
Journal of Scientific Computing (2021) 87:98
https://doi.org/10.1007/s10915-021-01512-0

Unconditionally Maximum Bound Principle Preserving Linear
Schemes for the Conservative Allen–Cahn Equation with
Nonlocal Constraint

Jingwei Li1 · Lili Ju2 · Yongyong Cai1 · Xinlong Feng3

Received: 9 October 2020 / Revised: 25 March 2021 / Accepted: 26 April 2021 / Published online: 11 May 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In comparison with the Cahn–Hilliard equation, the classic Allen-Cahn equation satisfies the
maximum bound principle (MBP) but fails to conserve the mass along the time. In this paper,
we consider the MBP and corresponding numerical schemes for the modified Allen–Cahn
equation, which is formed by introducing a nonlocal Lagrange multiplier term to enforce
the mass conservation. We first study sufficient conditions on the nonlinear potentials under
which the MBP holds and provide some concrete examples of nonlinear functions. Then
we propose first and second order stabilized exponential time differencing schemes for time
integration, which are linear schemes and unconditionally preserve the MBP in the time
discrete level. Convergence of these schemes is analyzed as well as their energy stability.
Various two and three dimensional numerical experiments are also carried out to validate the
theoretical results and demonstrate the performance of the proposed schemes.
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1 Introduction

The classic Allen–Cahn equation [1] and Cahn-Hilliard equation [3] are well-known proto-
typical gradient flows with respect to a given free energy functional:

E[u] = ε2

2
(∇u,∇u) + (F(u), 1) =

∫
Ω

(
ε2

2
|∇u(x, t)|2 + F(u(x, t))

)
dx, (1.1)

where u(x, t) is the real-valued unknown function, Ω ⊂ R
d (d = 1, 2, 3) is a bounded

domain with Lipschitz boundary ∂Ω , and (·, ·) denotes the usual L2 inner product onΩ with
the corresponding L2 norm ‖ · ‖0. In the phase-field applications [1,3] such as two phases
material, u often denotes the phase variable, ε > 0 represents the interface width of the two
phases and F(u) is the associated nonlinear potential function. The Allen–Cahn equation
could be viewed as the L2 (non-conservative form) gradient flow of the energy functional
(1.1):

∂t u(x, t) = −δE

δu
= ε2Δu(x, t) + f (u(x, t)), x ∈ Ω, t > 0, (1.2)

and the Cahn-Hilliard equation could be viewed as the H−1 (conservative form) gradient
flow of (1.1),

∂t u(x, t) = −Δ(−δE

δu
) = −Δ(ε2Δu(x, t) + f (u(x, t))), x ∈ Ω, t > 0, (1.3)

where f (u) = −F ′(u). One can equip (1.2) and (1.3) with the periodic or homogeneous
Neumann boundary condition, which is quite popular in the literature. Under either of these
boundary conditions, the following energy dissipation law holds for the Allen-Cahn equation
(1.2):

d

dt
E[u(x, t)] = −

∫
Ω

|∂t u(x, t)|2 dx ≤ 0,

and the energy dissipation law for the Cahn–Hilliard equation (1.3) reads

d

dt
E[u(x, t)] = −

∫
Ω

∣∣∣∣∇ δE

δu

∣∣∣∣
2

dx ≤ 0.

The classic Cahn-Hilliard equation (1.3) is a fourth-order equation which naturally sat-
isfies the mass conservation of the material components, i.e., the total mass

∫
Ω
u(x, t) dx is

unchanged during evolution [6,8,13], however it is often difficult to solve numerically due to
the high order spatial derivatives. In contrast, the Allen-Cahn equation (1.2) is second-order
and does not satisfy the mass conservation, but it is relatively easier to handle numerically.
Moreover, the Allen-Cahn equation possesses some important properties such as maximum
bound principle and comparison principle [29]. It is then desirable to also preserve these
properties when numerically simulating the dynamics described by the Allen-Cahn equa-
tion.
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The maximum bound principle (MBP) has become an important mathematical tool to
study the physical property of the phase field related equations [12], where MBP means that
if the initial data and/or the boundary value are pointwisely bounded by some specific constant
in the absolute value, then the absolute value of the solution to the governing equation is also
bounded by the same constant for all time. It is well-known that the Cahn-Hilliard equation
fails to satisfy MBP due to the fourth order bi-harmonic operator. However, for some models
the phase variablewould be bounded from above/below by the construction of the free energy.
Recently, for the Cahn-Hilliard equation with logarithmic potential function (requires the
phase variable to be strictly positive), some positivity preserving numerical schemes [4,9,30]
were proposed based on the stabilized convex splitting technique.However, these schemes are
nonlinear due to the implicit treatment of the nonlinear terms and lead to the need of iterative
solver at each time step. In order to decrease the difficulty of numerical solution process
and to preserve the bounds of phase variables (usually assumed in modeling), the second-
order Allen–Cahn equation has been extensively used in many researches for modeling
the dynamical evolution. To further improve the unphysical nonconservative Allen–Cahn
dynamics, an alternative choice is the conservative Allen–Cahn equation [5] inspired by the
work of Rubinstein and Sternberg [31], where the mass conservation is realized by adding a
nonlocal Lagrange multiplier.

During the past decades, there have been many studies devoted to the MBP (or maximum
principle) preserving numerical methods for the classical Allen-Cahn equation. For the spa-
tial discretizations, a partial list includes the mass-lumping finite element method [39,41],
finite difference method [43], finite volumemethod [27,28], etc. For the temporal integration,
the stabilized linear semi-implicit schemes were shown to preserve the MBP unconditionally
for the first order scheme and conditionally for the second-order scheme [32,37,38,40]. Some
nonlinear second-order MBP-preserving schemes were also constructed for the Allen-Cahn
type equations [21,33]. However, MBP-preserving numerical methods for the conservative
Allen-Cahn equation are still rare. The operator splitting method has been proven to uncon-
ditionally preserve the MBP by adding a different Lagrange multiplier [17,18,26,36,45,46],
but it is difficult to obtain the energy dissipation of the conservative Allen-Cahn equation.
For the energy dissipation property, there exist quite many effective numerical techniques
to obtain energy-stable schemes for solving phase-field models, for instance, the implicit
approach [21], the convex splitting method [4,9,30], the linear stabilization approach [35],
the invariant energy quadratization (IEQ) method [44] and scalar auxiliary variable (SAV)
method [34]. It is worth noting that Yang and his collaborators have developed the SAV
schemes to preserve the energy stability for the conservative Allen–Cahn model and many
of its variants [47–49].

