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Abstract
In this paper, a high order quasi-conservative discontinuous Galerkin (DG) method using
the non-oscillatory kinetic flux is proposed for the 5-equation model of compressible multi-
component flows with Mie-Grüneisen equation of state. The method mainly consists of
three steps: firstly, the DG method with the non-oscillatory kinetic flux is used to solve the
conservative equations of the model; secondly, inspired by Abgrall’s idea, we derive a DG
scheme for the volume fraction equation which can avoid the unphysical oscillations near the
material interfaces; finally, a multi-resolution weighted essentially non-oscillatory limiter
and a maximum-principle-satisfying limiter are employed to ensure oscillation-free near
the discontinuities, and preserve the physical bounds for the volume fraction, respectively.
Numerical tests show that the method can achieve high order for smooth solutions and keep
non-oscillatory at discontinuities. Moreover, the velocity and pressure are oscillation-free at
the interface and the volume fraction can stay in the interval [0,1].
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1 Introduction

Numerical simulation of compressiblemulti-component flowswith immiscible interfaces has
been an active research topic in the computational fluid dynamics because of their application
to a wide range of field, such as inertial confinement fusion, underwater bubble dynamic and
so on. The major difficulty of the simulations of multi-component flows is how to track the
material interfaces clearly.

The numerical approaches can be split into two major groups with respect to the treatment
of the material interface in the Eulerian framework. One is the sharp interface method (SIM)
and the other is the diffuse interface method (DIM). Sharp interface methods [4,13,26–28,33,
35,36,48,49,55] view the multi-material interfaces as genuine discontinuities. Thus the sharp
interfaces are strictly maintained. However, none of these methods is able to dynamically
create interfaces and to solve interfaces separating pure medium and mixtures as stated in
[42].

In contrast, in the diffuse interface approach the interfaces are viewed as a numerically
diffused zone, and an artificial mixture zone is created. A number of different models [1–
3,18,41,44–46] have been developed so far based on this idea, including 4-equation model,
5-equation model, 7-equation model and so on. However, these models are usually non-
conservative, which leads both theoretical and computational challenging problems [2].
The special strategies are required to handle these non-conservative terms in order to keep
the pressure and velocity non-oscillatory at the interfaces. The quasi-conservative approach
developed byAbgrall in [1] is an effectivemeans to dealwith this problem.Based onGodunov
method for solution evolution, Shyue extended the idea to the different equations of state
(EOSs), such as stiffened gas equation [44], Van derWaals [46],Mie-Grüneisen [45]. Besides
the traditional Godunov method, an alternative is the gas kinetic scheme (GKS) [50], which
provides more physical information of the flow and is free from constructing Riemann solver.
In the past decades, the GKS has been well developed to solve for multi-component flows
[21–23,25,31,34,51]. A second-order gas-kinetic scheme for multicomponent flow was pre-
sented in [23,51] based on the BGK equation for each component with its own equilibrium
state. Chen and Jiang proposed a non-oscillatory kinetic (NOK) scheme for the ideal gas [6]
and stiffened gas [5]. Ni and Sun [31] proposed a γ -DGBGK scheme for compressible mul-
ticonponent flows simulation. Recently, an improved GKS for multicomponent flows [22] is
proposed to increase the computational efficiency. In these papers mentioned above, most of
them are the second-order schemes at most. The works in [25,31,34] can achieve high order,
but only are applied to the ideal gas or stiffened gas.

For the diffuse interface method, the numerical diffusion may lead to a very bad repre-
sentation of the interfaces, especially when long time computations are needed. A way to
circumvent the numerical diffusion is to adopt a high order method, such as spectral volume
method [25], weighted essentially non-oscillatory (WENO) method [12,17,32,39], discon-
tinuous Galerkin (DG) method which we are interested in. DG method has been applied to
solve a variety of different models [7,14–16,40]. There exist a few research works in the
5-equation model. Saleem, Ali and Qamar [40] adopted the second-order Runge-Kutta DG
(RKDG) method for solving the reduced 5-equation model [18]. In their work, the Lax-
Friedrichs (LF) flux and the local LF flux were used to compute the numerical flux and
a WENO limiter was utilized to eliminate oscillations at discontinuities. However, one can
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observe that the velocity and pressure produce the oscillations at the interface from the results
of the interface only problem since the limiterwas applied to the conservative variables. Gryn-
garten and Menon [15] applied the local DG method [52] to the 5-equation model [3] with
Peng-Robinson EOS, where the non-conservative equations were rewritten into conservative
formula with source terms. Amoment limiter [19] was applied to the conserved and primitive
variables. The numerical flux used in their study is the HLLC approximate Riemann solver
for the conservation of mass, momentum and energy. But the additional equations must be
solved which increases the computations.

In this paper, a high order quasi-conservative DG method for compressible multi-
component flows with Mie-Grüneisen EOS based on the 5-equation model [3] is developed.
The method can obtain the high order in smooth regions, keep oscillation-free at discon-
tinuities, including the material interface, which is different from the work in [40], and
guarantee the volume fraction in [0,1]. In addition, we do not need the extra equations to
solve and reduce the computations compared to the work in [15]. Following the idea of the
quasi-conservative method introduced by Abgrall [1], the quasi-conservative DG method
with NOK flux has three steps. Firstly, we adopt DG method to discretize the conservative
equations in space. In order to treat Mie-Grüneisen EOS, the NOK flux [5,25] is utilized to
compute the numerical flux in our work instead of the traditional numerical flux. Secondly,
according to the discretizations of the conservative equations, the necessary condition that
avoids the unphysical oscillation near the material interfaces is derived, which is also the dis-
cretization method for the volume fraction equation. At last, the newmulti-resolutionWENO
limiter [56] is employed to prevent the oscillations at discontinuities. In order to keep the
pressure and velocity oscillation-free at the interfaces, we applied the limiter to the primitive
variables as in [15] and the maximum-principle-satisfying limiter developed by Zhang and
Shu [53,54] is applied to ensure that the volume fraction does not go out of the range. Thus,
a high order quasi-conservative discontinuous Galerkin method for multi-component flows
with Mie-Grüneisen EOS using the NOK flux is developed.

The organization of the paper is as follows. The governing equations and EOSs are
described in Sect. 2. In Section 3, the DG method for multi-component flows, identification
of troubled cells, and limiters are described in detail. One- and two-dimensional numerical
examples are presented to demonstrate the accuracy and the oscillation-free of the method
in Sect. 4. In Sect. 5, the conclusions are given.

