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Abstract
Nonnegative matrix factorization (NMF) is a standard linear dimensionality reduction tech-
nique for nonnegative data sets. In order to measure the discrepancy between the input data
and the low-rank approximation, the Kullback–Leibler (KL) divergence is one of the most
widely used objective function for NMF. It corresponds to the maximum likehood estimator
when the underlying statistics of the observed data sample follows a Poisson distribution,
and KL NMF is particularly meaningful for count data sets, such as documents. In this
paper, we first collect important properties of the KL objective function that are essential
to study the convergence of KL NMF algorithms. Second, together with reviewing existing
algorithms for solving KL NMF, we propose three new algorithms that guarantee the non-
increasingness of the objective function. We also provide a global convergence guarantee
for one of our proposed algorithms. Finally, we conduct extensive numerical experiments to
provide a comprehensive picture of the performances of the KL NMF algorithms.

Keywords Nonnegative matrix factorization · Kullback–Leibler divergence · Poisson
distribution · Algorithms

1 Introduction

Given a nonnegative matrix data V ∈ R
m×n+ and a positive integer r ≤ min(m, n), nonneg-

ative matrix factorization (NMF) is the problem of finding W ∈ R
m×r+ and H ∈ R

r×n+ such
that V ≈ WH . The quality of the approximation is measured using an objective function,
which typically has the form

D (V |WH) �
m∑

i=1

n∑

j=1

d
(
Vi j |(WH)i j

)
,
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where d(x |y) is a scalar cost function such that d(x |y) ≥ 0 for all x, y ≥ 0 and d(x |y) = 0
if and only if x = y. NMF is then written as the following problem

min
W∈Rm×r+ ,H∈Rr×m+

D (V |WH) .

The most widely used class of the scalar cost functions d(x |y) is the β-divergence [15]

dβ(x |y) =

⎧
⎪⎨

⎪⎩

1
β(β−1)

(
xβ + (β − 1)yβ − βxyβ−1

)
if β ∈ R \ {0, 1} ,

x log x
y − x + y if β = 1,

x
y − log x

y − 1 if β = 0.

In this paper, we are interested in the Kullback–Leibler (KL) divergence (also known as the
I-divergence), which is the β-divergence with β = 1. The KLNMF problem can be rewritten
as follows:

min
W∈Rm×r+ ,H∈Rr×m+

DKL(V |WH), (1)

where

DKL(V |WH) :=
m∑

i=1

n∑

j=1

(
(WH)i j − Vi j log(WH)i j

) +
m∑

i=1

n∑

j=1

(
Vi j log Vi j − Vi j

)
.

With the convention that 0 × log 0 = 0 and a × log 0 = −∞ for a > 0, the objective
function in (1) is well-defined and it is an extended-value function, that is, DKL ∈ [0,+∞].
KL NMF (1) is well-posed, that is, a solution always exists (see Sect. 2.1 for more details),
but the solution is in general non-unique even when removing the scaling and permutation
ambiguities of the low-rank approximation WH ; see [17] and the references therein.

1.1 Motivation

Since the seminal paper of Lee and Seung [31], NMF has been shown to be a very pow-
erful model to extract perceptually meaningful features from high-dimensional data sets.
Applications include facial feature extraction [22,31], recovery and document classifica-
tion [11,31,43], unmixing hyperspectral images [4,39]; see also [9,17,18] and the references
therein. Themostwidely used objective function forNMF is the Frobenius norm ‖V−WH‖2F
which corresponds to the β-divergence with β = 2. For nonnegative data sets, the Frobe-
nius norm is however not the theoretically most reasonable choice. In fact, it corresponds to
the maximum likelihood estimator in the presence of additive i.i.d. Gaussian noise. Under
this noise distribution, observing negative entries in a data set has a positive probability.
Moreover, many nonnegative data sets are sparse in which case Gaussian noise is clearly not
appropriate [8,14,31].

Let us assume that Vi j is a sample of the random variable Ṽi j following the Poisson
distribution of parameter (WH)i j , that is,

P
(
Ṽi j = k

) = (WH)ki j e
−(WH)i j

k! for k = 0, 1, 2, . . .

Then the maximum likelihood estimator of W and H , given V , is the solution of (1). The
Poisson distribution is particularly well suited for integer-valued data sets, such a documents
represented by vector of word counts [8,33], or images which can be interpreted as a photon
counting process [23]. KL NMF has also been used successfully in bioinformatics [35], e.g.,

123



Journal of Scientific Computing (2021) 87 :93 Page 3 of 32 93

to cluster samples of RNA sequencing gene expression data [10]. It is worth noting that
KL NMF also makes sense when V contains non-integer entries. In that case, Vi j can be
interpreted as the average of several samples of the random variable Ṽi j .

In the literature, NMF with the Frobenius norm (Fro NMF) has been thoroughly studied
and well-documented. Among algorithms for Fro NMF, the block coordinate (BC) methods,
which update one block of the variables at a time, have the best performance in practice,
see for example [1,9,18,24,28,49] and the references therein. Note that one “block” here can
be a full matrix, a column, a row, or even just a scalar component of the matrices W or H .
The objective function of Fro NMF has several nice properties that allow us to apply some
advanced development of BCmethods for solving composite block-wise convex optimization
problems, which subsume Fro NMF as a special case, to derive very efficient algorithms with
some rigorous convergence guarantee [24,49]. One of themost important properties is that the
gradients of the objectivewith respect toW and H , that is,W �→ ∇W DFro and H �→ ∇H DFro,
are Lipschitz-continuous over W ∈ R

m×r+ , H ∈ R
r×n+ . Although the objective of KL NMF,

similarly to DFro, is block-wise convex (that is, the function W �→ DKL and H �→ DKL are
convex), DKL is even not differentiable at W or H when (WH)i j = 0 for some i, j . Since
DKL does not possess the nice smooth properties of Fro NMF, the extension of the analysis of
BCmethods from Fro NMF to KLNMF is restricted. Proposing a good algorithm for solving
KL NMF is therefore a more difficult task compared to the Fro NMF. In fact, there are much
fewer papers studying algorithms for KL NMF in the literature; in particular, algorithms
with convergence guarantee are scarce. To the best of our knowledge, the multiplicative
updates (MU) with some modification of KL NMF (see Sect. 3.1 for more details) is the only
algorithm that has a subsequential convergence guarantee. Moreover, the MU are the most
widely used algorithm for KL NMF, while it is well known that, for Fro NMF, the MU are
slow and should not be used; see [18] and the references therein. These observations motivate
this work which analyses in details the properties and algorithms for KL NMF (1).

1.2 Contribution and Outline

Our main contribution is threefold.

1. In Sect. 2, we present important properties of KL NMF (1) for the convergence analysis
of KL-NMF algorithms. Some are well-known while others have not yet been highlighted
in the literature, to the best of our knowledge.

2. While existing algorithms for (1) are briefly reviewed in Sect. 3, we present two new
algorithms in Sect. 4. They are (i) a block mirror descent method (BMD), for which
we prove the global convergence of its generated sequence to a stationary point of a
slightly perturbed version of KL NMF, and (ii) a scalar Newton-type algorithm which
monotonically decreases the objective function. To the best of our knowledge, BMD is
the first algorithm for KL NMF that has a global convergence guarantee. We also propose
a hybridization between the scalar Newton algorithm and the MU for which the objective
function is guaranteed to be non-increasing.

3. In Sect. 5, we perform extensive numerical experiments on synthetic as well as real data
sets to compare the performance of the algorithms. To the best of our knowledge, this is the
first time such a comparison is performed. It provides a good picture on the performance
of the algorithms in different scenarios.

We hope that the paper will be a good reference for whomever is using KL NMF, or is
interested in KL NMF algorithms.
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2 Some Properties of KL NMF

In the remainder of the paper, for simplicity, we denote D(V |WH) = DKL(V |WH) since
we only consider the KL divergence. The objective function of KL NMF (1) is not finite at
every point of its constraint set since D(V |WH) = ∞ when Vi j > 0 and (WH)i j = 0.
This fact makes the convergence analysis of algorithms for (1) very challenging. Hence, in
parallel with considering KL NMF (1), we propose to study the following perturbed version

min
W ,H

D(V |WH)

such that Wik ≥ ε, Hkj ≥ ε for i ∈ [m], j ∈ [n], k ∈ [r ], (2)

where ε ≥ 0, and [n] denotes the set {1, . . . , n}. Problem (2) is equivalent to KL NMF (1)
when ε = 0. When ε > 0, the objective of (2) is finite at every point of its constraint set.
Moreover, a solution of (2) has all its entries strictly positive when ε > 0. However, for ε

sufficiently small (we recommend to use the machine precision), then such entries can be
considered as zeros, which will not influence the objective function of KL NMF much; see
Proposition 1 below.

2.1 Existence of Solutions

The following proposition proves the existence of solutions of Problem (2) and provides a
connection between the optimal value of (1) and its perturbed problem (2) with ε > 0. The
proof is given in Appendix 1.

Proposition 1 (A)Given ε ≥ 0 and a nonnegativematrix V , Problem (2) attains its minimum,
that is, it has at least one optimal solution.

(B) Let ν = ∑m
i=1

∑n
j=1 Vi j . Denote D∗(V , ε) be the optimal value of Problem (2). We

have D∗(V , ε) ≤ D∗(V , 0) + (min{n + mr ,m + nr}√ν + mnε)ε.

