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Abstract
In this paper, we develop two classes of linear high-order conservative numerical schemes
for the nonlinear Schrödinger equation with wave operator. Based on the method of order
reduction in time and the scalar auxiliary variable technique, we transform the original model
into an equivalent system, where the energy is modified as a quadratic form. To construct
linear high-order conservative schemes, we first adopt the extrapolation strategy to derive a
linearized PDE system, which approximates the transformed model with high precision and
inherits the modified energy conservation law. Then we employ the symplectic Runge–Kutta
method in time to arrive at a class of linear high-order energy-preserving schemes. This
numerical strategy presents a paradigm for developing arbitrarily high-order linear structure-
preserving algorithms which could be implemented simply. In order to complement the
new linear schemes, the prediction-correction method is presented to obtain another class
of energy-preserving algorithms. Furthermore, the trigonometric pseudo-spectral method is
applied for the spatial discretization to match the order of accuracy in time. We provide
ample numerical results to confirm the convergence, accuracy and conservation property of
the proposed schemes.
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1 Introduction

In this paper, we are concerned with the following nonlinear Schrödinger equation with wave
operator (NLSW) in a bounded domain as{

∂t t u(x, t) − ∇2u(x, t) + iα∂t u(x, t) + β|u|2u(x, t) = 0 for x ∈ � and 0 < t ≤ T ,

u(x, 0) = u0(x), ∂t u(x, 0) = u1(x) for x ∈ �,

(1.1)
where u(x, t) is a complex function, α, β are real constants and i = √−1. ∇2 = � is the
d-dimensional Laplace operator. � ∈ R

d is a bounded interval (d = 1), rectangle (d = 2) or
cube (d = 3). The NLSW is widely used in many physical fields, such as the nonrelativistic
limit of the Klein-Gordon equation [1–3], the Langmuir wave envelope approximation in
plasma [4,5] and the modulated planar pulse approximation of the sine-Gordon equation for
light bullets [6,7].

An intrinsic property of this equation is energy conservation. Computing the inner product
of Eq. (1.1) with ∂t u(x, t) and then taking the real part, we can derive the energy conservation
law

dE
dt

= 0 with E[u] :=
∫

�

(|∇u(x, t)|2 + |∂t u(x, t)|2 + β

2
|u(x, t)|4) dx. (1.2)

It is well known that the energy conservation property plays an important role in Hamilto-
nian partial differential equations (PDEs). Therefore, a great deal of numerical studies on the
energy-preserving discretization of this equation have been developed in the literatures. Bao
and Cai [8] applied the finite difference method and presented two second-order conserva-
tive schemes for solving the NLSW numerically. The authors in [9] developed a conservative
compact difference scheme for this equation and improved the spatial accuracy to fourth-
order. Guo and Xu [10] utilized a fully-discrete energy-preserving scheme by discretizing the
space with the local discontinuous Galerkin method and the time with the Crank-Nicolson
scheme to simulate the NLSW. Wang et al. [11] addressed this issue with the help of the
orthogonal spline collocation method and the proposed scheme inherited the energy conser-
vation property well. Although the schemes mentioned above are effective, most of them
have only second-order accuracy in time and there are few references considering high-order
energy-preserving schemes for the NLSW.

Over the past decade, numerous high-order energy-preserving methods have been devel-
oped, such as average vector field method [12,13], Hamiltonian boundary value methods
[14], continuous stage Runge–Kutta (RK) method [15,16], time finite element method [17]
etc. These existing methods always require the computation of integrals. More recently,
two energy quadratization strategies, the invariant energy quadratization (IEQ) [18,19] and
the scalar auxiliary variable (SAV) [20–22], are proposed and widely used in gradient flow
models. The essential idea of both approaches is to transform the energy into a quadratic
form by adopting a new variable and the advantage of such a reformulation is that all non-
linear terms could be treated semi-explicitly, which in turn leads to a linear system. The
later approach can be seen as a modification of the former one and overcomes some of its
shortcomings. Most importantly, the SAV systems are calculated just by solving the linear
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equations with constant coefficients in each time level, which is extremely efficient and easy
to implement. As we know, all RK methods preserve arbitrary linear invariants [23], and the
symplectic RK methods preserve arbitrary quadratic invariants [24]. Based on the idea of
energy quadratization, the authors employ a special kind of diagonally implicit RK methods
[25–27] and a special class of RK methods [28–31] to develop high-order energy-preserving
or energy stable numerical schemes. By comparison, one can find that the latter methods
can reach desired high order with the optimal RK stages, which needs fewer internal stage
nodes than the former ones. Unfortunately, these schemes are nonlinear which requires non-
linear iteration in each time step. Linear high-order unconditionally energy stable schemes
are recently presented and analyzed for gradient flow models [32,33] to improve the compu-
tational efficiency. More recently, we have successfully extended their approaches to develop
linear high-order mass-conserving schemes for the generalized nonlinear Schrödinger equa-
tion [34]. However, to the best of our knowledge, there has been no reference considering
linear high-order energy-preserving algorithms for conservative systems.

In this paper, we will address the NLSW issue and strive to develop two classes of linear
high-order energy-preserving schemes for it. More precisely, with the help of the method
of order reduction and the SAV approach, we reformulate the original problem (1.1) by
transforming the energy functional into a quadratic form, which leads to an new equivalent
system with a modified energy conservation law. Based on the extrapolation technique,
we derive a high-precision linearized conservative model to approximate the reformulated
system by using the given numerical solutions up to tn = nτ , where τ is the time step.
Subsequently, the linearized model is discretized in (tn, tn+1] by employing a special kind of
RKmethods, namely,Gauss collocationmethod in timeand the trigonometric pseudo-spectral
method in space to produce a family of linear high-order conservative schemes.Moreover, the
prediction-correction (PC) strategy is utilized to develop another kind of linear PC schemes
to complement the former ones. The resulting fully discrete schemes enjoy the following two
advantages.

