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Abstract
We analyze, on two dimensional polygonal domains, classical low–order inf-sup stable finite
element approximations of the stationary Navier–Stokes equations with singular sources. We
operate under the assumptions that the continuous anddiscrete solutions are sufficiently small.
We perform an a priori error analysis on convex domains. On Lipschitz, but not necessarily
convex, polygonal domains, we design an a posteriori error estimator and prove its global
reliability. We also explore efficiency estimates. We illustrate the theory with numerical tests.

Keywords Navier–Stokes equations · Dirac measures · A priori error estimates · A
posteriori error estimates · Adaptive finite elements
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1 Introduction

Let Ω ⊂ R
2 be an open and bounded domain with Lipschitz boundary ∂Ω . In this work, we

shall be interested in the study of a priori and a posteriori error estimates for classical low–
order inf-sup stable finite element discretizations of the stationary Navier–Stokes problem

− νΔu + (u · ∇)u + ∇π = f δz in Ω, div u = 0 in Ω, u = 0 on ∂Ω. (1.1)
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The data of problem (1.1) are the kinematic viscosity ν > 0, the vector f ∈ R
2, and the

interior point z ∈ Ω; δz corresponds to the Dirac delta supported at z. The unknowns are u
and π , the velocity and the pressure, respectively.

The stationary Navier–Stokes system models the motion of a stationary, incompressible,
Newtonian fluid. In view of the fundamental importance of such a system in mathematical
fluidmechanics, the analysis and design of solution techniques, at least in energy–type spaces,
has received a tremendous attention; see [14,16,19–21] and references therein. However, in
recent times, new models have emerged where the motion of a fluid is described by (1.1),
or a variation of it, and due to the singular nature of the force f δz , the problem must be
understood in a completely different setting for which rigorous approximation techniques
are scarce. An instance where singular forces appear is in the modeling of the movement of
active thin structures in a viscous fluid [15]. Another instance is in optimal control where the
state is governed by fluid equations and the control variable corresponds to the amplitude of
forces modeled as point sources [10] .

Recently, the authors of [7] have analyzed an optimal control problem for the stationary
Navier–Stokes equations, where the control variable is measure valued. The authors provide,
in two dimensions and under the assumption thatΩ is of classC2, a complete existence theory
for the Navier–Stokes equations inW1,p(Ω) × L p(Ω)/R with p ∈ [4/3, 2). Reference [7],
however, is not concerned with approximation. Finite element approximations of (1.1) have
been recently considered in [18] and [4], where a priori and a posteriori error estimates
have been analyzed, respectively. The authors, however, operate under a complete different
approach which is the one inherited by a suitable class of Muckenhoupt weights.

In the present paper, we continue with our research program and extend the linear a
posteriori error analysis developed in [9] to the Navier–Stokes system (1.1). In contrast to
[9], we also perform an a priori error analysis on quasiuniform meshes. We begin our studies
by deriving, on the basis of a standard contraction argument, the existence and uniqueness of
solutions inW1,p(Ω)×L p(Ω)/R for small data.We operate in two dimensions and under the
assumptions thatΩ is Lipschitz and p ∈ (4/3−ε, 2), where ε = ε(Ω) > 0; see Remark 1 for
a discussion. Under this framework, we develop an a priori error analysis on quasiuniform
meshes for suitable low–order inf-sup stable finite element schemes. To perform such an
analysis, the stability of the Stokes projection [12,13] is essential. In view of the reduced
regularity properties of solutions to (1.1), which are due to the singular nature of the forcing
term, the derived a priori error estimates cannot be optimal in terms of approximation. This
motivates the design and analysis of a posteriori error estimates for suitable finite element
discretizations of (1.1) on families of conforming and shape regular meshes. Inspired by [3],
we introduce a Ritz projection to control the energy norm of the error between the solution
of (1.1) and its corresponding finite element approximation. This is the key result to obtain
global reliability estimates. To provide local efficiency results, we invoke suitable bubble
functions whose construction we owe to [5].

The rest of the paper is organized as follows. InSect. 2we introduce some terminologyused
throughout this work. In Sect. 3 we introduce the functional setting in which we will operate
and a suitableweak formulation for problem (1.1).We derive existence and uniqueness results
for small data; our main novelty here is that we only assume the domain to be Lipschitz.
Section 4 presents basic ingredients of finite element methods and an a priori error analysis
for classical low–order inf-stable finite elements. In Sect. 5 we devise and analyze local error
indicators and a posteriori error estimator. We derive, in Sect. 5.4, the global reliability of the
devised error estimator. We explore efficiency estimates in Sect. 5.5. Finally, in Sect. 6, we
report a series of numerical tests that illustrate the performance of the devised a posteriori
error estimator.
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2 Notation and Preliminaries

Let us fix notation and the setting in which we will operate. Throughout this work, Ω is an
open and bounded polygonal domain of R2 with Lipschitz boundary ∂Ω; the convexity of
Ω will be imposed only to derive the a priori error analysis of Sect. 4.5. If X and Y are
normed vector spaces, we writeX ↪→ Y to denote thatX is continuously embedded in Y .
We denote by X ′ and ‖ · ‖X the dual and the norm of X , respectively.

For 1 < p < +∞, we denote by p′ its conjugate, which is a real number that satisfies
1
p + 1

p′ = 1.
The relationa � b indicates thata ≤ Cb, with a positive constantC which is independent

of a, b, and the size of the elements in the mesh. The value of C might change at each
occurrence.

3 TheModel Problem

In this section we introduce a suitable weak formulation for problem (1.1) and show, under
a smallness assumption on the data, existence and uniqueness of solutions.

3.1 Weak–Formulation

Let p ∈ (1, 2). We define the product spaces

X := W1,p
0 (Ω) × L p(Ω)/R, Y := W1,p′

0 (Ω) × L p′(Ω)/R.

We also define the bilinear forms

a : W1,p
0 (Ω) × W1,p′

0 (Ω) → R, a(w, v) :=
∫

Ω

∇w : ∇v, (3.1)

b+ : W1,p
0 (Ω) × L p′(Ω) → R, b+(w, q) := −

∫
Ω

q divw, (3.2)

b− : W1,p′
0 (Ω) × L p(Ω) → R, b−(v, r) := −

∫
Ω

r div v, (3.3)

and the trilinear form

c : [W1,p
0 (Ω)]2 × W1,p′

0 (Ω) → R, c(u,w; v) := −
∫

Ω

u ⊗ w : ∇v. (3.4)

With definitions (3.1)–(3.4) at hand, we introduce the following weak formulation of
problem (1.1): Find (u, π) ∈ X such that

νa(u, v) + b−(v, π) + c(u, u; v) = 〈 f δz, v〉, b+(u, q) = 0 ∀(v, q) ∈ Y. (3.5)

Here, 〈·, ·〉 denotes the duality pairing betweenW−1,p(Ω) := W1,p′
0 (Ω)′ and W1,p′

0 (Ω).

Since p < 2, we have that W1,p′
0 (Ω) ↪→ C(Ω̄) and thus that f δz ∈ W−1,p(Ω). On

the other hand, a trivial application of Hölder’s inequality reveals that, for (w, r) ∈ X and
(v, q) ∈ Y , the terms a(w, v), b+(w, q), and b−(v, r) are bounded. The boundedness of the
convective term is as follows:

|c(u,w; v)| ≤ ‖u‖L2p(Ω)‖w‖L2p(Ω)‖∇v‖Lp′(Ω)

≤ C2
2p→p‖∇u‖Lp(Ω)‖∇w‖Lp(Ω)‖∇v‖Lp′(Ω), (3.6)
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where C2p→p denotes the best constant in the embedding W1,p
0 (Ω) ↪→ L2p(Ω), which

holds because p > 1 [2, Theorem 4.12].
Since ∂Ω is Lipschitz, ∇· : W1,r

0 (Ω) → Lr (Ω)/R, with r ∈ (1,∞), is surjective [1,
Theorem 2.6]. We thus have the following inf–sup conditions:

inf
0 �=q∈L p′(Ω)/R

sup
0 �=w∈W1,p

0 (Ω)

b+(w, q)

‖q‖L p′(Ω)‖∇w‖Lp(Ω)

≥ γ+. (3.7)

inf
0 �=r∈L p(Ω)/R

sup
0 �=v∈W1,p′

0 (Ω)

b−(v, r)

‖r‖L p(Ω)‖∇v‖Lp′(Ω)

≥ γ−. (3.8)

Remark 1 (two dimensions) The boundedness of the convective term (3.6) is the sole reason
why our analysis is restricted to two dimensions. Observe that, in three dimensions, we only
have that W1,p

0 (Ω) ↪→ L2p(Ω) for p ≥ 3/2 [2, Theorem 4.12, Case C] while the solution

u to problem (5.4) is sought inW1,p
0 (Ω) with p < 3/2. Observe also that the related Stokes

operator has a bounded inverse provided p ∈ (3/2 − ε, 3 + ε), where ε = ε(Ω) > 0 [17,
Corollary 1.7].