The exponential time differencing (ETD) method has been recently proposed to preserve
theMBP numerically in combination with the stabilizing technique, which was first proposed
in [42] to obtain the numerical energy stability of phase field equations. The ETD schemes
are linear schemes based on the variation-of-constants formula/Duhamel principle with the
nonlinear terms approximated by polynomial interpolations in time, followed by the exact
temporal integration [2,7,15,16]. Therefore, the ETDmethod is applicable to a large family of
semilinear parabolic equations, especially for those with a stiff linear part [15,20,22,24,25].
The first and second order stabilized ETD schemes have been applied to the nonlocal Allen-
Cahn equation and proved to be unconditionally MBP-preserving [11]. Then, an abstract
framework on the MBP-preserving stabilized ETD schemes was recently established in [12]
for a large class of semilinear parabolic equations. The main object of the current paper is to
develop the ETD schemes preserving the MBP unconditionally for the conservative Allen-
Cahn equation [5,31]. Following the framework in [12], we derive the conditions on the
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nonlinear term f under which the conservative Allen-Cahn equation satisfies MBP. Based
on the stabilizing technique, unconditionally MBP-preserving first and second order ETD
schemes will be studied including their convergence analysis and energy stabilities.

The rest of the paper is organized as follows. In Sect. 2, we review and study some basic
assumptions on the nonlinear operators of conservative Allen-Cahn equation so that the
MBP can hold.We also present some concrete examples of nonlinear functions satisfying the
assumptions. In Sect. 3, an equivalent form of the conservative Allen–Cahn equation by using
the stabilizing technique is derived and proven to admit a unique solution and satisfy theMBP
unconditionally. In Sect. 4, the first and second order ETD schemes for time integration of
the stabilized system are constructed, which satisfy the discrete MBP and mass conservation
unconditionally. In addition, the convergence and energy stability of the ETD schemes are
analyzed. In Sect. 5, we carry out two and three dimensional numerical experiments to verify
the convergence and the MBP-preservation of the proposed schemes and to compare the
dynamics of the conservative Allen-Cahn equation with that of the Cahn–Hilliard equation.
Finally, some conclusions are drawn in Sect. 6.

2 Preliminaries

In this section, we briefly introduce the conservative Allen-Cahn equation [5,31] and present
the conditions on the nonlinear term under which the MBP holds. We recall the classic
Allen-Cahn equation in the form

∂t u(x, t) = ε2Δu(x, t) + f (u(x, t)), x ∈ Ω, t > 0, (2.1)

and the initial value is given by

u(x, 0) = u0(x), x ∈ Ω.

Here, u : Ω × [0,+∞) → R is the unknown function, Δ : C2(Ω) → C(Ω) is the Laplace
operator and f : R → R is a continuously differentiable nonlinear function. For the boundary
conditions, we either enforce the periodic boundary condition (only for a rectangular domain
Ω = ∏d

i=1(ai , bi )) or the homogeneous Neumann boundary condition given by

∂u(x, t)
∂n

= 0, x ∈ ∂Ω, t ≥ 0, (2.2)

where n is the outer unit normal vector on ∂Ω . It is well-known from classic analysis [12]
that the operator Δ generates a contraction semigroup {SΔ(t) = etΔ}t≥0 with respect to the
supremum norm on the subspace of C(Ω) that satisfies such boundary conditions. For any
finite terminal time T > 0, we denoteΩT = Ω ×(0, T ) andC2,1(ΩT ) = {v(x, t) | v(x, ·) ∈
C1(0, T ),∀ x ∈ Ω; v(·, t) ∈ C2(Ω),∀ t ∈ (0, T )}.

Note that the mass of u in (2.1) is not conserved, i.e.,
d

dt

∫
Ω

u(x, t) dx �= 0, one can

impose a nonlocal Lagrange multiplier to conserve the total mass of u, and the resulting
conservative Allen-Cahn equation reads as [31]:

∂t u(x, t) = ε2Δu(x, t) + f̄ [u](x, t), x ∈ Ω, t > 0, (2.3)

where the revised nonlinear term is defined as

f̄ [u](x, t) = f (u(x, t)) − 1

|Ω|
∫

Ω

f (u(y, t)) dy = f (u(x, t)) − λ(t), (2.4)
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and λ(t) = 1
|Ω|

∫
Ω

f (u(y, t)) dy (|Ω| is the Lebesgue measure of Ω) is the Lagrange mul-
tiplier for the mass conservation and is independent of x.

The modified Allen-Cahn equation (2.3) with nonlocal constraint conserves the mass and
satisfies an energy dissipation law. Taking the L2 inner product with 1 on both sides of (2.3),
we obtain

d

dt

∫
Ω

u(x, t) dx = 0 and V (t) =
∫

Ω

u(x, t) dx ≡ V (0) := M, ∀ t > 0, (2.5)

which means the mass is conserved exactly along the time. Taking the L2 inner product with
∂t u(x, t) on both sides of (2.3), applying the boundary conditions and integration by parts,
we obtain the energy dissipation law as

d

dt
E[u(x, t)] = −

∫
Ω

|∂t u(x, t)|2 dx ≤ 0,

where we have used the identity ( f̄ [u], ut ) = ( f (u), ut ) deduced from (2.4) and (2.5).
In order to establish MBP for the conservative Allen-Cahn equation (2.3), as well as its

time discretizations, we first make the following assumptions on the nonlinear function f .

Assumption 1 [31] There exists a constant β > 0 such that

∀ w ∈ [−β, β], f (β) ≤ f (w) ≤ f (−β). (2.6)

Remark 1 If the function f only satisfies f (M) ≤ f (w) ≤ f (m) for w ∈ [m, M] instead
of (2.6), by performing the same affine map as in [12], we still can obtain the MBP of the
conservative Allen-Cahn equation (2.3).

Corollary 1 Under Assumption 1, we can conclude that if u(x, t) ∈ [−β, β] for all x ∈ Ω ,
then

f (β) ≤ λ(t) = 1

|Ω|
∫

Ω

f (u(y, t)) dy ≤ f (−β).

For the Laplace operator Δ with the periodic or homogeneous Neumann boundary condi-
tion (2.2), following the analysis in [12], we have the lemma below regarding the semigroup
generated by Δ − α (α ≥ 0).

Lemma 2.1 The Laplace operator Δ with the periodic or homogeneous Neumann boundary
condition (2.2) generates a contraction semigroup {SΔ(t) = etΔ}t≥0 with respect to the
supremum norm on C(Ω). Moreover, for α ≥ 0, there holds

‖et(Δ−α)u0‖ ≤ e−αt‖u0‖, ∀ t ≥ 0, u0 ∈ C(Ω),

where ‖u0‖ = max
x∈Ω

|u0(x)|.

Next, we introduce the MBP of (2.3) presented in [31].