2 Govorning Equation

In one dimension, the 5-equation model for an immiscible two-material compressible flow
[3] is considered, which is in the form of:

{
Wt + F(W )x = 0,
∂Y
∂t + v ∂Y

∂x = 0,
(2.1)

where W = (ρ1Y1, ρ2Y2, ρv, E)T and F(W ) = (ρ1Y1v, ρ2Y2v, ρv2 + P, v(E + P))T ; ρ1
and ρ2 are the partial density of the fluids 1 and 2, respectively; P is the pressure, v is the
velocity and E = ρe+ 1

2ρv2 is the total energy with ρe being the internal energy; Y1 = Y is
the volume fraction of fluid 1, lies in the interval [0, 1], and Y1 + Y2 = 1. The total density,
momentum and energy of the mixture are defined as
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ρ = ρ1Y1 + ρ2Y2, ρv = Y1ρ1v1 + Y2ρ2v2, (2.2)

E = Y1ρ1e1 + 1

2
ρ1Y1(v1)

2 + Y2ρ2e2 + 1

2
ρ2Y2(v2)

2. (2.3)

In order to close the Eq. (2.1), a mixture EOS is needed. In this work, each of the fluids
is modeled by Mie-Grüneisen EOS, i.e.

P(ρ, e) = �(ρ)[ρe − ρere f (ρ)] + Pref (ρ),

where � is the Grüneisen coefficient, Pref (ρ) and ere f (ρ) are the reference pressure and
internal energy, respectively. This is a general EOS since it can produce the different types
of EOSs:

(1) Ideal gas EOS ⎧⎪⎨
⎪⎩

�(ρ) = γ − 1,

Pref (ρ) = 0,

ere f (ρ) = 0;
(2.4)

(2) Stiffened gas EOS ⎧⎪⎨
⎪⎩

�(ρ) = γ − 1,

Pref (ρ) = −γ B,

ere f (ρ) = 0;
(2.5)

(3) Jones-Wilkins-Lee EOS (JWL EOS)⎧⎪⎨
⎪⎩

�(ρ) = �0,

ere f (ρ) = A
R1ρ0

exp(−R1ρ0
ρ

) + B
R2ρ0

exp(−R2ρ0
ρ

) − e0,

Pref (ρ) = A exp(−R1ρ0
ρ

) + B exp(−R2ρ0
ρ

);
(2.6)

where A,R1, ρ0,B,R2 and e0 are the material-dependent parameters.
(4) Cochran-Chan EOS (CC EOS)⎧⎪⎨

⎪⎩
�(ρ) = �0,

ere f (ρ) = − A
ρ0(1−ε1)

[( ρ0
ρ

)1−ε1 − 1] + B
ρ0(1−ε2)

[( ρ0
ρ

)1−ε2 − 1] − e0,

Pref (ρ) = A(
ρ0
ρ

)−ε1 − B(
ρ0
ρ

)−ε2 ;
(2.7)

where A, ε1, ρ0,B, ε2 and e0 are the material-dependent parameters.
(5) Shock-Wave EOS (Shock EOS)⎧⎪⎪⎨

⎪⎪⎩
�(ρ) = �0(

V
V0

)α, V = 1
ρ
, V0 = 1

V0
,

Pref (ρ) = P0 + c20(V0−V )

[V0−s(V0−V )]2 ,
ere f (ρ) = e0 + 1

2 [Pref (ρ) + P0](V0 − V );
(2.8)

where s, c0, ρ0, α, P0 and e0 are the material-dependent parameters.
A wide range of real materials can be modeled by these EOSs. A typical set of numerical

values for some samplematerials is listed inTable 1.Mie-GrüneisenEOScanbe also rewritten
as

P(ρ, ρe) = (γ (ρ) − 1)ρe − γ (ρ)π(ρ),

where γ (ρ) = �(ρ) + 1, π(ρ) = �(ρ)ρere f (ρ)−Pre f (ρ)

�(ρ)+1 .
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Table 1 Material-dependent quantities used in this paper

JWL EOS ρ0(kg/m3) A(GPa) B(GPa) R1 R2 �0 α

Water 1004 1582 −4.67 8.94 1.45 1.17 0

CC EOS ρ0(kg/m3) A(GPa) B(GPa) ε1 ε2 �0 α

Copper 8900 145.67 147.75 2.99 1.99 2 0

TNT 1840 12.87 13.42 4.1 3.1 0.93 0

Shock EOS ρ0(kg/m3) c0(m/s) s �0 α P0 e0
Molybdenum 9961 4770 1.43 2.56 1 0 0

MORB 2660 2100 1.68 1.18 1 0 0

See [45] for more material parameters

To close system (2.1) for the mixing cells, the isobaric closure assumption [3] is sup-
plemented here, which assumes that there is no pressure jump across a material interface,
i.e.

P1 = P2 = P.

Thus, according to (2.2) and (2.3), the internal energy of the mixture is given by

ρe =
∑
k

Ykρkek =
∑
k

Yk
Pk + γk(ρk)πk(ρk)

γk(ρk) − 1
. (2.9)

Using P1 = P2 = P , we can obtain

P + γπ

γ − 1
= ρe =

∑
k

Yk
P + γk(ρk)πk(ρk)

γk(ρk) − 1
.

Therefore, we have the two following equations:

1

γ − 1
=

∑
k

Yk
γk(ρk) − 1

,
γ π

γ − 1
=

∑
k

Ykγk(ρk)πk(ρk)

γk(ρk) − 1
. (2.10)

Finally, the mixing sound speed [3] can be written as follows:

c2 = (γ − 1)
∑
k

zkc2k
γk − 1

,

where ck is the sound speed of the kth material and zk is mass fraction of fluid k defined as
zk = ρkYk∑

l
ρl Yl

.

3 The Numerical Scheme

In this section, we describe a quasi-conservative RKDG method for the numerical solution
of compressible multi-components in the form of (2.1) on a uniform mesh, which contains
three steps.

Step 1. Discretize the conservative equations in (2.1) using RKDG method [8–11] with
NOK flux which is suitable for Mie-Grüneisen EOS.
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Step 2. Following the idea of Abgrall’s quasi-conservative method, define a numerical
scheme for the equation of volume fraction which can prevent the oscillation of pressure and
velocity near the material interfaces.

Step 3. Add the limiters, which include the limiters for oscillation-free near the disconti-
nuities and the maximum-principle-satisfying limiters for the volume fraction.