Proposition 1(A) is known for the case ε = 0; see for example [16, Proposition 2.1],
while Proposition 1(B) is new. Given δ ≥ 0, Proposition 1(B) shows that by choosing ε

such that min{n + mr ,m + nr}√νε + mnε2 = δ, an optimal solution of (2) is a δ-optimal
solution of KL NMF (1). Proposition 1(B) shows that, for ε sufficiently small, the objective
function of (2) is not significantly larger than that of (1). However, it says nothing on the
corresponding optimal solutions. To the best of our knowledge, no sensitivity analysis of the
optimal solutions exist in theNMF literature. In fact, there could exist several isolated optimal
solutions (see, e.g., [19], for some examples) which makes a sensitivity analysis difficult in
the general case because the optimal solution can change drastically for an arbitrarily small
perturbation (leading to an infinite condition number of the problem). This is an interesting
direction of further research.

2.2 KKT and Stationary Points

Apair (W ∗, H∗) is aKarush–Kuhn–Tucker (KKT) point of (2) if it satisfies theKKToptimal-
ity condition of (2), that is, if the objective function f (W , H) := D(V ,WH) is differentiable
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at (W ∗, H∗), and for all i ∈ [m] and k ∈ [r ]: W ∗
ik ≥ ε and

∂ f (W ∗, H∗)
∂Wik

=
n∑

j=1

H∗
k j −

n∑

{ j |Vi j>0}
Vi j

H∗
k j

(W ∗H∗)i j
≥ 0, (3a)

(W ∗
ik − ε)

∂ f (W ∗, H∗)
∂Wik

= 0, (3b)

(3)

and similarly for H∗, by symmetry. A pair (W ∗, H∗) is a stationary point of (2) if it is a
feasible point of (2) that lies in the domain of f and for all i ∈ [m] and k ∈ [r ], it satisfies

∂ f (W ∗, H∗)
∂Wik

(Wik − W ∗
ik) ≥ 0 for any Wik ≥ ε, (4)

and similarly for H∗. For Problem (2), it turns out that KKT points and stationary points
coincide. SinceW ∗

ik −ε ≥ 0, (3a) and (3b) hold if and only if (4) holds. Indeed, let (W ∗, H∗)
satisfy (4) then choosing Wik in (4) to be W ∗

ik + 1 gives (3a) while choosing Wik in (4) to
be ε or 2W ∗

ik − ε gives (3b). The reverse direction is obvious. The same reasoning applies to
H∗.

The following proposition provides an interesting property of KKT points of KL NMF
(1), see [25, Theorem 1] for its proof. Note that this property does not hold for its perturbed
variant (2) with ε > 0.

Proposition 2 If (W ∗, H∗) is a KKT point of (1), then W ∗H∗ preserves the row sums and
the column sums of V , that is,

V e = (W ∗H∗)e and eV = e(W ∗H∗),

where e denotes the vector of all ones of appropriate dimension.

Let us define the following notion of a scaled pair (W , H).

Definition 1 Wesay (W , H) is scaled if the optimal solutionof the problemminα∈R D(V , αWH)

is equal to 1.

Hence WH is scaled implies that one cannot multiply WH by a constant α (that is, one
cannot scale WH ) to reduce the error K L(X ,WH).

By Proposition 2, if (W ∗, H∗) is a KKT point of (1) then
∑m

i=1
∑n

j=1 Vi j =∑m
i=1

∑n
j=1(W

∗H∗)i j and hence is scaled. Moreover, we have the following result.

Proposition 3 A pair (W , H) is scaled if and only if

m∑

i=1

n∑

j=1

Vi j =
m∑

i=1

n∑

j=1

(WH)i j .

Proof We have

D(V , αWH) = α
∑

i, j

(WH)i j −
∑

i, j

Vi j log(WH)i j

−
∑

i, j

Vi j logα +
∑

i, j

(Vi j log Vi j − Vi j ).

The result follows from the equation ∇αD(V , αWH) = 0. ��
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Proposition 3, although simple to prove, is not present explicitly in the literature. However, it
is rather interesting from a practical point of view: any feasible solution (W , H) to KL NMF
can be improved simply by scaling it. In fact, combining Definition 1 and Proposition 3, we
can compute

α∗ = argminα∈R D(V , αWH) = eVe

e(WH)e
,

and scale W ← α∗ W to improve the feasible solution (W , H). This could be used within
any algorithm for KL NMF.

2.3 Relative Smoothness

In Sect. 4.1, we will propose a new algorithm that globally converges to a stationary point
of (2) with ε > 0, namely a block mirror descent method. An instrumental property of (2)
to prove such a result is relative smoothness. Let us describe this property in details.

The objective D(V |WH) is convex in each block variable W and H , but it is not jointly
convex in (W , H). Furthermore, D(V |WH) does not possess the Lipschitz smoothness prop-
erty, that is, the derivative of D(V |WH) with respect toW or H is not Lipschitz continuous.
Recently, the authors in [3] and [37] introduce the notion of relative smoothness that is a
generalization of the Lipschitz smoothness.

Definition 2 [37, Definition 1.1] Let κ(·) be any given differentiable convex function defined
on a convex set Q. The convex function g(·) is L-smooth relative to κ(·) on Q if for any
x, y ∈ intQ, there is a scalar L for which

g(y) ≤ g(x) + 〈∇g(x), y − x〉 + LBκ (y, x), (5)

where
Bκ (y, x) := κ(y) − κ(x) − 〈∇κ(x), y − x〉, for all x, y ∈ Q. (6)

The following proposition shows that, when restricted to a column of H , the KL objective
function is a relative smooth function. Since D(V |WH) = D(V|HW), this result
implies that the KL objective function when restricted to a row ofW is also relative smooth.

Proposition 4 [3, Lemma 7] Let v ∈ R
m+ and W ∈ R

m×r+ , and

D(v|Wh) :=
m∑

i=1

(
(Wh)i − vi log(Wh)i + vi log vi − vi

)
. (7)

Then the function h �→ D(v|Wh) is relative smooth to κ(h) = − ∑r
j=1 log h j with the

relative smooth constant L = ‖v‖1.

2.4 Self-concordant Properties

In Sect. 4.2, we will propose a new monotone algorithm to solve (2), namely a scalar
Newton-type algorithm. An instrumental property of (2) to prove the monotonicity is the
self-concordant properties of its objective function. Let us first define a self-concordant
function. We adopt the definition in [40, Chapter 5].

Consider a closed convex function g : E → R with an open domain. Fixing a point
x ∈ dom(g) and a direction d ∈ E, let ϕx (τ ) = g(x + τd). We define Dg(x)[d] = ϕ′

x (0),
D2g(x)[d, d] = ϕ′′

x (0), and D3g(x)[d, d, d] = ϕ′′′
x (0).
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Definition 3 We say the function g belongs to the classFM of self-concordant functions with
parameter M ≥ 0, if

∣∣D3g(x)[d, d, d]∣∣ ≤ 2M‖d‖3∇2g(x),

where ‖d‖2∇2g(x)
= 〈∇2g(x)d, d〉 = ϕ′′

x (0). The function g is called standard self-concordant
when M = 1.

The scalar function g(x) = − log(x) is a standard self-concordant function; see [40, Example
5.1.1]. The following proposition provides some useful properties to determine the self-
concordant constant of a function.

Proposition 5 [40, Theorems 5.1.1 and 5.1.2]

(i) Let g1, g2 be self-concordant functions with constants M1, M2. Then the function g(x) =
αg1(x) + βg2(x), where α, β are positive constants, is self-concordant with constant
Mg = max

{ 1√
α
M1,

1√
β
M2

}
.

(ii) If g(·) is self-concordant with constant Mg, then φ(x) = g(A(x)), whereA(x) = Ax+b
is a linear operator, is also self-concordant with constant Mφ = Mg.

Using Proposition 5, we can prove that the objective of the perturbed KL NMF problem (2)
is self-concordant with respect to a single entry of W and H .

Proposition 6 Given V ∈ R
m×n+ , W ∈ R

m×r+ and H ∈ R
r×n+ , the scalar function

Hkj �→ D(V |WH) =
m∑

i=1

( n∑

a=1

WiaHaj − Vi j log
n∑

a=1

WiaHaj

)
+ constant

is a self-concordant function with constant cHkj = max{i |Vi j>0}
{

1√
Vi j

}
.

3 Existing Algorithms

In this section, we briefly review the most efficient algorithms for KL NMF.

3.1 Multiplicative Updates

Let us consider the linear regression problem: Given v ∈ R
m+ and W ∈ R

m×r+ ,

minimizeh∈Rr+ DKL(v,Wh).

For W fixed in KL NMF, this is the subproblem to be solved for each column of H . The
multiplicative updates (MU) for solving this problem are given by

h ← h ◦
(
W [v]

[Wh]
Wee

)
,

where ◦ and [·]
[·] are the component-wise product and division between two matrices, respec-

tively. They were derived by Richardson [42] and Lucy [38], who used them for image
restoration, and rectification and deconvolution in statistical astronomy, respectively. This
algorithm was later referred to as the Richardson–Lucy algorithm, and is guaranteed to
decrease the KL NMF objective function.
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In the context of NMF, Lee and Seung [31] derived these updates again, in a matrix form,
to update W and H alternatively in KL NMF. The MU can be easily generalized to the
perturbed KL NMF problem (2) [45], and are given by

H ← max

(
ε, H ◦

[
W [V ]

[WH ]
]

[
Wee]

)
,W ← max

(
ε,W ◦

[ [V ]
[WH ] H

]
[
eeH

]
)

. (8)

Note that, for ε = 0, the max(ε, ·) can be removed since the entries of V , W and H are
nonnegative, which corresponds to the MU used by Lee and Seung.