3.2 Existence and Uniqueness for Small Data

In this section we show, via a contraction argument, that provided the problem data is suf-
ficiently small, we have existence and uniqueness of solutions. The contraction argument is
rather standard and allows the domain to be merely Lipschitz; see, for instance, [21, Chapter
2].

To begin with our analysis, we define S : X → Y ′, NL : X → Y ′, and F ∈ Y ′ by

〈S(u, π), (v, q)〉 = a(u, v) + b−(v, π) + b+(u, q), 〈NL(u, π), (v, q)〉 = c(u, u; v),

and 〈F, (v, q)〉 = 〈 f δz, v〉, respectively.WithS,NL, andF at hand, we can rewrite problem
(1.1) as the following nonlinear functional equation in Y ′:

S(νu, π) + NL(u, π) = F .

It is immediate that the Stokes operator S is bounded and linear. In addition, since Ω is
Lipschitz, S has a bounded inverse provided p ∈ (4/3− ε, 4 + ε), where ε = ε(Ω) denotes
a positive constant that depends on Ω [17, Corollary 1.7]. For p ∈ (4/3− ε, 2), we can thus
define the nonlinear mapping

T : X → X , (νu, π) = T (w, r) := S−1(F − NL(w, r)).

We shall denote by ‖S−1‖ the Y ′ → X norm of S−1. Consequently, showing the existence
of a solution for (1.1) is equivalent to finding a fixed point of T .

We follow [18] and show existence and uniqueness for sufficiently small data. To accom-
plish this task, we define, for K > 0,

BK := {w ∈ W1,p
0 (Ω) : divw = 0, ‖∇w‖Lp(Ω) ≤ K }

and T1 : W1,p
0 (Ω) → W1,p

0 (Ω) as w �→ 1
ν
PrT (w, 0), where Pr : X → W1,p

0 (Ω) denotes
the projection onto the velocity component.
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Proposition 1 (contraction). Let Ω be a Lipschitz domain. Assume that the forcing term f δz

is sufficiently small, or the viscosity ν is sufficiently large, so that

C2
2p→p

ν2
‖S−1‖2‖ f δz‖W−1,p(Ω) <

1

6
. (3.9)

Set K := ν
3

1
C2
2p→p‖S−1‖ . Hence, T1 maps BK to itself and it is a contraction in it.

Proof Webegin the proof by showing thatT1 mapsBK into itself. Letw ∈ BK and v = T1(w).
Then, div v = 0 and

‖∇v‖Lp(Ω) ≤ ‖S−1‖
ν

‖ f δz‖W−1,p(Ω) + C2
2p→p

‖S−1‖
ν

‖∇w‖2Lp(Ω) <
K

2
+ K

3
= 5K

6
,

wherewe have used the definition of K and the smallness assumption (3.9). This immediately
implies that v ∈ BK . We now prove that T1 is a contraction. Let w1,w2 ∈ BK be such that
vi = T1(wi ), with i = 1, 2. Then

‖∇(v1 − v2)‖Lp(Ω) ≤ C2
2p→p

‖S−1‖
ν

(‖∇w1‖Lp(Ω) + ‖∇w2‖Lp(Ω)

)

·‖∇(w1 − w2)‖Lp(Ω) ≤ C2
2p→p

‖S−1‖
ν

2ν

3C2
2p→p‖S−1‖‖∇(w1 − w2)‖Lp(Ω)

= 2

3
‖∇(w1 − w2)‖Lp(Ω). (3.10)

This shows that T1 is a contraction and concludes the proof. ��

We present the following existence and uniqueness result for small data.

Proposition 2 (existence and uniqueness). Let Ω be Lipschitz. Assume that the forcing term
f δz is sufficiently small, or the viscocity ν is sufficiently large, so that (3.9) holds. If p ∈
(4/3 − ε, 2), where ε = ε(Ω) > 0 denotes a constant that depends on Ω , then there exists
a unique solution of (3.5) which satisfies the estimates

‖∇u‖Lp(Ω) ≤ 3

2

‖S−1‖
ν

‖ f δz‖W−1,p(Ω), (3.11)

‖π‖L p(Ω) � ‖∇u‖Lp(Ω) + ‖∇u‖2Lp(Ω) + ‖ f δz‖W−1,p(Ω). (3.12)

The hidden constant is independent of the solution (u, π) and f δz .

Proof Existence and uniqueness of the velocity field follow from Proposition 1. Similar
arguments to those elaborated in the proof of (3.10) allow us to obtain (3.11). Since ∇· :
W1,p

0 (Ω) → L p(Ω)/R is surjective, the existence of a unique pressure follows from de
Rahm’s theorem [8, Theorem B.73]. To obtain (3.12) we invoke (3.8):

‖π‖L p(Ω) � sup
0 �=v∈W1,p′

0 (Ω)

b−(v, π)

‖∇v‖Lp′(Ω)

∀π ∈ L p(Ω)/R.

From this estimate, the first equation of problem (3.5), and the estimate (3.6), for the con-
vective term, we obtain the desired pressure estimate. ��
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We conclude the section with the following inf-sup condition [6]: If p ∈ (4/3 − ε, 2),
where ε = ε(Ω) > 0 denotes a constant that depends on Ω , then

inf
0 �=w∈W1,p

0 (Ω)

sup
0 �=v∈W1,p′

0 (Ω)

a(w, v)

‖∇w‖Lp(Ω)‖∇v‖Lp′(Ω)

= inf
0 �=v∈W1,p′

0 (Ω)

sup
0 �=w∈W1,p

0 (Ω)

a(w, v)

‖∇w‖Lp(Ω)‖∇v‖Lp′(Ω)

> 0. (3.13)

4 Finite Element Approximation

We now introduce the discrete setting in which we will operate. We first introduce some
terminology and a few basic ingredients and assumptions that will be common to all our
methods.

4.1 Triangulation and Finite Element Spaces

Let T = {T } be a conforming partition, or mesh, of Ω into closed simplices T with size
hT = diam(T ). Define hT := maxT ∈T hT . We denote by T the collection of conforming
and shape regular meshes T that are refinements of an initial mesh T0 [8,14]. We define
S as the set of internal two dimensional interelement boundaries S of T . For S ∈ S , we
indicate by hS the diameter of S. For T ∈ T , letST denote the subset ofS which contains
the sides inS which are sides of T . We denote byNS the subset of T that contains the two
elements that have S as a side. For T ∈ T , we define the stars or patches associated with an
element T as

NT := {T ′ ∈ T : T ∩ T ′ �= ∅}, N ∗
T := {T ′ ∈ T : ST ∩ ST ′ �= ∅}.

In an abuse of notation, in what follows, byNT andN ∗
T we will indistinctively denote either

these sets or the union of the triangles that comprise them.
For a discrete tensor valued functionWT , we denote by �WT ·n� the jump or interelement

residual, which is defined, on the internal side S ∈ S shared by the distinct elements
T +, T − ∈ NS , by �WT · n� = WT |T + · n+ + WT |T − · n−. Here, n+ and n− are unit
normals on S pointing towards T + and T −, respectively.