(i) These schemes are all linear such that they could be easy to implement and computed
efficiently with the help of fast Fourier or Sine transform.

(ii) These schemes are energy-preserving and can reach arbitrarily high-order of accuracy
spatial-temporally such that relatively large meshes can guarantee the desired accuracy
of numerical solutions.

The rest of this paper is organized as follows. We present an equivalent model refor-
mulation of the NLSW with energy conservation property in Sect. 2. In the next section,
the symplectic RK method is briefly introduced and two classes of semi-discrete arbitrarily
high-order linear energy-preserving schemes are developed. For the spatial discretization,
we apply the high-order trigonometric pseudo-spectral method in Sect. 4 to arrive at fully
discrete schemes, which are still energy-preserving. Numerical tests of convergence, accu-
racy and energy conservation law are given in Sect. 5, followed by some concluding remarks
in Sect. 6.

2 Model Reformulation Using the SAV Approach

In this section, the NLSW is reformulated into an equivalent form by adopting the method
of order reduction and energy quadratization technique. Specifically, we introduce auxiliary
variables and use the SAV approach to transform the energy functional into a quadratic form.
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This strategy not only inherits the modified energy conservation law, but also provides an
elegant platform for the next development of arbitrarily high-order numerical schemes.

Firstly, we introduce an intermediate variable v = ∂t u and utilize the method of order
reduction in time, Eq. (1.1) leads to{

∂t u(x, t) = v(x, t),

∂tv(x, t) = �u(x, t) − iαv(x, t) − β|u|2u(x, t),
(2.1)

and the nonlinear energy functional (1.2) reads

E[u, v] =
∫

�

(|∇u(x, t)|2 + |v(x, t)|2 + β

2
|u(x, t)|4) dx. (2.2)

Invoking to the definition of complex variational derivative in [35], it is readily to derive that

δE
δu

= ∂E
∂u

− ∇ · ( ∂E
∂∇u

) = −�u + β|u|2u and
δE
δu

= ∂E
∂u

− ∇ · ( ∂E
∂∇u

) = −�u + β|u|2u,

where δE
δu and δE

δu denote the variational derivative ofE with respect tou andu (u is the complex
conjugate of u), respectively. Similarly, one has δE

δv
= v and δE

δv
= v. Let � = (u, v)T , Eq.

(2.1) can be rewritten mathematically as a compact form

∂�

∂t
= D δE

δ�
,

whereD =
(

0 1
−1 −iα

)
is a skew-adjointmatrix. From the calculation of complex variational

derivative, we obtain the energy conservation law

dE
dt

= ( δE
δ�

,
∂�

∂t

) + ( δE
δ�

,
∂�

∂t

) = ( δE
δ�

,D δE
δ�

) + ( δE
δ�

,D δE
δ�

)
= ( δE

δ�
,D δE

δ�

) + (D δE
δ�

,
δE
δ�

) = ( δE
δ�

,D δE
δ�

) + ( δE
δ�

,DH δE
δ�

) = 0,

where the relation δE
δ�

= δE
δ�

was used. D and DH are the complex conjugate and conjugate

transpose of the matrixD, respectively. (u, w) := ∫
�
u ·w dx is the continuous inner product

with the corresponding L2-norm ‖u‖L2 := √
(u, u).

Next, we apply the SAV approach to reformulate the system (2.1). Denote

F(u) = 1

2

∫
�

|u(x, t)|4 dx,

and assume that F(u) is bounded from below, i.e., F(u) ≥ −C0. In the SAV approach, a
scalar auxiliary variable r(t) := √

F(u) + C0 is introduced and

rt = 1

2
√
F(u) + C0

∫
�

(|u|2uut + |u|2uut
)
dx = ( |u|2

2
√
F(u) + C0

, uut + uut
)
.

The energy functional (2.2) is then rewritten as

E[u, v, r ] =
∫

�

(|∇u(x, t)|2 + |v(x, t)|2) dx + β(r2 − C0),
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which is a quadratic functional with respect to the new variables. Resorting to energy varia-
tional, Eq. (2.1) can be reformulated into the following equivalent form⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = v,

vt = �u − iαv − βr√
F(u) + C0

|u|2u,

rt = ( |u|2
2
√
F(u) + C0

, uut + uut
)
,

(2.3)

with consistent initial conditions

u(x, 0) = u0(x), v(x, 0) = u1(x), r(0) =
√∫

�

1

2
|u0(x)|4 dx + C0 for x ∈ �.

Always, we can verify that the reformulated system (2.3) preserves a similar quadratic
energy conservation law described below.

Theorem 2.1 The SAV system (2.3) satisfies the following energy conservation law

dE[u, v, r ]
dt

= 0,

where the energy functional E[u, v, r ] = ‖∇u‖2
L2 + ‖v‖2

L2 + β(r2 − C0).

Proof In terms of the first and third equations in (2.3), we apply the complex variational
derivative again and obtain

dE

dt
= ( δE

δu
, ut

) + ( δE

δu
, ut

) + ( δE

δv
, vt

) + ( δE

δv
, vt

) + ( δE

δr
, rt

)
= (−�u, ut ) + (−�u, ut ) + (v, vt ) + (v, vt ) + ( βr√

F(u) + C0
|u|2u, ut

) + ( βr√
F(u) + C0

|u|2u, ut
)

= ( − �u + vt + βr√
F(u) + C0

|u|2u, v
) + ( − �u + vt + βr√

F(u) + C0
|u|2u, v

)
.

