Eh , E ih and E

∂
h to denote the set of edges,

interior edges and boundary edges of the mesh, respectively. For a given Th , the notations
C0(Th) and Hs(Th) indicate broken spaces associated with continuous and differentiable
function spaces, respectively.

3.1 ConformingMethod

Let Vh be a finite dimensional subspace of H1
0 (Ω) associated with the mesh parameter

h. Numerical solutions are sought in the family {Vh} ⊂ H1
0 (Ω), (where one additionally

assumes that h is sufficiently small) satisfying the following approximation property (see
[31])

inf
χ∈Vh

{‖u − χ‖20 + h‖∇(u − χ)‖20
} ≤ Chk‖u‖k,

for all u ∈ Hr (Ω)∩ H1
0 (Ω), 1 ≤ k ≤ r , where r is the order of accuracy of the family {Vh}.

The CFEM for (2.1) reads: find uh ∈ Vh such that

νa(uh, χ) + αb(uh, uh, χ) = β〈C(uh), χ〉 + 〈 f , χ〉, ∀χ ∈ Vh . (3.1)

Theorem 3.1 (Existence of a discrete solution) Equation (3.1) admits at least one solution
uh ∈ Vh.

Proof It follows as a direct consequence of Theorem 2.1. ��
Let Rh be the elliptic or Ritz projection onto Vh (see [31]), defined by

(∇Rhv,∇χ) = (∇v,∇χ), for all χ ∈ Vh for v ∈ H1
0 (Ω).

By setting χ = Rhv above, we readily obtain that the Ritz projection is stable, that is,
‖∇Rhv‖0 ≤ ‖∇v‖0, for all v ∈ H1

0 (Ω). Moreover, using [31, Lem. 1.1], we have

‖Rhv − v‖0 + h‖∇(Rhv − v)‖0 ≤ Chs‖v‖s, (3.2)

for all v ∈ Hs(Ω) ∩ H1
0 (Ω), 1 ≤ s ≤ r .

Theorem 3.2 (Energy estimate) Let Vh be a finite dimensional subspace of H1
0 (Ω). Assume

that (2.23) holds true and that u ∈ D(A) = H1
0 (Ω) ∩ H2(Ω) satisfies (2.1). Then the error

incurred by the Galerkin approximation satisfies

‖uh − u‖1 ≤ Ch,
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where C is a constant possibly depending on ν, α, β, γ, δ, ‖ f ‖0, but independent of h.

Proof Using triangle inequality we can write

‖uh − u‖1 ≤ ‖uh − W‖1 + ‖W − u‖1, (3.3)

where W ∈ Vh . We need to estimate ‖uh − W‖1. First we note that from (3.2), the second
term in the RHS of (3.3) satisfies

‖W − u‖1 ≤ Ch.

Next, and using (2.2) and (3.1), we can assert that uh − u satisfies

νa(uh − u, χ) = −α[b(uh, uh, χ) − b(u, u, χ)] + β[〈C(uh), χ〉 − 〈C(u), χ〉], (3.4)

for all χ ∈ Vh . Let us choose χ = uh − W ∈ Vh in (3.4), to eventually obtain

νa(uh − u, uh − W ) = −α[b(uh, uh, uh − W ) − b(u, u, uh − W )]
+ β[〈C(uh), uh − W 〉 − 〈C(u), uh − W 〉]. (3.5)

On the other hand, we can write uh − u as uh − W + W − u in (3.5) to find

ν‖∇(uh − W )‖20 = −ν(∇(W − u),∇χ) − α[b(uh, uh, χ) − b(W ,W , χ)]
− α[b(W ,W , χ) − b(u, u, χ)] + β[〈C(uh), χ〉 − 〈C(W ), χ〉]
+ β[〈C(W ), χ〉 − 〈C(u), χ〉].

