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Abstract
The aim of this paper is to analyze the influence of small edges in the computation of the
spectrum of the Steklov eigenvalue problem by a lowest order virtual element method. Under
weaker assumptions on the polygonal meshes, which can permit arbitrarily small edges with
respect to the element diameter, we show that the scheme provides a correct approximation
of the spectrum and prove optimal error estimates for the eigenfunctions and a double order
for the eigenvalues. Finally, we report some numerical tests supporting the theoretical results.

Keywords Virtual element method · Steklov eigenvalue problem · Error estimates ·
Polygonal meshes · Small edges

Mathematics Subject Classification 35Q35 · 65N15 · 65N25 · 65N30 · 76B15

1 Introduction

In this paper we are interested in the approximation by virtual elements of the eigenvalues
and eigenfunctions of the Steklov problem which is characterized by the presence of the
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eigenvalue on the boundary condition. This problem has attracted much attention in recent
years due to the important applications in many physical subjects. For instance, it appears in
the study of the dynamic of liquids in moving containers, the so called sloshing problem [6,
20,24]. Also, this problem have interesting applications in inverse scattering [35,47], among
other works.

There are several studies on the finite element approximations of the Steklov eigenvalue
problem, for example, see [3,4,15,27,33,46,48]. Traditionally, finite element methods rely
on triangular (simplicial) and quadrilateral meshes. However, in complex simulations one
often encounters general polygonal or polyhedral meshes. In recent years there has been a
significant growth in the mathematical and engineering literature in developing numerical
methods that can make use of general polytopal meshes; among the large number of papers
on this subject, we cite as a minimal sample [7,9,21,26,44,45].

The VEM has been introduced in [7] and has been applied successfully in a large range of
problems arising from engineering and physics phenomenons; see for instance [1,2,8,10,12,
14,19,22,36,43]. Regarding VEM for eigenvalue problems, we mention the following recent
works [23,25,28,29,38–42]. In particular, an a priori and a posteriori VEM discretization for
the Steklov eigenvalue problemhas been presented in [40,41].However, the theoretical results
and error estimates for the eigenvalues and eigenfunctions were obtained under the standard
mesh assumptions introduced in [7], which do not allow to consider meshes containing
elements with small edges compared to the element diameter.

In [11,13,18] has been recently analyzed the possibility to consider inVEMdiscretizations
polygonal meshes with arbitrarily small edges with respect to the element diameter. This new
framework forVEMopens the possibility to solve interesting coupled problems, such as fluid-
structure interactions, in a different way. In fact, the small edges approach takes relevance
in this context and becomes a natural path to deal with such problems, for instance, by
gluing different meshes in each domain in fluid-structure interactions or in coupling of fluid
flow with porous media flow. We also mention that numerical methods that permit arbitrarily
small edges in the polygonalmeshes can be useful in adaptive schemes by considering refined
meshes as a tool to handle solutions with corner singularities. In particular, the present work
aims to apply this new framework for the numerical solution of an eigenvalue problem. More
precisely, we will follow the VEM approach presented in [11], for the Poisson equation, to
write a virtual scheme for the Steklov eigenvalue problem.

The aim of this paper is to propose a virtual element method of lowest order to solve the
Steklov eigenproblem, allowing small edges in the polygons of the mesh. We will consider
the continuous variational formulation presented in [40]; however, we will write a different
discrete virtual scheme, which is based on a different stabilization bilinear form (see [49]).
Wewill use the so-called Babuška-Osborn abstract spectral approximation theory (see [5]), to
show that under weaker assumptions on the polygonal meshes, the resulting virtual element
scheme provides a correct approximation of the spectrum and prove optimal order error
estimates for the eigenfunctions and a double order for the eigenvalues. In particular, our
theoretical estimates fully support meshes with arbitrarily small edges with respect to the
element diameter. In addition, we remark that spurious modes were not found for different
values of the h-scalling used in the definition of the stabilization form (see in particular
Sect. 5.1 below). This numerical evidence strongly support the possibility to extend the
present analysis to more challenging eigenvalue problems in continuum mechanics such as
the elastoacustic problem [16,37], among others.

Thepaper is organized as follows: InSect. 2,wepresent themodel problemandpreliminary
results related to the solution operator and eigenfunctions. More precisely, we will establish
the spectral characterization of the solution operator, which allows to study the numerical
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method. Section 3 is dedicated to present the virtual element method. Here we will introduce
the assumptions on the mesh. We will present approximation results that will be the key
point of our analysis, which will depend on the particular choice of the stabilization form.
Section 4, contains the error estimates for the eigenfunctions and a double order for the
eigenvalues. Finally, in Sect. 5 we present some numerical results on different families of
polygonal meshes with small edges, in order to confirm the theoretical rates of convergence
proved in the paper and to confirm that it is not polluted with spurious modes.

Throughout the article we will use standard notations for Sobolev spaces, norms and
seminorms. Moreover, we will denote by C a generic constant independent of the mesh
parameter h, which may take different values in different occurrences.

2 The Spectral Problem

Let � ⊂ R
2 be a bounded domain with polygonal boundary ∂�. Let �0 and �1 be disjoint

open subsets of ∂� such that ∂� = �̄0 ∪ �̄1 and |�0| �= 0. We denote by n the outward unit
normal vector to ∂�.

In what follows, we recall the variational formulation of the Steklov eigenvalue problem
proposed in [40]. Also, we summarize some results from this reference.

The Steklov eigenvalue problem reads as follows: Find (λ, u) ∈ R× H1(�), u �= 0, such
that

⎧
⎨

⎩

�u = 0 in �,

∂nu =
{

λu on �0,

0 on �1,

where ∂nu denotes the normal derivative of u. By testing the first equation above with v ∈
H1(�) and integrating by parts, we arrive at the following equivalent variational formulation:

Problem 1 Find (λ, u) ∈ R × H1(�), u �= 0, such that
∫

�

∇u · ∇v = λ

∫

�0

uv ∀v ∈ H1(�).