Substituting the second relation in (2.3) into the above equality on the right-hand side, one
easily derives the claimed result and completes the proof of Theorem 2.1. �	

3 Linear High-Order Energy-Preserving Schemes

Based on the extrapolation technique, a linear SAV system is derived for the reformulated
model (2.3). Note that it still retains the energy conservation law. Then, we introduce sym-
plectic Runge–Kutta method to discretize this linear system in time for arbitrarily high-order
accuracy, and develop a class of linear semi-discrete SRK schemes, named LSAV-SRK
scheme. In order to improve the accuracy and stability, we employ the prediction-correction
method and present a family of linear semi-discrete SRK-PC schemes. New schemes are
proved to inherit the corresponding energy conservation law.

3.1 Symplectic Runge–Kutta Method

The Runge–Kutta method discretizes an initial value problem for a general ODE model:

y′ = f (t, y), t ∈ (0, T ], y(0) = y0.
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For a given approximation yn of the nodal value y(tn), we utilize the general s-stage Runge–
Kutta method to deduce yn+1 as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kni = f (tn,i , y
n + τ

s∑
j=1

ai j k
n
j ), i = 1, . . . , s,

yn+1 = yn + τ

s∑
i=1

bi k
n
i ,

where bi , ci , ai j (i, j = 1, . . . , s) are RK coefficients and satisfy ci = ∑s
j=1 ai j , tn,i :=

tn + ciτ are the internal RK stage nodes. The RK coefficients are usually displayed by a
Butcher table

c A
bT

=
c1 a11 · · · a1s
...

...
. . .

...

cs as1 · · · ass
b1 · · · bs

,

where A ∈ R
s,s , b ∈ R

s and c = A1 with 1 = (1, 1, . . . , 1)T ∈ R
s .

Definition 3.1 [36] If the coefficients of the RK method satisfy the following relationship

biai j + b ja ji − bib j = 0, (3.1)

then this method is symplectic.

Furthermore, if the RK coefficients c1, . . . , cs are chosen as the Gaussian quadrature
nodes, i.e., the zeros of the s-th shifted Legendre polynomial ds

dxs
(
xs(x − 1)s

)
, it yields a

special class of RK methods named Gauss collocation methods. In [37, Theroem 1.5], the
authors have proved that the Gauss collocation method has the same order 2s as the Gaussian
quadrature formula. In this paper, we focus on the 2-stage and 3-stage Gauss methods with
the RK coefficients

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

and

1
2 −

√
15
10

5
36

2
9 −

√
15
15

5
36 −

√
15
30

1
2

5
36 +

√
15
24

2
9

5
36 −

√
15
24

1
2 +

√
15
10

5
36 +

√
15
30

2
9 +

√
15
15

5
36

5
18

4
9

5
18

,

respectively. For more details about the higher order Gauss method, we refer the readers to
[37].

3.2 Linear SAV-SRK Schemes

Assume that the solutions of u up to tn have been given. We choose the time nodes and
internal stage nodes tm , tm,i (m < n) and tn as the interpolation points to construct N -th
order Lagrange interpolation polynomial uN (t, x, y), which approximates to u(t, x, y) in
time. Subsequently, the SAV system (2.3) in (tn, tn+1] is approximated by the following
linearized conservative system
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = v,

vt = �u − iαv − βr√
F(uN ) + C0

|uN |2uN ,

rt = ( |uN |2
2
√
F(uN ) + C0

, uNut + uNut
)
.

(3.2)

Recalling the proof of Theorem 2.1, it is readily to prove that this linearized system (3.2)
also satisfies the energy conservation law, namely

dE

dt
= ( − �u + vt + βr√

F(uN ) + C0
|uN |2uN , v

) + ( − �u + vt + βr√
F(uN ) + C0

|uN |2uN , v
) = 0.

Applying the s-stage symplectic RK method mentioned above for system (3.2), one has
the following semi-discrete s-stage LSAV-SRK scheme.

Scheme 1 (semi-discrete s-stage LSAV-SRK scheme). Let bi , ai j (i, j = 1, . . . , s) and
ci = ∑s

j=1 ai j be symplectic RK coefficients and τ is the time-step. For given Un, V n, Rn

and UN (t), the following intermediate values are first calculated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un
i = Un + τ

s∑
j=1

ai j K
n
j , Kn

i = V n
i ,

V n
i = V n + τ

s∑
j=1

ai j L
n
j , Ln

i = �Un
i − iαV n

i − βRn
i√

F(Un,∗
i ) + C0

|Un,∗
i |2Un,∗

i ,

Rn
i = Rn + τ

s∑
j=1

ai j M
n
j , Mn

i = ( |Un,∗
i |2

2
√
F(Un,∗

i ) + C0

,Un,∗
i · Kn

i +U
n,∗
i · Kn

i

)
,

(3.3)
where Un,∗

i = UN (tn,i ). Then the numerical solutions Un+1, V n+1 and Rn+1 are updated
by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un+1 = Un + τ

s∑
i=1

bi K
n
i ,

V n+1 = V n + τ

s∑
i=1

bi L
n
i ,

Rn+1 = Rn + τ

s∑
i=1

bi M
n
i .

(3.4)

The next theorem shows that the semi-discrete LSAV-SRK methods still maintain the
energy conservation law.

Theorem 3.1 The semi-discrete LSAV-SRK scheme (3.3)-(3.4) preserve the energy at the
discrete time level, that is,

En+1 = En,

where En = ‖∇Un‖2
L2 + ‖V n‖2

L2 + β
(
(Rn)2 − C0

)
.
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Proof From the first equation of (3.4), we obtain

∇Un+1 = ∇Un + τ

s∑
i=1

bi∇Kn
i .

Taking the square of L2-norm on both sides of the above equality, it is readily to check

‖∇Un+1‖2
L2

= ‖∇Un‖2
L2

+ τ

s∑
i=1

bi
((∇Kn

i ,∇Un) + (∇Un , ∇Kn
i
)) + τ2

s∑
i, j=1

bi b j
(∇Kn

i , ∇Kn
j
)
.