Thus, following (2.19) and (2.20), we can establish the bound

ν

2
‖∇χ‖20 +

(
β

4
− 4δα2

4ν

)

‖uhδχ‖20 +
(

β

4
− 4δα2

4ν

)

‖W δχ‖20

+ (βγ − C(β, α, δ))‖χ‖20 ≤ ν(∇(u − W ),∇χ) − α

2∑

i=1

(

W δ ∂W

∂xi
− uδ ∂u

∂xi
, χ

)

+ β(W (1 − W δ)(W δ − γ ) − u(1 − uδ)(uδ − γ ), χ), (3.6)

where we have introduced the constant C(β, α, δ) = β22δ−1(1 + γ )2(δ + 1)2. Using an
integration by parts, Taylor’s formula, Hölder’s and Young’s inequalities, we can rewrite the
first term on the RHS of (3.6) as

− α

δ + 1

d∑

i=1

(
∂

∂xi
(W δ+1 − uδ+1), χ

)

= α

δ + 1

d∑

i=1

(W δ+1 − uδ+1,
∂

∂xi
χ)

= α

d∑

i=1

(

(θW + (1 − θ)u)δ(W − u),
∂

∂xi
χ

)

≤ 2δ−1α
(
‖W 2δ‖1/20 + ‖u2δ‖1/20

)
‖W − u‖L4‖∇χ‖0. (3.7)

And we can also rewrite the second term on the RHS of (3.6) as

β(1 + γ )(W δ+1 − uδ+1, χ) − 2βγ (W − u, χ) − 2β(W 2δ+1 − u2δ+1, χ) :=
3∑

i=1

Ji ,
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where

J1 = β(1 + γ )(W δ+1 − uδ+1, χ), J2 = −2βγ (W − u, χ),

J3 = −2β(W 2δ+1 − u2δ+1, χ).

We estimate J1 using Taylor’s formula, Hölder’s and Young’s inequalities as

J1 = β(1 + γ )(δ + 1)((θW + (1 − θ)u)δ(W − u), χ)

≤ 2δ−1β(1 + γ )(δ + 1)
(
‖W 2δ‖1/20 + ‖u2δ‖1/20

)
‖W − u‖L4‖χ‖0.

In turn, using Cauchy-Schwarz and Young’s inequalities, an estimate for J2 reads

J2 ≤ 2βγ ‖W − u‖0‖χ‖0,
while a bound for J3 results from applying Taylor’s formula together with Hölder’s and
Young’s inequalities

J3 = −(2δ + 1)β((θW + (1 − θ)u)2δ(W − u), χ)

≤ 22δ−1(2δ + 1)β
(‖W 2δ‖0 + ‖u2δ‖0

) ‖W − u‖L4‖χ‖L4 . (3.8)

Combining (3.7)-(3.8), substituting the result back into (3.6), and then using (3.2) and (3.3),
implies the desired result. ��

3.2 Non-conforming Finite Element Method

Let P1 denote the space of polynomials which have degree at most 1, and let us recall the
definition of the Crouzeix-Raviart (CR) non-conforming finite element space

VCR
h =

{

v ∈ L2(Ω) : for all K ∈ T v|K ∈ P1 and
∫

E
[|v|] = 0 E ∈ E

}

. (3.9)

It is useful to introduce the piecewise gradient operator ∇h : H1(Th) → L2(Ω;R2) with
(∇hv)|K = ∇v|K , for all K ∈ Th . The discrete weak formulation of (1.1) in this context
reads: find uCR

h ∈ VCR
h such that

ANC (uCR
h , χ) = ( f , χ), for all χ ∈ VCR

h , (3.10)

with

ANC (v, v) = νaNC (v, v) + αbNC (v; v, v) − β(C(v), v),

aNC (v, v) = (∇hv,∇hv), bNC (v; v, v) = ((vδ, vδ)T · ∇hv, v),

and we define the associated discrete energy norm |||v|||NC := √
aNC (v, v).

Lemma 1 For any v ∈ VCR
h , we have

ANC (v, v) ≥ C̄ |||v|||2NC , (3.11)

provided ν > max{β(1 + γ 2)CNC
Ω , 2α2

β
}.
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Proof Owing to Young’s and Poincaré-Friedrichs’s inequalities, it readily follows that

ANC (v, v) = ν‖∇hv‖20,Th
+ βγ ‖v‖20 + β‖v‖2δ+2

L2δ+2 − β(1 + γ )(vδ+1, v) − bNC (v; v, v)

≥ ν‖∇hv‖20,Th
+ βγ ‖v‖20 + β

4
‖v‖2δ+2

L2δ+2 − β

2
(1 + γ )2‖v‖20 − α2

β
‖∇hv‖20,Th

≥
(

ν

2
− β

2
(1 + γ 2)CNC

Ω + ν

2
− α2

β

)

‖∇hv‖20,Th
,

and the estimate (3.11) follows. ��
Theorem 3.3 (Existence of a discrete solution) Let ‖uCR

h ‖0 = kCR and

kCR >
(CCR

Ω )

ν

√

ν + βγCCR
Ω − β(1 + γ )2CCR

Ω − 2α2

β

‖ f ‖0,

provided ν + βγCCR
Ω > β(1 + γ )2CCR

Ω + 2α2

β
. Then, problem (3.10) admits at least one

solution uNC
h ∈ V NC

h .