Observe that the left-hand side is not H1(�)-elliptic. A remedy for this is to use a shift
argument to rewrite Problem 1 in the following form:

Problem 2 Find (̂λ, u) ∈ R × H1(�), u �= 0, such that

â(u, v) = λ̂b(u, v) ∀v ∈ H1(�),

where λ̂ = λ + 1 and the bilinear form â : H1(�) × H1(�) → R is defined by

â(u, v) := a(u, v) + b(u, v) u, v ∈ H1(�),

with a, b : H1(�) × H1(�) → R defined by

a(u, v) :=
∫

�

∇u · ∇v, b(u, v) :=
∫

�0

uv u, v ∈ H1(�).

All the previous bilinear forms are bounded and symmetric. In addition, the next result,
proved in [40, Lemma 2.1], establishes that â(·, ·) is H1(�)-elliptic.

123



44 Page 4 of 21 Journal of Scientific Computing (2021) 88 :44

Lemma 2.1 There exists a constant α > 0, depending on �, such that

â(v, v) ≥ α ‖v‖21,� ∀v ∈ H1(�).

Next, we define the solution operator associated with Problem 2:

T : H1(�) −→ H1(�),

f �−→ T f := w,

where w ∈ H1(�) is the unique solution (as a consequence of Lemma 2.1 and the Lax-
Milgram Theorem) of the following source problem:

â(w, v) = b( f , v) ∀v ∈ H1(�). (2.1)

Thus, the linear operator T is well defined and bounded. Also, T is self-adjoint with
respect to the inner product â(·, ·) in H1(�) (see [40, Section 2]).

Notice that (̂λ, u) ∈ R×H1(�) solves Problem 2 (and hence (λ, u) ∈ R×H1(�) solves
Problem 1) if and only if Tu = μu with μ �= 0 and u �= 0, in which case μ := 1/̂λ.

The following additional regularity result for the solution of problem (2.1) and conse-
quently, for the eigenfunctions of T , has been proved in [40, Lemma 2.2].

Lemma 2.2 i) for all f ∈ H1(�), there exist r ∈ (1/2, 1] and C > 0 such that the solution
w of problem (2.1) satisfies w ∈ H1+r (�) and

‖w‖1+r ,� ≤ C ‖ f ‖1,� ;
ii) if u is an eigenfunction of Problem 1 with eigenvalue λ, there exist r > 1/2 and C > 0

(depending on λ) such that u ∈ H1+r (�) and

‖u‖1+r ,� ≤ C ‖u‖1,� .

Remark 2.1 The constant r > 1/2 is the Sobolev exponent for the Laplace problem with
Neumann boundary conditions. If � is convex, then r ≥ 1, whereas, otherwise, r := π/ω

with ω being the largest reentrant angle of � (see [31]).

Hence, as a consequence of the compact inclusion H1+r (�) ↪→ H1(�), T is a compact
operator. We have the following spectral characterization for the operator T .

Theorem 2.1 The spectrum of T decomposes as follows: sp(T ) = {0, 1} ∪ {μk}k∈N, where:
i) μ = 1 is an eigenvalue of T and its associated eigenspace is the space of constant

functions in �;
ii) μ = 0 is an infinite-multiplicity eigenvalue of T with associated eigenspace is H1

�0
(�) :=

{
q ∈ H1(�) : q = 0 on �0

}
;

iii) {μk}k∈N ⊂ (0, 1) is a sequence of finite-multiplicity eigenvalues of T which converge to
0 and their corresponding eigenspaces lie in H1+r (�).

3 VEMDiscretization

We will study in this section, the virtual element numerical approximation of the eigen-
problem presented in Problem 2, by considering weaker mesh assumptions than the mesh
assumptions considered in [40]. We will follow some recent results from [11,18] for the
Poisson problem. With this aim, first we recall the mesh construction.
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Let {Th}h be a sequence of decompositions of � into polygons K . Let hK denote the
diameter of the element K and h the maximum of the diameters of all the elements of the
mesh, i.e., h := maxK∈Th hK . For Th we will consider the following assumption:

• A1. There exists γ > 0 such that, for all meshes Th , each polygon K ∈ Th is star-shaped
with respect to a ball of radius greater than or equal to γ hK .

The next results will be obtained only under assumptionA1. In particular, we can consider
meshes with edges arbitrarily small with respect to the element diameter hK .

We consider now a simple polygon K , we define

B1(∂K ) := {
v ∈ C0(∂K ) : v|e ∈ P1(e) for all edges e ⊂ ∂K

}
.

We then consider the finite-dimensional space defined as follows:

V K := {
v ∈ H1(K ) : v|∂K ∈ B1(∂K ) and �v|K = 0

}
.

As in [11], we choose the following degrees of freedom: For all vh ∈ V K , these are
defined as follows:

• values of vh at the NK vertices of K .

Next, for every decomposition Th of � into simple polygons K , we define the global
virtual space

Vh :=
{
v ∈ H1(�) : v|K ∈ V K

}
.

In order to construct the discrete scheme, we need some preliminary definitions. First, we
split the bilinear form â(·, ·) as follows:

â(w, v) =
∑

K∈Th

aK (w, v) + b(w, v) w, v ∈ H1(�),

where

aK (w, v) :=
∫

K
∇w · ∇v w, v ∈ H1(�).

Next, for any K ∈ Th and for any sufficiently regular function v, we define first

v := |∂K |−1
∫

∂K
v. (3.1)

Now, we define the projector �K : V K −→ P1(K ) ⊆ V K for each v ∈ V K as the
solution of

aK
(
�K v, q

) = aK (v, q) ∀q ∈ P1(K ),

�K v = v.