The MU can be derived using the majorization–minimization (MM) framework, which is
a two-step approach:

1. majorization: find a majorizer, that is, a function that is equal to the objective function at
the current iterate while being larger everywhere else on the feasible domain, and

2. minimization: minimize the majorizer to obtain the next iterate.

We refer the interested reader to [13] for all the details. Moreover, the MU can be shown to
belong to a specificMM framework, namely, the block successive upper-boundminimization
(BSUM) framework [26,41]. For completeness, we describe the BSUM framework and its
convergence guarantees in Appendix 1. This allows to provide convergence guarantees for
the MU. Let us anaylze two cases separately.

3.1.1 Case " = 0

In this case, the MU are not well-defined if (WH)i j = 0 for some (i, j). Furthermore, the
MU would encounter a zero locking phenomenon, that is, the MU cannot modify an entry of
W or H when it is equal to 0. This phenomenon can be fixed by choosing an initial pair with
strictly positive entries. Moreover, the objective function is not directionally differentiable
when (WH)i j = 0 and Vi j > 0 for some i, j . Hence, the convergence to stationary points
obtained in [41, Theorem 2] for BSUM does not apply. In fact, [21] provided a numerical
evidence that the generated sequence may not converge to a KKT point, and, [8, Section 6.2]
gave an example that MU may converge to a non KKT point. Although the convergence of
the generated sequence by MU is not guaranteed, it is worth noting that MU in this case
possesses an interesting scale-invariant property.

Proposition 7 Let ε = 0 and denote H+ (resp. W+) the update of H (resp. W) after applying
one MU (8) of H (resp. of W) on (W , H). Suppose the MU for H (resp. W) is well-defined,
that is, (WH)i j > 0 for all i, j and W has no zero column (resp. H has no zero row). Then
the MU of H preserve the column sum of V , that is, eV = e(WH+), while the MU of W
preserve the row sum of V , that is, V e = (W+H)e.

Proof We prove the result for H , the result forW can be obtained by symmetry. We have for
j ∈ [n] that

m∑

i=1

(WH+)i j =
m∑

i=1

r∑

k=1

Wik H
+
k j =

m∑

i=1

r∑

k=1

Wik Hkj

∑m
l=1 WlkVl j/(WH)l j∑m

l=1 Wlk

=
r∑

k=1

m∑

i=1

Wik Hkj

∑m
l=1 WlkVl j/(WH)l j∑m

l=1 Wlk
=

r∑

k=1

Hkj

m∑

l=1

WlkVl j
(WH)l j

=
m∑

l=1

r∑

k=1

Vl j
Wlk Hkj

(WH)l j
=

m∑

l=1

Vl j .

��
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Proposition 7 shows that any iterate of the MU, except the first one, is scaled
(Definition 1). Hence, sometimes in the literature, the MU are used to scale the pair (W , H)

within KL NMF algorithms.

3.1.2 Case " > 0

For this case, [41, Theorem 2] implies that every limit point of the generated sequence of
MU for solving Problem (2) with ε > 0 is a stationary point of Problem (2) (which is also
a KKT point, see Sect. 2.2). It is worth noting that the sub-sequential convergence of MU in
this case can also be proved by using Zangwill’s convergence theory as in [45].

3.2 ADMM

The alternating direction method of multiplier (ADMM) is a standard technique to tackle
low-rank matrix approximation problems [29], and it was used to solve KL NMF (1) in [44].
The first step is to reformulate (1) as

min
W ,H ,W+,H+

D(V |V̂ )

such that V̂ = WH ,W = W+, H = H+,W+ ≥ 0, H+ ≥ 0,
(9)

where V̂ , W+ and H+ are auxiliary variables. ADMM alternately minimizes the augmented
Lagrangian of (9) over the variables (V̂ ,W , H ,W+, H+), and updates the dual variables at
each iteration. We refer the reader to [44] for more details. It is important noting that the
objective is not monotonically decreasing under the updates of ADMM. Also, convergence
to stationary points is not guaranteed. In fact, we will see in the numerical experiments that
ADMM does not converge in some cases.

3.3 Primal-Dual Approach

In [50], Yanez and Bach proposed a first-order primal-dual (PD) algorithm for KL NMF (1).
PD employs the primal-dual method proposed in [7] to tackle the convex subproblems in
the columns of H and rows of W ; see (7). To improve the performance of the primal-dual
method, PD uses an automatic heuristic selection for the step sizes; see [50] for the details.
PD is a heuristic algorithm, and it does not guarantee the monotonicity of the objective.

3.4 A Cyclic Coordinate Descent Method

In [28], Hsieh and Dhillon proposes to solve KL NMF (1) using a cyclic coordinate descent
(CCD) method. CCD alternately updates the scalars Wik or Hkj . The subproblems in one
variable are solved by a Newton method, in which a full Newton step is used, without line
search. Again, there is no convergence guarantee for this algorithm, although the Newton
method used to approximately solve the subproblems in one variable may have some conver-
gence guarantee, if properly tuned. In fact, we realized that there is a gap in the convergence
proof of the Newton method without line search to the global minimum of the scalar sub-
problems [28, Theorem 1]: Equation (29) is not correctly computed which makes the proof
incorrect. This observation motivated us to introduce a new scalar Newton-type algorithm in
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Sect. 4.2. Note that a similar algorithm was independently developed in [36], along with an
R package. Another R package is available that implements both CCD and MU [6].

3.5 Two Other Algorithmic Approaches

In [34], Li, Lebanon and Park proposed a Taylor series expansion to express Bregman
divergences in term of Euclidean distances, leading to a heuristic scalar coordinate descent
algorithm for solving NMF problems with Bregman divergences. The algorithm using this
approach for solving KLNMF underperforms the CCDmethod from [28], and hence we will
not compare it in the numerical experiment section.

More recently, Kim, Kim and Klabjan [30] proposed a scale invariant power iteration
(SCI-PI) algorithm to solve a class of scale invariant problems, and apply it to KL NMF (1).
To establish convergence results for SCI-PI (see [30, Theorem 9, 11]), the objective function
of the scale invariant problem needs to be twice continuously differentiable on an open set
containing the set {x : ‖x‖ = 1}. However, the objective function of the corresponding sub-
problem (see [30, Lemma 14]) when applying SCI-PI to KL NMF violates this condition.
Therefore, the theory of SCI-PI in [30] does not apply to KL NMF.

4 NewMembers of the Algorithm Collection

In this section, we present two new algorithms for KL NMF, a block mirror descent method
in Sect. 4.1, and a new scalar Newton-type algorithm in Sect. 4.2.

4.1 Block Mirror Descent Method

Let us first give details on the analysis of the blockmirror descent (BMD)method (Sect. 4.1.1),
and then apply the result to solve the perturbed KL NMF problem (2) (Sect. 4.1.2).

4.1.1 BMDMethod

The standard gradient descent (GD) scheme for solving the smooth optimization problem
minx∈Q g(x), with g being L-smooth, uses the following classical update

xk+1 = argmin
x∈Q

{
g(xk) + 〈∇g(xk), x-xk〉 + L

2
‖x-xk‖22

}
. (10)

When g(·) is not L-smooth but L-relative smooth to κ(·) (see Definition 2), the GD scheme
can be generalized by replacing the Euclidean norm in (10) by the Bregman divergence B,
leading to the following mirror descent step

xk+1 = argmin
x∈Q{g(xk) + 〈∇g(xk), x − xk〉 + LBκ (x, xk)}. (11)

Let us now present BMD, that uses the above generalized GD scheme, but updating the
variable block by block. For that, let us consider a problem of the form

min
x∈X f (x), (12)
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where f is continuously differentiable on X , x := (x1, x2, . . . , xs) and X = X1 × X2 ×
· · · × Xs with Xi (i = 1, 2, . . . , s) being closed convex sets. Let us also make the following
assumption.

Assumption 1 (i) For all x̄ ∈ X , the function xi �→ f (x̄1, . . . , x̄i−1, xi , x̄i+1, . . . , x̄s) is
convex and relative smooth to κi (xi ) with constant Li (x̄1, . . . , x̄i−1, x̄i+1, . . . , x̄s).

(ii) There exist positive constants Li and Li such that

Li ≤ Li (x̄1, . . . , x̄i−1, x̄i+1, . . . , x̄s) ≤ Li .

BMD for solving Problem (12) is described in Algorithm 1.

Algorithm 1 Block Mirror Descent for solving (12)

1: Choose an initial point x0 such that x0i ∈ int domXi for i = 1, . . . , s.
2: for k = 1, . . . do
3: for i = 1, . . . , s do
4: Let f ki (xi ) = f

(
xk+1
1 , . . . , xk+1

i−1 , xi , x
k
i+1, . . . , x

k
s
)
.

5: Update

xk+1
i = arg min

xi∈Xi

{
f ki (xki ) + 〈∇ f ki (xki ), xi − xki 〉 + Lki Bκi (xi , x

k
i )

}
, (13)

where Lki = Li (x
k+1
1 , . . . , xk+1

i−1 , xki+1, . . . , x
k
s
)
.