Proof We introduce the Crouzeix-Raviart operator PCR : VCR
h → VCR

h as

(PCR(uCR
h ), v) = ANC (uCR

h , v) − ( f , v),

which is well defined and continuous on VCR
h . Choosing v = uCR

h and using Lemma 1, we
have

(PCR(uCR
h ), uCR

h )

≥ 1

CCR
Ω

(
ν

2
− β

2
(1 + γ 2)CCR

Ω − α2

β
+ βγCCR

Ω

)

‖uCR
h ‖20 − CCR

Ω

2ν
‖ f ‖20. (3.12)

Let ‖uCR
h ‖0 = kCR and

kCR >
(CCR

Ω )

ν

√

ν + βγCCR
Ω − β(1 + γ )2CCR

Ω − 2α2

β

‖ f ‖0,

provided ν + βγCCR
Ω > β(1 + γ )2CCR

Ω + 2α2

β
. Then the RHS in (3.12) is non-negative.

Finally, Brouwer’s fixed-point theorem implies that PCR(uCR
h ) = 0. ��

Next we denote by Ih the usual finite element interpolation [16]. Then the following
estimates hold

|v − Ihv|m,k ≤ Ch2−m
K ‖v‖2,K v ∈ H2(K ), (3.13)

‖v − (Ihv)‖0,E ≤ Ch3/2‖v‖2,K v ∈ H2(K ) E ∈ E(Th). (3.14)

Regarding the edge projection PE : L2(E) → P0(E), where P0(E) is a constant on E , we
have

‖v − PEv‖0,E ≤ Ch1/2K |v|1,K , for all v ∈ H1(K ), E ∈ E(Th). (3.15)
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Lemma 2 There holds:

α[bNC (v1, v1, w) − bNC (v2, v2, w)] ≤ ν

2
‖∇hw‖20,Th

+ 22δC�α
2

4ν
(‖vδ

1w‖20 + ‖vδ
2w‖20),

ANC (v1, w) − ANC (v2, w) ≥ ν

2
‖∇hw‖20,Th

+ (βγ − C(β, α, δ))‖w‖20

+
(

β

4
− 22δC�α

2

4ν

)

(‖vδ
1w‖20 + ‖vδ

2w‖20),

where v1, v2 ∈ V NC
h , w = v1 − v2 and C� is a postive constant.

Proof To prove the first estimate, we use the definition of bNC (·, ·). Then
α[bNC (v1, v1, w) − bNC (v2, v2, w)]

= α
∑

K∈Th

d∑

i=1

∫

K

(

vδ
1
∂v1

∂xi
− vδ

2
∂v2

∂xi

)

wdx

= α

δ + 1

∑

K∈Th

d∑

i=1

∫

K

(
∂(vδ+1

1 − vδ+1
2 )

∂xi

)

wdx .

Using Cauchy-Schwarz and inverse inequalities, Taylor’s formula, Höder’s and Young’s
inequalities, implies the first stated result. To prove the second inequality, we write

ANC (v1, w) − ANC (v2, w) = νaNC (v1 − v2, w) + α[bNC (v1, v1, w) − bNC (v2, v2, w)]
− β[(C(v1), w) − (C(v2), w)].