Theorem 2.1 [31] Given a constant T > 0 and assume u(x, t) ∈ C2,1(ΩT ) ∩
C([0, T ];C1(Ω)) ∩C(ΩT ) is the (classical) solution to the conservative Allen-Cahn equa-
tion (2.3) with the periodic or homogeneous Neumann boundary condition. If Assumption 1
holds and the initial value satisfies |u(x, 0)| ≤ β for any x ∈ Ω , we have |u(x, t)| ≤ β for
any (x, t) ∈ ΩT .
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2.1 Examples of the Nonlinear Function f

In the following, we give some concrete examples of the nonlinear operator satisfying
Assumption 1 for the conservative Allen-Cahn equation (2.3).

Example 1 The quartic double-well (Ginzburg-Landau) potential function

F(u) = 1

4
(u2 − 1)2, f (u) = −F ′(u) = u − u3. (2.7)

Through simple computations, it is easy to see that

f ′(u) > 0, ∀ u ∈
(
−

√
3
3 ,

√
3
3

)
,

see Fig. 1-(left), which implies that

f (−β) ≥ f
(√

3
3

)
and f (β) ≤ f

(
−

√
3
3

)
.

Consequently, we can find that f satisfies Assumption 1 for any β ∈ [ 23
√
3,+∞).

Example 2 The Flory-Huggins potential function

F(u) = θ

2
[(1 + u) ln(1 + u) + (1 − u) ln(1 − u)] − θc

2
u2,

f (u) = −F ′(u) = θ

2
ln

1 − u

1 + u
+ θcu, (2.8)

where θ and θc are two constants satisfying 0 < θ < θc. It is easy to verify that

f ′(u) > 0, ∀ u ∈
(
−

√
1 − θ

θc
,

√
1 − θ

θc

)
,

see Fig. 1-(middle), and thus it must hold that

f (−β) ≥ f
(√

1 − θ
θc

)
and f (β) ≤ f

(
−

√
1 − θ

θc

)
.

Note that f (−1) = +∞ and f (1) = −∞, then we can find that f defined by (2.8) satisfies

Assumption 1 for any β ∈ [γ, 1), where γ is the positive root of f (γ ) = f
(
−

√
1 − θ

θc

)
.

Example 3 The Lennard-Jones potential function

F(u) = 1

3
u−8 − 4

3
u−2, f (u) = −F ′(u) = −8

3
u−3 + 8

3
u−9.

It is easy to verify that

f ′(u) < 0, ∀ u ∈ (0, 31/6),

see Fig. 1-(right). Thus f satisfies the assumption in Remark 1 for 0 < m < M ≤ 31/6.
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3 Stabilizing formulation of the conservative Allen-Cahn equation

In this section, we apply the stabilizing technique to obtain an equivalent form of the conser-
vative Allen-Cahn equation (2.3), and then show that it admits a unique solution and satisfies
theMBP from this special perspective. This formwill also play an important role in designing
the desired MBP-preserving schemes in the time discrete setting.

Introducing a stabilizing constant κ > 0, the conservative Allen-Cahn equation (2.3) can
be written in the following equivalent form:

∂t u = Lκu + N [u], x ∈ Ω, t > 0, (3.1)

where

Lκ = ε2Δ − κ

and

N [u](x, t)=κu(x, t) + f̄ [u](x, t)=κu(x, t)+ f (u(x, t))− 1

|Ω|
∫

Ω

f (u(y, t)) dy, x ∈ Ω.

(3.2)

The stabilizing constant κ is chosen such that

κ ≥ max|η|≤β
| f ′(η)|. (3.3)

Note that (3.3) is well-defined since f is continuously differentiable.

Lemma 3.1 Under Assumption 1 and the choice of stabilizing constant (3.3), we have

(I) ‖N [ζ ]‖ ≤ κβ for any ζ ∈ C(Ω) with ‖ζ‖ ≤ β.
(II) ‖N [ζ1] − N [ζ2]‖ ≤ 3κ‖ζ1 − ζ2‖, for any ζ j ∈ C(Ω) with ‖ζ j‖ ≤ β ( j = 1, 2).

Proof From (3.3), we have that for any ζ(x) ∈ C(Ω) with ζ ∈ [−β, β],
0 ≤ κ + f ′(ζ(x)) ≤ 2κ, ∀ x ∈ Ω,

and thus

−κβ + f (−β) ≤ κζ(x) + f (ζ(x)) ≤ κβ + f (β).

Using Assumption 1, according to Corollary 1, we further get for any x ∈ Ω

−κβ ≤ −κβ + f (−β) − 1

|Ω|
∫

Ω

f (ζ(y)) dy ≤ N [ζ ](x) ≤ κβ + f (β)

− 1

|Ω|
∫

Ω

f (ζ(y)) dy ≤ κβ,

which gives (I). For (II), by the choice of κ , we have that for any x ∈ Ω

|N [ζ1](x) − N [ζ2](x)| ≤ |κζ1(x) − κζ2(x) + f (ζ1(x)) − f (ζ2(x))|
+

∣∣∣∣ 1

|Ω|
∫

Ω

( f (ζ1(y)) − f (ζ2(y)) dy

∣∣∣∣
≤ 2κ|ζ1(x) − ζ2(x)| + 1

|Ω|
∫

Ω

| f (ζ1(y)) − f (ζ2(y))| dy

≤ 2κ|ζ1(x) − ζ2(x)| + 1

|Ω|
∫

Ω

κ‖ζ1 − ζ2‖ dy
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≤ 3κ‖ζ1 − ζ2‖,
which completes the proof. ��

Now we can show that (3.1) admits a unique solution and possesses the MBP.

Theorem 3.1 UnderAssumption 1, suppose that the initial value of (3.1) satisfies |u0(x)| ≤ β

for any x ∈ Ω (u0 ∈ C(Ω)) and the equation is equipped with the periodic or homogeneous
Neumann boundary condition, then the conservative Allen-Cahn equation (3.1) has a unique
solution u ∈ C(ΩT ) which satisfies |u(x, t)| ≤ β for any (x, t) ∈ ΩT .