6: end for
7: end for

BMD described in Algorithm 1 is structurally identical to the block Bregman proxi-
mal gradient (BBPG) method presented in [46] with cyclic update. However, BMD has an
improvement over BBPG: it uses the step size 1/Lk

i which is larger than ρ/Lk
i used in BBPG,

as ρ ∈ (0, 1). Our convergence analysis of Algorithm 1 (Theorem 1 below, see its proof in
Appendix 2) is an extension of the primal gradient scheme (which is BMD for s = 1) anal-
ysed in [37]. It is worth noting that our result can be extended to composite optimization
with essentially cyclic regime by using the technique in [37, Section A.2] and [46, Section
2]. In this paper, we only present the result of BMD with cyclic regime for (12) to simplify
the presentation.

Theorem 1 Suppose Assumption 1 is satisfied. Let {xk} be the sequence generated by Algo-
rithm 1. Let also Φ(x) = f (x) + ∑

i IXi (xi ), where IXi is the indicator function of Xi . We
have

(i) Φ
(
xk

)
is non-increasing;

(ii) Suppose Xi ⊂ int dom κi . If {xk} is bounded and κi (xi ) is strongly convex on bounded
subsets of Xi that contain {xki }, then every limit point of {xk} is a critical point of Φ;

(iii) If togetherwith the conditions in (ii)we assume that∇κi and∇i f are Lipschitz continuous
on bounded subsets of Xi that contain {xki }, then the whole sequence {xk} converges to
a critical point of Φ.

Let us now apply this new algorithm and convergence result to KL NMF.

4.1.2 BMD for KL NMF

Problem (2) has the form of Problem (12). Proposition 4 allows us to apply BMD to solve (2),
where the blocks of variables are the columns of H and the rows of W . Using the notation
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of Proposition 4, we have ∇h D(v|Wh) = ∑m
i=1

(
1− vi

(Wh)i

)
Wi,:, where Wi,: is the i-th row

of W , and Bκ (h, hk) = ∑r
j=1

h j

(hk ) j
− log

h j

(hk ) j
− 1. The following proposition provides the

closed-form solution for the mirror descent step, see its proof in [3, Section 5.2].

Proposition 8 Using the notation of Proposition 4, the problem

min
h≥ε

{
D(v|Whk) + 〈∇h D(v|Wh)[hk ], h − hk

〉 + LBκ (h, hk)
}

(14)

has the following unique closed-form solution hk+1: for l ∈ [r ],

(hk+1)l = max

⎧
⎪⎪⎨

⎪⎪⎩

(hk)l

1 + 1
L (hk)l

( m∑
i=1

Wil −
m∑
i=1

vi Wil
(Whk )i

) , ε

⎫
⎪⎪⎬

⎪⎪⎭
. (15)

Recall that, h �→ D(v|Wh) is ‖v‖1-relative smooth to κ(h) = −∑r
j=1 log h j . Together with

Proposition 8 which provides a closed-form solution of the update (13), we can therefore
easily apply BMD to KL NMF. Assumption 1 is satisfied, and Theorem 1 (i) implies that
Φ

(
xk

)
is non-increasing. Moreover, using a similar method as in the proof Proposition 1 and

noting that Φ
(
xk

) ≤ Φ
(
x0

)
, we can prove that BMD for KL NMF (2) with ε > 0 generates

a bounded sequence. Together with the assumption x ≥ ε, we see that all conditions of
Theorem 1 (iii) are satisfied. Hence, we obtain the following convergence guarantee for
BMD applied to (2).

Theorem 2 Algorithm 1 applied on the KL NMF problem (2) monotonically decreases the
objective function for any ε ≥ 0. Moreover, for ε > 0, the generated sequence by BMD is
bounded and globally converges to a stationary point of (2).

It is important noting that ∇κ(h) is not Lipschitz continuous on bounded sets containing 0.
We hence cannot apply Theorem 1 (iii) to the KL NMF problem (1).

4.2 A Scalar Newton-Type Algorithm

In this section, we propose a new scalar Newton-type (SN) algorithm that makes use of
the self-concordant property of the objective function (see Sect. 2.4) to guarantee the non-
increasingness for the objective sequence, that consequently guarantees the convergence of
the objective sequence since it is also bounded from below. The motivation to propose this
new method comes from our observation that CCD does not come with any convergence
guarantee, as explained in Sect. 3.4, although it performs well in many cases.

Let us first have a brief review on Newton methods. Unconstrained minimization prob-
lem of a self-concordant function can be efficiently solved by Newton methods, see [40,
Section 5.2]. Tran-Dinh et al. [47] brought the spirit of Newton methods for unconstrained
optimization to composite optimization problems of the form

min
x∈Rn

Ψ (x) := ψ(x) + φ(x), (16)

where ψ(x) is a standard self-concordant function and φ(x) is a proper, closed, convex but
possibly non-smooth function. In particular, the authors propose a proximal Newton method
(PNM) with the following update

xk+1 = xk + αkd
k, (17)
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where αk ∈ (0, 1] is a step size, dk = sk − xk and

sk = argmin
x

{
ψ(xk) + 〈∇ψ(xk), x − xk〉 + 1

2
(x − xk)∇2ψ(xk)(x − xk) + φ(x)

}
.

Denoting λk = ‖dk‖xk = (
(dk)∇2ψ(xk)dk

)1/2, it follows from [47, Theorem 6] that when
the stepsize αk = (1 + λk)

−1 is used, then the PNM generates the sequence xk satisfying
Ψ (xk+1) ≤ Ψ (xk) − ω(λk), where ω(t) = t − ln(1 + t).

Recall that the KL objective function with respect to a scalar component of W or H is a
self-concordant function, see Proposition 6. We can hence make use of the update in (17) to
propose the SN method; see Algorithm 2.

Algorithm 2 SN for solving Problem (1)
1: Choose initial points W > 0, H > 0.
2: Compute the self-concordant constants cWik and cHkj of the function Wik �→ f and Hkj �→ f , see

Proposition 6.
3: repeat
4: Alternately update each scalar component of W and H . We update Wik several times (similarly for

Hkj ) as follows.
5: Calculate

f ′
Wik

=
n∑

l=1

Hkl −
n∑

l=1

Vil
Hkl

(WH)il
, f ′′

Wik
=

n∑

l=1

Vil
H2
kl(

WH)2il

,

and let s = max
{
Wik − f ′Wik

f ′′Wik

, 0
}
, d = s − Wik , and λ = cWik

√
f ′′
Wik

|d|.
6: if f ′

Wik
≤ 0 or† λ ≤ 0.683802 then

7: update Wik by a full proximal Newton step Wik ← s,
8: else
9: update Wik by Wik ← Wik + 1

1+λ
d.

10: end if
11: until some criteria is satisfied
† Such λ guarantees that λ2 + λ + log(1 − λ) > 0 implying that the objective is non-increasing under a full
Newton step; see the proof in Appendix 3.

The following proposition proves that SNmonotonically decreases the objective function.
The proof is provided in Appendix 3.

Proposition 9 The objective function for the perturbed KL-NMF problem (1) is non-
increasing under the updates of Algorithm 2.

4.3 A Hybrid SN-MU Algorithm

We recall that MU possesses an important property, namely that (W , H) scaled after anyMU
update; see Proposition 7. On the other hand, we note that KKT points of Problem (1) are
also scaled. However, SN does not possess this scale-invariant property. Hence we propose
to combine SN with MU to result in a hybrid SN-MU algorithm. Specifically, we alternately
run several SN steps before scaling the sequence by running one or several updates of MU. In
Sect. 5, we will use 10 steps of SN followed by one step ofMU for all numerical experiments.
As we will see, this combination sometimes significantly improves the performance of SN.
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Table 1 Properties of KL NMF algorithms presented in this paper, applied on an m-by-n matrix V to be
approximated with a rank-r approximation WH . The parameter d is the number of inner iterations

Algorithms Complexity (flops) Convergence Monotonicity References

MU O(mnr) ✓ ✓ Sect. 3.1

ADMM O(mnr) ✗ ✗ Sect. 3.2

PD O(mnrd) ✗ ✗ Sect. 3.3

CCD O(mnrd) ✗ ✗ Sect. 3.4

BMD O(mnr) ✓ ✓ Sect. 4.1

SN O(mnrd) ✗ ✓ Sect. 4.2

SN-MU O(mnrd) ✗ ✓ Sect. 4.3

5 Experiments

In this section, we report comparisons of the KL NMF algorithms listed in Table 1.
The second column of Table 1 provides the complexity of one iteration to update all

entries of (W , H). The parameter d in the second column of PD, CCD, SN and SN-MU
is the number of inner iterations of one main iteration of updating (W , H). The third col-
umn indicates whether the corresponding algorithm has some convergence guarantee for its
generated sequence. We note that, considering Problem (2) with ε > 0, MU guarantees a
subsequential convergence while BMD guarantees a global convergence. The fourth column
indicates if the sequence of the objective function values is non-decreasing.

5.1 Implementation

We have implemented MU and BMD in Matlab, SN in C++ and use its mex file to run
it from Matlab, as for CCD provided by the authors1 (for which we have fixed an issue
on maintaining (WH)i j , otherwise it sometimes run into numerical issues generating NaN
objective function values because (WH)i j could take negative values). We use the Matlab
code provided by the authors for ADMM2 and PD3. We used the best possible programming
language for each algorithm. For example, if CCD was implemented on Matlab, it would be
extremely slow as it loops over each variable (andMatlab is very ineffective to handle loops).
On the other side, the MU run faster on Matlab because the main computational cost resides
in matrix–matrix multiplications for which Matlab is more effective than C++. All tests are
preformed using Matlab R2018a on a laptop Intel CORE i7-8550U CPU @1.8GHz 16GB
RAM. The code is available at https://github.com/LeThiKhanhHien/KLNMF. We choose
the penalty parameter of ADMM to be equal to 1 in all of the experiments. In each run for
a data set, we use the same random initialization and the same maximal running time for all
algorithms.