3.1 DGMethod for the Conservative Equations

For simplicity, we take one dimension for example. For two dimensions, we can imple-
ment it similarly. Assume the domain 	 is divided into N nonoverlapping cells {I j =
(x j− 1

2
, x j+ 1

2
), j = 1, . . . , N }, and 
x = x j+ 1

2
− x j− 1

2
. The DG finite element space is

defined as

V k
h = {p(x, t) : p|I j ∈ Pk(I j )},

where Pk(I j ) is the space of polynomials of degree ≤ k defined on I j . Notice that Pk(I j )
can be expressed as

Pk(I j ) = span{ϕ1(x), . . . , ϕL(x)},
where L = k + 1 for one dimensional case, and {ϕ1(x), · · · , ϕL(x)} is a basis of Pk(I j ).
Here the local orthogonal basis over I j is adopted. The first three basis functions in one
dimension we employ on the cell I j are

ϕ1(x) = 1, ϕ2(x) = x − x j

x

, ϕ3(x) =
(
x − x j

x

)2

− 1

12
, ∀x ∈ I j . (3.1)

The semi-discrete DG approximation for the conservative equations in (2.1) is to find the
numerical solution uh(·, t) ∈ V k

h , t ∈ (0, T ] such that∫
I j

∂Wh

∂t
ψdx + (Fψ)|I j −

∫
I j
Fψxdx = 0, ∀ψ ∈ Pk(I j ), (3.2)

Expressing Wh as

Wh(x, t) =
L∑

l=1

W (l)
j (t)ϕl(x), ∀x ∈ I j , (3.3)

applying the Gauss quadrature rule to the third terms in (3.2) and replacing the flux F by the
numerical flux F̂ , we obtain⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫
I j

(
L∑

l=1

dW (l)
j (t)

dt ϕl(x))ψdx + F̂j+ 1
2
ψ−

j+ 1
2

− F̂j− 1
2
ψ+

j− 1
2

−∑
G

F(Wh(xG))wGψx (xG)|I j | = 0, ∀ψ ∈ V k
h ,∫

I j
(Wh(x, 0) − W (x, 0))ψdx = 0, ∀ψ ∈ V k

h ,

(3.4)

where |I j | is the volume of the element I j , and xG and wG represent the Gaussian points
and the weights on I j , respectively. The summation

∑
G

is taken over the Gauss points on

I j . The numerical flux has the form F̂j+ 1
2

= F̂(u−
j+ 1

2
, u+

j+ 1
2
), and u−

j+ 1
2

= u(x−
j+ 1

2
) and

u+
j+ 1

2
= u(x+

j+ 1
2
) are defined as the values from the left and right limit of x j+ 1

2
, respectively.
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In this work, the NOK flux [5,25] which can deal with the general EOS, is employed. It
consists of two parts

F̂j+ 1
2

= ηFK
j+ 1

2
+ (1 − η)FE

j+ 1
2
,

where η ∈ [0, 1]. η is the relaxation parameter to determine the speed that a system evolves
into an equilibrium state and should be a function of local flow variables, such as the flow
jump around the cell interface [24], which is

η = 1 − exp[−C
|P+ − P−|
P+ + P− ],

where C is a problem-dependent positive constant which ranges from 103 to 105. η should
be set to 1 for the challenging problems, such as very strong shocks. The non-equilibrium
part is

FK
j+ 1

2
= F+

j+ 1
2

+ F−
j+ 1

2
,

where

F±
j+ 1

2
= < u1 > j+ 1

2 ,L/R

⎛
⎜⎜⎝

ρ1Y1
ρ2Y2
ρv

E

⎞
⎟⎟⎠

∓

j+ 1
2

+

⎛
⎜⎜⎜⎝

0
0

P∓
j+ 1

2
< u0 > j+ 1

2 ,L/R
1
2 P

∓
j+ 1

2
< u1 > j+ 1

2 ,L/R + 1
2 P

∓
j+ 1

2
v∓
j+ 1

2
< u0 > j+ 1

2 ,L/R

⎞
⎟⎟⎟⎠ ,

< u0 > j+ 1
2 ,L/R = 1

2
erfc(∓

√
λ j+ 1

2
v∓
j+ 1

2
),

< u1 > j+ 1
2 ,L/R = v∓

j+ 1
2

< u0 > j+ 1
2 ,L/R ±1

2

e
−λ

j+ 1
2
(v∓

j+ 1
2
)2

√
πλ j+ 1

2

,

λ j+ 1
2

= min{ 1

(c−
j+ 1

2
)2

,
1

(c+
j+ 1

2
)2

}, (3.5)

c is the speed of sound.
In order to avoid oscillations of the pressure and velocity near a contact discontinuity, the

equilibrium part should satisfy the consistent condition. The primitive variables are computed
by

⎛
⎜⎜⎜⎜⎝

ρ̄1
ρ̄2
v̄

P̄
Ȳ1

⎞
⎟⎟⎟⎟⎠

j+ 1
2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(ρ1)
−
j+ 1

2
< u0 > j+ 1

2 ,L +(ρ1)
+
j+ 1

2
< u0 > j+ 1

2 ,R

(ρ2)
−
j+ 1

2
< u0 > j+ 1

2 ,L +(ρ2)
+
j+ 1

2
< u0 > j+ 1

2 ,R

< u1 > j+ 1
2 ,L + < u1 > j+ 1

2 ,R

P−
j+ 1

2
< u0 > j+ 1

2 ,L +P+
j+ 1

2
< u0 > j+ 1

2 ,R

(Y1)
−
j+ 1

2
< u0 > j+ 1

2 ,L +(Y1)
+
j+ 1

2
< u0 > j+ 1

2 ,R

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.6)
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Then we take

FE
j+ 1

2
=

⎛
⎜⎜⎝

ρ̄1Ȳ1v̄
ρ̄2Ȳ2v̄

ρ̄v̄2 + P̄
v̄(Ē + P̄)

⎞
⎟⎟⎠

j+ 1
2

, (3.7)

and Ē is determined by EOS.

3.2 DGMethod for Volume Fraction Equations

Following the procedure of Abgrall [1] to avoid the oscillations of the pressure and velocity,
we consider the interface only problem, and assume the velocity v and the pressure P are
constants, i.e. v = v0, P = P0. Thus, < u0 >L + < u0 >R= 1 and < u1 >L + <

u1 >R= v0 in the NOK flux. Firstly, we introduce

Z̃ j+ 1
2

= Z−
j+ 1

2
< u1 > j+ 1

2 ,L +Z+
j+ 1

2
< u1 > j+ 1

2 ,R,

al =
∫
I j

(ϕl(x))
2dx, l = 1, . . . , L

for notation. Then from the current spatial discretization, the semi-discretized scheme of the
continuity equation can be written in the form as following:

d(ρ1Y1)
(l)
j

dt
= − 1

al
[η( ˜(ρ1Y1) j+ 1

2
ϕl(x

−
j+ 1

2
) − ˜(ρ1Y1) j− 1

2
ϕl(x

+
j− 1

2
))+

(1 − η)v0((ρ1Y1) j+ 1
2
ϕl(x

−
j+ 1

2
) − (ρ1Y1) j− 1

2
ϕl(x

+
j− 1

2
))−

v0

∫
I j

(ρ1Y1)(ϕl(x))xdx], l = 1, . . . , L. (3.8)

d(ρ2Y2)
(l)
j

dt
= − 1

al
[η( ˜(ρ2Y2) j+ 1

2
ϕl(x

−
j+ 1

2
) − ˜(ρ2Y2) j− 1

2
ϕl(x

+
j− 1

2
))+

(1 − η)v0((ρ2Y2) j+ 1
2
ϕl(x

−
j+ 1

2
) − (ρ2Y2) j− 1

2
ϕl(x

+
j− 1

2
))−

v0

∫
I j

(ρ2Y2)(ϕl(x))xdx], l = 1, . . . , L. (3.9)