4.2 Finite Element Spaces

Given a mesh T ∈ T, we denote by V(T ) and P(T ) the finite element spaces that approxi-
mate the velocity field and the pressure, respectively, constructed overT .We assume that, for
every p ∈ (1,∞), V(T ) ⊂ W1,∞

0 (Ω) ⊂ W1,p
0 (Ω) and P(T ) ⊂ L∞(Ω)/R ⊂ L p(Ω)/R.

Moreover, we require that V(T ) and P(T ) satisfy the following compatibility conditions
[8, Proposition 4.13]: there exists β > 0 such that, for all T ∈ T,

inf
qT ∈P(T )

sup
vT ∈V(T )

b+(vT , qT )

‖∇vT ‖Lp(Ω)‖qT ‖L p′(Ω)

≥ β,

inf
qT ∈P(T )

sup
vT ∈V(T )

b−(vT , qT )

‖∇vT ‖Lp′(Ω)‖qT ‖L p(Ω)

≥ β.

(4.1)

123



Journal of Scientific Computing (2021) 87 :97 Page 7 of 23 97

The following particular elections satisfy the aforementioned assumptions; see [8, Lemma
4.20] and [8, Lemma 4.23].

(a) The mini–element [8, Section 4.2.4]: Here,

V(T ) = {vT ∈ C(Ω) : vT |T ∈ [W(T )]2 ∀T ∈ T } ∩ W1,p
0 (Ω), (4.2)

P(T ) = {qT ∈ C(Ω) : qT |T ∈ P1(T ) ∀T ∈ T } ∩ L p(Ω)/R, (4.3)

where W(T ) = P1(T ) ⊕ B(T ) and B(T ) denotes the space spanned by local bubble
functions.

(b) The lowest order Taylor–Hood element [8, Section 4.2.5]: In this case,

V(T ) = {vT ∈ C(Ω) : vT |T ∈ [P2(T )]2 ∀T ∈ T } ∩ W1,p
0 (Ω), (4.4)

P(T ) = {qT ∈ C(Ω) : qT |T ∈ P1(T ) ∀T ∈ T } ∩ L p(Ω)/R. (4.5)

Finally, we introduce the discrete divergence–free finite element space

X(T ) := {wT ∈ V(T ) : b+(wT , qT ) = 0 ∀qT ∈ P(T )}. (4.6)

4.3 Finite Element Formulation

We define the following finite element approximation of problem (3.5): Find (uT , πT ) ∈
V(T ) × P(T ) such that

νa(uT , vT ) + b−(vT , πT ) + c(uT , uT ; vT ) = 〈 f δz, vT 〉,
b+(uT , qT ) = 0,

(4.7)

for all vT ∈ V(T ) and qT ∈ P(T ), respectively.

4.4 The Stokes Projection

Assume that T = {Th} is a collection of conforming and quasiuniform meshes of Ω

parametrized by their mesh size hT > 0. The Stokes projection of a velocity–pressure
pair (ϕ, ψ) ∈ W1,1

0 (Ω)× L1(Ω)/R, with zero divergence velocity, is defined as the solution
to the following problem: Find (ϕT , ψT ) ∈ V(T ) × P(T ) such that

a(ϕT , vT ) + b−(vT , ψT ) = a(ϕ, vT ) + b−(vT , ψ), b+(ϕT , qT ) = 0, (4.8)

for all vT ∈ V(T ) and qT ∈ P(T ), respectively.
We present the following stability estimate for the finite element Stokes projection

(ϕT , ψT ) of the velocity–pressure pair (ϕ, ψ) [12,13].

Proposition 3 (stability of Stokes projection). Let Ω ⊂ R
2 be a convex polygon. Let s ∈

(1, 2) and (ϕ, ψ) ∈ W1,s
0 (Ω) × Ls(Ω)/R with ϕ solenoidal. If V(T ) × P(T ) is given by

(4.2)–(4.3) or (4.4)–(4.5), then the Stokes projection (ϕT , ψT ) ∈ V(T ) × P(T ), defined
as the solution to (4.8), satisfies

‖∇ϕT ‖Ls (Ω) + ‖ψT ‖Ls (Ω) � ‖∇ϕ‖Ls (Ω) + ‖ψ‖Ls (Ω).

Proof The proof follows from combining the maximum–norm stability of the Stokes pro-
jection derived in [13, Theorems 8.2 and 8.4], the basic stability estimate ‖∇ϕT ‖L2(Ω) +
‖ψT ‖L2(Ω) � ‖∇ϕ‖L2(Ω) +‖ψ‖L2(Ω), and the duality argument elaborated in [12, Remark
4]. ��
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As a consequence of Proposition 3, ST , the discrete version of S, is a bounded linear
operator whose inverse S−1

T is bounded uniformly, in X , with respect to hT . We will make
use of this fact to perform an a priori error analysis for problem (4.7).

4.5 A Priori Error Estimates

In this section, and this section only, we will assume that Ω is convex. We also assume that
T = {Th} is a family of quasiuniform triangulations of Ω . We begin with the following
existence and uniqueness result for small data.

Proposition 4 (well–posedness). Assume that f δz is sufficiently small or the viscocity ν is
sufficiently large so that (3.9) with S−1 replaced by S−1

T holds. Let V(T ) ×P(T ) be given
by (4.2)–(4.3) or (4.4)–(4.5). If p ∈ (4/3 − ε, 2), where ε = ε(Ω) > 0, then there exists a
unique pair (uT , πT ) ∈ V(T ) × P(T ) that solves (4.7) and satisfies an estimate similar
to that of Proposition 2.

Proof Repeat the arguments developed in the proof of Propositions 1 and 2 upon replacing
S−1 by S−1

T ; the latter being uniformly bounded with respect to hT . ��
In what follows we obtain a priori error estimates for finite element discretizations of

problem (3.5). As a first step, we derive a general approximation result that states that approx-
imation of a function in W1,p

0 (Ω) from X(T ) is as good as from V(T ).

Lemma 1 (approximation in X(T )). Let p ∈ (1,∞) and v ∈ W1,p
0 (Ω) be such that

b+(v, qT ) = 0 for all qT ∈ P(T ). Then, there exist v̄T ∈ X(T ) such that

‖∇(v − v̄T )‖Lp(Ω) � inf
vT ∈V(T )

‖∇(v − vT )‖Lp(Ω), (4.9)

where the hidden constant is independent of v and hT .

Proof Let vT ∈ V(T ) arbitrary. In view of the continuous (3.7) and discrete (4.1) inf-sup
conditions, we can apply the Fortin criterion [8, Lemma 4.19] to conclude that there exists
wT ∈ V(T ) such that b+(wT , qT ) = b+(v − vT , qT ), for all qT ∈ P(T ), together
with the bound

‖∇wT ‖Lp(Ω) � ‖∇(v − vT )‖Lp(Ω). (4.10)

Define v̄T := vT + wT . We can thus immediately obtain that

b+(v̄T , qT ) = b+(vT , qT ) + b+(wT , qT ) = b+(v, qT ) = 0 ∀qT ∈ P(T ),

where we used that b+(v, qT ) = 0 for all qT ∈ P(T ). Consequently, v̄T ∈ X(T ). Finally,
using the triangle inequality and estimate (4.10), we arrive at

‖∇(v − v̄T )‖Lp(Ω) ≤ ‖∇wT ‖Lp(Ω) + ‖∇(v − vT )‖Lp(Ω) � ‖∇(v − vT )‖Lp(Ω).

The desired estimate (4.9) thus follows from the arbitrariness of vT . ��
We now present the main result of this section.

Theorem 1 (a priori error estimate). Assume that f δz is sufficiently small or ν is sufficiently
large so that (3.5) and (4.7) have a unique solution, with sufficiently small norms. LetV(T )×
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P(T ) denote the mini–element or the lowest Taylor–Hood finite element. If p ∈ (4/3−ε, 2),
where ε = ε(Ω) > 0, then we have the a priori error estimate

‖∇(u − uT )‖Lp(Ω) � inf
wT ∈V(T )

‖∇(u − wT )‖Lp(Ω) + inf
rT ∈P(T )

‖π − rT ‖L p(Ω),

where the hidden constant may depend on f δz , ν and u, but is independent of hT .