Proof The proof follows the process presented in [12]. For simplicity, let us consider the case
of periodic boundary condition only since the case of homogeneous Neumann condition is
similar. Denote Xβ = {g(x) ∈ C(Ω) | ‖g‖ ≤ β and g is Ω − periodic}. For a fixed t0 > 0
and a given v := v(x, t) ∈ C([0, t0];Xβ), we define w := w(x, t) to be the solution of the
following linear problem{

wt = Lκw + N [v], x ∈ Ω, t ∈ (0, t0],
w(x, 0) = u0(x), x ∈ Ω,

(3.4)

with the periodic boundary condition. It is easy to see that w ∈ C(Ω t0) is uniquely defined
due to the linearity of the problem. By Duhamel principle,

w(x, t) = etLκ u0(x) +
∫ t

0
e(t−s)LκN [v(x, s)] ds, x ∈ Ω, t ∈ (0, t0]. (3.5)

Taking the supremum norm ‖ · ‖ on both sides, using Lemmas 2.1 and 3.1, we have

‖w(x, t)‖ ≤ e−κt‖u0‖ +
∫ t

0
e−κ(t−s)‖N [v](x, s)‖ ds

≤ e−κtβ +
∫ t

0
e−κ(t−s)κβ ds = β, ∀ t ∈ (0, t0],

which shows w ∈ C([0, t0];Xβ).
Therefore, from (3.4), we can define the map A : C([0, t0];Xβ) → C([0, t0];Xβ) as

Av = w. In fact,A is a contraction map for sufficiently small t0. To see this, setting v1, v2 ∈
C([0, t0];Xβ), w1 = Av1 and w2 = Av2, we have from (3.5) that

w1(x, t) − w2(x, t) =
∫ t

0
e(t−s)Lκ (N [v1](x, s) − N [v2](x, s)) ds.

Lemmas 2.1 and 3.1 then imply

‖w1 − w2‖C([0,t0];C(Ω)) ≤
∫ t0

0
e−κ(t0−s)3κ‖v1 − v2‖C([0,t0];C(Ω)) ds

= 3(1 − e−κt0)‖v1 − v2‖C([0,t0];C(Ω)).

Thus, for t0 < κ−1 ln 3
2 such that 3(1 − e−κt0) < 1, A becomes a contraction map. Since

Xβ is closed in C(Ω), we know that C([0, t0];Xβ) is complete with respect to the metric
induced by the norm ‖ · ‖C([0,t0];C(Ω)). Banach’s fixed point theorem would yield that A has
a unique fixed point in C([0, t0];Xβ), which is the solution to the conservative Allen-Cahn
equation (3.1). Continuing the iteration, the solution can be extended to entire time domain
[0,+∞), and in particular u ∈ C([0, T ];Xβ) (see [12] for more discussions). ��
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4 Exponential Time Differencing Schemes for Temporal Approximation

In this section, we recall the construction of the exponential time differencing (ETD) schemes
for the model equation (2.3) following the abstract framework in [12]. The first and second
order ETD schemeswith the unconditionalMBP-preserving property will be discussed based
on the equivalent form (3.1) as well as the convergences and energy stabilities.

4.1 ETD Schemes, Mass Conservation and Discrete MBP

Given a time step size τ > 0, we divide the total time by {tn = nτ }n≥0. To establish the ETD
schemes for the conservative Allen-Cahn equation (3.1) on the time interval [tn, tn+1], we
start with the exact solution w(x, s) = u(x, tn + s) satisfying

{
∂sw = Lκw + N [w], x ∈ Ω, s ∈ (0, τ ],
w(x, 0) = u(x, tn), x ∈ Ω,

(4.1)

subject to the periodic or homogeneous Neumann boundary condition. The first order ETD
(ETD1) scheme is then followed by setting N [u(tn + s)] ≈ N [u(tn)] in (4.1) which has a
truncation error of O(τ ), i.e., for n ≥ 0 and given u0(x) = u0(x), find un+1 = wn(τ ) by
solving

{
∂sw

n = Lκwn + N [un], x ∈ Ω, s ∈ (0, τ ],
wn(x, 0) = un(x), x ∈ Ω.

(4.2)

Lemma 4.1 (Mass conservationofETD1). TheETD1scheme (4.2) conserves themass uncon-
ditionally at the time discrete level, i.e., for any time step size τ > 0, the ETD1 solution
satisfies

∫
Ω

un+1 dx =
∫

Ω

un dx = ... =
∫

Ω

u0 dx := M, ∀ n ≥ 0.

Proof We just need to show that
∫

Ω

un dx = M implies
∫

Ω

un+1 dx = M . Taking L2 inner

product with 1 on both sides of (4.2) and noticing the properties of N [u], we have
d

ds

∫
Ω

wn(x, s) dx + κ

∫
Ω

wn(x, s) dx = κ

∫
Ω

un dx = κM,

which implies the quantity V (s) =
∫

Ω

wn(x, s) dx satisfies the ODE

dV (s)

ds
+ κV (s) = κM, V (0) = M .

It is easy to check V (s) ≡ M is the unique solution to the above ODE. Therefore, we have
V (τ ) = M , that is,

∫
Ω
un+1(x) dx = M . ��

Theorem 4.1 (Discrete MBP of ETD1). Under Assumption 1, the ETD1 scheme (4.2) pre-
serves the discrete MBP unconditionally, i.e., for any time step size τ > 0, the numerical
solution un (n ≥ 1) obtained by ETD1 (4.2) satisfies ‖un‖ ≤ β if the initial value
u0 = u0(x) ∈ C(Ω) satisfies ‖u0‖ ≤ β.
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Proof It suffices to prove ‖un+1‖ ≤ β if ‖un‖ ≤ β. From ETD1 (4.2), we have

un+1 = eτLκ un +
∫ τ

0
e(τ−s)LκN [un] ds.

Using Lemmas 2.1 and 3.1, for ‖un‖ ≤ β we have

‖un+1‖ ≤ e−κτ‖un‖ +
∫ τ

0
e−κ(τ−s)κβ ds

≤ βe−κτ + κβ
1 − e−κτ

κ
= β,

which verifies the MBP-preserving property of ETD1 (4.2). ��
Next, we consider the second order temporal approximation of the solution to (4.1) by

setting

N [u(tn + s)] ≈ (1 − s

τ
)N [u(tn)] + s

τ
N [u(tn+1)],

which has a truncation error of O(τ 2). The corresponding second order ETD Runge-Kutta
(ETDRK2) scheme then can be constructed as follows: for n ≥ 0 and given u0 = u0(x), find
un+1 = wn(τ ) by solving{

∂sw
n(x, s) = Lκwn + (1 − s

τ
)N [un] + s

τ
N [ũn+1], x ∈ Ω, s ∈ (0, τ ],

wn(x, 0) = un, x ∈ Ω,
(4.3)

where the periodic or homogeneous Neumann boundary condition is imposed and ũn+1 is
generated by the ETD1 scheme (4.2) from un . It is worth noting that both ETD1 and ETDRK2
schemes are linear.

Lemma 4.2 (Mass conservation of ETDRK2). The ETDRK2 scheme (4.3) conserves the mass
unconditionally at the time discrete level, i.e., for any time step size τ > 0, the ETDRK2
solution satisfies∫

Ω

un+1 dx =
∫

Ω

un dx = ... =
∫

Ω

u0 dx := M, ∀ n ≥ 0.