Now, we introduce the following symmetric and semi-positive definite bilinear form on
V K × V K (see [49]). For all elements K ∈ Th :

SK (wh, vh) := hK

∫

∂K
∂swh∂svh ∀wh, vh ∈ V K , (3.3)

where ∂s denotes a derivative along the edge.
Then, set

ah(wh, vh) :=
∑

K∈Th

aKh (wh, vh) wh, vh ∈ Vh,
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where aKh (·, ·) is the bilinear form defined on V K × V K by

aKh (w, v) := aK
(
�Kw,�K v

) + SK
(
w − �Kw, v − �K v

)
w, v ∈ V K . (3.4)

Remark 3.1 It is immediate to verify that P1(K ) ⊆ V K . Thus, from (3.4) we have that

aKh (w, p) = aK (w, p) ∀p ∈ P1(K ), ∀w ∈ V K . (3.5)

Now, we introduce the following discrete semi-norm:

|||v|||2K := aK
(
�K v,�K v) + SK (v − v, v − v) ∀v ∈ V K + VK , (3.6)

where VK ⊆ H1(K ) is a subspace of sufficiently regular functions for SK (·, ·) to make
sense.

Now, for any sufficiently regular functions, we introduce the following global semi-norms

|||v|||2 :=
∑

K∈Th

|||v|||2K , |v|21,h :=
∑

K∈Th

‖∇v‖20,K .

It has been proved in [11, Lemma 3.1 and Proposition 4.4] that for our choice of the
stabilization form (3.3), there exist positive constants C1,C2,C3, independent of h, such
that

C1|||v|||2K ≤ aKh (v, v) ≤ C2|||v|||2K ∀v ∈ V K , (3.7)

aKh (v, v) ≤ C3(|||v|||2 + |v|21,K ) ∀v ∈ V K . (3.8)

In addition, it holds

aK (v, v) ≤ C4|||v|||2K ∀v ∈ V K ,

|||p|||2K ≤ C5a
K (p, p) ∀p ∈ P1(K ), (3.9)

where C4,C5 are independent of h.
Now we are in a position to write the virtual element discretization of Problem 1.

Problem 3 Find (λh, uh) ∈ R × Vh, uh �= 0, such that

ah(uh, vh) = λhb(uh, vh) ∀vh ∈ Vh .

We use again a shift argument to rewrite this discrete eigenvalue problem in the following
convenient equivalent form.

Problem 4 Find (̂λh, uh) ∈ R × Vh, uh �= 0, such that

âh(uh, vh) = λ̂hb(uh, vh) ∀vh ∈ Vh,

where λ̂h = λh + 1 and the bilinear form âh : Vh × Vh → R is defined by

âh(uh, vh) := ah(uh, vh) + b(uh, vh) uh, vh ∈ Vh .

Clearly âh(·, ·) is symmetric and continuous. In the following result we prove that âh(·, ·)
is elliptic in Vh .

Lemma 3.1 There exists a constant β > 0, independent of h, such that

âh(vh, vh) ≥ β ‖vh‖21,� ∀vh ∈ Vh .
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Proof From the definition of the bilinear form âh(·, ·), we have that
âh(vh, vh) = ah(vh, vh) + b(vh, vh)

=
∑

K∈Th

aKh
(
vh, vh

) + b(vh, vh) ≥
∑

K∈Th

C1|||vh |||2K + ‖vh‖20,�0

≥ C
∑

K∈Th

aK
(
vh, vh

) + ‖vh‖20,�0

≥ C |vh |21,� + ‖vh‖20,�0
≥ β ‖vh‖21,� ∀vh ∈ Vh,

where we have used (3.7), (3.9) and the generalized Poincaré inequality. This concludes the
proof. ��

With this coercivity result at hand, we are in a position to introduce the discrete solution
operator

Th : H1(�) −→ H1(�),

f �−→ Th f := wh,

where uh ∈ Vh is the solution of the following discrete source problem

âh(wh, vh) = b( f , vh) ∀vh ∈ Vh .

Notice that Lemma 3.1 implies that the linear operator Th is well defined and bounded
uniformly with respect to h. Moreover, as in the continuous case, (̂λh, uh) ∈ R × Vh solves
Problem 4 (and hence (λh, uh) ∈ R×Vh solves Problem 3) if and only if Thuh = μhuh with
μh �= 0 and uh �= 0, in which case μh := 1/̂λh . Also, Th |Vh : Vh −→ Vh is self-adjoint
with respect to âh(·, ·).

As a consequence, we have the following spectral characterization for Th .

Theorem 3.1 The spectrum of Th |Vh consists of Mh := dim(Vh) eigenvalues, repeated
according to their respective multiplicities. It decomposes as follows: sp(Th |Vh ) = {0, 1} ∪
{
μ

(k)
h

}Nh

k=1
, where:

i) the eigenspace associated with μh = 1 is the space of constant functions in �;
ii) the eigenspaceassociatedwithμh = 0 is Zh := Vh∩H1

�0
(�) = {qh ∈ Vh : qh = 0 on �0};

iii) μ
(k)
h ⊂ (0, 1), k = 1, . . . , Nh := Mh − dim(Zh) − 1, are non-defective eigenvalues

repeated according to their respective multiplicities.

4 Convergence and Error Estimates

In order to prove that the solutions of the discrete problem converge to those of the continuous
problem, we will follow the standard procedure for spectral theory for compact operators
[5], which consists in showing that Th converges in norm to T as h tends to zero.

With this end, we begin by proving the following result.

Lemma 4.1 There exists C > 0, independent of h, such that, for all f ∈ H1(�), if w = T f
and wh = Th f , then

‖w − wh‖1,� ≤ C
(‖w − wI ‖1,� + |wπ − w|1,h + |||w − wI ||| + |||w − wπ |||) , (4.1)
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for all wI ∈ Vh and for all wπ ∈ L2(�) such that wπ |K ∈ P1(K ) ∀K ∈ Th. In addition

|||wh − wI ||| ≤ C
(‖w − wI ‖1,� + |wπ − w|1,h + |||w − wI ||| + |||w − wπ |||) . (4.2)

Proof Let w = T f and wh = Th f . From the triangle inequality we have

‖w − wh‖1,� ≤ ‖w − wI ‖1,� + ‖wI − wh‖1,�.