The first relation of the first row of (3.3) yields ∇Un = ∇Un
i − τ

∑s
j=1 ai j∇Kn

j . Plugging
it into the second term on the right-hand side of the last equality, one has

‖∇Un+1‖2
L2

=‖∇Un‖2
L2

+ τ

s∑
i=1

bi
((∇Kn

i ,∇Un
i
) + (∇Un

i , ∇Kn
i
)) − τ2

s∑
i, j=1

	i j
(∇Kn

i , ∇Kn
j
)
,

where 	i j = biai j + b ja ji − bib j . The relationship of RK coefficients in Lemma 3.1 leads
to

‖∇Un+1‖2L2 = ‖∇Un‖2L2 + τ

s∑
i=1

bi
(∇Kn

i ,∇Un
i

) + τ

s∑
i=1

bi
(∇Un

i ,∇Kn
i

)
.

Similarly, the second and third equations of (3.4) imply that

‖V n+1‖2L2 = ‖V n‖2L2 + τ

s∑
i=1

bi
(
Ln
i , V

n
i

) + τ

s∑
i=1

bi
(
V n
i , Ln

i

)
,

(Rn+1)2 = (Rn)2 + 2τ
s∑

i=1

bi M
n
i R

n
i .

Multiplying the last equality by β and adding these three results together, we apply the first
and third relations of the second column of (3.3) to obtain

En+1 =En + τ

s∑
i=1

bi
(
V n
i ,−�Un

i + Ln
i + βRn

i√
F(Un,∗

i ) + C0

|Un,∗
i |2Un,∗

i

)

+ τ

s∑
i=1

bi
( − �Un

i + Ln
i + βRn

i√
F(Un,∗

i ) + C0

|Un,∗
i |2Un,∗

i , V n
i

)
.

Replacing Ln
i by the middle equality of the second column of (3.3), we arrive at the final

result and complete the proof of Theorem 3.1. �	
Remark 1 Note that Un,∗

i of Scheme 1 is the approximation of U (tn,i ). Theoretically, we
can choose tm , tm,i (m < n) and tn as the interpolation points to obtain the Lagrange
polynomial UN (t). However, too many interpolation points will lead to high oscillations for
the interpolation polynomial and make UN (tn,i ) an inaccurate extrapolation for U (tn,i ). In
the following calculations, we consider two different scenarios (denoted as Cases I and II):

I. interpolation points are determined by the internal RK stage nodes tn−1,i (i = 1, . . . , s),
II. interpolation points are determined by the above stage nodes as well as the time node

tn−1.
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Table 1 Coefficients of the
interpolation polynomials with
s = 2

tn,1 tn,2

I II I II

tn−1 ∗ 6 − 2
√
3 ∗ 6 + 2

√
3

tn−1,1 1 − √
3 1 − 3

√
3 −√

3 −6 − 5
√
3

tn−1,2
√
3 5

√
3-6 1 + √

3 1 + 3
√
3

Taking the 2-stage Gauss method for example, we utilize the interpolation points
(tn−1,1,U

n−1
1 ) and (tn−1,2,U

n−1
2 ) to derive the corresponding interpolation polynomial of

Case I as

UN (tn,i) = ci − c2 + 1

c1 − c2
Un−1
1 + ci − c1 + 1

c2 − c1
Un−1
2 for i = 1, 2,

where c1 = 1
2 −

√
3
6 and c2 = 1

2 +
√
3
6 . Then one has

UN (tn,1) = (1 − √
3)Un−1

1 + √
3Un−1

2 and UN (tn,2) = −√
3Un−1

1 + (1 + √
3)Un−1

2 .

The interpolation polynomials of Case II and 3-stage Gauss method can be obtained in the
same spirit. For convenience, we list the coefficients of interpolation polynomials for the
2-stage and 3-stage Gauss collocation methods in Tables 1 and 2, respectively.

3.3 Linear SAV-SRK-PC Schemes

To improve the accuracy as well as the stability of the schemes proposed above, we employ
the prediction-correction technique [31,38,39] to develop the following semi-discrete LSAV-
SRK-PC scheme for the linearized system (3.2).

Prediction 1 Let λ and � be iteration variable and iteration step, respectively. For given
Un, V n, Rn and UN (tn,i ), RN (tn,i ) (i = 1, . . . , s), we set Un(0)

i = UN (tn,i ) and Rn(0)
i =

RN (tn,i ), then compute U
n(λ+1)
i , V n(λ+1)

i , Kn(λ+1)
i , Ln(λ+1)

i and Mn(λ+1)
i , Rn(λ+1)

i from λ =
0 to � − 1 by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un(λ+1)
i = Un + τ

s∑
j=1

ai j K
n(λ+1)
j , Kn(λ+1)

i = Vn(λ+1)
i ,

Vn(λ+1)
i = Vn + τ

s∑
j=1

ai j L
n(λ+1)
j , Ln(λ+1)

i = �Un(λ+1)
i − iαVn(λ+1)

i − βRn(λ)
i |Un(λ)

i |2√
F(Un(λ)

i ) + C0

Un(λ)
i ,

Mn(λ+1)
i =

⎛
⎝ |Un(λ+1)

i |2

2
√
F(Un(λ+1)

i ) + C0

,Un(λ+1)
i · Kn(λ+1)

i +U
n(λ+1)
i · Kn(λ+1)

i

⎞
⎠ ,

Rn(λ+1)
i = Rn + τ

s∑
j=1

ai j M
n(λ+1)
j .

For a given error tolerance T OL > 0, if max
1≤i≤s

‖Un(λ+1)
i −Un(λ)

i ‖∞ < T OL, we terminate

the iteration procedure and set Un,∗
i = Un(λ+1)

i ; otherwise, we set Un,∗
i = Un(�)

i .