Proof Similar to the proof in Lemma 4.1, taking the L2 inner product with 1 on both sides
of (4.3), we have

d

ds

∫
Ω

wn(x, s) dx + κ

∫
Ω

wn(x, s) dx = (1 − s

τ
)κ

∫
Ω

un dx

+ s

τ
κ

∫
Ω

ūn+1 dx = κM, s ∈ (0, τ ],

wherewe have used
∫

Ω

ūn+1 dx = M fromLemma4.1. Using the same arguments in Lemma

4.1, we can obtain that
∫

Ω

un+1 dx =
∫

Ω

wn(x, τ ) dx = M . ��

Theorem 4.2 (Discrete MBP of ETDRK2). Under Assumption 1, the ETDRK2 scheme (4.3)
preserves the discrete MBP unconditionally, i.e., for any time step size τ > 0, the numerical
solution un (n ≥ 1) obtained by ETDRK2 (4.3) satisfies ‖un‖ ≤ β (n ≥ 1) if the initial value
u0 = u0(x) ∈ C(Ω) satisfies ‖u0‖ ≤ β.
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Proof Again, it suffices to prove ‖un+1‖ ≤ β if ‖un‖ ≤ β. From Theorem 4.1, we have
‖ũn+1‖ ≤ β. In addition, (4.3) gives

un+1 = eτLκ un +
∫ τ

0
e(τ−s)Lκ

(
(1 − s

τ
)N [un] + s

τ
N [ũn+1]

)
ds.

Using Lemmas 2.1 and 3.1, for ‖un‖ ≤ β we have

‖un+1‖ ≤ e−κτ‖un‖ +
∫ τ

0
e−κ(τ−s)

(
(1 − s

τ
)‖N [un]‖ + s

τ
‖N [ũn+1]‖

)
ds

≤ e−κτ β +
∫ τ

0
e−κ(τ−s)κβ ds = β,

and the MBP-preserving property of ETDRK2 (4.3) follows. ��
Remark 2 Under the analysis framework of [12], Theorem 3.1 on the MBP property can
be further extended to the case when the differential operator is replaced by certain finite
dimensional discrete operators in space, such as discrete approximations of Δ, denoted by
Δh , in which the domain of a function is the set of all spatial grid points (boundary and
interior points), denoted by X . The corresponding space-discrete equation of (4.1) with Δh

becomes an ordinary differential equation (ODE) system taking the same form:

ut = ε2Δhu + f̄ [u], x ∈ X∗, t > 0

withu(x, 0) = u0(x), where X∗ = X for the homogeneousNeumannboundary condition and

X∗ = X ∩Ω
+
withΩ

+ =
d∏

i=1
(ai , bi ] for the periodic boundary condition. As shown in [12],

it is easy to verify that the central finite difference method and lumped-mass finite element
method in the space-discrete case discretizing the Laplace operator Δ satisfy Lemma 2.1. In
our discussion, Δh can be simply regarded as a square matrix and the contraction semigroup
{SΔh (t) = etΔh } can be viewed as a matrix exponential. Let Lκ,h = ε2Δh − κI and define
the φ-functions as follows:

φ0(z) = ez, φ1(z) = ez − 1

z
, φ2(z) = ez − z − 1

z2
.

We then can write down the equivalent integral forms of ETD1 (4.2) and ETDRK2 (4.3) used
in practical computations. The corresponding fully discrete ETD1 scheme of (4.2) is given
by

un+1 = φ0(τLκ,h)u
n + τφ1(τLκ,h)N [un], (4.4)

and the corresponding fully discrete ETDRK2 scheme of (4.3) reads{
ūn+1 = φ0(τLκ,h)u

n + τφ1(τLκ,h)N [un],
un+1 = ūn+1 + τφ2(τLκ,h)

(
N [ūn+1] − N [un]) .

(4.5)

Note that the corresponding semigroup is given by the matrix exponential SLκ,h (t) =
φ0(tLκ,h), which depends crucially on the choice of the stabilizing coefficient κ .

Remark 3 As shown in [12], discretization of the spatial operator L by the central finite
difference method or the lumped-mass finite element method satisfies Lemma 2.1 in the
space-discrete sense since the resulting discrete system gives an M-matrix, and therefore
the fully discrete ETD1 and ETDRK2 schemes are guaranteed to be unconditionally MBP-
preserving. However, the coefficient matrix produced by the Fourier pseudo-spectral method
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is usually not an M-matrix and then the current analysis framework does not apply. It still
remains an open question whether such requirement (Lemma 2.1) is necessary for the space-
discrete system to possess unconditional preservation of MBP. In addition, the discrete mass
conservation holds for any of the three types of spatial discretizations in the fully discrete
ETD1 and ETDRK2 schemes.

4.2 Convergence analysis and energy stability

As an important application of the MBP-preserving property, we now consider the conver-
gence of the ETD1 and ETDRK2 schemes. Since the proof can be concluded in a quite
similar way as done in [12], we only state the main results for the ETD1 (4.2) and ETDRK2
(4.3) schemes. The key point is that the MBP property ensures a priori L∞ bounds on the
numerical solutions, which greatly reduces the difficulty of convergence analysis.

Theorem 4.3 Under Assumption 1, for a fixed terminal time T > 0, assume that the exact
solution u(x, t) to the conservative Allen-Cahn equation (3.1) belongs to C1([0, T ];C(Ω))

and the initial value u0(x) satisfies ‖u0‖ ≤ β, and let {un}n≥0 be generated by the ETD1
scheme (4.2) with u0 = u0(x), we then have that for any τ > 0,

‖u(tn) − un‖ ≤ Ce2κt
n
τ, ∀ tn ≤ T ,

where the constant C > 0 is independent of τ and κ .

Theorem 4.4 Under Assumption 1, for a fixed terminal time T > 0, assume that the exact
solution u(x, t) to the conservative Allen-Cahn equation (3.1) belongs to C2([0, T ];C(Ω))

and the initial value u0(x) satisfies ‖u0‖ ≤ β, and let {un}n≥0 be generated by the ETDRK2
scheme (4.3) with u0 = u0(x), we then have that for any τ > 0,

‖u(tn) − un‖ ≤ Ce2κt
n
τ 2, ∀ tn ≤ T ,

where the constant C > 0 is independent of τ .

As shown in the abstract framework [12], the ETD1 (4.2) and ETDRK2 (4.3) schemes for
(3.1) still enjoy the energy stabilities. Here, we consider the energy (1.1) for the semi-discrete
ETD1 and ETDRK2 schemes. The following lemma regarding the energy (1.1) is useful.