Applying the first estimate and (2.19) leads to the second estimate. ��
Theorem 3.4 Let VCR

h be the non-conforming space defined in (3.9). Assume that (2.23)
holds true and that u ∈ D(A) = H1

0 (Ω) ∩ H2(Ω) satisfies (2.1). Then the error incurred
by the NCFEM approximation satisfies

∣
∣
∣

∣
∣
∣

∣
∣
∣uCR

h − u
∣
∣
∣

∣
∣
∣

∣
∣
∣
NC

≤ Ch,

where the constant C is independent of h and C depends on ν, α, β, γ, δ, ‖ f ‖0, etc.
Proof Similarly as before, we split the error and use triangle inequality to write

∣
∣
∣

∣
∣
∣

∣
∣
∣uCR

h − u
∣
∣
∣

∣
∣
∣

∣
∣
∣
NC

≤
∣
∣
∣

∣
∣
∣

∣
∣
∣uNC

h − W
∣
∣
∣

∣
∣
∣

∣
∣
∣
NC

+ |||W − u|||NC .

From (3.13), the following estimate is valid for the second term on the RHS

|||W − u|||NC ≤ Ch.

Using (3.10), we have

ANC (uCR
h , χ) = ( f , χ), for all χ ∈ VCR

h .

If u ∈ D(A) = H1
0 (Ω) ∩ H2(Ω) satisfies (2.1), then it readily follows that

ANC (u, χ) = ( f , χ) +
∑

K∈T

∫

K
ν

∂u

∂nK
χ, for all χ ∈ VCR

h .
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We can then use Lemma (2), which leads to

ν

2
‖∇hχ‖20,Th

+ (βγ − C(β, α, δ))‖χ‖20 +
(

β

4
− 22δC�α

2

4ν

)

(‖uCR
h χ‖20 + ‖W δχ‖20)

≤ ANC (u, χ) − ANC (W , χ) −
∑

K∈T

∫

K
ν

∂u

∂nK
χ.

To estimate the consistency error, it suffices to exploit the CR approximation

∑

K∈T

∫

∂K
ν

∂u

∂nK
χ = −

∑

E∈E

∫

E
ν

∂u

∂nE
[χ] = −

∑

E∈E

∫

E
ν

(
∂u

∂nE
− P

(
∂u

∂nE

))

[χ].

Consequently, we can invoke estimate (3.15), which yields
∣
∣
∣
∣
∣

∑

K∈T

∫

∂K
ν

∂u

∂nK
χ

∣
∣
∣
∣
∣
≤ C

(
∑

K∈T
νh2K ‖u‖22,K

)1/2

|||χ |||NC ,

and the remainder of the proof follow similarly to that of Theorem 3.2. ��

3.3 Discontinuous Galerkin Method

In addition to the mesh notation used so far, we also require the following preliminaries. Let
E = K+ ∩ K− ∈ E ih be the common edge that is shared by the two mesh cells K±. We use
the symbol w± to denote the traces of functions w ∈ C0(Th) on E from K±, respectively.
Next, we define the average operator {{·}} on E as

{{w}} = 1

2
(w+ + w−).

In addition, we denote the jump operator over an edge as

[[w]] = w+n+ + w−n−,

and if w ∈ C1(Th) we also define

[[∂w/∂n]] = ∇(w+ − w−) · n+,

where n± denote the unit outward normal vectors to K±, respectively. In case of boundary
edges E = K+ ∩ ∂Ω , we take [[w]] = w+n+ and {{w}} = w+. The exterior trace of u taken
over the edge under consideration is denoted by ue and we chose ue = 0 for boundary edges.
We recall the definition of the local gradient ∇h satisfying (∇hw)|K = ∇(w|K ) on each
K ∈ Th . We will use the discrete subspace of L2(Ω)

V DG
h = {v ∈ L2(Ω) : for all K ∈ Th : v|K ∈ P1(K )}. (3.16)

where P1(K ) is the space of polynomials on K having partial degree 1.
The discrete weak formulation of (1.1) reads now: find uDG

h ∈ V DG
h such that

ADG(uDG
h , uDG

h , χ) = ( f , χ), for all χ ∈ V DG
h , (3.17)

where, for u, v ∈ V DG
h , the variational form

ADG(w, u, v) = νaDG(u, v) + αbDG(w, u, v) − β(C(u), v), (3.18)
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is defined with the following contributions

aDG(u, v) = (∇hu,∇hv) −
∑

E∈Eh

∫

E
{{∇hu}}·[[v]]ds −

∑

E∈Eh

∫

E
{{∇hv}}·[[u]]ds

+
∑

E∈Eh

∫

E
γh[[u]]·[[v]]ds,

bDG(w; u, v) =
∑

K∈Th

∫

K
w · ∇uvdx +

∑

K∈Th

∫

∂K
ŵ

up
h vds,

with w = (w,w)T , γh = γ
hE

and the upwind flux (see, e.g., [19,25])

ŵ
up
h = 1

2
[w · nK − |w · nK |] (ue−u),

where hE is the length of the edge E and γ is a penalty parameter chosen sufficiently large
to guarantee the stability of the formulation (see, e.g., [3]).