We use the Matlab commands W = rand(m, r) and H = rand(r , n) to generate a
random initial point; and to avoid initial points with a large value D(V ,WH), we then

scale W and H by W = √
αW , H = √

αH , where α =
∑

i, j Vi j∑
i, j (WH)i j

; see Definition 1 and

Proposition 3. We define the relative error rel D(V ,WH) to be the objective D(V ,WH)

1 http://www.cs.utexas.edu/~cjhsieh/nmf.
2 http://statweb.stanford.edu/~dlsun/admm.html.
3 https://github.com/felipeyanez/nmf.
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divided by
∑

i, j Vi j log
Vi j

(
∑

j Vi j )/n
, and denote E(t) the value of rel D(V ,WH) − emin at

time t , where emin is the smallest value among all rel D(V ,WH) produced by all algorithms
and all initializations within the allotted time. Hence E(t) goes to zero for the best run among
all algorithms and initializations.

5.2 Experiments with Synthetic Data Sets

For each type of synthetic data sets, we generate 10 randommatrices V , then for each random
V , we generate 10 random initial points.

5.2.1 Low-Rank Synthetic Data Sets

We will consider several types of low-rank synthetic data sets depending on the parameter
� ∈ (0, 1] which is the density of the underlying factors, denoted W ∗ and H∗. We will
use � = 1, 0.9, 0.3. More precisely, to generate a low-rank synthetic data set V , we use the
Matlab commandsW ∗ = sprand(m, r , �) and H∗ = sprand(r , n, �), where � is the density
of non-zero elements (that is, 1− � is the percentage of zero elements), and let V = W ∗H∗.
We will also either keep V = W ∗H∗ as is, which is the noiseless case, or generate each entry
of V following a Poisson distribution of parameters W ∗H∗ as described in Sect. 1.1, which
is a noisy case and is achieved with the Matlab command V = poissrnd(W ∗H∗).

The results of applying the different algorithms on such matrices are reported in Fig. 1
for 200-by-200 matrices with r = 10, and in Fig. 2 for 500-by-500 matrices with r = 20.
We report the evolution of the median value of E(t). Although this is not an ideal choice,
comparing the performance in term of iterationswould beworse since the cost of one iteration
can be rather different for each algorithm; for example, CCD has inner iterations, which is
not the case of MU.

We also report the average and standard deviation (std) of the relative errors over 200
runs for the 6 types of synthetic data sets (100 runs for each size 200 × 200 or 500 × 500)
in Table 2, and provide a ranking over the total 1200 runs between the different algorithms
in Table 3: the i th entry of the ranking vector indicates how many times the corresponding
algorithm obtained the i th best solution (that is, with the i th lowest objective function value).
This table allows to see which algorithms performs on average the best on these data sets.

For these low-rank synthetic data sets, let us discuss the behaviour of the various algo-
rithms:

– ADMM is not stable, it diverges in many cases.Although the results are for ADMMwith
the penalty parameter � = 1, we also tried other values for � but the algorithm still did
not converge for the other values we have tried. ADMM has the largest number of worst
solutions (503 out of 1200). Note however that it also has a high number of best solutions
(301 out of 1200), because it performs well in the simple scenario when the factors W
and H are dense in the absence of noise. In summary, ADMM is unstable but, when it
converges, it provides good solutions.

– CCD performs very well, among the best in most cases. When looking at Table 2, we
observe that CCD has average results, having most of its solutions ranked third to fifth
(out of 7). However, it has the second lowest average error right after SN-MU.

– SNmonotonically decreases the objective function, as proved in Proposition 9. However,
in some cases, it may converge rather slowly. Its ranking are well distributed, hence it
performs close to the average.
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Fig. 1 Median value of the errormeasure E(t) on 200×200 low-rankmatrices for variousKLNMF algorithms
(see Table 1). The left column corresponds to noiseless input matrices, the right column to noisy matrices
using the Poisson distribution. The top row corresponds to dense factors (� = 1), the middle row to slightly
sparse factors (� = 0.9), and the bottom row to sparse factors (� = 0.3)
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Fig. 2 Median value of the errormeasure E(t) on 500×500 low-rankmatrices for variousKLNMF algorithms
(see Table 1). The left column corresponds to noiseless input matrices, and the right column to noisy matrices
using the Poisson distribution. The top row corresponds to dense factors (� = 1), the middle row to slightly
sparse factors (� = 0.9), and the bottom row to sparse factors (� = 0.3)
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Table 2 Average error, standard deviation over 200 different runs for each type of low-rank synthetic data sets
(100 runs for each type with the size 200×200 or 500×500). Themiddle column correspond to noiseless input
matrices, the right column to noisy matrices using the Poisson distribution. The first subtable corresponds to
dense factors (� = 1), the second subtable slightly sparse factors (� = 0.9), and the third subtable to sparse
factors (� = 0.3)

Algorithm Mean ± std (noiseless matrices) Mean ± std (noisy matrices)

ADMM 2.257 10−4 ± 2.519 10−4 8.030 10−1 ± 7.445 10−3

CCD 1.119 10−3 ± 9.145 10−4 8.025 10−1 ± 7.966 10−3

SN 9.432 10−4 ± 9.106 10−4 8.026 10−1 ± 8.014 10−3

MU 1.423 10−3 ± 1.154 10−3 8.032 10−1 ± 8.380 10−3

BMD 7.962 10−2 ± 7.325 10−2 8.172 10−1 ± 1.890 10−2

PD 1.803 10−3 ± 1.551 10−3 8.033 10−1 ± 8.527 10−3

SN-MU 9.133 10−4 ± 8.780 10−4 8.026 10−1 ± 8.009 10−3

ADMM 7.107 10−2 ± 1.129 10−1 8.497 10−1 ± 1.149 10−2

CCD 7.807 10−5 ± 3.642 10−6 7.563 10−1 ± 1.671 10−2

SN 2.013 10−2 ± 1.335 10−2 7.564 10−1 ± 1.661 10−2

MU 8.795 10−6 ± 1.088 10−5 7.573 10−1 ± 1.759 10−2

BMD 5.950 10−2 ± 5.917 10−2 7.703 10−1 ± 2.715 10−2

PD 6.156 10−9 ± 1.917 10−8 7.567 10−1 ± 1.702 10−2

SN-MU 4.515 10−5 ± 6.725 10−5 7.564 10−1 ± 1.661 10−2

ADMM 5.493 10−1 ± 5.671 10−1 7.292 10−1 ± 1.869 10−1

CCD 1.340 10−3 ± 9.142 10−3 5.762 10−1 ± 3.462 10−2

SN 2.911 10−1 ± 2.790 10−1 5.761 10−1 ± 3.468 10−2

MU 3.525 10−4 ± 4.985 10−3 5.759 10−1 ± 3.502 10−2

BMD 1.592 10−2 ± 2.041 10−2 5.830 10−1 ± 3.924 10−2

PD 9.711 10−4 ± 6.808 10−3 5.769 10−1 ± 3.419 10−2

SN-MU 1.468 10−3 ± 6.274 10−3 5.761 10−1 ± 3.468 10−2

Bold indicates the best value obtained among the tested algorithms

Table 3 Ranking among 1200
different runs for low-rank
synthetic data sets

Algorithm Ranking

ADMM (301, 6, 97, 121, 55, 117, 503)

CCD (52, 131, 302, 344, 328, 32, 11)

SN (148, 273, 249, 89, 109, 147, 185)

MU (140, 243, 172, 198, 369, 71, 7)

BMD (1, 0, 2, 26, 184, 522, 465)

PD (222, 217, 161, 164, 122, 293, 21)

SN-MU (343, 328, 214, 257, 32, 18, 8)

Bold indicates the best value obtained among the tested algorithms
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Fig. 3 Median value of E(t) on Full-rank synthetic data sets: left—200 × 200, right—500 × 500

– SN-MU improves SN and performs well, in all cases among the best algorithms. In fact,
it obtained the lowest objective function values among all algorithm, 343 out of the 1200
experiments. Also, it generates only 8 out of 1200 solutions as the worst solutions. Also,
it has the lowest relative error on average.

– MU performs well, on average better than the other algorithms (it only provides 7 worst
solutions, out of 1200 tests). It has a low relative error on average, ranked third, right
behind SN-MU and CDD.

– BMD converges very slowly (it only provides a solution among the third best ones in 3
cases out of 1200). Although it is the only algorithm with global convergence guarantee
(Proposition 2), this comes at the expense of slow convergence.

– PD performs well, although it provides in many cases (293 out of 1200) the second worst
solutions.

In summary, SN-MU performs on average the best, followed by the MU, CCD, PD, and
SN. ADMM does not always converge but can produce good solutions. BMD has strong
convergence guarantees but converges very slowly. However, there is no clear winner, and,
depending on the types of data sets, some algorithms might perform better than others.

5.2.2 Full-Rank Synthetic Data Sets

We generate a full-rank synthetic data set V by the Matlab command V = rand(m, n).
Results for full-rank synthetic 200 × 200 (with r = 10) and 500 × 500 (with r = 20) data
sets are reported in Fig. 3. We also report the average, the standard deviation of the relative
errors and the ranking vector over 200 runs (100 runs for each size) in Table 4.