Proof Denote by (ST u,ST π) the Stokes projection of (u, π), which is defined as the
solution to (4.8). We write u − uT = (u − ST u) + (ST u − uT ) and proceed on the basis
of three steps.

Step 1. Let (wT , rT ) ∈ X(T ) × P(T ) be arbitrary. Since problem (4.8) is linear, we
obtain, for all (vT , qT ) ∈ V(T ) × P(T ), that

a(ST u − wT , vT ) + b−(vT ,ST π − rT ) = a(u − wT , vT ) + b−(vT , π − rT ),

b+(ST u − wT , qT ) = 0 = b+(u − wT , qT ).

We recall thatX(T ) is defined in (4.6). Notice that, since (ST u,ST π) is the Stokes projec-
tion of (u, π) and wT ∈ X(T ), we immediately conclude that b+(ST u − wT , qT ) = 0
for every qT ∈ P(T ).

Let us now define (ϕ, ψ) ∈ W1,p
0 (Ω) × L p(Ω)/R as the solution to

a(ϕ, v) + b−(v, ψ) = a(u − wT , v) + b−(v, π − rT ) ∀v ∈ W1,p′
0 (Ω),

b+(ϕ, q) = b+(u − wT , q) ∀q ∈ L p′(Ω)/R.

Since p ∈ (4/3− ε, 2), this problem is well–posed [17, Corollary 1.7]. In addition, we have
the estimate

‖∇ϕ‖Lp(Ω) + ‖ψ‖L p(Ω) � ‖∇(u − wT )‖Lp(Ω) + ‖π − rT ‖L p(Ω).

We now utilize the triangle inequality, the fact that (ST u − wT ,ST π − rT ) corresponds
to the Stokes projection of (ϕ, ψ), and the previous estimate to arrive at

‖∇(u − ST u)‖Lp(Ω) + ‖π − ST π‖L p(Ω) � ‖∇(u − wT )‖Lp(Ω) + ‖π − rT ‖L p(Ω).

Since (wT , rT ) is arbitrary, we conclude that

‖∇(u − ST u)‖Lp(Ω) + ‖π − ST π‖L p(Ω)

� inf
wT ∈X(T )

‖∇(u − wT )‖Lp(Ω) + inf
rT ∈P(T )

‖π − rT ‖L p(Ω). (4.11)

To replace X(T ) by V(T ) on the right–hand side of (4.11) we invoke the result of Lemma
1.

Step 2. Define eT := ST u − uT and ξT := ST π − πT . From (4.8), we infer that

νa(eT , vT ) + b−(vT , ξT ) = −c(u, u; vT ) + c(uT , uT ; vT ) ∀vT ∈ V(T ),

b+(eT , qT ) = 0 ∀qT ∈ P(T ).

Invoke the discrete stability of the Stokes projection of Proposition 3 to obtain

‖∇eT ‖Lp(Ω) + ‖ξT ‖L p(Ω)

�
(‖∇u‖Lp(Ω) + ‖∇uT ‖Lp(Ω)

) ‖∇(u − uT )‖Lp(Ω).

Step 3. Combining the estimates obtained in Steps 1 and 2, we arrive at

‖∇(u − uT )‖Lp(Ω) � inf
wT ∈V(T )

‖∇(u − wT )‖Lp(Ω) + inf
rT ∈P(T )

‖π − rT ‖L p(Ω)

+ (‖∇u‖Lp(Ω) + ‖∇uT ‖Lp(Ω)

) ‖∇(u − uT )‖Lp(Ω).
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The assumption that u and uT are sufficiently small allow us to absorb the last term on the
right hand side of this inequality into the left and conclude. ��

4.6 Interpolation Error Estimates

Let T ∈ T and v ∈ W1,p′
0 (Ω) with p′ > 2. Let IT v be the Lagrange interpolation operator

onto continuous piecewise polynomials of degree k ∈ {1, 2} over T that vanish on ∂Ω . We
will consider k = 1 for approximation based on mini–element and k = 2 for Taylor–Hood
approximation. For v ∈ W1,p′

0 (Ω), with p′ > 2, we set IT v to be the Lagrange interpolation
operator applied componentwise and present the following interpolation error estimates.

Lemma 2 (interpolation error estimates). Let T ∈ T . If v ∈ W1,p′(T ), with p′ > 2, then

‖v − IT v‖Lp′(T ) � hT ‖∇v‖Lp′(T ). (4.12)

Let T ∈ T and S ⊂ ST . If v ∈ W1,p′(NS), with p′ > 2, then

‖v − IT v‖Lp′(S) � h1−1/p′
T ‖∇v‖Lp′(NS). (4.13)

Proof See [9, Lemma 1]. ��

5 A Posteriori Error Estimates

In this section we propose and analyze an a posteriori error estimator for finite element
approximations of the Navier–Stokes problem (3.5). We prove the global reliability of the
devised estimator and also explore local efficiency estimates; the later being based on the
existence of a suitable bubble function whose construction we owe to [5]. To perform a
reliability analysis we follow [3] and invoke, as an instrumental ingredient, a Ritz projection
(φ, ψ) of the residuals. The study of the aforementioned Ritz projection is the content of the
following section.

To simplify the presentation, we assume that ν = 1.

5.1 Ritz Projection

Define eu = u − uT and eπ = π − πT , the velocity and pressure errors, respectively.
The Ritz projection of the residuals is defined as the solution to the following problem: Find
(Φ, ψ), such that

a(Φ, v) = a(eu, v) + b−(v, eπ ) + c(u, eu; v) + c(eu, uT ; v),

(ψ, q)L2(Ω) = b+(eu, q)
(5.1)

for all (v, q) ∈ Y . To analyze problem (5.1), we introduce the linear functional

A : W1,p′
0 (Ω) → R, v �→ a(eu, v) + b−(v, eπ ) + c(u, eu; v) + c(eu, uT ; v).

Notice that

|A(v)| ≤ ‖∇eu‖Lp(Ω)‖∇v‖Lp′(Ω) + ‖eπ‖L p(Ω)‖ div v‖Lp′(Ω)

+(‖u‖L2p(Ω)‖∇v‖Lp′(Ω) + ‖uT ‖L2p(Ω)‖∇v‖Lp′(Ω))‖eu‖L2p(Ω), (5.2)

which, in view of the embeddingW1,p
0 (Ω) ↪→ L2p(Ω), implies that A ∈ W−1,p(Ω).
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We present the following stability result for the Ritz projection.

Lemma 3 (Ritz projection). Let Ω be Lipschitz. If p ∈ (4/3 − ε, 2), with ε = ε(Ω) > 0,
then, problem (5.1) has a unique solution in X . In addition, we have

‖∇Φ‖Lp(Ω) + ‖ψ‖L p(Ω) � ‖∇eu‖Lp(Ω) + ‖eπ‖L p(Ω)

+‖∇eu‖Lp(Ω)(‖∇u‖Lp(Ω) + ‖∇uT ‖Lp(Ω)), (5.3)

where the hidden constant is independent of (Φ, ψ), (u, π), and (uT , πT ).

Proof Since A ∈ W−1,p(Ω), the inf–sup condition (3.13) immediately yields the existence
and uniqueness of Φ ∈ W1,p

0 (Ω) together with the estimate

‖∇Φ‖Lp(Ω) � ‖A‖W−1,p(Ω) � ‖∇eu‖Lp(Ω) + ‖eπ‖L p(Ω)

+‖∇eu‖Lp(Ω)

(‖∇u‖Lp(Ω) + ‖∇uT ‖Lp(Ω)

)
.