Lemma 4.3 Under Assumption 1, for any v(x), w(x) ∈ C(Ω) ∩ H1(Ω) satisfying ‖w‖ ≤
β, ‖v‖ ≤ β and

∫
Ω

v(x) dx = ∫
Ω

w(x) dx, and the periodic or homogeneous Neumann
boundary condition, it holds that for the energy functional defined by (1.1),

E[v] − E[w] ≤ −(Lκv + N [w], v − w). (4.6)

Proof By direct computation and f (u) = −F ′(u), we find

E[v] − E[w] = ε2

2

∫
Ω

(
|∇v|2 − |∇w|2

)
dx + (F(v) − F(w), 1)

= − ε2

2
‖∇(v − w)‖20 − (ε2Δv, v − w) −

∫
Ω

∫ 1

0
f (θv + (1 − θ)w) dθ(v − w) dx

≤ − (Lκv, v − w) − κ(v, v − w) − ( f (w), v − w)

−
∫

Ω

∫ 1

0
( f (θv + (1 − θ)w) − f (w)) dθ(v − w) dx

≤ − (Lκv, v − w) − ( f (w) + κw, v − w) − κ(v − w, v − w)
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+
∫

Ω

∫ 1

0
θκ(v − w)2 dθ dx

≤ − (Lκv, v − w) − ( f (w) + κw, v − w) − κ

2
‖v − w‖20, (4.7)

where we have used the fact that for any θ ∈ [0, 1], there exists some constant θ1 ∈ [0, θ ]
such that

− ( f (θv + (1 − θ)w) − f (w)) (v − w) = − f ′(θ1v + (1 − θ1)w)θ(v − w)(v − w)

≤ θκ(v − w)2.

Sincev andw have equal totalmass onΩ ,wehave from (3.2) that forλ = 1
|Ω|

∫
Ω

f (w(x)) dx,

( f (w) + κw, v − w) = ( f (w) + κw − λ, v − w) = (N [w], v − w).

Combining the above identity with (4.7), we finally obtain (4.6). ��
Similar to the results in [11], we have the following discrete energy stabilities for the

ETD1 and ETDRK2 schemes.

Theorem 4.5 Under Assumption 1, assume initial value u0 = u0(x) ∈ C(Ω) ∩ H1(Ω) with
‖u0‖ ≤ β, the numerical solution sequence {un}n≥0 generated by the ETD1 scheme (4.2)
satisfies

E[un+1] ≤ E[un], ∀ n ≥ 0,

for any τ > 0, i.e., the ETD1 scheme (4.2) is unconditionally energy stable.

Proof For u0 ∈ C(Ω) ∩ H1(Ω), we have un ∈ C(Ω) ∩ H1(Ω) (n ≥ 1) so that the energy
(1.1) is well-defined. It suffices to consider the energy changes in the interval [tn, tn+1]. From
the mass conservation (Lemma 4.1) and the discrete MBP (Theorem 4.1) of ETD1, we can
apply Lemma 4.3 to obtain

E[un+1] − E[un] ≤ −(Lku
n+1 + N [un], un+1 − un). (4.8)

From the integral form (4.4) of ETD1 (4.2), using the stabilizing coefficient κ which ensures
eτLκ − I is invertible [11], we have

N [un] = (eτLκ − I)−1Lκ

(
un+1 − eτLκ un

)
and

Lκu
n+1 + N [un] = (eτLκ − I)−1Lκ

(
un+1 − eτLκ un

)
= Lκ (un+1 − un) + (eτLk − I)−1Lκ

(
un+1 − un

)
.

Plugging the above identity into (4.8), we arrive at

E[un+1] − E[un] ≤ −(T (un+1 − un), un+1 − un),

where T = Lκ + (eτLk − I)−1Lκ is positive-definite [11] (Lκ here is understood as the
self-adjoint expansion of ε2Δ− κ with respect to the boundary conditions) by looking at the
function s + (eτ s − 1)−1s = seτ s/(eτ s − 1) > 0 (s ∈ (−∞, 0)). Hence, we conclude that
E[un+1] ≤ E[un]. ��

For the ETDRK2 scheme (4.3), we do not have the energy decaying property, but the
following energy bounds could be established [12].
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Theorem 4.6 Under the assumptions of Theorem 4.4, the numerical solutions {un}n≥0 of the
ETDRK2 scheme (4.3) satisfy

E[un] ≤ E[u0] + C, tn ≤ T ,

for any τ ∈ (0, 1], where the constant C is independent of τ , i.e., the energy is uniformly
bounded.

Proof The proof can be proceeded in the same way as in [11,12] and is omitted here for
brevity. ��
Remark 4 Though we only present the convergence results for the semi-discrete schemes
(4.2) and (4.3), these error estimates can be similarly generalized to the fully discrete cases
(4.4) and (4.5) by using the discreteMBP-preserving properties. As in the proofs of Theorems
4.5 and 4.6, only L2 inner products and the maximum bounds of the numerical solutions are
used essentially, thus these results also hold for the fully discrete forms of ETD1 (4.4) and
ETDRK2 (4.5) under suitable spatial discretizations.

5 Numerical experiments

In this section, we present various two-dimensional and three-dimensional numerical exam-
ples to demonstrate the accuracies and the MBP preserving properties of the proposed
stabilized ETD schemes. In all examples, we set the computational domainΩ = [−0.5, 0.5]2
in two dimensions or Ω = [−0.5, 0.5]3 in three dimensions. The spatial discretization is
realized by the central finite difference method and the products of matrix exponentials with
vectors are implemented by the fast Fourier transform (FFT). Moreover, the ETDRK2 (4.5)
(or (4.3)) scheme is used for all examples while the ETD1 scheme (4.4) (or (4.2)) is only
tested in the temporal convergence test due to its low accuracy. For simplicity, we only test
the case of periodic boundary condition, and that of the homogeneous Neumann boundary
condition is quite similar. Uniform mesh distribution in each direction is adopted, i.e. spatial
mesh size hx = hy = h = 1

N in two dimensions and hx = hy = hz = h = 1
N in three

dimensions, where h is the mesh size and N is the number of grid points in each direction.
We denote the corresponding set of discrete grid points as Ωh .

5.1 Convergence tests

We consider the conservative Allen-Cahn equation (2.3) in two dimensions with ε = 0.01
and f defined by (2.7), i.e., the double-well potential function. The initial value is given by

u0(x, y) = cos(2πx) cos(2π y), (x, y) ∈ Ω.