123



20 Page 10 of 25 Journal of Scientific Computing (2021) 88 :20

Ta
bl
e
2

C
oe
ffi
ci
en
ts
of

th
e
in
te
rp
ol
at
io
n
po

ly
no

m
ia
ls
w
ith

s
=

3

t n
,1

t n
,2

t n
,3

I
II

I
II

I
II

t n
−1

∗
6√ 15

−
26

∗
−1

7
∗

−6
√ 15

−
26

t n
−1

,1
13

/
3

−
√ 15

11
−

5√ 15
/3

(1
0

−
√ 15

)/
3

(5
√ 15

+
35

)/
2

(1
0+

√ 15
)/
3

29
√ 15

/
3

+
40

t n
−1

,2
(4

√ 15
−

20
)/
3

16
√ 15

/
3

−
24

−1
7/
3

−1
7

-(
20

+
4√ 15

)/
3

−1
6√ 15

/
3

−
24

t n
−1

,3
(1
0

−
√ 15

)/
3

40
−

29
√ 15

/3
(1
0

+
√ 15

)/
3

(3
5

−
5√ 15

)/
2

√ 15
+

13
/
3

5√ 15
/
3

+
11

123



Journal of Scientific Computing (2021) 88 :20 Page 11 of 25 20

Correction 1 In terms of the prediction value Un,∗
i , we apply Scheme 1 to update the numer-

ical solutions Un+1, V n+1 and Rn+1.

Actually, LSAV-SRK schemes are the special cases of LSAV-SRK-PC schemes with the
iteration step � = 0. We can also obtain the energy conservation law of this PC method
below.

Theorem 3.2 The semi-discrete LSAV-SRK-PC scheme preserves the energy at the discrete
time level, where En = ‖∇Un‖2

L2 + ‖V n‖2
L2 + β

(
(Rn)2 − C0

)
.

Proof As can be seen, the prediction procedure provides a general way to calculate the value
ofUn,∗

i and the correction procedure is the key to energy conservation. Based onCorrection 1
and the proof of Theorem 4.1, one can demonstrate the energy conservation property in the
same spirit. �	

4 Spatial Discretization

The boundary conditions of Eq. (1.1) are often set to be homogenous or periodic. In order to
make the spatial accuracy compatible with the high-order accuracy in time as well as compute
efficiently, we adopt the Sine or Fourier pseudo-spectral methods for spatial discretization,
which is shown to preserve the fully discrete energy conservation law.

For simplicity of notations, we here derive the sine spectral differentiation matrix (SSDM)
on the interval � = [a, b] in 1D, as extensions to higher dimensions are straightforward. For
a positive integer H , we denote the spatial mesh size h := (b − a)/H . Then the spatial grid
points are given by �h = {x j |x j = a + jh, 0 ≤ j ≤ H}. Define

SH := span
{
sin

(
μ�(x − a)

) : μ� = π�

b − a
, � = 1, 2, . . . , H − 1

}
.

Let IH be the trigonometric interpolation operator onto SH , that is,

(IHu)(x) :=
H−1∑
�=1

ũ� sin
(
μ�(x − a)

)
, (4.1)

with the corresponding coefficient

ũ� := 2

H

H−1∑
j=1

u j sin
(
μ�(x j − a)

)
, (4.2)

where u j is interpreted as u(x j ). Substituting (4.2) into (4.1), one has

(IHu)(x) =
H−1∑
j=1

u jX j (x),

where the interpolation basis function X j (x) := 2
H

∑H−1
�=1 sin

(
μ�(x j −a)

)
sin

(
μ�(x −a)

)
.

To obtain the SSDM for the approximation of Laplacian operator, we differentiate X j (x)
two times, then evaluate the resulting expressions of X′′

j (x) at the collocation points xk . As
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a result, we derive the second-order SSDM S2 with the elements given by [40]

(S2) j,k =

⎧⎪⎪⎨
⎪⎪⎩

(−1) j+k+1 π2

2(b − a)2

[
csc2

(h
2
(μ j − μk)

) − csc2
(h
2
(μ j + μk)

)]
, j 
= k,

π2

6(b − a)2

(
3 csc2(μ j h) − 2H2 − 1

)
, j = k.

Moreover, from [40, Lemma 3.1], one has the following decomposition property

S2 = STH�xSH ,

where SH is the discrete Sine transform matrix with elements (SH ) j,k =
√

2
H sin jkπ

H , STH is

the transpose of SH . λS2, j = −(
jπ
b−a )2 ( j = 1, 2, . . . , H − 1) are the eigenvalues of S2 and

�x = diag(λS2,1, λS2,2, . . . , λS2,H−1). It is noteworthy that we can develop fast algorithm
by incorporating the decomposition.

Denote Vh = {U = (U0,U1, . . . ,UH )T | U0 = UH = 0} is the space of gird functions
on �h . For any U,V ∈ Vh , we define the discrete inner product

〈U,V〉 := h
H−1∑
j=1

UjVj ,

and the associated l2-norm ‖U‖ := √〈U,U〉. In addition, we also denote the componentwise
product of vectors as U · V = (U1V1,U2V2, . . . ,UH−1VH−1)

T . Applying the Sine pseudo-
spectral method to Scheme 1 in space, we obtain the following fully-discrete s-stage LSAV-
SRK scheme.