Our task is to estimate the norms of the right hand side above. To do this, we follow the
arguments on the proof of Lemma 3.1.

Now, for wI ∈ Vh , we set vh := wh − wI and thanks to Lemma 3.1, the definitions of
aKh (·, ·) (cf. (3.4)) and those of T and Th , we have

(
|||vh ||| + ‖vh‖0,�0

)2 ≤ 2
(
|||vh |||2 + ‖vh‖20,�0

)

≤ C âh(vh , vh) = C (̂ah(wh , vh) − âh(wI , vh))

= C

⎛

⎝b( f , vh) −
∑

K∈Th
aKh (wI , vh) − b(wI , vh)

⎞

⎠

= C
(
b( f , vh) − b(wI , vh)

−
∑

K∈Th

(
aKh (wI − wπ , vh) + aK (wπ − w, vh) + aK (w, vh)

)
⎞

⎠

= C

⎛

⎝b(w − wI , vh) −
∑

K∈Th

(
aKh (wI − wπ , vh) + aK (wπ − w, vh)

)
⎞

⎠ .

Therefore, from the trace theorem, (3.7) and the boundedness of aKh (·, ·) (3.8) and aK (·, ·),
we get

(∣
∣
∣
∣
∣
∣vh

∣
∣
∣
∣
∣
∣ + ∥

∥vh
∥
∥
0,�0

)2 ≤ C
(

‖w − wI ‖0,�0
∥
∥vh

∥
∥
0,�0

+
∑

K∈Th

(
C(|||wI − wπ |||K + |wI − wπ |1,K )

∣
∣
∣
∣
∣
∣vh

∣
∣
∣
∣
∣
∣
K + |wπ − w|1,K

∣
∣vh

∣
∣
1,K

)
⎞

⎠

≤ C

⎛

⎝‖w − wI ‖0,�0
∥
∥vh

∥
∥
0,�0

+
∑

K∈Th

{
C

(|||wI − wπ |||K + |wπ − w|1,K
) ∣
∣
∣
∣
∣
∣vh

∣
∣
∣
∣
∣
∣
K

}

⎞

⎠

≤ C
(
‖w − wI ‖0,�0 + |||wI − wπ ||| + |wπ − w|1,h

) (
‖vh‖0,�0 + ∣

∣
∣
∣
∣
∣vh

∣
∣
∣
∣
∣
∣
)

.

Therefore, we have

|||vh ||| + ‖vh‖0,�0 ≤ C̃
(‖w − wI ‖1,� + |||w − wπ ||| + |||w − wI ||| + |wπ − w|1,h

)
.

Finally, (4.1) follows from the triangle inequality and the generalized Poincaré inequality.
Moreover, (4.2) follows from the above estimate. ��

Let us introduce the following approximation result for polynomials in star-shaped
domains (see for instance [17]), which is derived by results of interpolation between Sobolev
spaces (see for instance [30, Theorem I.1.4]), leading to an analogous result for integer values
of s. Moreover, we remark that the result for integer values is stated in [7, Proposition 4.2]
and follows from the well establish Scott-Dupont theory (see [17]).
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Lemma 4.2 If assumption A1 is satisfied, then there exists a positive constant C, depending
only on k and γ , such that for every s with 0 ≤ s ≤ k and for every v ∈ H1+s(K ), there
exists vπ ∈ Pk(K ) such that

‖v − vπ‖0,K + hK |v − vπ |1,K ≤ Ch1+s
K ‖v‖1+s,K .

Now, we have the following approximation result in the virtual space Vh , which follows
from [11, Theorem 3.4].

Lemma 4.3 Under the assumptionA1, then, for each s with 1/2 < s ≤ 1, there exist t̂ > 1/2
and a positive constant C, independent of h, such that for every v ∈ H1+s(�), there exists
vI ∈ Vh that satisfies

|v − vI |1+t,K ≤ Chs−t
K |v|1+s,K , 0 ≤ t < min{̂t, s}, (4.3)

‖v − vI ‖0,K ≤ ChK |v|1+s,K . (4.4)

Proof Estimate (4.3) has been obtained in [11, Theorem 3.4]. To obtain (4.4), with 1/2 <

s ≤ 1, first we use the Poincaré and the Cauchy-Schwarz inequalities, to obtain (see [13,
Remark 4.1]),

‖v − vI ‖0,K ≤ C

(∫

∂K
|v − vI |ds + hK |v − vI |1,K

)

≤ C
(
h1/2K ‖v − vI ‖0,∂K + hK |v − vI |1,K

)

≤ C
(
h1/2K h1/2K |v|1/2,∂K + hK |v − vI |1,K

)

≤ C
(
hK |v|1,K + hK |v − vI |1,K

)

≤ ChK |v|1+s,K ,

where we have use an standard approximation estimate in one dimension, since vI |∂K corre-
sponds to the standard piecewise linear Lagrange interpolant of v and then |v|1/2,∂K ≤ |v|1,K
(see [34] for instance). This concludes the proof. ��

Now we are in position to establish the convergence in norm of Th to T as h → 0.

Lemma 4.4 There exist r ∈ (1/2, 1] (cf. Lemma 2.2(i)) and C > 0, independent of h, such
that

‖(T − Th) f ‖1,� ≤ Chr ‖ f ‖1,� ∀ f ∈ H1(�).