The terminal time is set to be T = 1 and the stabilizing parameter is chosen as κ = 3.
First, by setting the spatial mesh size to be very fine he = 1/2048 such that the spatial

discretization error could be ignored, we test the convergence of the proposed schemes in
time with various time step sizes. Let uτ,h(t) be the numerical solution (understood on the
grid points) at time t obtained by the numerical schemes with the mesh size h and the time
step τ . To quantify the errors, the ‘exact’ or say ‘benchmark’ solution is produced by the
ETDRK2 scheme with a very fine time step size τe = T /1024. The error function at time
T = 1 of the numerical solution is denoted as

eτ,h(x, y, t = T ) := uτ,h(x, y, t = T ) − uτe,he (x, y, t = T ), (x, y) ∈ Ωh .
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Table 1 Temporal errors eτ,he (t = T ) in the L2 and L∞ norms as well as corresponding convergence rates
for the fully discrete ETD1 and ETDRK2 schemes

τ ETD1 ETDRK2
L2 Error Rate L∞ Error Rate L2 Error Rate L∞ Error Rate

T /4 5.4448e-2 – 9.1469e-2 – 1.3276e-2 – 2.3360e-2 –

T /8 2.9502e-2 0.88 5.0611e-2 0.85 4.0335e-3 1.71 7.1919e-3 1.69

T /16 1.5278e-2 0.94 2.6529e-2 0.93 1.1189e-3 1.85 2.0072e-3 1.84

T /32 7.6819e-3 0.99 1.3427e-2 0.98 2.9501e-4 1.92 5.3073e-4 1.91

T /64 3.7574e-3 1.03 6.5901e-3 1.02 7.5584e-5 1.96 1.3616e-4 1.96

T /128 1.7630e-3 1.09 3.0974e-3 1.08 1.8933e-5 1.99 3.4127e-5 1.99

T /256 7.5760e-4 1.21 1.3322e-3 1.21 4.5387e-6 2.06 8.1836e-6 2.06

Table 2 Spatial errors
eτe,h(t = T ) in the L2 and L∞
norms as well as corresponding
convergence rates for the fully
discrete ETDRK2 scheme

1/h L2 Error Rate L∞ Error Rate

64 3.1368e-4 - 9.9889e-4 -

128 9.2116e-5 1.76 3.0942e-4 1.69

256 2.4023e-5 1.93 8.3780e-5 1.88

512 6.0713e-6 1.98 2.1247e-5 1.97

1024 1.5220e-6 1.99 5.3332e-6 1.99

The L2 normand the L∞ normof the error function eτ,he (t = T ) along theuniform refinement
of the time step size τ and corresponding convergence rates for the fully discrete ETD1 and
ETDRK2 schemes are reported in Table 1, where the expected temporal convergence rates
(1 for ETD1 and 2 for ETDRK2) are clearly observed.

Next, we test the convergence with respect to the spatial mesh size h by fixing the temporal
step size τ = τe so that the temporal error could be ignored. The numerical solution obtained
by the ETDRK2 scheme with h = 1/2048 is treated as the benchmark for computing the
errors of the numerical solutions obtainedwith variousmesh sizes. The numerical errors along
the spatial mesh refinement and corresponding convergence rates are presented in Table 2. It
is observed that the convergence rates with respect to h are clearly of second order, which is
consistent with the central finite difference stencil as expected.

5.2 MBP tests and comparisons

We now numerically simulate long-time phase separation processes governed by the con-
servative Allen-Cahn equation (2.3) and investigate the preservation of discrete MBP. Note
that the ETDRK2 scheme is used for all following simulations. We start with the same ini-
tial configuration at t = 0, which is generated by taking u0 = 0.9 rand(·), where rand(·)
represents the random distribution between−1 and 1. Here, we consider two different poten-
tial functions, i.e., the double-well potential function (2.7) and the Flory-Huggins potential
function (2.8).
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5.2.1 Two-dimensional coarsening

Wesimulate the conservativeAllen-Cahnequation (2.3)with ε = 0.01 in twodimensions, and
also compare themwith the results obtainedby solving the classicCahn-Hilliard equationwith
the ETDRK2 scheme as proposed in [24]. The spatial mesh size is chosen to be h = 1/1024.

We first take f to be the double-well potential function (2.7) and the stabilizing coefficient
is set to be κ = 3 correspondingly. Figure 2 shows the configurations of the numerical solution
at t = 1, 10, 50, 1800 for the conservative Allen-Cahn equation with different time step sizes
τ = 0.1 and τ = 1, respectively. The corresponding evolutions of the mass, the supremum
norm and the energy of the numerical solutions are shown in Fig. 3, where the red line is
the theoretical bound β = 2

3

√
3. We observe that the mass is conserved very well and the

energy decays monotonically. Moreover, the discrete MBP is preserved numerically for the
conservative Allen-Cahn equation and is close to ‖u‖ = 1 in time which is the bounding
constant of the classic Allen-Cahn equation (1.2). Two simulations produced by different
time step sizes give us overall similar evolution processes. The results of the Cahn-Hilliard
equation with τ = 0.1 are presented for t = 1, 10, 50, 300 in Fig. 4, where the almost same
steady state as that of the conservative Allen-Cahn equation is reached in the end. On the
other hand, it is also easy to see that the evolution of the phase structure in the conservative
Allen-Cahn equation is slower than that in the Cahn-Hilliard equation.

Next we take f to be the Flory-Huggins potential function (2.8) with the parameters
θ = 0.8 and θc = 1.6 in (2.8). According to Example 2, the positive root of f (γ ) =
f
(
−

√
1 − θ

θc

)
is γ = 0.986783601343632 (numerical value) and the stabilizing coefficient

is thus chosen as κ = 28.87. Figure 5 shows the configurations of the numerical solution
at t = 1, 10, 50, 2200 for the conservative Allen-Cahn equation with τ = 0.1 and τ = 1.
The corresponding evolutions of the mass, supremum norm and energy are presented in
Fig. 6, where the red line is β = γ ≈ 0.9868. We observe that the mass is conserved and
the energy decays monotonically. Moreover, the discrete MBP is preserved perfectly for
the conservative Allen-Cahn equation where the solution is always located in the interval
[−β, β]. Two simulations produced by different time step sizes again give us overall similar
evolution processes. The results of the Cahn-Hilliard equation with τ = 0.1 are illustrated
for t = 1, 10, 50, 800 in Fig. 7, where the almost same steady state as that of the conservative
Allen-Cahn equation is reached but with a shorter time as expected.

5.2.2 Three-Dimensional Coarsening

Nowwe perform some three-dimensional simulations for the conservative Allen-Cahn equa-
tion (2.3) with ε = 0.01. We use the spatial mesh size h = 1/256 and the time step size
τ = 0.1.

We first simulate the case of the double-well potential function (2.7) and set the stabilizing
coefficient κ = 3 as before. Figure 8 shows the configuration of the numerical solution at
t = 1, 30, 200, 4000. The corresponding dynamics of the mass, the supremum norm and the
energy are plotted in Fig. 9, where the red line is β = 2

3

√
3. We observe that the mass is

conserved and the energy decays monotonically along the time. Moreover, the MBP of the
conservative Allen-Cahn equation is numerically preserved very well.