Since ρ = ρ1Y1 + ρ2Y2, we can get

dρ
(l)
j

dt
= − 1

al
[η(ρ̃ j+ 1

2
ϕl(x

−
j+ 1

2
) − ρ̃ j− 1

2
ϕl(x

+
j− 1

2
)) + (1 − η)v0(ρ̄ j+ 1

2
ϕl(x

−
j+ 1

2
)−

ρ̄ j− 1
2
ϕl(x

+
j− 1

2
)) − v0

∫
I j

ρ(ϕl(x))xdx], l = 1, . . . , L. (3.10)

Similarly, the discretization for the momentum equation can be written as

d(ρv)
(l)
j

dt
= − 1

al
[ηv0(ρ̃ j+ 1

2
ϕl(x

−
j+ 1

2
) − ρ̃ j− 1

2
ϕl(x

+
j− 1

2
)) + (1 − η)v20(ρ̄ j+ 1

2
ϕl(x

−
j+ 1

2
)−

ρ̄ j− 1
2
ϕl(x

+
j− 1

2
)) − v20

∫
I j

ρ(ϕl(x))xdx], l = 1, . . . , L. (3.11)
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Based on the Eqs. (3.10) and (3.11), we can derive
dv

(l)
j

dt = 0. The discretization for energy
is

dE (l)
j

dt
= − 1

al
[η(Ẽ j+ 1

2
ϕl(x

−
j+ 1

2
) − Ẽ j− 1

2
ϕl(x

+
j− 1

2
)) + (1 − η)v0(Ē j+ 1

2
ϕl(x

−
j+ 1

2
)−

Ē j− 1
2
ϕl(x

+
j− 1

2
)) − v0

∫
I j
E(ϕl(x))xdx], l = 1, . . . , L. (3.12)

Inserting the equation of state to (3.12), we can observe that the pressure keeps constant at
the next time if the following condition is satisfied,

dκ
(l)
j

dt
= − 1

al
[η(κ̃ j+ 1

2
ϕl(x

−
j+ 1

2
) − κ̃ j− 1

2
ϕl(x

+
j− 1

2
)) + (1 − η)v0(κ̄ j+ 1

2
ϕl(x

−
j+ 1

2
)−

κ̄ j− 1
2
ϕl(x

+
j− 1

2
)) − v0

∫
I j

κ(ϕl(x))xdx], l = 1, . . . , L, (3.13)

dχ
(l)
j

dt
= − 1

al
[η(χ̃ j+ 1

2
ϕl(x

−
j+ 1

2
) − χ̃ j− 1

2
ϕl(x

+
j− 1

2
)) + (1 − η)v0(χ̄ j+ 1

2
ϕl(x

−
j+ 1

2
)−

χ̄ j− 1
2
ϕl(x

+
j− 1

2
)) − v0

∫
I j

χ(ϕl(x))xdx], l = 1, . . . , L, (3.14)

where κ = 1
γ−1 and χ = γπ

γ−1 . Following the work in [5,25,45], if the condition is replaced
by

dY (l)
j

dt
= − 1

al
[η(Ỹ j+ 1

2
ϕl(x

−
j+ 1

2
) − Ỹ j− 1

2
ϕl(x

+
j− 1

2
)) + (1 − η)v0(Ȳ j+ 1

2
ϕl(x

−
j+ 1

2
)−

Ȳ j− 1
2
ϕl(x

+
j− 1

2
)) − v0

∫
I j
Y (ϕl(x))xdx], l = 1, . . . , L, (3.15)

the conditions (3.13)–(3.14) will be satisfied. It is easy to observe that the conditions (3.15)
can be viewed as the discretization of the equation

Yt + (vY )x = 0.

However, the equation is different from the advection equation in (2.1). If discretizing the
species equation as (3.15), we will get the wrong solutions. Noting that the species equation
can be rewritten as

Yt + vYx = Yt + (vY )x − Yvx = 0,

and discretized as follows,

dY (l)
j

dt
= − 1

al
[η(Ỹ j+ 1

2
ϕl(x

−
j+ 1

2
) − Ỹ j− 1

2
ϕl(x

+
j− 1

2
)) + (1 − η)v0(Ȳ j+ 1

2
ϕl(x

−
j+ 1

2
)−

Ȳ j− 1
2
ϕl(x

+
j− 1

2
)) − v0

∫
I j
Y (ϕl(x))xdx − Y (x j )(v̂ j+ 1

2
ϕl(x

−
j+ 1

2
)−

v̂ j− 1
2
ϕl(x

+
j− 1

2
) −

∫
I j

v(ϕl(x))xdx)], l = 1, . . . , L, (3.16)

where v̂ j+ 1
2

=< u1 > j+ 1
2 ,L + < u1 > j+ 1

2 ,R . Then (3.16) is degenerated to (3.15) near the
contact discontinuities. Thus, the velocity and the pressure are oscillation-free.
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Finally the semi-discrete schemes (3.4) and (3.16) are discretized in time. Here, we use
an explicit, the third order TVD Runge-Kutta scheme [43]. Casting (3.4) and (3.16) in the
form

∂uh
∂t

= Lh(uh, t),

the scheme reads as

u∗
h = unh + 
tn Lh(u

n
h, tn),

u∗∗
h = 3

4
unh + 1

4
(u∗

h + 
tn Lh(u
∗
h, tn + 
tn)),

un+1
h = 1

3
unh + 2

3
(u∗∗

h + 
tn Lh(u
∗∗
h , tn + 1

2

tn)). (3.17)

3.3 The Limiting Procedure

In this subsection, two kinds of limiters are described briefly. One is the limiter to keep
oscillation-free at discontinuities and the other one is the maximum-pricinple-satisfying lim-
iter for the volume fraction, since it should satisfy Y ∈ [0, 1].