Proof The result follows from Lemma 4.1. In particular, we have to bound the term on the
right and side of (4.1). For the first and second terms, using Lemmas 4.3 and 4.2, respectively,
we obtain

||w − wI ||1,� + |w − wπ |1,h ≤ C
∑

K∈Th

hrK |w|1+r ,K ≤ Chr |w|1+r ,�. (4.5)

Now, we bound the term |||w − wI |||. To do this task, we invoke the definition of |||·||| given
in (3.6), (3.1) and, operating as in the proof of [11, Theorem 4.5] we have

∑

K∈Th

|||w − wI |||2K =
∑

K∈Th

{
aK

(
�K (w − wI ),�

K (w − wI )
)

+SK
(
(w − wI ) − (w − wI ), (w − wI ) − (w − wI )

)}
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≤ C
∑

K∈Th

(
|�K (w − wI )|21,K + SK (w − wI , w − wI )

)

= C
∑

K∈Th

(|w − wI |21,K + hK |w − wI |21,∂K
)
. (4.6)

Let σ be such that 1/2 < σ < r . Using a scaled trace inequality, we get

hK |w − wI |21,∂K ≤ C
(|w − wI |21,K + h2σ |w − wI |21+σ,K

) ≤ Ch2rK |w|21+r ,K .

Using the above estimate in (4.6) and Proposition 4.3, we obtain

|||w − wI ||| =
⎛

⎝
∑

K∈Th

|||w − wI |||2K
⎞

⎠

1/2

≤ C

⎛

⎝
∑

K∈Th

h2rK |w|21+r ,K

⎞

⎠

1/2

≤ Chr |w|1+r ,�.

(4.7)

Similarly, we obtain

|||w − wπ ||| ≤ Chr |w|1+r ,�.

thus, the lemma follows from (4.5)–(4.7) and Lemma 2.2(i). ��
Weconclude the analysis of our paper deriving error estimates for ourmethod. In particular,

we are going to present error estimates for eigenfunctions and eigenvalues. With this aim,
and with Lemma 4.4 at hand we will prove that isolated parts of sp(T ) are approximated by
isolated parts of sp(Th) (see [32]).

Letμ ∈ (0, 1) be an isolated eigenvalue of T withmultiplicitym and let E be its associated
eigenspace. Then, there exist m eigenvalues μ

(1)
h , . . . , μ

(m)
h of Th (repeated according to

their respective multiplicities) which converge to μ. From now and on, let Eh be the discrete
subspace associated to E , corresponding to the direct sum of their corresponding associated
eigenspaces.

We recall the definition of the gap δ̂ between two closed subspaces X and Y of H1(�):

δ̂(X ,Y) := max {δ(X ,Y), δ(Y,X )} , where δ(X ,Y) := sup
x∈X : ‖x‖1,�=1

(

inf
y∈Y ‖x − y‖1,�

)

.

The following error estimates for the approximation of eigenvalues and eigenfunctions hold
true.

Theorem 4.1 There exists a strictly positive constant C such that

δ̂(E, Eh) ≤ Cγh,
∣
∣
∣μ − μ

(i)
h

∣
∣
∣ ≤ Cγh, i = 1, . . . ,m,

where

γh := sup
f ∈E: ‖ f ‖1,�=1

‖(T − Th) f ‖1,� .

Proof As a consequence of Lemma 4.4, Th converges in norm to T as h goes to zero. Then,
the proof follows as a direct consequence of Theorems 7.1 and 7.3 from [5]. ��

The theorem above yields error estimates depending on γh . The next step is to show an
optimal order estimate for this term.
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Theorem 4.2 There exist r ∈ (1/2, 1] and a positive constant C such that

‖(T − Th) f ‖1,� ≤ Chr ‖ f ‖1,� ∀ f ∈ E,

and, consequently,
γh ≤ Chr .

Proof See [40, Theorem 4.2]. ��
The error estimate for the eigenvalue μ ∈ (0, 1) of T leads to an analogous estimate

for the approximation of the eigenvalue λ = 1
μ

− 1 of Problem 1 by means of the discrete

eigenvalues λ
(i)
h := 1

μ
(i)
h

− 1, 1 ≤ i ≤ m, of Problem 3.

We are able to improve the convergence order of Theorem 4.1 for the eigenvalues. The
following result shows in fact that the convergence order is quadratic.

Theorem 4.3 There exist r ∈ (1/2, 1] and a positive constant C such that
∣
∣
∣λ − λ

(i)
h

∣
∣
∣ ≤ Ch2r .

Proof Let uh be such that (λ
(i)
h , uh) is a solution of Problem 3 with ‖uh‖1,� = 1. According

to Theorems 4.1 and 4.2, there exists a solution (λ, u) of Problem 1 such that

‖u − uh‖1,� ≤ Chr . (4.8)

From the symmetry of the bilinear forms and the facts that a(u, v) = λb(u, v) for all
v ∈ H1(�) (cf. Problem 1) and ah(uh, vh) = λ

(i)
h b(uh, vh) for all vh ∈ Vh (cf. Problem 3),

we have

a(u − uh , u − uh) − λb(u − uh , u − uh) = a(uh , uh) − λb(uh , uh)

= [
a(uh , uh) − ah(uh , uh)

] −
(
λ − λ

(i)
h

)
b(uh , uh),

from which we obtain the following identity:
(
λ

(i)
h − λ

)
b(uh, uh) = a(u−uh, u−uh)−λb(u−uh, u−uh)+[ah(uh, uh) − a(uh, uh)] .

(4.9)
The next step is to bound each term on the right hand side above. The first and the second

ones are easily bounded from the continuity of a(·, ·) and b(·, ·), the trace theorem and (4.8)
as follows

|a(u − uh, u − uh)| + λ |b(u − uh, u − uh)| ≤ Ch2r . (4.10)

For the last term on the right hand side of (4.9), we consider uπ ∈ P1(K ) and uI ∈ Vh
such that Lemmas 4.2 and 4.3 hold true, respectively. Now, we add and subtract uπ in the
local bilinear forms aKh (·, ·) and aK (·, ·), using property (3.5) and invoking (4.2), we obtain

|ah(uh , uh) − a(uh , uh)| =
∣
∣
∣
∣
∣
∣

∑

K∈Th
aKh (uh − uπ , uh − uπ ) − aK (uh − uπ , uh − uπ )

∣
∣
∣
∣
∣
∣

≤
∑

K∈Th
|||uh − uπ |||2K +

∑

K∈Th
|uh − uπ |21,K

= |||uh − uπ |||2 + |uh − uπ |21,h
≤ C

(
|||u − uh |||2 + |||u − uπ |||2 + |u − uh |21,h + |u − uπ |21,h

)
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≤ C
(
|||u − uI |||2 + |||uh − uI |||2 + |||u − uπ |||2 + |u − uh |21,h + |u − uπ |21,h

)

≤ C
(
|||u − uI |||2 + |||u − uπ |||2 + ‖u − uI ‖21,� + |u − uπ |21,h + |uh − u|21,�

)
.