Scheme 2 (fully discrete s-stage LSAV-SRK scheme) Let bi , ai j (i, j = 1, . . . , s) and
ci = ∑s

j=1 ai j be symplectic RK coefficients and τ is the time-step. For Un,Vn ∈ Vh and
Rn, UN (t), the following intermediate values are first calculated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un
i = Un + τ

s∑
j=1

ai jKn
j , Kn

i = Vn
i ,

Vn
i = Vn + τ

s∑
j=1

ai jLn
j , Ln

i = S2Un
i − iαVn

i − βRn
i√

F(Un,∗
i ) + C0

|Un,∗
i |2Un,∗

i ,

Rn
i = Rn + τ

s∑
j=1

ai j M
n
j , Mn

i = 〈 |Un,∗
i |2

2
√
F(Un,∗

i ) + C0

,Un,∗
i · Kn

i + U
n,∗
i · Kn

i

〉
,

(4.3)

where Un,∗
i = UN (tn,i ). Then the numerical solutions Un+1,Vn+1 and Rn+1 are updated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un+1 = Un + τ

s∑
i=1

biKn
i ,

Vn+1 = Vn + τ

s∑
i=1

biLn
i ,

Rn+1 = Rn + τ

s∑
i=1

bi M
n
i .

(4.4)
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Remark 2 It is not difficult to find (4.3) is a system of linear equations with respect to the
variables Un

i ,V
n
i , R

n
i ,Kn

i ,L
n
i , M

n
i . This implies that Scheme 2 is linear-implicit and we can

use the fast sine transform to solve it efficiently.

Theorem 4.1 The fully discrete LSAV-SRK scheme (4.3)-(4.4) inherit the following energy
conservation law

En+1
h = En

h ,

where En
h = ‖∇hUn‖2 + ‖Vn‖2 + β

(
(Rn)2 −C0

)
and ‖∇hU‖ = √〈U,−S2U〉 for U ∈ Vh.

Proof From the first equation of (4.4), we obtain

−S2Un+1 = −S2Un − τ

s∑
i=1

biS2Kn
i .

Taking the discrete inner product with Un+1, it is readily to check

‖∇hU
n+1‖2 = 〈

Un + τ

s∑
i=1

biK
n
i , −S2U

n − τ

s∑
i=1

biS2K
n
i
〉

= ‖∇hU
n‖2 − τ

s∑
i=1

bi
〈
Un
i , S2K

n
i
〉 − τ

s∑
i=1

bi
〈
Kn
i , S2U

n
i
〉 − τ2

s∑
i, j=1

	i j
〈
Kn
i , S2K

n
j
〉

= ‖∇hU
n‖2 − τ

s∑
i=1

bi
〈
Un
i , S2K

n
i
〉 − τ

s∑
i=1

bi
〈
Kn
i , S2U

n
i
〉
,

where the first relation of the first row of (4.3) and the relationship of RK coefficients in
Lemma 3.1 were used. Similarly, the second and third equations of (4.4) yield

‖Vn+1‖2 = ‖Vn‖2 + τ

s∑
i=1

bi
〈
Ln
i ,V

n
i

〉 + τ

s∑
i=1

bi
〈
Vn
i ,L

n
i

〉
,

(Rn+1)2 = (Rn)2 + 2τ
s∑

i=1

bi M
n
i R

n
i .

Multiplying the last equality by β and adding these three results together, we apply the first
and third relations of the second column of (4.3) to find

En+1
h = En

h + τ

s∑
i=1

bi
〈
Vn
i ,−S2Un

i + Ln
i + βRn

i√
F(Un,∗

i ) + C0

|Un,∗
i |2Un,∗

i

〉

+ τ

s∑
i=1

bi
〈 − S2Un

i + Ln
i + βRn

i√
F(Un,∗

i ) + C0

|Un,∗
i |2Un,∗

i ,Vn
i

〉
.

Replacing Ln
i by the middle equality of the second column of (4.3), we arrive at the final

result and complete the proof of Theorem 4.1. �	

Analogously, one has the fully discrete s-stage LSAV-SRK-PC scheme and its energy
conservation law.
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Prediction 2 Let λ and � be iteration variable and iteration step, respectively. For given
Un,Vn, Rn and UN (tn,i ), RN (tn,i ) (i = 1, . . . , s), we set Un(0)

i = UN (tn,i ) and Rn(0)
i =

RN (tn,i ), then computeU
n(λ+1)
i ,Vn(λ+1)

i ,Kn(λ+1)
i ,Ln(λ+1)

i and Mn(λ+1)
i , Rn(λ+1)

i fromλ = 0
to � − 1 by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un(λ+1)
i = Un + τ

s∑
j=1

ai jK
n(λ+1)
j , Kn(λ+1)

i = Vn(λ+1)
i ,

Vn(λ+1)
i = Vn + τ

s∑
j=1

ai jL
n(λ+1)
j , Ln(λ+1)

i = S2U
n(λ+1)
i − iαVn(λ+1)

i − βRn(λ)
i |Un(λ)

i |2√
F(Un(λ)

i ) + C0

Un(λ)
i ,

Mn(λ+1)
i = 〈 |Un(λ+1)

i |2

2
√
F(Un(λ+1)

i ) + C0

,Un(λ+1)
i · Kn(λ+1)

i + U
n(λ+1)
i · Kn(λ+1)

i

〉
,

Rn(λ+1)
i = Rn + τ

s∑
j=1

ai j M
n(λ+1)
j .

For a given error tolerance T OL > 0, if max
1≤i≤s

‖Un(λ+1)
i − Un(λ)

i ‖∞ < T OL, we terminate

the iteration procedure and set Un,∗
i = Un(λ+1)

i ; otherwise, we set Un,∗
i = Un(�)

i .

Correction 2 In terms of the prediction value Un,∗
i , we apply Scheme 2 to update the numer-

ical solutions Un+1,Vn+1 and Rn+1.

Theorem 4.2 The fully discrete LSAV-SRK-PC scheme inherits the energy conservation law,
where En

h = ‖∇hUn‖2 + ‖Vn‖2 + β
(
(Rn)2 − C0

)
.