3.3.1 The Limiter to Control Oscillations

As is well known, nonlinear limiters must be applied to control the spurious oscillations in
the numerical solution for strong shocks, which has two steps following the work of Qiu and
Shu [38].

Step 1. We identify the “troubled cells” using the minmod-type TVB limiter as in [29,37,
38]. All the primitive variables are taken as the indicator variables.

Step 2. We add the nonlinear limiters in the troubled cells. In this paper, the new type
of multi-resolution WENO limiters developed in [56,57] is adopted. In order to keep the
pressure non-oscillatory, we limit the primitive variables component-wisely here.

Next, we describe the method to detect “troubled cells” and the new multi-resolution
WENO limiter briefly.

For simplicity, we assume u(x) ∈ V k
h is the primitive variable such as ρ1, ρ2, v, P, Y on

I j . Denote

u−
j+ 1

2
= u(1)

j + ũ j , u+
j− 1

2
= u(1)

j − ˜̃u j , ū j = 1


x

∫
I j
udx .

From (3.3) we can see that

ũ j =
L∑

l=2

u(l)
j (t)ϕl(x j+ 1

2
), ˜̃u j = −

L∑
l=2

u(l)
j (t)ϕl(x j− 1

2
).

These values are modified by the standard minmod limiter

ũmod
j = m̃(ũ j ,
+ū j ,
−ū j ), ˜̃umod

j = m̃( ˜̃u j ,
+ū j ,
−ū j ),

where 
+ū j = ū j+1 − ū j , 
−ū j = ū j − ū j−1, and m̃ is defined as

m̃(a1, a2, a3) =
{
a1, if |a1| ≤ M
x2,
m(a1, a2, a3), otherwise,

(3.18)

123



Journal of Scientific Computing (2021) 87 :96 Page 11 of 32 96

m(a1, a2, a3) =
{
sign(a1)min(|a1|, |a2|, |a3|), if sign(a1) = sign(a2) = sign(a3),
0, otherwise,

(3.19)

and M > 0 is a constant. The choice of M depends on the solution of the problem; see, e.g.,
[10] for detailed discussion. We use M = 1 in our computation. Finally, I j is marked as a
troubled cell for further reconstructions if one of the minmod functions does not return the
first argument.

In order to keep the velocity and pressure non-oscillatory, we limit the primitive vari-
ables component-wisely here. Then the limited primitive variables are used to compute the
numerical fluxes and evolve the equation to obtain the new solutions at the next time in the
conservative form. Assume I j is a troubled cell. The procedure of the limiting for the scalar
case [56] is given in the following.

Step 1. Define a series of polynomials of different degrees on the troubled cell I j .

Step 1.1. For a second-order spatial approximation, a zeroth degree polynomial q1(x) and a
linear polynomial q2(x) are constructed, which satisfy∫

I j
q1(x)ϕ1(x)dx =

∫
I j
u(x)ϕ1(x)dx,

and ∫
I j
q2(x)ϕl(x)dx =

∫
I j
u(x)ϕl(x)dx, l = 1, 2.

Step 1.2. For a third-order spatial approximation, a quadratic polynomial q3(x) is constructed
which satisfies ∫

I j
q3(x)ϕl(x)dx =

∫
I j
u(x)ϕl(x)dx, l = 1, 2, 3.

Step 2. Get equivalent expressions for these constructed polynomials of different degrees.
Here, γl,l2 , l = l2 − 1, l2; l2 = 1, 2 are the linear weights. There is no requirement on
the values of these linear weights for accuracy besides γl2−1,l2 + γl2,l2 = 1, l2 = 1, 2. The
choice of these linear weights is solely based on the balance between accuracy and ability to
achieve essentially nonoscillation property. In this paper, we set the linear weights as follows:
γ0,1 = 0.05, γ1,1 = 0.95 for the second-order approximation; γ1,2 = 0.05, γ2,2 = 0.95 for
the third-order approximation.

Step 2.1. For the second-order approximation, we obtain a polynomial p1,1(x) by

p1,1(x) = 1

γ1,1
q2(x) − γ0,1

γ1,1
p0,1(x),

where p0,1(x) = q1(x).

Step 2.2. For the third-order approximation, we define p1,2(x) = ω1,1 p1,1(x)+ω0,1 p0,1(x),
and obtain a polynomial p2,2(x) through

p2,2(x) = 1

γ2,2
q3(x) − γ1,2

γ2,2
p1,2(x).

In these expressions, ωl,l2 for l = l2 − 1, l2; l2 = 1, . . . , k are the linear weights and
nonlinear weights, respectively.
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Step 3. Compute the smoothness indicators βl,l2 by

βl,l2 =
l∑

s=1

∫
I j


x2s−1(
ds

dxs
pl,l2(x))

2dx, l = l2 − 1, l2; l2 = 1, 2. (3.20)

However, β0,1 can not be computed by (3.20), which is defined below. We first define the
linear polynomial q j−1(x) on I j−1 by∫

I j−1

q j−1(x)ϕl(x)dx =
∫
I j−1

u(x)ϕl(x)dx, l = 1, 2.

and similarly, the linear polynomial q j+1(x) on I j+1 by∫
I j+1

q j+1(x)ϕl(x)dx =
∫
I j+1

u(x)ϕl(x)dx, l = 1, 2.

Then, the smoothness indicators are computed by

ζ j−1 =
∫
I j


x(
d

dx
q j−1(x))

2dx, ζ j+1 =
∫
I j


x(
d

dx
q j+1(x))

2dx .

Thus, β0,1 is defined as β0,1 = min(ζ j−1, ζ j+1).

Step 4. Compute the nonlinear weights

ωl1,l2 = ω̄l1,l2
l2∑
s=1

ω̄s,l2

, ω̄l1,l2 = γl1,l2(1 + τl2

υ + βl1,l2
), l1 = l2 − 1, l2; l2 = 1, 2,

where τl2 = (βl2,l2 − βl2−1,l2)
2, l2 = 1, 2, and υ is set to be 10−10 in all the computations.

Step 5. Finally the new constructed polynomial unew(x) on the cell I j is given by

unew(x) =
l2∑

l=l2−1

ωl,l2 pl,l2(x), l2 = 1, 2,

for the second-order, third-order, respectively.

3.3.2 The Maximum-Pricinple-Satisfying Limiter

After limiting described above, the volume fraction Y may still have a non-valid value, such
as Y < 0 or Y > 1 in some cells. Therefore, a genuinely high order accurate maximum-
principle-satisfying scheme [53,54] is employed in this paper. The procedure is described
briefly in the following.