We now focus on the existence of ψ . Since eu ∈ W1,p
0 (Ω), b+(eu, ·) defines a linear

and bounded functional in L p′(Ω)/R, an inf–sup condition for (·, ·)L2(Ω) on L p(Ω)/R ×
L p′(Ω)/R yields the existence of a uniqueψ ∈ L p(Ω)/R such that (ψ, q)L2(Ω) = b+(eu, q)

for all q ∈ L p′(Ω)/R. Moreover, we have that ‖ψ‖L p(Ω) � ‖ div eu‖L p(Ω).
A combination of the derived estimates yields the desired bound (5.3). This concludes the

proof. ��

5.2 Upper Bound for the Error

In this section, we prove that the energy norm of the error can be bounded in terms of the
energy norm of the Ritz projection. To accomplish this task, we begin by observing that the
pair (eu, eπ ) can be seen as the solution to the following Stokes problem: Find (eu, eπ ) ∈ X
such that

a(eu, v) + b−(v, eπ ) = G(v), b+(eu, q) = (ψ, q)L2(Ω) ∀(v, q) ∈ Y, (5.4)

where G : W1,p′
0 (Ω) → R is defined by v �→ a(Φ, v) − c(u, eu; v) − c(eu, uT ; v). It is

clear that G ∈ W−1,p(Ω). In addition, we have

‖G‖W−1,p(Ω) ≤ ‖∇Φ‖Lp(Ω)

+C2
2p→p‖∇eu‖Lp(Ω)(‖∇u‖Lp(Ω) + ‖∇uT ‖Lp(Ω)). (5.5)

To derive the following result, we assume that the forcing term f δz is sufficiently small
so that

1 − ‖S−1‖C2
2p→p

(‖∇u‖Lp(Ω) + ‖∇uT ‖Lp(Ω)

) ≥ η > 0. (5.6)

Lemma 4 (upper bound for the error). Assume that the forcing term f δz is sufficiently small
so that (5.6) holds. If p ∈ (4/3−ε, 2), where ε = ε(Ω) > 0 denotes a constant that depends
on Ω , then

‖∇eu‖Lp(Ω) + ‖eπ‖L p(Ω) � ‖∇Φ‖Lp(Ω) + ‖ψ‖L p(Ω), (5.7)

where the hidden constant is independent of (u, π), (uT , πT ), and (Φ, ψ).
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Proof Since Ω is Lipschitz, p ∈ (4/3 − ε, 2), and G ∈ W−1,p(Ω), we are in position to
apply the results of [17, Corollary 1.7] and thus use (5.5) to conclude that

‖∇eu‖Lp(Ω) + ‖eπ‖L p(Ω) ≤ ‖S−1‖[‖∇Φ‖Lp(Ω) + ‖ψ‖L p(Ω)

+C2
2p→p‖∇eu‖Lp(Ω)

(‖∇u‖Lp(Ω) + ‖∇uT ‖Lp(Ω)

) ]
.

The desired estimate thus follows from (5.6). This concludes the proof. ��

5.3 A Posteriori Error Estimators

In this section we introduce a posteriori error estimators for finite element discretizations of
(4.7). The estimators depend on which scheme is considered. To be precise, let T ∈ T . If
z ∈ T is such that

(i) z is not a vertex of T or a midpoint of a side of T , when Taylor–Hood approximation
is considered, or

(ii) z is not a vertex of T , when the approximation based on themini–element is considered,
then we define the element error indicator

ηp,T :=
(

h p
T ‖ΔuT − (uT · ∇)uT − div uT uT − ∇πT ‖p

Lp(T )

+hT ‖�(∇uT − IπT ) · n�‖p
Lp(∂T \∂Ω)

+ ‖ div uT ‖p
L p(T )

+ h2−p
T | f |p

) 1
p

. (5.8)

If z ∈ T and (i) or (ii) do not hold, then

ηp,T :=
(

h p
T ‖ΔuT − (uT · ∇)uT − div uT uT − ∇πT ‖p

Lp(T )

+ hT ‖�(∇uT − IπT ) · n�‖p
Lp(∂T \∂Ω)

+ ‖ div uT ‖p
L p(T )

) 1
p

. (5.9)

If z /∈ T , then the indicator ηp,T is defined as in (5.9). In (5.8) and (5.9), I denotes the
identitymatrix inR

2×2 and (uT , πT ) corresponds to the solution to the discrete problem
(4.7). We recall that we consider our elements T to be closed sets. The a posteriori error
estimators are thus defined by

ηp :=
⎛
⎝ ∑

T ∈T
η

p
p,T

⎞
⎠

1
p

. (5.10)

5.4 A Posteriori Error Estimates: Global Reliability

In what follows we obtain a global reliability property for the a posteriori error estimators
(5.10).

Theorem 2 (global reliability). Let (u, π) ∈ X be the solution of (3.5) and (uT , πT ) ∈
V(T ) × P(T ) its finite element approximation given as the solution of (4.7). Assume that
the forcing term f δz is sufficiently small so that (5.6) holds. If p ∈ (4/3 − ε, 2), where
ε = ε(Ω) > 0, then

‖∇eu‖Lp(Ω) + ‖eπ‖L p(Ω) � ηp, (5.11)

where the hidden constant is independent of (u, π), (uT , πT ), the size of the elements in
T , and #T .
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Proof We proceed in three steps.
Step 1. Let (v, q) ∈ Y . Since (φ, ψ) ∈ X and (u, π) ∈ X solve (5.1) and (3.5), respec-

tively, an elementwise integration by parts yields the identity

a(Φ, v) = 〈 f δz, v〉 +
∑
S∈S

∫
S
�(∇uT − IπT ) · n� · v

+
∑

T ∈T

∫
T
(ΔuT − (uT · ∇)uT − div uT uT − ∇πT ) · v. (5.12)

On the other hand, the first equation of problem (4.7) can be rewritten as

〈 f δz, vT 〉 − a(uT , vT ) − b−(vT , πT ) − c(uT , uT ; vT ) = 0 ∀vT ∈ V(T ).

Set vT = IT v, the Lagrange interpolation operator applied componentwise. Notice that,
since p′ > 2, functions in W1,p′

0 (Ω) are continuous and thus the Lagrange interpolation

operator is well–defined onW1,p′
0 (Ω). Subtract the obtained identity from (5.12), and invoke,

again, an elementwise integrating by parts formula to arrive at

a(Φ, v) = 〈 f δz, v − IT v〉 +
∑
S∈S

∫
S
�(∇uT − IπT ) · n� · (v − IT v)

+
∑

T ∈T

∫
T
(ΔuT − (uT · ∇)uT − div uT uT − ∇πT ) · (v − IT v)

= I + II + III, (5.13)

where we have used that, for S ∈ S , the term
∫

S�uT ⊗ uT : ∇v� · IT v vanishes. This is
a consequence of the fact that the discrete functions belonging to our finite element velocity
spaces are continuous functions.

We now control each term separately. We begin by bounding the term I. Notice that, if
z ∈ T is such that (i) or (ii) do not hold, then (v − IT v)|z = 0. Otherwise, we invoke the
W1,p′

0 (Ω)-regularity of v and a basic L∞–error estimate for IT to obtain

I= f · (v − IT v)(z) � | f |‖v − IT v‖L∞(T ) � h1−2/p′
T | f |‖∇v‖Lp′(T ).

To control II, we invoke Hölder’s inequality and estimate (4.13). We thus obtain

II �
∑
S∈S

‖�(∇uT − IπT �) · n‖Lp(S)‖v − IT v‖Lp′(S)

�
∑
S∈S

h1−1/p′
S ‖�(∇uT − IπT ) · n�‖Lp(S)‖∇v‖Lp′(NS).

Finally, we bound the remaining term III. To accomplish this task, we invoke, again, Hölder’s
inequality and then the error estimate (4.12). These arguments yield

III �
∑

T ∈T
‖ΔuT − (uT · ∇)uT − div uT uT − ∇πT ‖Lp(T )‖v − IT v‖Lp′(T ),

�
∑

T ∈T
hT ‖ΔuT − (uT · ∇)uT − div uT uT − ∇πT ‖Lp(T )‖∇v‖Lp′(T ).
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Now, since p ∈ (4/3 − ε, 2), with ε = ε(Ω) > 0, we are allowed to invoke the inf–sup
condition (3.13) to arrive at

‖∇Φ‖Lp(Ω) � sup
0 �=v∈W1,p′

0 (Ω)

a(Φ, v)

‖∇v‖Lp′(Ω)

.