Next we solve the case of the Flory-Huggins potential function (2.8) in which the parame-
ters are still θ = 0.8 and θc = 1.6, and the stabilizing coefficient is again set to be κ = 28.87.
Figure 10 shows the configuration of the numerical solution at t = 1, 30, 200, 4000 and
Fig. 11 depicts how the mass, supremum norm and energy evolve in time, where the red
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Fig. 8 Simulated phase structures at t = 1, 30, 200, 4000 (from left to right and top to bottom) with τ = 0.1
for the conservative Allen-Cahn equation (2.3) with the double-well potential in three dimensions

line is β = γ ≈ 0.9868. We again observe that the mass is conserved, the energy decays
monotonically, and the MBP for the conservative Allen-Cahn equation (2.3) is numerically
well-preserved.

5.3 The expanding bubble test

In this example, we numerically simulate the evolution of an expanding bubble in three
dimensions, governed by the conservative Allen-Cahn equation (2.3) with ε = 0.01 and
either the double-well potential function (2.7) or the Flory-Huggins potential function (2.8).
The initial discontinuous configuration is given by

u0(x, y, z) =
{

−0.5, x2 + y2 + z2 < 0.252,

0.5, otherwise,

123



Journal of Scientific Computing (2021) 87 :98 Page 25 of 32 98

T
im

e
0

2
4

6
8

10
12

14
16

18
20

Supremum norm 0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

1.
1

1.
2

2
4

6
8

0

0.
2

0.
4

0.
6

0.
81

1.
2

Fi
g.
9

E
vo
lu
tio

ns
of

th
e
m
as
s
(l
ef
t)
,t
he

su
pr
em

um
no

rm
(m

id
dl
e)

an
d
th
e
en
er
gy

(r
ig
ht
)
fo
r
th
e
co
ns
er
va
tiv

e
A
lle

n-
C
ah
n
eq
ua
tio

n
(2
.3
)
w
ith

th
e
do
ub
le
-w

el
lp

ot
en
tia
li
n
th
re
e

di
m
en
si
on

s

123



98 Page 26 of 32 Journal of Scientific Computing (2021) 87 :98

Fig. 10 Simulated phase structures at t = 1, 30, 200, 4000 (from left to right and top to bottom) with τ = 0.1
for the conservative Allen-Cahn equation (2.3) with the Flory-Huggins potential in three dimensions

which is illustrated in Fig. 12. The radius of the bubble is expected to continuously increase
until a steady state is reached. Again, we test the ETDRK2 scheme with the time step size
τ = 0.01 and the spatial mesh size h = 1/256.

We first adopt the double-well potential function (2.7) with the stabilizing coefficient
κ = 3. Figure 13 presents the expanding process of the bubble, in which the iso-surfaces
(u = 0) are plotted at the time t = 1, 10, 100 respectively. Figure 14 shows the evolutions of
the bubble radius, the mass, the supremum norm and the energy of the numerical solutions,
where the red line is β = 2

3

√
3. The radius of the bubble starts with 0.25 and gradually

increases, and finally reaches a steady value around 0.4028. It is easy to find that the mass
is conserved, the energy decays monotonically and the MBP is well preserved numerically
along the time.

Next we take the Flory-Huggins potential function (2.8) with the stabilizing coefficient
κ = 28.87 to simulate the evolution of the bubble. The iso-surface views of the simulated
bubble at t = 1, 4 and 100 are given in Fig. 15. Figure 16 presents the evolution of the bubble
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Fig. 12 Initial configurations in the expanding bubble example. Left: the iso-surface; right: the cross-section
view at x = 0 and y = 0

Fig. 13 Simulated expanding bubbles at t = 1, 10, 100 (from left to right) with τ = 0.01 for the conservative
Allen-Cahn equation (2.3) with the double-well potential in three dimensions

radius, the mass, the supremum norm and the energy of the numerical solutions, where the
red line is β = 0.9868 · · · . The radius of the bubble starts with 0.25 and gradually increases
to 0.4012 and reaches a steady state within a similar time period as the case of double-well
potential. Again the mass is conserved, the energy decays monotonically and the MBP is
well preserved numerically along the time.

6 Conclusions

In this paper we have developed and analyzed unconditional MBP-preserving linear numeri-
cal schemes (up to second order in time), the stabilized ETD1 and ETDRK2 schemes, for the
conservative Allen-Cahn equation with nonlocal constraint. We generalize the framework
of [12] on the MBP of semilinear parabolic equations and corresponding ETD schemes to
the conservative Allen-Cahn equation satisfying Assumption 1. The choice of the stabilizing
coefficient plays an important role on designing unconditional MBP-preserving schemes and
we note that the theoretically required stabilizing coefficient κ is obviously larger (especially
for the case of Flory-Huggins potential) than that for the classicAllen–Cahn equation [11,12].
It remains an open question whether a more delicate analysis can relieve such requirement. In
addition, only the Laplace operatorΔ is considered in this paper, which generates contraction
semigroup in C(Ω) with suitable boundary conditions. However, many more general oper-
ators such as the second-order elliptic differential operator, the nonlocal diffusion operator
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Fig. 14 Evolutions of the radius (top-left), the mass (top-right), the supremum norm (bottom-left) and the
energy (bottom-right) for the expanding bubble governed by the conservative Allen–Cahn equation (2.3) with
the double-well potential in three dimensions

Fig. 15 Simulated expanding bubbles at t = 1, 4 and 100 (from left to right) with τ = 0.01 for the conservative
Allen-Cahn equation (2.3) with the Flory-Huggins potential in three dimensions

[10] and the fractional Laplace operator [14] possess the similar property [12], and further
studies are still needed onwhether the aboveMBP analysis and theMBP-preserving schemes
can be extended to those cases for the conservative Allen-Cahn equation.

It is also worth pointing out that, apart from the ETD methods, the integrating factor (IF)
method is also an effective method to preserve the MBP conditionally or unconditionally,
such as Runge-Kutta integrating factor (IFRK) schemes [19,23]. They would be ideal poten-
tial candidates for designing higher-order accurate MBP-preserving numerical schemes. At
the same time, extensions to the cases of complex-valued, vector-valued and matrix-valued
conservative Allen-Cahn type dynamics are also subject to future investigation.
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Fig. 16 Evolutions of the radius (top-left), the mass (top-right), the supremum norm (bottom-left) and the
energy (bottom-right) for the expanding bubble governed by the conservative Allen–Cahn equation (2.3) with
the Flory-Huggins potential in three dimensions
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