Assume the volume fraction Y (x) is the polynomial defined on I j and Ȳ is the cell average
on I j . Then we modify Y (x) such that Y (x) ∈ [ε, 1 − ε] for all x ∈ S where S is the set of
the Legendre Gauss-Lobatto quadrature points for I j . For all j , assume Ȳ ∈ [ε, 1 − ε], we
use the modified polynomial Ỹ (x) instead of Y (x), i.e.,

Ỹ (x) = θ(Y (x) − Ȳ ) + Ȳ , θ = min
{∣∣∣1 − ε − Ȳ

Ymax − Ȳ

∣∣∣, ∣∣∣ ε − Ȳ

Ymin − Ȳ

∣∣∣, 1}, (3.21)
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Table 2 Example 1: Solution error with periodic boundary conditions and T = 1

k N 10 20 40 80 160 320

1 L1 1.965e−2 5.453e−3 1.184e−3 2.923e−4 7.375e−5 1.852e−5

Order 1.849 2.203 2.018 1.987 1.994

L2 2.682e−2 6.777e−3 1.424e−3 3.247e−4 8.196e−5 2.059e−5

Order 1.985 2.251 2.133 1.986 1.993

L∞ 5.202e−2 1.355e−2 3.152e−3 4.859e−4 1.182e−4 2.975e−5

Order 1.941 2.104 2.700 2.039 1.990

2 L1 1.471e−3 1.949e−4 2.365e−5 3.000e−6 3.599e−7 4.477e−8

Order 2.916 3.043 2.979 3.059 3.007

L2 1.750e−3 2.117e−4 2.595e−5 3.268e−6 3.987e−7 4.969e−8

Order 3.047 3.028 2.989 3.035 3.004

L∞ 2.944e−3 2.843e−4 3.590e−5 4.858e−6 5.620e−7 7.023e−8

Order 3.372 2.985 2.886 3.112 3.000

Fig. 1 Interface only problem. N = 100. Solid line: the exact solution; square symbols and solid line: P1

elements; delta symbols and solid line: P2 elements
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Fig. 2 N = 5000. Solid line: the exact solution; square symbols and solid line: P1 elements; delta symbols
and solid line: P2 elements

where Ymax = max
x∈S Y (x), Ymin = min

x∈S Y (x). It is clear that the volume fraction Ỹ (x) should

be in [ε, 1 − ε] after this limiting. The parameter ε is set to be 10−8 in this work.
For two-component flows, it is easy to see that the volume fraction of the fluid 2 also stays

in [ε, 1 − ε] due to Y2 = 1 − Y1 if the volume fraction Y1 = Y (x) of the fluid 1 is limiting
using the method described above. However, for more than two fluids, it is a little different.
We take three-component flows for example. Assume Y1(x), Y2(x) and Y3(x) are the volume
fraction of the fluid 1, 2 and 3, respectively. The limiting procedure is given as follows.

Step 1. Let Y12(x) = Y1(x) + Y2(x) and use the new volume fraction Y12(x) to define the
parameter θ1

θ1 = min
{∣∣∣ 1 − ε − Ȳ12
Y12,max − Ȳ12

∣∣∣, ∣∣∣ ε − Ȳ12
Y12,min − Ȳ12

∣∣∣, 1}.

Step 2. Similarly, define the parameters θi

θi = min
{∣∣∣ 1 − ε − Ȳi−1

Yi−1,max − Ȳi−1

∣∣∣, ∣∣∣ ε − Ȳi−1

Yi−1,min − Ȳi−1

∣∣∣, 1}, i = 2, 3.
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Fig. 3 N = 200. Solid line: the reference solution; square symbols and solid line: P1 elements; delta symbols
and solid line: P2 elements

Step 3. Finally, use the modified polynomials Ỹ1(x) and Ỹ2(x) instead of Y1(x) and Y2(x),
i.e.

Ỹi (x) = θ(Yi (x) − Ȳi ) + Ȳi , θ = min
{
θ1, θ2, θ3, 1

}
, i = 1, 2. (3.22)

From the procedure described above, we need to compute a common coefficient θ , then
θ is applied to modify the volume fraction polynomials. Moreover, the procedure can be
extended to more than three fluids easily.
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Fig. 4 N = 200. Solid line: the reference solution; square symbols and solid line: P1 elements; delta symbols
and solid line: P2 elements

4 Numerical Examples

In this section we present numerical results obtained with the quasi-conservative DGmethod
described in the previous sections for a selection of one- and two-dimensional examples.
Recall that the method has been described in one dimension. Its implementation in two
dimensions is similar. The CFL number in time step selection is set to be 0.3 for P1 elements,
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Table 3 Example 5: Solution error with periodic boundary conditions and T = 1

k N × M 10 × 10 20 × 20 40 × 40 80 × 80 160 × 160 320 × 320

1 L1 1.013e−1 1.902e−2 4.018e−3 1.047e−3 2.669e−4 6.730e−5

Order 2.413 2.243 1.940 1.972 1.988

L2 1.011e−1 2.014e−2 4.676e−3 1.161e−3 2.949e−4 7.456e−5

Order 2.328 2.107 2.010 1.977 1.984

L∞ 1.350e−1 3.297e−2 7.824e−3 2.016e−3 4.202e−4 1.066e−4

Order 2.034 2.075 1.956 2.262 1.979

2 L1 2.195e−2 1.732e−3 1.977e−4 3.436e−5 3.027e−6 3.738e−7

Order 3.664 3.131 2.525 3.505 3.018

L2 2.520e−2 1.862e−3 2.166e−4 6.261e−5 3.324e−6 4.138e−7

Order 3.758 3.104 1.791 4.235 3.006

L∞ 4.294e−2 2.447e−3 2.984e−4 4.221e−5 4.666e−6 5.832e−7

Order 4.133 3.036 2.822 3.177 3.000

0.15 for P2 elements. For the examples with Mie-Grüneisen EOS, the material-dependent
parameters are given in Table 1.

4.1 One-dimensional Examples

Example 1 To assess the accuracy of the new method, we first consider a one-dimensional
convection of change in volume fraction with the equation of state (2.5), which is also studied
in [15]. And the parameters are set to be γ1 = 1.4, γ2 = 1.9, B1 = 1, B2 = 0. The initial
condition is given by

ρ(x, 0) = 1, v(x, 0) = 1, P(x, 0) = 1, Y (x, 0) = 0.5 + 0.499 sin(πx)

with a periodic boundary condition. The computational domain is on (0,2). We compute the
solution up to T = 1. The error of the volume fraction is listed in Table 2, which shows the
convergence of the second order for P1 elements, the third order for P2 elements for the
quasi-conservative DG method.

Example 2 To verify the non-oscillation property for the pressure and velocity fields, in this
example we consider the interface only problem with the initial condition given by

(ρ, v, P, γ, B) =
{

(1, 1, 1, 1.4, 1), x ≤ 0,

(0.125, 1, 1, 1.9, 0), x > 0.