Next, the terms on the right hand side above can be bounded repeating the argument used in
the proof of Lemma 4.4 and using the additional regularity result presented in Lemma 2.2(ii).
We get

|ah(uh, uh) − a(uh, uh)| ≤ Ch2r . (4.11)

On the other hand, by virtue of Lemma 3.1 and the fact that λ
(i)
h → λ as h goes to zero,

we know that there exists C > 0 such that

b(uh, uh) = âh(uh, uh)

λ
(i)
h + 1

≥ β ‖uh‖21,�
λ

(i)
h + 1

≥ β

C
> 0.

Finally, the proof follows from (4.9), by using the above estimate together with (4.10) and
(4.11). ��

5 Numerical Experiments

In the present section wewill report some numerical tests in order to asses the performance of
the proposed lowest orderVEMwithmeshes allowing small edges.All the reported numerical
results have been obtained with a MATLAB code. In order to observe the performance and
accuracy of the proposed method, we will consider different computational domains, where
the eigenfunctions, on one hand, can be smooth enough and, on the other, can be singular
due to the non-convex domains.

For all the tests, we will report the computed eigenvalues for different polygonal meshes
and the order of convergence. Our results will be compared with some references and exact
solutions in the cases where it is available. In the cases where it is not possible to have a close
form of the solution, we will present extrapolated values for the eigenvalues (see (5.3)).

5.1 Square Domain: The Sloshing Problem.

We begin with a convex domain. In this case we consider � := (0, 1)2 as computational
domain. We fix �0 on the top of the boundary (representing a free surface) and �1 will be
the rest of the boundary. In Fig. 1, we present the physical configuration of the problem.

For this problem there are analytical solutions of the form

λn = nπ tanh(nπ), un(x, y) = cos(nπx) sinh(nπx), n ∈ N. (5.1)

In Fig. 2, we present plots of the polygonal meshes that we will consider for our tests.
We note that the family of polygonal meshes T 1

h have been obtained by gluing two different
polygonal meshes at y = 0.6. It can be seen that very small edges compared with the element
diameter appears on the interface of the resulting mesh. The second family of polygonal
meshes T 2

h have been obtained from a triangular mesh with an additional point on each edge
as a new degree of freedom which has been moved to a distance h2e from one vertex and
(he − h2e) from the other. We observe that this family satisfy A1 but fail to satisfy the usual
assumption that distance between any two of its vertices is greater than or equal to ChK for
each polygon, since the length of the smallest edge is h2e , while the diameter of the element
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Fig. 1 Sloshing in a square domain

Fig. 2 Sample meshes with small edges. From left to right: T 1
h and T 2

h for N = 4

is bounded above by a multiple of he. The refinement level for the meshes will be denoted
by N , which corresponds to the number of subdivisions in the abscissae.

In Table 1, we report the first six eigenvalues computed with meshes T 1
h and T 2

h . The row
“Order” reports the convergence order of the eigenvalues, computed with respect to the exact
ones obtained with (5.1), which are presented in the row “Exact”.

The order of convergence is clearlyO(h2), which is expectable according to Theorem 4.3
and due the smoothness of the eigenfunctions for this configuration of the problem.Moreover,
the nature of the meshes and the fact that we are allowing small edges for the polygons, does
not affect the order of convergence and no spurious eigenvalues were found.

In the next test, we will study the effects of the stabilization (3.3) in the computation of
the spectrum. We will consider the same physical configuration as in the previous test. Since
the stabilization depends on the size of the element K (see (3.3)), we will compute the first
six eigenvalues for different values hα

K using the family of meshes T 2
h .

We observe from the results of Table 2 that the method converges to the exact eigenvalues
with an optimal quadratic order and no spurious eigenvalues were found for any chosen
stability parameter hα

K . We remark that these results are also valid for other families of
polygonal meshes allowing small edges.

In the following test, we are going to compare the approach presented in this work which
is characterized by the stabilization term (3.3) with a VEM discretization by considering the
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Table 1 Test 1. The lowest computed eigenvalues λ
(i)
h , 1 ≤ i ≤ 6 for different meshes

N λ
(1)
h λ

(2)
h λ

(3)
h λ

(4)
h λ

(5)
h λ

(6)
h

T 1
h

8 3.2422 7.1802 12.5152 19.0595 32.2326 46.9310

16 3.1572 6.4936 10.1363 14.2689 19.0754 24.7519

32 3.1366 6.3347 9.5984 12.9787 16.5158 20.2508

64 3.1316 6.2960 9.4679 12.6686 15.9078 19.1953

Order 2.02 2.04 2.05 2.00 2.12 2.12

Exact 3.1299 6.2831 9.4248 12.5664 15.7080 18.8496

T 2
h

8 3.1820 6.7247 10.9616 16.4556 23.3067 31.7699

16 3.1441 6.4043 9.8511 13.6063 17.7749 22.5294

32 3.1336 6.3135 9.5285 12.8170 16.2084 19.7245

64 3.1308 6.2907 9.4503 12.6275 15.8287 19.0608

Order 1.94 1.96 1.98 2.00 2.00 1.99

Exact 3.1299 6.2831 9.4248 12.5664 15.7080 18.8496

following standard stabilization term (for each polygon K ):

SK∗ (u, v) :=
NK∑

r=1

u(Pr )v(Pr ), u, v ∈ V K , (5.2)

where P1, . . . , PNK are the vertices of K . The analysis of a VEM scheme by considering the
above stabilizer has been presented in [40].