Utilize identity (5.13), in conjunction with the bounds for I, II, and III, that have been
previously obtained, and the finite overlapping of stars, to conclude that

‖∇Φ‖Lp(Ω) � ηp.

We recall that ηp is defined as in (5.10).
Step 2. The goal of this step is to bound ‖ψ‖L p(Ω). To accomplish this task, we first define

q := |ψ |p−1sign(ψ) − |Ω|−1
∫
Ω

|ψ |p−1sign(ψ). Notice that
∫
Ω

q = 0 and

∫
Ω

||ψ |p−1sign(ψ)|p′ = ‖ψ‖p
L p(Ω),

∫
Ω

∣∣∣∣
∫

Ω

||ψ |p−1sign(ψ)|
∣∣∣∣

p′
≤ C‖ψ‖p

L p(Ω),

where C = |Ω| p
p−1 . Consequently, q ∈ L p′(Ω)/R and ‖q‖L p′(Ω) � ‖ψ‖

p
p′
L p(Ω). We are thus

allowed to set q = |ψ |p−1sign(ψ) − |Ω|−1
∫
Ω

|ψ |p−1sign(ψ) in the second equation of
(5.1). This yields

‖ψ‖p
L p(Ω) = (ψ, q)L2(Ω) = b+(eu, q)

= −b+(uT , q) ≤ ‖ div uT ‖L p(Ω)‖q‖L p′(Ω) � ‖ div uT ‖L p(Ω)‖ψ‖
p
p′
L p(Ω).

Notice that we have used that
∫
Ω

ψ = 0, which yields ‖ψ‖p
L p(Ω) = (ψ, q)L2(Ω). Utilize that

p − p/p′ = 1 to arrive at ‖ψ‖L p(Ω) � ‖ div uT ‖L p(Ω).
Step 3. Apply estimate (5.7) and the bounds for ‖∇Φ‖Lp(Ω) and ‖ψ‖L p(Ω) obtained in

Steps 1 and 2, respectively, to arrive at the a posteriori error estimate

‖∇eu‖Lp(Ω) + ‖eπ‖L p(Ω) � ‖∇Φ‖Lp(Ω) + ‖ψ‖L p(Ω) � ηp.

This is where the smallness assumption (5.6) is needed. This concludes the proof. ��

5.5 A Posteriori Error Estimates: Local Estimates

We now proceed to investigate local estimates for the indicators ηp,T defined in (5.8)–(5.9).
To accomplish this task, we introduce the following notation: for an edge or triangle G, we
denote by V(G) the set of vertices of G. With this notation at hand, we define, for T ∈ T
and S ∈ S , the standard element and edge bubble functions [22,24]

ϕT = 27
∏

v∈V(T )

λv, ϕS = 4
∏

v∈V(S)

λv|T ′ , T ′ ⊂ NS,

where λv corresponds to the barycentric coordinates of T . Recall thatNS corresponds to the
patch composed of the two elements ofT sharing S. We also introduce the following bubble
functions, whose construction we owe to [5]. Given T ∈ T , we define

φT (x) :=
⎧⎨
⎩

ϕT (x)
|x−z|2

h2T
, if z ∈ T ,

ϕT (x), if z /∈ T .
(5.14)
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Given S ∈ S , we introduce the bubble function φS as

φS(x) :=
⎧⎨
⎩

ϕS(x)
|x−z|2

h2S
, if z ∈ N̊S,

ϕS(x), if z /∈ N̊S .
(5.15)

Here, N̊S denotes the interior of NS . We recall that the Dirac measure δz is supported at the
point z ∈ Ω . It can thus be supported on the interior, an edge, or a vertex of an element
T ∈ T .

Given S ∈ S , we introduce the continuation operatorΠ : L∞(S) → L∞(NS) as defined
in [23, Section 3]. This operator maps polynomials onto piecewise polynomials of the same
degree. With this operator at hand, we present the following result whose proof can be found
in [9, Lemma 3]. We notice that, due to the presence of the convective term, the polynomial
degree needs to be suitably modified in order to be able to handle both the mini–element and
the lowest degree Taylor–Hood elements.

Lemma 5 (bubble function properties). Let r ∈ (1,∞), T ∈ T , S ∈ S , and m ∈ N. Then,
the bubble functions φT and φS satisfy

‖φT ‖Wm,r (T ) � h2/r−m
T . (5.16)

In addition, if vT |T ∈ [P5(T )]2 and wT |S ∈ [P3(S)]2, then

‖vT ‖Lr (T ) � ‖vT φ
1
r
T ‖Lr (T ) � ‖vT ‖Lr (T ), (5.17)

‖wT ‖Lr (S) � ‖wT φ
1
r
S ‖Lr (S) � ‖wT ‖Lr (S), (5.18)

‖φSΠwT ‖Lr (T ) � h
1
r
T ‖wT ‖Lr (S). (5.19)

With all these ingredients at hand, we are in position to investigate local estimates for the
indicators ηp,T .

Theorem 3 (local estimates). Let p ∈ [4/3, 2). Let (u, π) ∈ X be the solution of problem
(3.5) and (uT , πT ) ∈ V(T ) × P(T ) its finite element approximation obtained as the
solution to (4.7). Assume that the forcing term f δz is sufficiently small so that (5.6) holds.
Then

η
p
p,T � ‖∇eu‖p

Lp(NT ) + ‖eπ‖p
L p(NT ) + h−2/3

T ‖eu‖p
Lp(NT ), (5.20)

where the hidden constant is independent of the continuous and discrete solutions, the size
of the elements in the mesh T , and #T .

Proof To simplify notation, we define

RT := (ΔuT − (uT · ∇)uT − div uT uT − ∇πT )|T , Υ T := φTRT , (5.21)

where φT denotes the bubble function defined in (5.14). With these definitions at hand, we
proceed on the basis of five steps.

Step 1. Let T ∈ T . The goal of this step is to bound h p
T ‖RT ‖p

Lp(T ) in (5.8)–(5.9). As a
first step, we invoke (5.17) to obtain the basic estimate

‖RT ‖2L2(T )
� ‖RT φ

1
2
T ‖2L2(T )

=
∫

T
RT · Υ T . (5.22)
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To explore the term
∫

T RT · Υ T , we observe that Υ T (z) = φT (z)RT (z) = 0 and that, for
S ∈ ST , Υ T |S = 0. We thus set v = Υ T in (5.12) to obtain

∫
T
RT · Υ T = a(Φ,Υ T ).