We observe that the behavior can be quite different than in the low-rank cases. In particular,

– CCD now clearly performs best in term of convergence speed and average relative error.
– TheMU, CCD and SN-MU performs well, while BMD and SN perform relatively poorly

(they never produce the best solution).
– ADMM never converges, and produces the worst solution in all cases.
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Table 4 Average error, standard deviation and ranking among 200 different runs for full-rank synthetic data
sets

Algorithm Mean ± std Ranking

ADMM 9.369 10−1 ± 2.774 10−2 (0, 0, 0, 0, 0, 0, 200)

CCD 8.709 10−1 ± 1.418 10−2 (138, 27, 23, 12, 0, 0, 0)

SN 8.923 10−1 ± 3.218 10−2 (0, 0, 0, 0, 47, 153, 0)

MU 8.717 10−1 ± 1.480 10−2 (12, 62, 91, 35, 0, 0, 0)

BMD 8.835 10−1 ± 2.370 10−2 (0, 0, 0, 0, 153, 47, 0)

PD 8.716 10−1 ± 1.486 10−2 (37, 93, 58, 12, 0, 0, 0)

SN-MU 8.793 10−1 ± 2.241 10−2 (13, 18, 28, 141, 0, 0, 0)

Bold indicates the best value obtained among the tested algorithms

Table 5 Real data sets Data set Size Run time (seconds)

Audio [20]

Mary 129 × 586 25

Prelude JSB 129 × 2 582 45

ShanHur sunrise 129 × 4 102 75

Voice cell 129 × 2 181 45

Images [27,31]

Cbclim 361 × 2 429 50

ORLfaces 10 304 × 400 95

Documents [51]

Classic 7 094 × 41 681 500

Hitech 2 301 × 10 080 500

Reviews 4 069 × 18 483 500

Sports 8 580 × 14 870 500

Ohscal 11 162 × 11 465 500

La1 3 204 × 31 472 500

5.3 Experiments with Real Data Sets

Wereport in this section experiments onvariouswidely used real data sets that are summarized
in Table 5. We use r = 10 for all real data sets.

5.3.1 Audio Data Sets

For each audio data set, we generate 30 random initial points. We report the evolution of the
median of E(t) in Fig. 4, and report the average, the standard deviation of the relative errors
and the ranking vector over 120 runs (30 runs for each audio data set) in Table 6.

As for full-rank synthethic data sets, ADMM diverges while SN and BMD converges
slowly. However, for these data sets, MU outperforms the other algorithms, followed by
CCD, SN-MU, and PD.
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Fig. 4 Median value of E(t) on audio data sets: top left—mary, top right—prelude JSB, bottom left—ShanHur
sunrise, bottom right—voice cell

Table 6 Average error, standard deviation and ranking among 120 different runs for audio data sets

Algorithm Mean ± std Ranking

ADMM 2.533 10−1 ± 1.916 10−1 (0, 0, 0, 0, 1, 110, 9)

CCD 7.588 10−2 ± 4.853 10−2 (5, 42, 33, 23, 17, 0, 0)

SN 5.213 10−1 ± 2.002 10−1 (0, 0, 0, 0, 0, 9, 111)

MU 7.468 10−2 ± 4.849 10−2 (89, 7, 13, 7, 4, 0, 0)

BMD 7.898 10−2 ± 4.946 10−2 (0, 12, 21, 25, 61, 1, 0)

PD 7.642 10−2 ± 4.841 10−2 (9, 20, 23, 46, 22, 0, 0)

SN-MU 7.498 10−2 ± 4.815 10−2 (17, 39, 30, 19, 15, 0, 0)

Bold indicates the best value obtained among the tested algorithms
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Fig. 5 Median value of E(t) on image data sets: left—cbclim, right—ORLfaces

Table 7 Average error, standard deviation and ranking among 60 different runs for the 2 image data sets

Algorithm Mean ± std Ranking

ADMM 5.492 10−1 ± 2.167 10−1 (0, 0, 0, 0, 0, 0, 60)

CCD 3.339 10−1 ± 1.529 10−1 (51, 8, 0, 1, 0, 0, 0)

SN 3.569 10−1 ± 1.679 10−1 (0, 0, 0, 0, 60, 0, 0)

MU 3.354 10−1 ± 1.533 10−1 (8, 37, 10, 5, 0, 0, 0)

BMD 3.977 10−1 ± 1.867 10−1 (0, 0, 0, 0, 0, 60, 0)

PD 3.379 10−1 ± 1.550 10−1 (0, 4, 34, 22, 0, 0, 0)

SN-MU 3.387 10−1 ± 1.565 10−1 (1, 11, 16, 32, 0, 0, 0)

Bold indicates the best value obtained among the tested algorithms

5.3.2 Image Data Sets

As for audio data sets, we generate 30 random initial points. We report the result in Fig. 5
and Table 7.

As for full-rank and audio data sets, ADMM diverges, and SN and BMD converge slowly.
CCD outperforms the other algorithms followed by MU, SN-MU and PD (in that order).

5.3.3 Document Data Sets

For each document data set, we generate 10 random initial points and record the final relative
errors (the reason of using only 10 initializations is that these data sets are rather large, and
the computational time is high–we used 500 seconds for each run as shown on Table 5). We
report the average, the standard deviation of the final relative errors and the ranking vector
over 60 runs (10 runs for each document data set) in Table 8.

We observe that, CCD performs best, followed by SN-MU, in terms of the average relative
error.
Performance profiles. Fig. 6 reports the performance profiles for the experiments for synthetic
(left) and real (right) data sets. It displays the performance of each algorithm as a function
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Table 8 Average error, standard deviation and ranking among 60 different runs on the document data sets

Algorithm Mean ± std Ranking

ADMM 2.333 100 ± 3.276 10−1 (0, 0, 0, 0, 0, 10, 50)

CCD 5.366 10−1 ± 3.483 10−2 (37, 3, 16, 4, 0, 0, 0)

SN 5.388 10−1 ± 3.443 10−2 (3, 13, 30, 14, 0, 0, 0)

MU 5.402 10−1 ± 3.394 10−2 (4, 9, 7, 40, 0, 0, 0)

BMD 6.057 10−1 ± 2.476 10−2 (0, 0, 0, 0, 60, 0, 0)

PD 1.783 100 ± 2.270 100 (0, 0, 0, 0, 0, 50, 10)

SN-MU 5.370 10−1 ± 3.472 10−2 (16, 35, 7, 2, 0, 0, 0)
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Fig. 6 Performance profile for all experiments; see (18). On the left: synthetic data set, on the right: real data
sets

of ρ ≥ 0. For a given value of ρ, we define the performance of an algorithm as follows

performance(ρ) = �
{
solution (W , H) | rel D(V ,WH) − rel D(V ,W ∗H∗) ≤ ρ

}

�runs
, (18)

where a solution (W , H) is the final pair obtained within the total allotted time by the
algorithm, and (W ∗, H∗) is the best solution obtained among all algorithms using the same
initialization. Hence, for example, performance(0) aggregates the values of the rankings at
the first position provided in Tables 3 and 4 for the synthetic data sets, and in Tables 6, 7 and
8 for the real data sets.

Performance profiles allow us to compare the algorithms meaningfully over different
instances [12], that is, different matrices and initializations in our case. Looking at the curves
for ρ equal zero, we observe the percentage of the time each algorithm was able to obtain the
best solution. The right of the curve, as ρ increases, reports the robustness of an algorithm,
that is, the percentage of times it was able to obtain a solution close to the best solutions
found among all algorithms. In all cases, the higher the curve the better.

Figure 6 confirms our observations: CCD,MU and SN-MU perform the best. On synthetic
data sets, SN-MU provides the best solutions in most cases (left part of the left figure),
while on real data sets, MU and CCD perform better (left part of the right figure). In terms
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of robustness, the three algorithms are comparable: their curves get closer together as ρ

increases. Note that, as we have observed as well, PD performs on par with CCD, MU and
SN-MU on synthetic data sets, while it is less effective for real data sets as it does not reach
a performance of 1 even for ρ = 1.

5.4 Conclusions of the Numerical Experiments

Surprisingly, for KL NMF, the behaviour of the algorithms can be highly dependent on
the input data. For example, CCD performs best for images and documents, while MU
performs best for audio data sets. To the best of our knowledge, this has not been reported
in the literature. As far as we know, most papers focus only on a few numerical examples,
introducing an undesirable bias towards certain algorithms. It is interesting to note that for
Fro NMF, such different behaviors depending on the input data has not been reported in
the literature, despite numerous studies. The reason is most likely that KL NMF is a more
difficult optimization problem, for which the subproblem inW and H , although convex, does
not admit an L-Lipschitz gradient.

The main take-home message of our experiments is that CCD, SN-MU andMU appear to
be the most reliable algorithms for KL NMF, performing among the best in most scenarios.

6 Conclusion

In this paper, we have presented important properties of KL NMF that are useful to analyze
algorithms (Sect. 2). Then, we have reviewed existing algorithms, and proposed three new
algorithms: a block mirror descent (BMD) method with global convergence guarantees, a
scalar Newton-type (SN) algorithm which monotonically decreases the objective function,
and an hybridization between SN andMU. Finally, in Sect. 5, we performed extensive numer-
ical experiments on synthetic and real data sets. Although no KL NMF algorithms clearly
outperforms the others, it appears that the CCD, MU and SN-MU provide the best results on
average.
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A Technical Proofs

A.1 Proof of Proposition 1

Proposition 1: (A)Given ε ≥ 0 and a nonnegativematrixV , Problem (2) attains itsminimum,
that is, it has at least one optimal solution.