More precisely, the aim of this test is to analyze the influence of the stabilizing bilinear
forms on the computed spectrum, to know whether the quality of the computations can be
affected. With this aim, for any σK > 0, we consider the following scaled stabilizing bilinear
forms σK SK (·, ·) (cf. (3.3)) and σK SK∗ (·, ·) (cf. (5.2)).

In Table 3 we report the three lowest eigenvalues computed for different stability terms
with varying values of σK on a fixed mesh T 2

h with refinement level N = 8. The table also
includes in the last column the three lowest exact eigenvalues. The computed eigenvalues
into boxes correspond to approximations of these physical eigenvalues, whereas the rest
correspond to spurious spectrum.

It can be seen from the Table 3 that the VEM method with the stability term SK∗ (·, ·) (cf.
(5.2)) leads to spurious eigenvalues for somevalues of the parameterσK withmeshes allowing
small edges. Spurious eigenvalues have been also reported in [40, Section 5.2] for thismethod
on more restricted meshes. On the other hand, to compute the three lowest eigenvalues, the
VEMmethod with the stability term SK (·, ·) (cf. (3.3)) do not introduce spurious eigenvalues
for all values of the parameter σK . Moreover, the same behavior has been obtained for family
of meshes T 1

h . This represents an important advantage of the proposed scheme.

5.2 Rotated T Domain

In the following test we will consider a non-convex domain which we call rotated T, and
it is defined by �T := (−0.5, 0.5) × (−0.5, 0) ∪ (−0.25, 0.25) × (0, 1) with boundary
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Table 2 Test 1. The lowest computed eigenvaluesλ
(i)
h , 1 ≤ i ≤ 6 for different hα

K ,α = {1/2, 3/4, 1, 5/4, 3/2}
with meshes T 2

h

hα
K N λ

(1)
h λ

(2)
h λ

(3)
h λ

(4)
h λ

(5)
h λ

(6)
h

h1/2K 8 3.1906 6.8000 11.2387 17.2492 24.8335 34.3717

16 3.1456 6.4174 9.8977 13.7232 18.0174 22.9781

32 3.1338 6.3154 9.5349 12.8325 16.2400 19.7798

64 3.1308 6.2909 9.4511 12.6295 15.8327 19.0678

Order 2.00 2.02 2.04 2.08 2.07 2.06

Exact 3.1299 6.2831 9.4248 12.5664 15.7080 18.8496

h3/4K 8 3.1875 6.7730 11.1386 16.9596 24.2790 33.4292

16 3.1451 6.4133 9.8829 13.6861 17.9400 22.8346

32 3.1337 6.3148 9.5331 12.8282 16.2313 19.7645

64 3.1308 6.2908 9.4509 12.6290 15.8317 19.0662

Order 1.98 2.00 2.02 2.05 2.04 2.03

Exact 3.1299 6.2831 9.4248 12.5664 15.7080 18.8496

hE 8 3.1820 6.7247 10.9616 16.4556 23.3067 31.7699

16 3.1441 6.4043 9.8511 13.6063 17.7749 22.5294

32 3.1336 6.3135 9.5285 12.8170 16.2084 19.7245

64 3.1308 6.2907 9.4503 12.6275 15.8287 19.0608

Order 1.94 1.96 1.98 2.00 2.00 1.99

Exact 3.1299 6.2831 9.4248 12.5664 15.7080 18.8496

h5/4K 8 3.1728 6.6440 10.6696 15.6472 21.7299 29.0670

16 3.1420 6.3861 9.7866 13.4455 17.4448 21.9242

32 3.1332 6.3101 9.5170 12.7889 16.1512 19.6248

64 3.1307 6.2901 9.4483 12.6228 15.8194 19.0444

Order 1.88 1.90 1.91 1.93 1.92 1.91

Exact 3.1299 6.2831 9.4248 12.5664 15.7080 18.8496

h3/2K 8 3.1585 6.5223 10.2377 14.5052 19.4815 25.2098

16 3.1382 6.3532 9.6706 13.1590 16.8635 20.8743

32 3.1323 6.3026 9.4912 12.7263 16.0248 19.4044

64 3.1305 6.2885 9.4430 12.6098 15.7937 18.9992

Order 1.81 1.83 1.83 1.83 1.82 1.81

Exact 3.1299 6.2831 9.4248 12.5664 15.7080 18.8496

condition �0 = ∂�T . This non-convex domain presents two reentrant angles of the same
size ω = 3π

2 (cf. Figure 3), and as a consequence, the eigenfunctions of this problem may
present singularities. More precisely, the Sobolev exponent for the eigenfunctions is 2/3 (cf.
Remark 2.1), so that the eigenfunctions will belong to H1+r (�) for all r < 2/3, but in

general not to H1+ 2
3 (�). Therefore, according to Theorem 4.3, the convergence rate for the

eigenvalues should be |λ − λh | ≈ h4/3.
In Fig. 3, we present the meshes that we will consider for this numerical test. We note that

the families of polygonal meshes T 3
h , T

4
h and T 5

h have been obtained by gluing two different
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Table 3 Test 1. Computed lowest eigenvalues for σK = 4−k with −3 ≤ k ≤ 3 on a fixed mesh T 2
h with

refinement level N = 8

σK = 1/64 σK = 1/16 σK = 1/4 σK = 1 σK = 4 σK = 16 σK = 64 λi

SK∗ (·, ·)
1.128 3.068 3.106 3.149 3.179 3.190 3.193 3.1299

1.847 4.215 6.073 6.442 6.696 6.794 6.821 6.2831

1.875 5.563 8.652 9.928 10.848 11.213 11.318 9.4248

SK (·, ·)
3.080 3.115 3.157 3.182 3.191 3.193 3.194 3.1299

5.837 6.157 6.508 6.725 6.802 6.823 6.829 6.2831

7.721 8.973 10.180 10.962 11.247 11.327 11.347 9.4248

Fig. 3 Sample meshes with small edges. From left to right: T 3
h , T 4

h and T 5
h , for N = 8

polygonal meshes at x = 0. It can be seen that very small edges compared with the element
diameter appears on the interface of the resulting meshes.