It thus suffices to bound the term a(Φ,Υ T ). To accomplish this task, we first notice that
from assumption (5.6), the following estimate can be derived:

‖∇u‖Lp(Ω) + ‖∇uT ‖Lp(Ω) ≤ 1 − η

‖S−1‖C2
2p→p

. (5.23)

We thus invoke the first equation in problem (5.1) with v = Υ T to obtain

a(Φ,Υ T ) �
(‖∇eu‖Lp(T ) + ‖eπ‖L p(T )

) ‖∇Υ T ‖Lp′(T )

+ (‖u‖L3p(T )‖eu‖Lp(T ) + ‖eu‖Lp(T )‖uT ‖L3p(T )

) ‖∇Υ T ‖Ls (T ), (5.24)

where we have also used that suppΥ T ⊂ T . Here, s is such that 1/s + 1/3p + 1/p = 1.
Notice that, since p ≥ 4/3, we have W1,p(Ω) ↪→ L3p(Ω) [11, Theorem II.3.2]. In what
followswe control ‖∇Υ T ‖Lp′(T ), whereΥ T = φTRT . Invoke Lemma 5 and standard inverse
inequalities to arrive at

‖∇Υ T ‖Lp′(T ) � ‖φT ∇RT ‖Lp′(T ) + ‖∇φTRT ‖Lp′(T )

� h−1
T ‖RT ‖Lp′(T ) � h−1

T h2/p′−1
T ‖RT ‖L2(T ). (5.25)

Similarly, ‖∇Υ T ‖Ls (T ) � h−1
T h2/s−1

T ‖RT ‖L2(T ). Replacing (5.25) and the previous estimate
into (5.24) and the obtained estimate into (5.22), we obtain

‖RT ‖2L2(T )
� (‖∇eu‖Lp(T ) + ‖eπ‖L p(T ))h

−1
T h2/p′−1

T ‖RT ‖L2(T )

+‖eu‖Lp(T )h
2/s−2
T ‖RT ‖L2(T ). (5.26)

The inverse inequality ‖RT ‖Lp(T ) � h2/p−1
T ‖RT ‖L2(T ) thus yield

‖RT ‖Lp(T ) � h−1
T (‖∇eu‖Lp(T ) + ‖eπ‖L p(T ))+h−1−2/3p

T ‖eu‖Lp(T ), (5.27)

which immediately implies that

h p
T ‖RT ‖p

Lp(T ) � ‖∇eu‖p
Lp(T ) + ‖eπ‖p

L p(T ) + h−2/3
T ‖eu‖p

Lp(T ). (5.28)

Step 2. We now control the term hT ‖�(∇uT − IπT ) · n�‖Lp(S) for S ∈ ST and T ∈ T .
To simplify the presentation of the material, we define JS := �(∇uT − IπT ) · n� and
ΛS := φSJS , where φS is the bubble function defined in (5.15). As a first step, we invoke
(5.18) to obtain

‖JS‖2L2(S)
� ‖JSφ

1
2
S ‖2L2(S)

=
∫

S
JS · ΛS . (5.29)

Set v = ΛS in (5.12) and use that ΛS(z) = 0 to arrive at
∫

S
JS · ΛS = a(Φ,ΛS) −

∑
T ′∈NS

∫
T ′
RT ′ · ΛS,
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where RT ′ is defined as in (5.21). Notice that supp(ΛS) ⊆ RS := supp(φS) ⊂ {T ′ : T ′ ∈
NS}. We thus invoke similar arguments to the ones that yield (5.24) to obtain∫

S
JS · ΛS �

∑
T ′⊂NS

‖∇Φ‖Lp(T ′)‖∇ΛS‖Lp′(T ′) + ‖RT ′ ‖Lp(T ′)‖ΛS‖Lp′(T ′)

�
∑

T ′⊂NS

[
(‖∇eu‖Lp(T ′) + ‖eπ‖L p(T ′))‖∇ΛS‖Lp′(T ′) + ‖RT ′ ‖Lp(T ′)‖ΛS‖Lp′(T ′)

+ (‖u‖L3p(T ′)‖eu‖Lp(T ′) + ‖eu‖Lp(T ′)‖uT ‖L3p(T ′)
) ‖∇ΛS‖Ls (T ′)

]
.

Inverse inequalities and (5.27) yield the estimate∫
S
JS · ΛS �

∑
T ′∈NS

[
h−1

T ′ (‖∇eu‖Lp(T ′) + ‖eπ‖L p(T ′))‖ΛS‖Lp′
(T ′)

+
(

h−1−2/3p
T ‖eu‖Lp(T ′) + h2/s−2/p′−1

T ′ ‖eu‖Lp(T ′)
)

‖ΛS‖Lp′
(T ′)

]
. (5.30)

Next, ‖ΛS‖Lp′(T ′) � h1/p′
T ′ ‖JS‖Lp′(S), which follows from (5.19), and ‖JS‖Lp′(S) �

h1/p′−1/2
T ′ ‖JS‖L2(S) yield, on the basis of (5.29) and (5.30), the estimate

‖JS‖L2(S) �
∑

T ′∈NS

[
h−1/p

T ′ h1/p′−1/2
T ′

(
‖∇eu‖p

Lp(T ′) + ‖eπ‖p
L p′(T ′)

)1/p

+h−3/2−2/3p+2/p′
T ′ ‖eu‖Lp(T ′) + h2/s−3/2

T ′ ‖eu‖Lp(T ′)
]
.

Finally, we invoke the inequality ‖JS‖Lp(S) � h1/p−1/2
T ′ ‖JS‖L2(S) to obtain

hT ‖JS‖p
Lp(S) �

∑
T ′∈NS

[
‖∇eu‖p

Lp(T ′) + ‖eπ‖p
L p′(T ′)+h−2/3

T ′ ‖eu‖p
Lp(T ′)

]
. (5.31)

Step 3. Let T ∈ T . The estimate of the term ‖ div uT ‖L p(T ) is as follows:

‖ div uT ‖L p(T ) = ‖ div eu‖L p(T ) � ‖∇eu‖Lp(T ). (5.32)

Step 4. We now bound the term h2−p
T | f |p in (5.8). Let T ∈ T . If T ∩ {z} = ∅, the desired

estimate (5.20) follows directly from (5.28), (5.31), and (5.32). If T ∩ {z} �= ∅, and (i) and
(ii) hold, ηp,T contains the term h2−p

T | f |p . To control such a term, we invoke the smooth
function μ constructed in [5, Section 3], which is such that

Sμ := supp(μ) ⊂ NT , μ(z) = 1, ‖μ‖L∞(Sμ) = 1, ‖∇μ‖L∞(Sμ) � h−1
T .

In addition, the function μ satisfies the following estimates:

‖μ‖L p′(NT ) � h2/p′
T , ‖∇μ‖L p′(NT ) � h2/p′−1

T , ‖μ‖L p′(S) � h1/p′
T . (5.33)

Set v = vμ := μ| f |p−1sign( f ), where sign( f ) must be understood as the componentwise
sign function of f , as a test function in (3.5). Since (u, π) and (Φ, ψ) solve problem (3.5)
and (5.1) respectively, we obtain

| f |p = a(u, vμ) + b−(vμ, π) + c(u, u; vμ)

= a(Φ, vμ) + a(uT , vμ) + b−(vμ, πT ) + c(uT , uT ; vμ).
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Since supp(μ) ⊂ NT , similar arguments to the ones used in the previous steps allow us to
derive the estimate

| f |p � (‖∇eu‖Lp(NT ) + ‖eπ‖L p(NT ))‖∇vμ‖Lp′(NT )+‖eu‖Lp(NT )‖∇vμ‖Ls (NT )

+
∑

T ′∈T
T ′⊂NT

⎡
⎢⎢⎣‖RT ′ ‖Lp(T ′)‖vμ‖Lp′(T ′) +

∑
S∈S

S⊂∂NT

‖JS‖Lp(S)‖vμ‖Lp′(S)

⎤
⎥⎥⎦ . (5.34)

We then apply the properties of μ stated in (5.33) to obtain

| f |p �
[
hT

2/p′−1(‖∇eu‖Lp(NT ) + ‖eπ‖L p(NT ))) + hT
2/s−1‖eu‖Lp(NT )

] | f |p−1

+
∑

T ′∈T
T ′⊂NT

⎡
⎢⎢⎣h2/p′

T ′ ‖RT ′ ‖Lp(T ′) +
∑
S∈S

S⊂∂NT

h1/p′
T ′ ‖JS‖Lp(S)

⎤
⎥⎥⎦ | f |p−1. (5.35)

Invoke (5.27) and (5.31) to conclude

h1−2/p′
T | f | �

∑
T ′∈NT

(
‖∇eu‖Lp(T ′) + ‖eπ‖L p(T ′)+h2/s−2/p′

T ′ ‖eu‖Lp(T ′)
)

,

which immediately implies the desired bound

h2−p
T | f |p �

∑
T ′∈NT

(
‖∇eu‖p

Lp(T ′) + ‖eπ‖p
L p(T ′) + h−2/3

T ′ ‖eu‖p
Lp(T ′)

)
. (5.36)

Step 5. Finally, by gathering estimates (5.28), (5.31), (5.32) and (5.36), we arrive at the
desired estimate (5.20). This concludes the proof. ��

6 Numerical Experiments

In this sectionwe conduct a series of numerical examples that illustrate the performance of the
devised a posteriori error estimator (5.10). The numerical examples have been carried outwith
the help of a code that we implemented usingC++. All matrices have been assembled exactly.
The right–hand sides of the assembled systems, the local indicators, and the approximation
errors, are computed by a quadrature formula which is exact for polynomials of degree 19.
For simplicity, in all the experiments that we have performed, we have taken the kinematic
viscosity to be equal to one.