Proof It is similar to the proof of Theorems 3.2 and 4.1, so it is omitted. �	
Remark 3 The prediction system of PC method is also linear with constant coefficients and
we can still use the fast algorithm to solve it.

Remark 4 If the boundary conditions are set to be periodic, we shall use the Fourier spectral
differentiation matrix and fast Fourier transform for spatial discretization and computations,
respectively. More details are referred to [41].

Remark 5 The invariant energy quadratization (IEQ) approach can also be employed to
reformulate the original system (2.1) and the corresponding LIEQ-SRK schemes and LIEQ-
SRK-PC schemes can be developed in the same spirit. We omit the details here to save space
but give some numerical results in the next section.

5 Numerical Examples

In this section, a collection of numerical tests are reported to show the convergence, accuracy
and energy conservation law of the proposed schemes. Moreover, we always set T OL =
1e − 12 in the prediction-correction calculations without further declaration.

Example 1 The problem (1.1) in 1D with the periodic boundary conditions are considered.
We choose the parameter values α = 1 and β = −2 to test the convergence orders. The exact
solution is u(x, t) = Asech(J x) exp(iθ t), where A = |J | and θ = 1

2 (−1 ± √
1 − 4J 2).
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Table 3 Spatial errors of the LSAV schemes of Example 1

SRK (s = 2) SRK-PC (s = 2) SRK-PC (s = 3)

h I II I II I II

1/2 2.89e-14 1.46e-14 1.46e-14 1.46e-14 1.46e-14 1.46e-14

1/4 2.64e-14 1.09e-14 1.09e-14 1.09e-14 1.09e-14 1.09e-14

(a) (b) (c)

Fig. 1 Temporal convergence rates of various linear SRK schemes of Example 1

Define the discrete maximum norm solution error e(τ, h) = ‖UN − u(tN )‖∞. The con-
vergence rate in time is computed by

Order ≈ log2
(
e(τ, h)/e(τ/2, h)

)
.

In computations, we set J = 1
4 and θ = − 1

4 (2+√
3), then investigate the spatial and temporal

orders separately on the interval � = [−128, 128] until T = 1. The spatial accuracy is
checked by fixing a sufficiently small τ = 1e − 06 to avoid contamination of the temporal
error. Solution errors of the fully-discrete LSAV schemes (LSAV-SRK and LSAV-SRK-PC)
in different scenarios are drawn in Table 3, where the spatial errors are very small and
almost negligible. It indicates that the Fourier pseudo-spectral method is of arbitrary order
of accuracy for the sufficiently smooth problem.

The temporal accuracy is examined on the halving time-steps with the space size h =
1/4. The solution errors of various numerical schemes are calculated and summarized in
Fig. 1. Since the interpolation polynomials with degree k has (k + 1)th-order accuracy, the
LSAV-SRK schemes with s = 2 reach second- and third-order accuracy in Cases I and
II, respectively, see Fig. 1a. In order to test the validity and capability of the prediction-
correction strategy, we use a one-step (� = 1) prediction iteration and adopt the LSAV-
SRK-PC schemes with s = 2 to address this issue. Relevant results are drawn in Fig. 1b.
Observation from Fig. 1b shows that both two cases reach fourth-order accuracy which is
beyond our expectations. In our numerical experience, one-step prediction iteration normally
improve the accuracy by one order. However, it may have better results on this issue. We
next choose this PC schemes with s = 3 and further test the convergence rates in Fig. 1c. We
are pleased to find that the results are consistent with our conjecture, i.e., the LSAV-SRK-PC
schemes with s = 3 have fifth- and sixth-order accuracy in Cases I and II, respectively.
Numerical results of the IEQ approach are also tested and similar conclusion can be drawn.

Example 2 Weconsider another example ofNLSW in 2D subject to the homogeneousDirich-
let boundary conditions on the domain � = [−4, 4]2 with the parameter values α = β = 1.
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Table 4 Spatial errors of the LSAV schemes of Example 2

SRK (s = 2) SRK-PC (s = 2) SRK-PC (s = 3)

h I II I II I II

1/2 1.85e-12 1.36e-14 1.35e-14 1.35e-14 1.38e-14 1.38e-14

1/4 1.20e-12 5.10e-14 5.07e-14 5.07e-14 5.12e-14 5.12e-14

(a) (b) (c)

Fig. 2 Temporal convergence rates of various linear SRK schemes of Example 2

To better check the errors and orders for mesh refinement tests, an exact solution

u(x, y, t) = sin(πx) sin(π y) exp(−√
2π it)

is constructed by adding a nonhomogeneous term f (x, y)u = (
√
2π + sin2(πx) sin2(π y))u

on the right-hand side of Eq. (1.1).

Always, we set T = 1 and take the time-step τ = 1e − 06 and the same space size
h = hx = hy = 1/4 to test the errors and orders in space and time, respectively. Table 4
confirms that, for the sufficiently smooth problem, the Sine pseudo-spectral method can reach
arbitrarily high-order accuracy in space. Temporal orders of various linear RK schemes in two
different scenarios are plotted in Fig. 2. Numerical results in three subfigures again witness
the conclusion in Example 1, i.e., a one-step prediction-correction strategy achieves great
performance for the NLSW and improves the temporal accuracy by two orders.

To better illustrate the advantages of PC strategy,we apply the nonlinear SAV-SRK(NSAV-
SRK) schemes aswell as the fixed-point iterationmethod to solve the problems in Examples 1
and 2 with the same parameters h = 1/4 and T OL = 1e− 12. Solution errors, convergence
orders and the minimum iteration steps are recorded in Table 5. It is readily to see that the
iteration steps decrease as the time-step halves. Compared with the results of LSAV-SRK-PC
schemes in Figs. 1 and 2, we find the nonlinear schemes have almost the same errors, but
need more iterations to reach the desired order. It again confirms the effectiveness of PC
strategy.