In Table 4, we report the computed eigenvalues and the corresponding convergence rates,
the last row, that we called ’Extrap.’, corresponds to extrapolated values obtained with a least
square fitting of the form

λ
(i)
h ≈ λi + Cih

αi , (5.3)

where αi is the approximated rate of convergence of each λi , with i ∈ N.
We observe from Table 4 that for the first Steklov eigenvalue the method converges with

order close to 4/3 which corresponds to the Sobolev regularity for the Steklov problem on
�T (non-convex domain). We also note that the method converges larger orders for the rest
of the Steklov eigenvalues.

In Fig. 4 we present plots for the first four eigenfunctions for the Steklov problem in the
rotated T domain, computed with T 5

h and N = 30.

5.3 L-shaped Domain

In this numerical example, we test the properties of the proposed method on an L-shaped
domain: �L := (0, 1) × (0, 1)\[0.5, 1) × [0.5, 1) with �0 = ∂�L . For this test, we will
adopt a refinement with hanging nodes, which implies to consider once again polygons with
small edges. More precisely, this test is focused to validate the use of refined meshes as a
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Table 4 Test 2. Computed lowest eigenvalues λ
(i)
h , 1 ≤ i ≤ 4, on different polygonal meshes

Th λ
(i)
h N = 16 N = 30 N = 62 N = 130 Order Extrap.

T 3
h λ

(1)
h 0.5196 0.5157 0.5140 0.5134 1.41 0.5130

λ
(2)
h 1.2743 1.2622 1.2570 1.2552 1.48 1.2543

λ
(3)
h 2.5567 2.5263 2.5146 2.5111 1.65 2.5096

λ
(4)
h 3.1923 3.1556 3.1458 3.1437 2.19 3.1432

T 4
h λ

(1)
h 0.5209 0.5163 0.5142 0.5135 1.41 0.5131

λ
(2)
h 1.2793 1.2641 1.2577 1.2555 1.51 1.2545

λ
(3)
h 2.5659 2.5296 2.5158 2.5115 1.66 2.5098

λ
(4)
h 3.2144 3.1616 3.1474 3.1441 2.16 3.1434

T 5
h λ

(1)
h 0.5209 0.5163 0.5142 0.5135 1.41 0.5131

λ
(2)
h 1.2795 1.2641 1.2577 1.2555 1.52 1.2545

λ
(3)
h 2.5663 2.5296 2.5158 2.5115 1.66 2.5098

λ
(4)
h 3.2143 3.1616 3.1474 3.1441 2.16 3.1434

tool to handle solutions with corner singularities. With this purpose, we have considered two
families of meshes, namely: T 6

h (see upper left picture in Fig. 5) and T 6,�
h . The initial uniform

mesh T 6
h has N = 32 elements on each edge and the last one has N = 128 elements on each

edge.
On the other hand, the mesh T 6,�

h is obtained by refining a patch around the re-entrant

corner of �L , starting from an initial uniform quadrilateral mesh T 6,0
h , which corresponds to

the first mesh of T 6
h . The procedure consists in splitting each element which belongs to the

following region:

R� :=
{

(x, y) ∈ R
2 : |x − 1/2| ≤ 6

N
21−� and |y − 1/2| ≤ 6

N
21−�

}

∩ �L � = 1, 2, . . . , �̂,

into three quadrilaterals by connecting the barycenter of the element with the midpoint of
each edge, where �̂ is the number of meshes to refine, with the convention that T 6,0

h := T 6
h

(the initial meshwith N = 32). Note that although this process is initiatedwith a quadrilateral
mesh, the successively created meshes will contain other kind of convex polygons as can be
appreciated in Fig. 5.

Table 5 reports the lowest Steklov eigenvalue computed on an L-shaped domain with the
method analyzed in this paper with different polygonal meshes. The table also includes the
corresponding “Errors” which have been obtained against a reference value “ref.” which
corresponds to extrapolated values obtained with a least square fitting on finer uniform
meshes.

Finally, it can be seen from Table 5 that the reported errors are similar in the last row of
each mesh; however, the dofs in the case of corner-refined meshes are much less than the case
of uniform meshes. Therefore, we conclude that the possibility of using small edges in the
polygons of the mesh, allow us easier refinements near edges and/or corners of the domain
to handle solutions with corner singularities.
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Fig. 4 From top left to bottom right, plots of the first four eigenfunctions for the rotated T domain, computed
with T 5

h

Table 5 Test 3. Numerical
example with an L-shaped
domain. Number of degrees of
freedom, computed lowest
eigenvalue and errors, by using
uniform square meshes and
polygonal meshes with hanging
nodes

Th Dofs λ
(1)
h Error

T 6
h 833 0.78073215782 0.00628166703

3201 0.77689137854 0.00244088775

12545 0.77539520174 0.00094471094

ref. 0.77445049080 –

T 6,0
h 833 0.78073215782 0.00628166703

T 6,1
h 1181 0.77728198716 0.00283149637

T 6,2
h 1529 0.77598279448 0.00153230369

T 6,3
h 1877 0.77548305066 0.00103255987

T 6,4
h 2232 0.77528749982 0.00083700903

ref. 0.77445049080 –
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Fig. 5 Sample meshes: inicial mesh T 6
h with N = 16 (top left), T 6,1

h (top right), T 6,2
h (bottom left) and T 6,3

h
(bottom right)
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