The stiffened gas EOS (2.5) is used and the numerical results with 100 points at T = 2 are
plotted in Fig. 1.

From the figure, one can observe that the newDGmethod can preserve the oscillation-free
property of the pressure and velocity at the material interface. Moreover, from the close-up
of the density at the interface in Fig. 1, it is clear that the high order method have better
resolution than lower order method.

Example 3 In this example the gas-liquid shock tube test with a strong shock wave is consid-
ered. This is a very challenging test case with a strong shock wave since the shock and the
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Fig. 5 The density contours. From top to bottom: T = 0.2, 0.4, 0.8, 1.2 ms. Left: P1 elements; Right: P2

elements
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Fig. 6 The pressure contours. From top to bottom: T = 0.2, 0.4, 0.8, 1.2 ms. Left: P1 elements; Right: P2

elements
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Fig. 7 Cross-sectional plots of the results in Fig. 5 along x = 0. From top to bottom: T = 0.2, 0.4, 0.8, 1.2
ms. Left: P1 elements; Right: P2 elements
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Fig. 8 Cross-sectional plots of the results in Fig. 7 along x = 0. From top to bottom: T = 0.2, 0.4, 0.8, 1.2
ms. Left: P1 elements; Right: P2 elements
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Fig. 9 N = 400 × 400, density contours. Top: T = 50 μs; Bottom: T = 100 μs. Left: P1 elements; Right:
P2 elements

material interface are close and the pressure ratio is excessively high. Again, the stiffened
gas EOS (2.5) is employed. The initial condition is

(ρ, v, P, γ, B) =
{

(103, 0, 109, 4.4, 6 × 108), x ≤ 0.5,

(50, 0, 105, 1.4, 0), x > 0.5,

and the computational domain is (-0.2,1). The final time is T = 0.0002.
Figure 2 is computedwith 5000 points. From the close-updensity profile near the shock and

material interface, we can observe that the solutions with P2 elements have better resolution
than ones with P1 elements.

Example 4 In order to show that the quasi-conservative DG method works with Mie-
Grüneisen EOS, we test a two-component impact problem, which is also studied in [41,45].
In this problem, to model the material properties of the copper and solid explosive, the same
CC EOSs (2.7) are used, but with a different set of material-dependent quantities for each of
them. At the beginning, the copper has an initial velocity of 1500 m/s, while the explosive is
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Fig. 10 N = 400× 400, pressure contours. Top: T = 50 μs; Bottom: T = 100 μs. Left: P1 elements; Right:
P2 elements

at rest. The computational domain is (0, 1) and the initial condition is given by

(ρ, v, P) =
{

(8900, 1500, 105), x ≤ 0.5,

(1840, 0, 105), x > 0.5.

The boundary conditions are constant states on both the left and right sides of the domain.
The integration is stopped at T = 85 μs.

The exact solution for this problem consists of a rightward-moving shock, a leftward-
moving shock and a material interface in between. The results with 200 uniform points are
demonstrated in Fig. 3, where the solid line is the fine grid solution computed by 
x = 1

2000
with P1 elements. From that one can observe these nonlinear structures are all resolved well.

It is noticed that the results for u and P don’t look flat on the smooth region. This is
because the linear weights are small and can not control the oscillations. If the linear weights
are taken as γl2−1,l2 = 0.1, γl2,l2 = 0.9, l2 = 1, 2, then the small oscillations are eliminated.
The results with these linear weights are shown Fig. 4.
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Fig. 11 Schlieren-type images for the density using N = 200 × 200. Top: T = 50 μs; Bottom: T = 100 μs.
Left: P1 elements; Right: P2 elements

4.2 Two-Dimensional Examples

Example 5 In order to test the accuracy in two-dimensional case, similar to Example 1, we
first consider a two-dimensional convection of change in volume fraction with the equation of
state (2.5) and the parameters are γ1 = 1.4, γ2 = 1.9, B1 = 1, B2 = 0. The initial condition
is given by

ρ(x, y, 0) = 1, μ(x, y, 0) = 1, ν(x, y, 0) = 1, P(x, 0) = 1,

Y (x, y, 0) = 0.5 + 0.499 sin(π(x + y))

with a periodic boundary condition, where μ and ν are the velocities in the x-direction and
y-direction, respectively. The computational domain is taken as (x, y) ∈ (0, 2) × (0, 2). We
compute the solution up to T = 1.

The error of the volume fraction is listed in Table 3, which shows the convergence of the
second order for P1 elements, the third order for P2 elements for the quasi-conservative DG
method in two dimensions.
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Fig. 12 Schlieren-type images for the pressure using N = 200× 200. Top: T = 50 μs; Bottom: T = 100 μs.
Left: P1 elements; Right: P2 elements

Example 6 To show the performance of our method with high pressure ratio in two dimen-
sions, we consider the simulation of a model underwater explosion problem [20,47]. In this
test, the computation domain is taken as (x, y) ∈ (−2, 2)×(−1.5, 1). Initially, the horizontal
air-water interface is located at the y = 0 and the center of a circular gas bubble with the
radius 0.12 in the water is located at (0,−0.3). Above the air-water interface, the fluid is a
perfect gas at the standard atmospheric condition modeled by the ideal gas EOS (2.4) and
below the air-water interface in region outside the gas bubble the fluid is water, which is
modeled by the stiffened gas EOS (2.5). Thus the initial condition is

(ρ, μ, ν, P, γ, B) =

⎧⎪⎨
⎪⎩

(1.225, 0, 0, 101325, 1.4, 0), y > 0,

(1250, 0, 0, 109, 1.4, 0), x2 + (y + 0.3)2 ≤ 0.122,

(1000, 0, 0, 101325, 4.4, 6 × 108), else.

And the reflecting boundary conditions are employed on the bottom of the domain, while
non-reflecting boundary conditions are used on the remaining sides [20].
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Fig. 13 The cross-sectional plots of the results shown in Fig. 11 along y = 0.4. Top: T = 50 μs; Bottom:
T = 100 μs. Left: P1 elements; Right: P2 elements

From the initial condition, it is obvious that both the gas and water are in a stationary
position at the beginning, but due to the pressure difference between the fluids, breaking
of the bubble results in a circularly outward-going shock wave in water, an inward-going
rarefaction wave in gas, and an interface lying in between that separates the gas and the
water. Soon after, this shock wave is diffracted through the nearby air-water surface, causing
the subsequent deform of the interface topology from a circle to oval-like shape.