(B) Let ν = ∑m
i=1

∑n
j=1 Vi j . Denote D∗(V , ε) be the optimal value of Problem (2). We

have D∗(V , ε) ≤ D∗(V , 0) + (min{n + mr ,m + nr}√ν + mnε)ε.

Proof Problem (2) can be rewritten as follows

min
W ,H

D
(
V |(W + εee)(H + εee)

)

such that Wik ≥ 0, Hkj ≥ 0 for i ∈ [m], k ∈ [r ], j ∈ [n]. (19)

We note that

(W + εee)(H + εee) = WH + ε(Wee + eeH) + ε2ee. (20)

Let us now prove the parts (A) and (B) of Proposition 1 separately.
(A) We note that

1

ν
D

(
V |(W + εee)(H + εee)

) = D
(V

ν

∣∣∣
( W√

ν
+ ε√

ν
ee)( H√

ν
+ ε√

ν
ee))

.

Then we have
D∗(V , ε) = νD∗(V /ν, ε/

√
ν). (21)

Let us now consider Problem (19) with V such that
∑m

i=1
∑n

j=1 Vi j = 1. In the following,
we separate the proof into 2 cases: ε = 0, which corresponds to the original KL NMF
Problem (1), and ε > 0, for which the objective of Problem (19) is finite at every pair of
non-negative matrices (W , H).
Case 1 ε = 0. We use the methodology in the proof of [16, Proposition 2.1]. We first observe
that WH = ∑r

i=1 W:,i Hi,:, hence without loss of generality we can consider the case when
H has no zero rows; otherwise we could then consider Problem (1) with smaller rank than
r . Given a feasible solution (W , H) of (1), let hk = ∑n

j=1 Hkj and let Diag(h) be the

diagonal matrix with its diagonal being h. We then have (W̃ , H̃), where W̃ = WDiag(h) and
H̃ = (Diag(h))−1H , is also a feasible solution of (1) and it preserves the objective value
since W̃ H̃ = WH . We observe that

∑n
j=1 H̃k j = 1. Hence, we can restrict our search for

the optimal solution to the set

A1 = {(W , H) : W , H ≥ 0, He = e}.
We note that limx→0(x − Vi j log x) = +∞ for a given Vi j > 0, and x �→ (x − Vi j log x)
is a decreasing function when x < Vi j . Therefore, there exists a positive constant δ such
that (WH)i j ≥ δ for all i, j with Vi j > 0; otherwise, if for all δ > 0 there exists (i, j)
with Vi j > 0 that (WH)i j ≤ δ then we can choose arbitrary small δ < min{Vi j : Vi j > 0}
which makes (WH)i j −Vi j log(WH)i j arbitrary large. Therefore, we can further restrict the
constraint set of (1) to the set

A2 = {
(W , H) : (W , H) ∈ A1, (WH)i j ≥ δ∀(i, j) ∈ {(i, j) : Vi j > 0}}.

It follows from [32, Theorem 2] (see also Sect. 3.1) that, given a feasible solution (W , H),
a multiplicative update step W+

ik = Wik
( ∑n

l=1,Vil>0
Hkl Vil

(WH)il

)/( ∑n
l=1 Hkl

)
, for i ∈ [m], k ∈
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[r ], supposed to be well-defined, decreases the objective function. Hence, given (W , H) ∈
A2, we observe that

m∑

k=1

W+
ik =

m∑

k=1

Wik

n∑

l=1

HklVil
(WH)il

=
n∑

l=1

m∑

k=1

Wik HklVil
(WH)il

=
n∑

l=1

Vil .

Therefore, we can further restrict our search for the optimal solutions of (1) to

A3 = {
(W , H) : (W , H) ∈ A1,We = Ve, (WH)i j ≥ δ∀(i, j) ∈ {(i, j) : Vi j > 0}}.

By choosing appropriate δ, we note that (W , 1/nee) ∈ A3 with Wik = 1/m
∑

l Vil for
i ∈ [m], k ∈ [r ], then the set A3 is non-empty. We see that A3 is closed and bounded, and
D(V |WH)) is continuous on A3, hence, Problem (1) has at least one solution.
Case 2 ε > 0. When ε > 0, we see (0, 0) is a feasible solution of (19). Let

C = fε(0, 0) = mnrε2 − log(rε2) +
m∑

i=1

n∑

j=1

Vi j log Vi j − 1.

We then can restrict our search for the optimal solutions of Problem (19) to the constraint set
A4 = {(W , H) : W , H ≥ 0, fε(W , H) ≤ C}. Using inequality log x ≤ x − 1 for all x > 0,
we obtain

fε(W , H) ≥
m∑

i=1

n∑

j=1

(1 − Vi j )
(
(WH)i j + ε(Wee + eeH)i j + ε2

) +
m∑

i=1

n∑

j=1

Vi j log Vi j

≥
m∑

i=1

n∑

j=1

(1 − Vi j )
(
ε
∑

k

Wik + ε
∑

k

Hkj + ε2
) +

m∑

i=1

n∑

j=1

Vi j log Vi j

≥ (mn − 1)ε2 + (1 − vmax)ε
(
n

∑

ik

Wik + m
∑

k j

Hkj
) +

m∑

i=1

n∑

j=1

Vi j log Vi j ,

where vmax = maxi j Vi j , we use (WH)i j ≥ 0 in the second inequality and
∑

i j Vi j = 1 in
the third inequality. Hence, from fε(W , H) ≤ C , W and H are bounded. Therefore, A4 is
bounded. We also see that A4 is closed; hence, it is a compact set. The objective of (19) is
continuous on this set since ε > 0. Therefore, Problem (19) has at least one solution.

(B) Let us fix ε > 0. Note that all points ofA3 are feasible solutions of Problem (19). We
hence have

D∗(V , ε) ≤ min
(W ,H)∈A3

fε(W , H)

≤ min
(W ,H)∈A3

D(V |WH) + max
(W ,H)∈A3

( fε(W , H) − D(V |WH))

= D∗(V , 0) + max
(W ,H)∈A3

( fε(W , H) − D(V |WH)),

(22)

where in the first inequality we use the fact that the optimal value over bigger set does not
exceed the optimal value over smaller set. On the other hand, it follows from (20) and the
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case
∑

i, j Vi j = 1 that, for (W , H) ∈ A3, we have

fε(W , H) − D(V |WH) =
m∑

i=1

n∑

j=1

(
ε

r∑

k=1

Wik + ε

r∑

k=1

Hkj + ε2
)

−
m∑

i=1

n∑

j=1

Vi j log
((W + εee)(H + εee))i j

(WH)i j

≤ nε + mrε + mnε2.

Hence D∗(V , ε) ≤ D∗(V , 0) + nε + mrε + mnε2. By exchanging the role of W and H
and noting that D(V |WH) = D(V|HW), we can prove a similar bound D∗(V , ε) ≤
D∗(V , 0) + mε + nrε + mnε2. Together with (21), we obtain Result (B). ��

BSUM Framework for theMU

MU is a block successive upper-bound minimization algorithm (BSUM) in which each col-
umn of H and each row of W are updated by minimizing majorized functions of the KL
objective. Let us first introduce BSUM, then derive MU for solving (2).

BSUM was proposed in [41] to solve the minimization problem in (12).
Putting in the notations of (12), first, let us formally define a majorized function.

Definition 4 A function ui : Xi × X → R is said to majorize f (x) if

ui (xi , x) = f (x),∀ x ∈ X ,

ui (yi , x) ≥ f (x1, . . . , xi−1, yi , xi+1, . . . , xs),∀ yi ∈ Xi , x ∈ X .
(23)

Using the majorized functions, at iteration k, BSUM fixes the latest values of block j �= i
and updates block xi by

xki = arg min
xi∈Xi

ui (xi , x
k
1 , . . . , x

k
i−1, x

k−1
i , xk−1

i+1 , . . . , xk−1
s ). (24)

From Definition 4 we have

f (xk) = u1(x
k
1 , x

k
1 , . . . , x

k
s ) ≥ u1(x

k+1
1 , xk1 , . . . , x

k
s )

≥ f (xk+1
1 , xk2 , . . . , x

k
s ) = u2(x

k
2 , x

k+1
1 , xk2 , . . . , x

k
s )

≥ u2(x
k+1
2 , xk+1

1 , xk2 , . . . , x
k
s ) ≥ f (xk+1

1 , xk+1
2 , . . . , xks−1, x

k
s ) ≥ · · · ≥ f (xk+1).

In other words, BSUM produces a non-increasing sequence { f (xk)}. In the following, we
give a majorized function for D(t |Wh) defined in (7).

Proposition 10 [31, Lemma 3] Let

uMU(h, hk) :=
m∑

i=1

(
(Wh)i − ti

r∑

l=1

Wil(hk)l
(Whk)i

(
log(Wilhl) − log

Wil(hk)l
(Whk)i

)
+ ti log ti − ti

)
.

Then uMU(h, hk) majorizes the function h �→ D(t |Wh).