For a given partitionT , we seek (uT , πT ) ∈ V(T )×P(T ) that solves (4.7) on the basis
of the discrete spaces (4.4)–(4.5). We thus calculate the local error indicators ηp,T , defined in
(5.8)–(5.9), in order to drive the adaptive mesh refinement procedure described in Algorithm
1. A sequence of adaptively refined meshes is thus generated from the initial meshes shown
in Fig. 1. The total number of degrees of freedom is Ndof := dim(V(T )) + dim(P(T )),
where (V(T ),P(T )) is given by (4.4)–(4.5).

In the experiments that we performwe go beyond the presented theory and include a series
of Dirac delta sources on the right–hand side of the momentum equation. To be precise, we
replace the forcing term in the first equation of (3.5) by

∑
t∈D f tδt . Here,D denotes a finite

ordered subset ofΩ with cardinality #D and { f t }t∈D ⊂ R
2.Within this setting, the following
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Algorithm 1: Adaptive algorithm.
Input: Initial mesh T0, set of Dirac points D, vectors { f t }t∈D , and the index p.
Set: i = 0.
1: Solve the discrete system (4.7) by using a fixed point algorithm.
2: For each T ∈ Ti compute the local error indicator ηp,T defined in (5.8)–(5.9);

3: Mark an element T for refinement if η
p
p,T > 1

2 maxT ′∈T i
η

p
p,T ′ ;

4: From step 3, construct a new mesh Ti+1 using a longest edge bisection algorithm. Set i ← i + 1
and go to step 1.

Fig. 1 The initial meshes used in
the adaptive loop of Algorithm 1
when Ω is a two dimensional
q–shaped domain (Example 1)
and a two dimensional L–shaped
domain (Example 2)

a posteriori error estimator can be proposed:

ζp :=
(∑

T ∈T
ζ

p
p,T

) 1
p

.

For each T ∈ T , ζp,T is defined as follows: If t ∈ D ∩ T and (i) or (ii) hold, then

ζp,T :=
(

h p
T ‖ΔuT − (uT · ∇)uT − div uT uT − ∇πT ‖p

Lp(T )

+hT ‖�(∇uT − IπT ) · n�‖p
Lp(∂T \∂Ω) + ‖divuT ‖p

L p(T )

+
∑

t∈D∩T

h2−p
T | f t |p

) 1
p
. (6.1)

If t ∈ D ∩ T and (i) or (ii) do not hold, then

ζp,T :=
(

h p
T ‖ΔuT − (uT · ∇)uT − div uT uT − ∇πT ‖p

Lp(T )

+hT ‖�(∇uT − IπT ) · n�‖p
Lp(∂T \∂Ω) + ‖divuT ‖p

L p(T )

) 1
p
. (6.2)

If T ∩ D = ∅, then the indicator is defined as in (6.2). Notice that, when #D = 1, the total
error estimator ζp coincides with ηp , the estimator defined in (5.10). Depending on the test,
we may use (6.1)–(6.2) instead of (5.8)–(5.9) in Algorithm 1 in order to account for the
forcing term

∑
t∈D f tδt .

We perform two–dimensional examples on polygonal but nonconvex domains with differ-
ent number of source points. To accomplish this task we use the adaptive procedure described
in Algorithm 1. To solve the discrete problem (4.7) we employ the Taylor–Hood finite ele-
ment pair given as in (4.4)–(4.5).
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(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Fig. 2 Example 1: Experimental rates of convergence for the error estimator ζp for p ∈ {1.1, 1.3, 1.5, 1.7}
(a); the finite element approximations of |uT | (b) and πT (c) obtained on the 20th adaptively refined mesh
for p = 1.1; adaptively refined meshes obtained after 28 iterations of our adaptive loop with p = 1.3 (d),
p = 1.5, (e) and p = 1.7 (f); and streamlines of the velocity field uT obtained after 22 adaptive refinements
for p = 1.3 (g), p = 1.5 (h), and p = 1.7 i

6.1 Example 1: Q-shaped Domain

The first test that we report is posed on a L-shaped domain with a rectangular obstacle. We
will simply refer to such a domain as a q-shaped domain. To make matters precise, we let
Ω = (1, 1.5) × (0, 1.5] ∪ ((0, 1.5) × (1.5, 3) \ [0.5, 1] × [2, 2.5]),

D = {(1.25, 2.25), (0.75, 2.75), (0.25, 2.25), (0.75, 1.75), (1.25, 0.75)},
f (1.25,2.25) = 0.02, f (0.25,2.25) = 0.02, f (0.75,2.75) = −0.03, f (0.75,1.75) = −0.03 and
f (1.25,0.75) = 0.04. The purpose of this example is to investigate the performance of the
error estimator ζp for different values of the integrability index p. In particular, we consider
p ∈ {1.1, 1.3, 1.5, 1.7}. Notice that the exact solution to this problems is unknown.

In Fig. 2 we present the results obtained for Example 1. We observe, from subfigure (a),
optimal experimental rates of convergence for the error estimator ζp for all the values of
the integrability index p considered. In subfigures (b) and (c) we present the finite element
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Example 2: Experimental rates of convergence for the error estimator ζp for p ∈ {1.1, 1.3, 1.5, 1.7}
(a); the finite element approximations of |uT | (b) and πT (c) obtained on the 20th adaptively refined mesh
for p = 1.1 and adaptively refined meshes obtained after 20 iterations of our adaptive loop for p = 1.3 (d),
p = 1.5 (e), and p = 1.7 (f)

approximations of |uT | and πT obtained after 20 adaptive refinements of the corresponding
initial mesh shown in Fig. 1; the 20th adaptive mesh has 24238 elements and 12315 vertices.
In subfigures (d), (e), and (f) we show the adaptive meshes obtained after 28 iterations of
our adaptive loop for p = 1.3, p = 1.5, and p = 1.7, respectively. It can be appreciated
that most of adaptive refinement is being concentrated around the points t ∈ D where the
Dirac measures are supported. Adaptive refinement is also being performed at the re-entrant
corners of the domain, specially for small values of p. We also show, in subfigures (g), (h),
and (i), the streamlines of the velocity field uT obtained after 22 iterations of our adaptive
loop with p = 1.3 (11922 elements and 6091 vertices), p = 1.5 (3562 elements and 1831
vertices), and p = 1.7 (1697 elements and 870 vertices), respectively.

6.2 Example 2 (L-shaped Domain)

We let Ω = (0, 1)2 \ [0.5, 1) × (0, 0.5], D = {(0.25, 0.25), (0.25, 0.75), (0.75, 0.75)}, and
f (0.25,0.25) = f (0.25,0.75) = f (0.75,0.75) = (1, 1). In this example we investigate, once more,
the effect of varying the integrability index p by considering p ∈ {1.1, 1.3, 1.5, 1.7}.

In Fig. 3 we present the results obtained for Example 2. From subfigure (a) we observe
that, for the different values of p that we consider, optimal experimental rates of convergence
are attained for ζp . Subfigures (b) and (c) show the finite element approximations of the
magnitude of the velocity and the pressure, respectively. In subfigures (d), (e), and (f) we
present the adaptivemeshes obtained after 20 iterations of our adaptive loop for p = 1.3, p =
1.5, and p = 1.7, respectively. It can be observed that the refinement is being concentrated
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around the points that support the Dirac measures and to a lesser extent about the re-entrant
corner.
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