For the subsequent error analysis, we adopt the following discrete norm

|||v|||2 :=
∑

K∈Th

‖∇hv‖20,K +
∑

E∈E(Th )

‖[[v]]‖20,E .

Lemma 3 Coercivity of aDG and continuity of bDG hold in the following sense

aDG(v, v) ≥ αa |||v|||2, αbDG(v; v, v) ≤ β

4
‖v‖2δ+2

L2δ+2 + 2α2

β
|||v|||2, ∀v ∈ V DG

h .

Proof The first estimate follows from [3]. Using Cauchy-Schwarz, inverse trace and Young’s
inequalities in bDG , implies the second stated result. ��

Lemma 4 For any v ∈ V DG
h , the form ADG defined in (3.18) satisfies

ADG(v, v, v) ≥ C̄ |||v|||2.

Proof Owing to Young’s inequality and Lemma 3, we have

ADG(v, v, v) ≥ αaν|||v|||2 + βγ ‖v‖20 + β‖v‖2δ+2
L2δ+2 − β(1 + γ )(vδ+1, v) − αbDG(v; v, v)

≥
(

αaν

2
− β

2
(1 + γ 2)CΩ + αaν

2
− 2α2

β

)

|||v|||2.

��

Theorem 3.5 (Existence of a discrete solution) Let ‖uDG
h ‖0 = kDG and

kDG >
(CDG

Ω )

ν

√

ν + βγCDG
Ω − β(1 + γ )2CDG

Ω − 2α2

β

‖ f ‖0,

provided ν + βγCDG
Ω > β(1 + γ )2CDG

Ω + 2α2

β
. Then equation (3.17) admits at least one

solution uDG
h ∈ V DG

h .
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Proof Proceeding as before, we introduce the map PDG : V DG
h → V DG

h with

(PDG(uDG
h ), v) = ADG(uDG

h , uDG
h , v) − ( f , v),

which is well-defined and continuous. Choosing v = uDG
h in Lemma 3 yields

(PDG(uDG
h ), uDG

h )

≥ αa

CDG
Ω

(
ν

2
− β(1 + γ 2)CDG

Ω

2αa
− α2

βαa
+ βγCDG

Ω

αa

)

‖uDG
h ‖20 − CDG

Ω

2ν
‖ f ‖20.

(3.19)

Next, let us define ‖uDG
h ‖0 = kDG , and note that

kDG >
(CDG

Ω )

ν

√

αaν + 2βγCDG
Ω − β(1 + γ )2CDG

Ω − 2α2

β

‖ f ‖0,

provided that ν+2βγCDG
Ω > β(1+γ )2CDG

Ω + 2α2

β
. Then the RHS in (3.19) is non-negative.

Finally, Brouwer’s fixed point theorem implies that PDG(uDG
h ) = 0. ��

On the other hand, we can establish the following result, whose proof is similar to (2).

Lemma 5 There holds:

ADG(v1, v1, w) − ADG(v2, v2, w) ≥ C̃DG |||w|||,
where v1, v2 ∈ V DG

h and w = v1 − v2.

Finally, we can state an a priori error estimate in the following theorem.

Theorem 3.6 Let V DG
h be as in (3.16), and let us assume (2.23) and that u satisfies (2.1).

Then, there exists C̃ is independent of h such that
∣
∣
∣

∣
∣
∣

∣
∣
∣uDG

h − u|
∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤ C̃h.

Proof Using triangle inequality readily gives
∣
∣
∣

∣
∣
∣

∣
∣
∣uDG

h − u
∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤

∣
∣
∣

∣
∣
∣

∣
∣
∣uDG

h − W
∣
∣
∣

∣
∣
∣

∣
∣
∣ + |||W − u|||.

Proceeding again as in the conforming and non-conforming cases, we have the bound

|||W − u||| ≤ Ch.