When BSUM uses uMU(·, ·) to update a column h of H (similarly for a row ofW ) by hk+1 =
argminh≥ε uMU(h, hk), we obtain (hk+1)l = max

{
(hk )l∑m
i=1 Wil

∑m
i=1

ti Wil
(Whk )i

, ε
}

, leading to
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the MU. More specifically, the updates of MU for solving Problem (2) are

W+
ik = max

{
Wik

∑n
l=1

Hkl Vil
(WH)il∑n

l=1 Hkl
, ε

}
, H+

k j = max
{
Hkj

∑m
l=1

WlkVl j
(WH)l j∑m

l=1 Wlk
, ε

}
. (25)

We note that the non-increasing property of f (xk) produced by BSUM for Problem (12)
does not guarantee the convergence of {xk}. To guarantee some convergence for {xk}, we
need ε > 0 for the objective function to be directionally differentiable, which is not the case
when ε = 0, (WH)i j = 0 and Vi j > 0 for some i, j .

Proof of Theorem 1

Theorem 1: Suppose Assumption 1 is satisfied. Let {xk} be the sequence generated by
Algorithm 1. Let also Φ(x) = f (x) + ∑

i IXi (xi ), where IXi is the indicator function of Xi .
We have

(i) Φ
(
xk

)
is non-increasing;

(ii) Suppose Xi ⊂ int dom κi . If {xk} is bounded and κi (xi ) is strongly convex on bounded
subsets of Xi that contain {xki }, then every limit point of {xk} is a critical point of Φ;

(iii) If together with the conditions in (ii) we assume that ∇κi and ∇i f are Lipschitz contin-
uous on bounded convex subsets of Xi that contain {xki }, then the whole sequence {xk}
converges to a critical point of Φ.

Proof We follow the methodology established in [5] that bases on the following theorem to
prove the global convergence of BMD. ��
Theorem 3 Let Φ : R

N → (−∞,+∞] be a proper and lower semicontinuous function
which is bounded from below. Let A be a generic algorithm which generates a bounded
sequence {xk} by xk+1 ∈ A(xk), k = 0, 1, . . . Assume that the following conditions are
satisfied.
(B1) Sufficient decrease property: There exists some ρ1 > 0 such that

ρ1‖xk − xk+1‖2 ≤ Φ(xk) − Φ(xk+1),∀ k = 0, 1, . . . .

(B2) Boundedness of subgradient: There exists some ρ2 > 0 such that

‖wk+1‖ ≤ ρ2‖xk − xk+1‖, w(k) ∈ ∂Φ(xk),∀k = 0, 1, . . .

(B3) KL property: Φ is a KL function.
(B4) A continuity condition: If a subsequence {xkn } converges to x̄ then Φ(xkn ) → Φ(x̄)
as n → ∞.

Then
∑∞

k=1 ‖xk − xk+1‖ < ∞ and {xk} converges to a critical point of Φ.

We will prove Theorem 1 (iii) by verifying all the conditions in Theorem 3 for Φ. Let us
first recall the following three-point property.

Proposition 11 (Property 1 of [48]) Let z+ = argminu∈Xi φ(u) + Bκ (u, z), where φ is a
proper convex function, Xi is convex and Bκ is the Bregman distance with respect to κi . Then
for all u ∈ Xi we have

φ(u) + Bκ (u, z) ≥ φ(z+) + Bκ (z+, z) + Bκ (u, z+).
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Denote Φk
i (xi ) = f ki (xi ) + IXi (xi ). We have

f ki (xk+1
i ) ≤ f ki (xki ) + 〈∇ f ki (xki ), x

k+1
i − xki )〉 + Lk

i Bκi (x
k+1
i , xki )

≤ f ki (xki ) + 〈∇ f ki (xki ), xi − xki )〉 + Lk
i Bκi (xi , x

k
i ) − Lk

i Bκi (xi , x
k+1
i )

≤ f ki (x) + Lk
i Bκi (x, x

k
i ) − Lk

i Bκi (x, x
k+1
i ),

where the first inequality uses Assumption 1, the second inequality uses Proposition 11
applied for (13) and the third uses convexity of fi . Note that IXi (x) = 0 if x ∈ X and
IXi (x) = +∞ otherwise. Hence, for all xi ,

Φk
i (xk+1

i ) ≤ Φ(xk+1
1 , . . . , xk+1

i−1 , xi , x
k
i+1, . . . , x

k
s )+Lk

i

(Bκi (xi , x
k
i )−Bκi (xi , x

k+1
i )

)
. (26)

Choosing x = xki in (26), we have Φk
i

(
xk+1
i

) ≤ Φk
i (xki ) − LiBκi

(
xki , x

k+1
i

)
. Therefore,

Φ
(
xk+1) − Φ

(
xk

) =
s∑

i=1

Φk
i

(
xk+1
i

) − Φk
i

(
xki

) ≤ −
s∑

i=1

LiBκi

(
xki , x

k+1
i

)
. (27)

From (27), we see that Φ
(
xk

)
is non-increasing. Theorem 1(i) is proved.

As {xk} is assumed to be bounded, then there exists positive constants Ai such that
‖xki ‖ ≤ Ai , i = 1, . . . , s, for all k. Suppose a subsequence xkn → x∗. AsX is closed convex
set and xkn ∈ X , then x∗ ∈ X . Hence, Φ(xkn ) → Φ(x∗), i.e., the continuity condition (B4)
is satisfied.

Sinceκi is strongly convexon the sets {xi : xi ∈ Xi , ‖xki ‖ ≤ Ai },we haveBκi

(
xki , x

k+1
i

) ≥
σi/2‖xki − xk+1

i ‖2, for some constant σi . Hence, from (27) we derive the sufficient decrease
property (B1) and

∑∞
k=1 ‖xk − xk+1‖2 < +∞. Consequently, ‖xk − xk+1‖ → 0. Then we

also have xkn+1 → x∗. In (26) we let k = kn → ∞ and note that x∗
i ∈ Xi ⊂ int dom κi ,

then we obtain Φ(x∗) ≤ Φ(x∗
1 , . . . , xi , . . . , x

∗
s ), ∀ xi . This means x∗

i is a local minimizer of
minxi Φ(x∗

1 , . . . , xi , . . . , x
∗
s ). Hence 0 ∈ ∂iΦ(x∗), for i = 1, . . . s. In other words, we have

0 ∈ ∂Φ(x∗), i.e., Theorem 1 (ii) is proved.
To prove Theorem 1 (iii), it remains to verify the boundedness of subgradients. From [2,

Proposition 2.1] we have

∂Φ
(
xk

) = ∂Φ1
(
xk

) × ∂sΦ
(
xk

) = {∇1 f
(
xk

) + ∂ IX1(x
k
1 )} × · · · × {∇s f

(
xk

) + ∂ IXs (x
k
s )}.

It follows from (13) that 0 ∈ ∇ f ki (xki )+∂ IXi (x
k+1
i )+ Lk+1

i

(∇κi (x
k+1
i )−∇κi (xki )

)
. Hence,

ωk+1
i = ∇i f

(
xk+1) + ∂ IX1(x

k+1
1 )

= ∇i f
(
xk+1) − ∇ f ki (xki ) + Lk

i

(∇κi (x
k
i ) − ∇κi (x

k+1
i )

) ∈ ∂Φi
(
xk+1).

(28)

As ∇i f and ∇κi are Lipschitz continuous on {xi : ‖xki ‖ ≤ Ai }, we derive from (28) that
there exists some constant ai such that ‖ωk+1

i ‖ ≤ a1‖xk − xk+1‖, for i = 1, . . . , s. Then the
boundedness of subgradients in (B4) is satisfied. Theorem 1 is proved. ��

Proof of Proposition 9

Proposition 9: The objective function for the perturbed KL-NMF problem (1) is non-
increasing under the updates of Algorithm 2.

Proof We note that if g(x) is a self-concordant function with constant c then c2 g(x) is
a standard self-concordant function. Hence, using the result of [47, Theorem 6] (see also
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Sect. 2.4), we derive that the objective function of (1) is strictly decreasing when a damp
Newton step is used. We now prove the proposition for the case when a full Newton step
is used, that is when the gradient f ′

Wik
≤ 0 or λ ≤ 0.683802 and the update of Wik then is

W+
ik = s = Wik − f ′

Wik
f ′′
Wik

.

Consider the case f ′
Wik

≤ 0. Let us use fWik to denote the objective of (1) with respect to
Wik . Considering the function Wik �→ g(Wik) = f ′

Wik
with Wik ≥ 0, we see that g(Wik) is

a concave function. Hence, we have g(W+
ik ) − g(Wik) ≤ g′(Wik)(W

+
ik − Wik). This implies

that f ′
W+

ik
≤ f ′

Wik
− f ′′

Wik

f ′
Wik
f ′′
Wik

= 0. SinceWik −W+
ik = f ′

Wik
f ′′
Wik

≤ 0 andWik �→ fWik is convex,

we then obtain fWik ≥ fW+
ik

+ f ′
W+

ik
(Wik − W+

ik ) ≥ fW+
ik

. Hence, the objective of (1) is

non-increasing when we update Wik to W+
ik .

Consider the case λ ≤ 0.683802. DenoteWα
ik = Wik+αd .Whenα = 1we haveWα

ik = s,
that is when a full proximal Newton step is applied. It follows from [47, Inequality (58)] that
fWα

ik
≤ fWik − αλ2 + ω∗(αλ) for α ∈ (0, 1], where ω∗(t) = −t − log(1 − t). Hence, when

α = 1 we get fWα
ik

≤ fWik − (λ2 + λ + log(1 − λ)). It is not difficult to see that when

λ ≤ 0.683802 the value of λ2+λ+ log(1−λ) is positive. Hence, in this case, a full proximal
Newton step also decreases the objective function. ��
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