On the other hand, conservation property is verified with τ = h = 1/8 when the running
time hits T = 10. Energy errors of linear SRK schemes in different cases are shown in Fig. 3.
Numerical results state clearly that the discrete energy of all schemes conserves well during
a long period of time, which are in agreement with the continuous case.

Example 3 We choose another 2D problem and simulate the dynamics of the solutions on the
domain � = [−32, 32]2 with the parameter values α = β = 1. The initial conditions are

u0(x, y) = (1 + i)(x + y) exp(−10(1 − x − y)2), u1(x, y) = 0.
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(a) (b) (c)

Fig. 3 Energy errors of various linear SRK schemes of Example 2

Here, we use the zero Dirichlet boundary conditions as before.

We take h = τ = 1/20 and display the simulation results of LSAV-SRK-PC schemes
with s = 2 in Case I. The movement contour figures of soliton |u| at t = 0, 5, 10 are shown
on the left-hand side of Fig. 4. On the other part, we give the section views when x = y in the
domain [−15, 15] to illustrate the effectiveness and stability of this scheme. Due to the high
resolution and energy-preserving, we use less meshes to capture the oscillation precisely,
which indicates that this scheme is stable and do not occur blow-up. Numerical results of
other linear SRK schemes are the same, which are omitted here for brevity. All these results
show that the proposed schemes work well in a given large steps for the long time simulations
of NLSW.

Example 4 Lastly, we strive to compute theNLSWwith a perturbation strength. This equation
in 1D is described by a dimensionless parameter ε ∈ (0, 1] as

{
ε2∂t t u

ε(x, t) − ∂xx u
ε(x, t) + iα∂t u

ε(x, t) + β|uε |2uε(x, t) = 0 for x ∈ � and 0 < t ≤ T ,

uε(x, 0) = u0(x), ∂t u
ε(x, 0) = uε

1(x) for x ∈ �.

As ε → 0+, it collapses to the standard nonlinear Schrödinger equation (NLS). In the small
perturbation parameter regime, i.e., 0 < ε � 1, highly oscillations arise in time with O(ε2)-
wavelength [8]. Here, the boundary conditions are also set to be homogenous and the initial
data uε

1 is assumed to satisfy the following condition

uε
1(x) = u1(x) + εγ ωε(x) = i

α

( − ∂xxu0(x) + β|u0(x)|2u0(x)
) + εγ ωε(x),

where ‖ωε‖H2 is uniformly boundedwith lim infε→0+ ‖ωε‖H2 > 0 and γ ≥ 0 is a parameter
describing the consistency of the initial data about NLS. Moreover, the initial data can be
classified into well-prepared (γ ≥ 2) and ill-prepared (0 ≤ γ < 2) cases.

In the practical computations, we set the parameter values α = −1, β = 1 and � =
[−16, 16]. The initial data u0(x) = π−1/4e−x2/2 and ωε(x) = e−x2/2. Due to the analytical
solution is not available, we estimate the experimental temporal order by assuming that
u(T ) −UN ≈ Cuτ

β and compute the order β by

Order ≈ log2
(‖UN −U 2N‖∞/‖U 2N −U 4N‖∞

)
.

We still choose h = 1/4 to ignore the spatial error and show the temporal rates of LSAV
schemes with different γ in Tables 6- 8. According to the error estimates in [8], one knows
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Fig. 4 Contour figures of the soliton |u| (left) and section views figures (right) at different times of Example 3

that the temporal order is O(τβ/ε2). The upper parts of Tables 6 and 7 list the errors and
orders of the SRK schemes with s = 2 in Case I. We take different ε and τ with ε = O(τ )

and observe that this scheme is of second-order accuracy no matter in well-prepared case
(γ = 2) or in ill-prepared case (γ = 0). When the mesh strategy is adjusted to ε = O(τ 2)

and ε = O(τ 3), the SRK-PC schemes with s = 2 in Case I and the SRK-PC schemes with
s = 3 in Case II reach fourth- and sixth-order accuracy, respectively, see the middle and
lower parts of Tables 6 and 7. In Table 8, the SRK schemes with s = 2 in Case II and the
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Fig. 5 Profiles of the solution |u| with different γ and ε of Example 4

SRK-PC schemes with s = 3 in Case I are applied to examine the temporal rates combined
with the mesh strategies ε = O(τ 3/2) and ε = O(τ 5/2), respectively. Relevant results state
that the former is of third-order accuracy in time and the latter has fifth-order accuracy. In
general, convergence order tests are exactly consistent with the previous ones.

The profiles of solution |u| with different cases are shown in Fig. 5, which are solved by
the LSAV-SRK-PC schemes with s = 2 in Case I with h = τ = 1/20. By comparison, it
is not hard to see the solutions of ill-prepared case change more dramatically with different
ε. Relevant results indicate the proposed schemes are also feasible and effective in handling
the NLSW with small perturbation parameter.

6 Conclusion

In this paper, we present two classes of fully discrete structure-preserving algorithms for
solving the NLSW. The proposed schemes have two advantageous properties: (1) they are
linear and can be computed simply and efficiently; (2) they inherit the energy conserva-
tion property and can reach arbitrarily high order. Numerical examples illustrate that these
methods are suitable for dealing with a serious of NLSW problems with proper boundary
conditions, and numerous results verify the effectiveness and high accuracy of methods. It is
noteworthy that the numerical strategy given in this paper can be extended to general conser-
vative system for developing arbitrarily high-order linear structure-preserving schemes. The
authors in [33] established the error analysis of the energy-decaying extrapolated RK-SAV
methods for the dissipative system and the error estimates of conservative system are still
open. In addition, PC schemes show tremendous performance in numerical computations
whereas the mechanism of prediction-correction is still unknown. These will be considered
further in our future works.
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