Using the formulation (3.17), we have

ADG(uDG
h , uDG

h , χ) = ( f , χ), for all χ ∈ V DG
h ,

and if u ∈ D(A) = H1
0 (Ω) ∩ H2(Ω) satisfies (2.1), then we immediately have that

ADG(u, u, χ) = ( f , χ), for all χ ∈ V DG
h .

Finally, recalling Lemma (5), can write

123



52 Page 20 of 26 Journal of Scientific Computing (2021) 88 :52

Table 1 Example 1, case 1. Errors, iteration count, and convergence rates for the numerical solutions uh , u
CR
h

and uDG
h

Mesh Newton it. H1-error O(h) L2-error O(h2)

Error history in 2D

CGFEM 4 × 4 3 5.90(−02) − 5.38(−03) −
8 × 8 3 3.01(−02) 0.9709 1.42(−03) 1.9217

16 × 16 3 1.51(−02) 0.9952 3.60(−04) 1.9798

32 × 32 3 7.60(−03) 0.9904 9.03(−05) 1.9951

NCFEM 4 × 4 3 4.62(−02) − 2.32(−03) −
8 × 8 3 2.35(−02) 0.9752 6.10(−04) 2.1026

16 × 16 3 1.18(−02) 0.9938 1.54(−04) 1.9858

32 × 32 3 5.91(−03) 0.9975 3.88(−05) 1.9888

DGFEM 4 × 4 3 5.83(−02) − 5.27(−03) −
8 × 8 3 2.94(−02) 0.9876 1.36(−03) 1.9541

16 × 16 3 1.46(−02) 1.0098 3.40(−04) 2.0000

32 × 32 3 7.25(−03) 1.0099 8.43(−05) 2.0119

Error history in 3D

CGFEM 4 × 4 × 4 2 1.63(−02) − 1.52(−03) −
8 × 8 × 8 2 8.54(−03) 0.9325 4.22(−04) 1.8487

16 × 16 × 16 2 4.32(−03) 0.9832 1.08(−04) 1.9662

32 × 32 × 32 2 2.16(−03) 1.0000 2.73(−05) 1.9840

NCFEM 4 × 4 × 4 2 1.06(−02) − 5.42(−04) −
8 × 8 × 8 2 5.39(−03) 0.9757 1.41(−04) 1.9426

16 × 16 × 16 2 2.70(−03) 0.9973 3.64(−05) 1.9573

32 × 32 × 32 2 1.35(−03) 1.0000 8.99(−05) 2.0175

DGFEM 4 × 4 × 4 3 1.59(−02) − 1.44(−03) −
8 × 8 × 8 3 8.05(−03) 0.9820 3.85(−04) 1.5409

16 × 16 × 16 3 3.94(−03) 1.0308 9.49(−05) 2.0204

32 × 32 × 32 3 1.93(−03) 1.0296 2.31(−05) 2.0385

C̃ |||χ ||| ≤ ADG(uDG
h , uDG

h , χ) − ADG(W ,W , χ) = ADG(u, u, χ) − ADG(W ,W , χ),

and the rest of the proof follows much in the same way as in Theorems 3.2 and 3.4. ��

Remark 4 Note that we can drive the following L2-error estimates, essentially as a direct
consequence of Theorems 3.2, 3.4 and 3.6

||u − uh ||0 ≤ C h, ||u − uCR
h ||0 ≤ C h, ||u − uDG

h ||0 ≤ C h,

where the constantC is independent of h. These L2-error estimates are however sub-optimal.
We nevertheless provide in Sect. 4 numerical evidence that all three numerical methods
achieve optimal convergence also in the L2−norm.
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Table 2 Example 1, case 2. Errors, iteration count, and convergence rates for the numerical solutions uh , u
CR
h

and uDG
h

Mesh Newton it. H1-error O(h) L2-error O(h2)