The contours of the density and pressure are plotted in Figs. 5 and Figs. 6 at four different
times T = 0.2, 0.4, 0.8 and 1.2 ms obtained by our method with a uniform 640× 400 mesh.
From the density and pressure plots, one can clearly see that the improvement on the use of
the high order method to the sharpness near the interfaces. The cross-sections of the density
and pressure for the same run along line x = 0 are shown in 7 and 8, which give some
information about the differences between P1 and P2 elements at the selected times.

Example 7 To show ourmethodworks with complexMie-Grüneisen EOS in two dimensions,
we are concerned with interaction of a shock in molybdenum with a block of encapsulated
mid-ocean ridge basalt (MORB) liquid [20,30,45]. The computational domain is set to be
an unit square. A Mach 1.163 rightward-moving shock is located at x = 0.3 and to impact
MORB contained in a rectangle of [0.4, 0.7]×[0, 0.5]. Both materials are modeled by shock
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Fig. 14 The cross-sectional plots of the results shown in Fig. 12 along y = 0.4. Top: T = 50 μs; Bottom:
T = 100 μs. Left: P1 elements; Right: P2 elements

wave EOS (2.8). Reflecting boundary conditions are imposed on bottom and non-reflecting
boundary conditions are used on the other three sides. For this problem, inside the region of
the MORB liquid, we have the state variables

(ρ, μ, ν, P) = (2260, 0, 0, 0),

and outside the MORB, the state variables in the preshock region are given by

(ρ, μ, ν, P) = (9961, 0, 0, 0),

and the state variables in the postshock region are

(ρ, μ, ν, P) = (11042, 543, 0, 3 × 1010).

The contours of the density and pressure at two different selected times T = 50 and
T = 100 μs with a uniform 400 × 400 mesh are illustrated in Figs. 9 and 10. In the density
plot, we can see the incident shock in molybdenum and transmitted shock in MORBwith the
former moving faster than the latter at T = 50 μs. And the transmitted shock has not passed
the MORB block completely at T = 100 μs. In addition, the structure of diffraction of the
shock by MORB is well captured in the pressure graphs. From the displayed figures, one
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is easy to observe that the improved resolution of the numerical solution near the interface
when P2 elements is adopted in the test.

Example 8 Finally, we consider the three-component impact problem in two dimensions [45].
The computation domain is taken as (x, y) ∈ (0, 1)×(0, 1). Initially, a leftward going copper
plate traveling vertically in a shock tube with speed 1500 m/s from right to left in region
x ≥ 0.6, while in region x < 0.6, we have a solid inert explosive on the top and a liquid
water on the bottom separated by the interface at y = 0.5. The solid inert explosive and
liquid water are at rest and all three fluid components are in the usual atmospheric condition
initially throughout the domain. The copper and explosive are modeled by the CC EOS (2.7)
while the water is modeled by JWL EOS (2.6).

The numerical results are shown in Figs. 11, 12, 13 and 14. Clearly, we observe that the
shock speed in explosive is larger than the one in water from the figures since the acoustic
impedance of explosive is greater than the one for the water.

5 Conclusions

We have presented a high order quasi-conservative DG method for compressible multi-
component flows with Mie-Grüneisen equation of state based on the 5-equation model in the
previous sections. In this paper the NOK flux is used to compute the numerical flux, which is
free from constructing Riemann solver. Then, a DG scheme is defined for the volume fraction
equations according to the procedure of the quasi-conservative method, which can keep the
velocity and pressure oscillation-free at the interface. In addition, a maximum-pricinple-
satisfying limiter is employed to ensure that the volume fraction does not go out of the range.
Numerical results in one and two dimensions shown in the paper demonstrate the ability of
the method to capture shocks and material interfaces and be high order in smooth regions. In
the future, we plan to further extend the method to the unstructured mesh. In order to reduce
the numerical diffusion further, we will extend the quasi-Lagrangian moving DG method
[29] to the 5-equation model of multi-component flows.

Appendix

In this paper, the NOK flux is employed. But the Lax-Friedrichs flux can be used for our
method. The idea is the same as previous section described.However, the formulation is a little
different from the present one. In (3.4), the NOK flux is replaced by the local Lax-Friedrichs
(LLF) flux, which has the form of

F̂(a, b) = 1

2
(F(a) + F(b) − α(b − a)),

where α is the numerical viscosity constant taken as the largest eigenvalues in magnitude of

∂

∂u
F(ū j ),

∂

∂u
F(ū j+1),

where ū j and ū j+1 are the cell averages on the cell I j and I j+1, respectively.
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Fig. 15 N = 200. Solid line: the reference solution; square symbols and solid line: LLF flux; delta symbols
and solid line: NOK flux. Top: P1 elements; Bottom: P2 elements

Then the same procedure is implemented as Sect. 3.2. The details are omitted here. The
final discretization for the volume fraction equation is given by

dY (l)
j

dt
= − 1

al
[(v0Y−

j+ 1
2

+ v0Y
+
j+ 1

2
− α(Y+

j+ 1
2

− Y−
j+ 1

2
))ϕl(x

−
j+ 1

2
)−

(v0Y
−
j− 1

2
+ v0Y

+
j− 1

2
− α(Y+

j− 1
2

− Y−
j− 1

2
))ϕl(x

+
j− 1

2
))−

v0

∫
I j
Y (ϕl(x))xdx − Y (x j )(v̂ j+ 1

2
ϕl(x

−
j+ 1

2
)−

v̂ j− 1
2
ϕl(x

+
j− 1

2
) −

∫
I j

v(ϕl(x))xdx)], l = 1, . . . , L,

where v̂ j+ 1
2

= 1
2 (v

−
j+ 1

2
+ v+

j+ 1
2
).

Finally, we compute two examples to show the differences of two numerical fluxes and the
parameter η in the NOK flux is set to be 0.8. The first one is Shu-Osher problem [25], which
contains both shocks and complex smooth region structures. The computational domain is
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Fig. 16 N = 5000. Solid line: the reference solution; square symbols and solid line: LLF flux; delta symbols
and solid line: NOK flux. Top: P1 elements; Bottom: P2 elements

taken as (−5, 5). The initial condition is given by

(ρ, v, P, γ, B) =
{

(3.857143, 2.629369, 31
3 , 1.4, 1), x ≤ −4,

(1 + 0.2 sin(5x), 0, 1, 1.9, 0), x > −4,

The computed density of two numerical fluxes at T = 1.8 is plotted in Fig. 15, where the
solid line is the fine grid solution computed by 
x = 1

2000 with P1 elements.
We recompute the Example 3 using LLF flux. The numerical solution of the density with

two numerical fluxes is shown in Fig. 16. From the figures, we can observe that the solution
with NOK flux is better than the one with LLF flux for P1 elements. The differences between
them are reduced for P2 elements.
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