Error history in 2D

CGFEM 4 × 4 3 1.26(−01) − 1.08(−02) −
8 × 8 3 6.84(−02) 0.8814 3.21(−03) 1.7504

16 × 16 3 3.49(−02) 0.9708 8.45(−04) 1.9256

32 × 32 3 1.75(−02) 0.9959 2.14(−04) 1.9813

NCFEM 4 × 4 3 1.22(−01) − 7.62(−02) −
8 × 8 3 6.44(−02) 0.9217 2.09(−03) 1.8663

16 × 16 3 3.26(−02) 0.9822 5.38(−04) 1.9578

32 × 32 3 1.63(−02) 0.9912 1.35(−04) 1.9946

DGFEM 4 × 4 3 1.23(−01) − 1.01(−02) −
8 × 8 3 6.58(−02) 0.9025 2.99(−03) 1.7561

16 × 16 3 3.34(−02) 0.9782 7.86(−04) 1.9275

32 × 32 3 1.68(−02) 0.9914 1.99(−04) 1.9818

Error history in 3D

CGFEM 4 × 4 × 4 3 1.07(−01) − 9.25(−03) −
8 × 8 × 8 3 5.98(−02) 0.7650 2.97(−03) 1.4731

16 × 16 × 16 3 3.08(−02) 0.9325 8.04(−04) 1.8487

32 × 32 × 32 3 1.55(−02) 0.9832 2.05(−04) 1.9662

NCFEM 4 × 4 × 4 3 8.79(−02) − 5.09(−03) −
8 × 8 × 8 3 4.54(−02) 0.9159 1.39(−03) 1.7789

16 × 16 × 16 3 2.29(−02) 0.9757 3.56(−04) 1.9426

32 × 32 × 32 3 1.14(−02) 0.9973 8.97(−05) 1.9573

DGFEM 4 × 4 × 4 3 1.00(−01) − 8.03(−03) −
8 × 8 × 8 3 5.38(−02) 0.8943 2.51(−03) 1.6777

16 × 16 × 16 3 2.74(−02) 0.9734 6.74(−04) 1.8969

32 × 32 × 32 3 1.37(−02) 1.0000 1.71(−04) 1.9788

4 Numerical Results

In this section, we present a few computational results that confirm the theoretical results
advanced in Sect. 3. All examples have been implemented with the help of the open-source
finite element library FEniCS [2].

4.1 Example 1: Accuracy Verification Against Smooth Solutions

First we consider problem (1.1) defined on the domain Ω = (0, 1)d , where d = 2, 3. The
two expressions of the exact solution u are as follows:

Case 1 : u = Πd
i=1(xi − x2i ), Case 2 : u = 1

16
Πd

i=1 sin(πxi ).
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Table 3 Example 2. Errors, iteration count, and convergence rates for the numerical solutions uh , u
CR
h and

uDG
h

Mesh Newton it. H1-error O(h) L2-error O(h2)

Error history in 2D

CGFEM 4 × 4 3 1.16(−02) − 8.99(−04) −
8 × 8 3 5.83(−03) 0.9926 2.26(−04) 1.9920

16 × 16 3 2.91(−03) 1.0025 5.67(−05) 1.9949

32 × 32 3 1.45(−03) 1.0050 1.41(−05) 2.0077

NCFEM 4 × 4 3 7.96(−03) − 3.91(−04) −
8 × 8 3 3.98(−03) 1.0000 9.80(−05) 1.9963

16 × 16 3 1.99(−03) 1.0000 2.45(−05) 2.0000

32 × 32 3 9.96(−04) 0.9986 6.13(−06) 1.9988

DGFEM 4 × 4 3 1.13(−02) − 8.84(−04) −
8 × 8 3 5.57(−03) 1.0206 2.19(−04) 2.0131

16 × 16 3 2.76(−03) 1.0130 5.47(−05) 2.0013

32 × 32 3 1.37(−03) 1.0105 1.36(−05) 2.0079

Error history in 3D

CGFEM 4 × 4 × 4 3 2.39(−02) − 1.98(−03) −
8 × 8 × 8 3 1.19(−02) 1.0060 5.01(−04) 1.9826

16 × 16 × 16 3 5.98(−03) 0.9927 1.25(−04) 2.0029

32 × 32 × 32 3 2.99(−03) 1.0000 3.14(−05) 1.9931

NCFEM 4 × 4 × 4 3 1.35(−02) − 7.07(−04) −
8 × 8 × 8 3 6.75(−03) 1.0000 1.77(−04) 1.9980

16 × 16 × 16 3 3.37(−03) 1.0021 4.42(−05) 2.0016

32 × 32 × 32 3 1.68(−04) 1.0043 1.10(−05) 2.0065

DGFEM 4 × 4 × 4 3 2.30(−02) − 1.95(−03) −
8 × 8 × 8 3 1.11(−02) 1.0511 4.84(−04) 2.0104

16 × 16 × 16 3 5.47(−03) 1.0209 1.19(−04) 2.0240

32 × 32 × 32 3 2.70(−03) 1.0186 2.96(−05) 2.0073

We choose the values of parameters as follows: α = 0.2, β = 0.1, ν = 2 and γ = 0.5, and
the right-hand side datum f is manufactured using these closed-form solutions. A sequence
of successively refined uniform meshes is constructed and the error history (decay of errors
measured in the energy and L2−norm as well as corresponding convergence rates) for the
numerical solutions constructed with CGFEM, NCFEM and DGFEM are reported in what
follows. Table 1 presents the convergence results related to Case 1 for 2D and 3D, whereas
Table 2 shows the results pertaining to Case 2. In all tables we can observe that errors in the
energy and L2−norms decrease with the mesh size at rates O(h) and O(h2), respectively.
We have used a first-order polynomial degree in all simulations. Other sets of computations
performed after modifying the values of the parameter δ to 3 and 5 (not reported here) also
show optimal convergence. We can also see that the number of Newton iterations required
to reach the prescribed tolerance of 10−6 is at most three.
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Fig. 1 Example 3. Snapshots at t = 80, 200, 650 of uDG
h for the FitzHugh-Nagumomodel using δ = 1, α = 0

(top panels) and for the modified generalized Burgers-Huxley system (4.1) with δ = 1, α = 0.1 (middle row)
and with δ = 1.5, α = 0.1 (bottom)

4.2 Example 2: StationaryWave Solution

Next we consider (1.1) endowed with non-homogeneous Dirichlet boundary conditions. The
domain is again as in Example 1, and the setup of the problem has been adopted from [12],
where the exact solution is

u = 0.5 − 0.5 tanh(z/(r − ᾱ)),

with r = √
ᾱ2 + 8 and ᾱ = α

√
2. The values of the model parameters are now α = 0.2,

β = 1, ν = 16 and γ = 0.5. In Table 3 we present the convergence rates associated with the
errors in the energy norm as well as L2-norm for CGFEM, NCFEM and DGFEM. Again we
observe optimal convergence in all instances.

123



52 Page 24 of 26 Journal of Scientific Computing (2021) 88 :52

4.3 Example 3: Application to Nerve Pulse Propagation

To conclude this section, and as a qualitative illustration of the differences between a classical
bistable equation (without advection and with a simplified cubic nonlinearity induced by
δ = 1) and the generalized Burgers-Huxley equation, we conduct a simple simulation of a
transient problemwhere also an additional ODE (governing the dynamics of a gating variable
v) is considered so that self-sustained patterns are possible (see, e.g., [4,24]). The system
reads

∂t u + αuδ
d∑

i=1

∂i u − νΔu − βu(1 − uδ)(uδ − γ ) + v = 0, ∂tv = ε(u − ρv).

(4.1)

Setting δ = 1 and α = 0, one recovers the well-known FitzHugh-Nagumo equations

∂t u − νΔu − βu(1 − u)(u − γ ) + v = 0, ∂tv = ε(u − ρv).

We apply a simple backward Euler time discretization with constant time stepΔt = 0.2, after
which we recover a discrete formulation resembling (3.1) for the CFEM (and similarly for the
other twomethods). The domainΩ = (0, 300)2 is discretized into a uniform triangular mesh
with 25K elements, and themodel parameters are taken as α = 0.1, δ = 1.5, β = ν = 1, ε =
γ = 0.01, ρ = 0.05 (see also [6] for the classical FitzHugh-Nagumo parameters, whereas
the modified terms adopt here very mild values). For this example we prescribe Neumann
boundary conditions for u on ∂Ω . Figure 1 depicts three snapshots of the evolution of u
(representing the action potential propagation in a piece of nerve tissue, cardiac muscle, or
any excitable media) for the classical FitzHugh-Nagumo system vs. the modified generalized
Burgers-Huxley system (4.1), all numerical solutions computed using the DGFEM setting
γ = 2. The differences in spiral dynamics (initiated with a cross-shaped and shifted initial
condition for u and v) seem to be more sensitive to the amount of additional nonlinearity
(encoded in δ), rather than to the intensity of the additional advection (modulated by α).
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