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Abstract
In this paper, a complete mixed finite element method is developed for a modified
Poisson–Nernst–Planck/Navier–Stokes (PNP/NS) coupling system, where the original Pois-
son equation in PNP system is replaced by a fourth-order elliptic equation to more precisely
account for electrostatic correlations in a simplified form of the Landau–Ginzburg-type con-
tinuum model. A stabilized mixed weak form is defined for each equation of the modified
PNP/NS model in terms of primary variables and their corresponding vector-valued gradi-
ent variables, based on which a stable Stokes-pair mixed finite element is thus able to be
utilized to discretize all solutions to the entire modified PNP/NS model in the framework of
Stokes-type mixed finite element approximation. Semi- and fully discrete mixed finite ele-
ment schemes are developed and are analyzed for the presented modified PNP/NS equations,
and optimal convergence rates in energy norms are obtained for both schemes. Numerical
experiments are carried out to validate all attained theoretical results.

Keywords Modified Poisson–Nernst–Planck/Navier–Stokes (PNP/NS) coupling system ·
Fourth-order elliptic equation · A stabilized mixed finite element · Taylor–Hood mixed
element · Optimal convergence

Mathematics Subject Classification 65M12 · 65M22 · 65M60

1 Introduction

The classical theory of the electric double layer and electrokinetic flow near a charged surface
is over a century old and still remains extremely powerful in a number of diverse fields such
as colloidal science, biophysics, micro- and nanofluidics, and electrochemistry. The classical
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theory of electrokinetics leads to the popular model of Poisson–Nernst–Planck/Navier–
Stokes (PNP/NS) coupling system, which is used to describe the electrohydrodynamic
phenomenon, also known as the electro-fluid-dynamics. PNP/NS equations are adopted
to study the dynamics of electrically charged fluids, the motions of ionized particles or
molecules and their interactions with electric fields and the surrounding fluid. In this model,
the convection-diffusion-reaction equations, also particularly called Nernst–Planck equa-
tions, are used to model the ionic concentrations, while the Poisson equation is adopted to
demonstrate the diffusive behavior of the electrostatic potential, and the fluid flow is generally
modeled by Navier–Stokes equations. So, the coupling between PNP equations and Navier–
Stokes equations is capable of describing electro-chemical and fluid-mechanical transport
throughout the cellular environment. This includes a range of spatial and temporal scales [1].
For extensive applications, we refer to [2–5].

While the usefulness of the classical electrokinetic theory is not in question, there is a
long history of recognizing the limitations and offering new formulations for new applica-
tions [6,7]. In particular, extensions of the classical electrokinetic theory are required for
room-temperature ionic liquids (RTILs). RTILs typically have large organic cations and sim-
ilar organic or smaller inorganic anions and hold promise as solvent-free electrolytes for
supercapacitors, batteries, solar cells, and electroactuators [8–10]. Recently, Bazant, Storey
and Kornyshev (BSK) [11–13] derive a Landau–Ginzburg-type continuum model for RTILs
to account for the nonlocal dielectric permittivity of ionic liquids resulting from ion-ion
correlations, which leads to the following fourth-order modified Poisson equation for a new
definition of the electrostatic potential equation:

ε
(
�2c�

2φ − �φ
) = ρ, (1.1)

with a fourth-order modified electrostatic boundary condition

∇ (�φ) · n = 0, (1.2)

where, φ is the electrostatic potential, ρ is the charge density, �c is an electrostatic correlation
length, and ε is a constant permittivity to describe the polarizability of the ions. The BSK
theory and the fourth-ordermodified Poisson equation (1.1) are first applied to predict double-
layer structure and capacitance (RTIL) by using the ion size as the correlation length scale,
and a high agreement to experimental results is achieved [12].

Although “The BSK theory provides reasonable agreement to simulation and experimen-
tal results for ionic liquids and multivalent electrolytes”, however, Souza and Bazant [13]
point out that “the boundary conditions have not yet been proved or validated systemati-
cally”. Therefore, our goal in this paper is to mathematically and numerically investigate the
rationality of (1.1) and (1.2) while they substitute the original Poisson equation in PNP/NS
coupling system, as well as study the numerical performance of the entire PNP/NS model in
a more comprehensive way, i.e., not only the primary variables of PNP/NS coupling system,
but also their gradient variables which all represent corresponding physical significance, will
be analyzed and approximated in an efficient and accurate fashion. Note that the vector-
valued gradient of primary variables of PNP equations are crucial for obtaining an accurate
electric current field which is remarkable for the validation with experimental data, since the
electric current seems the easiest physical quantity to be measured in the experiment. For
instance, the electric current across the biological membrane channel can be calculated by
the following expression [14]

I =
2∑

i=1

qi

∫

MEM
Di

(
∇Ci + qi

κBT
Ci∇φ

)
· n dx, (1.3)
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where Ci (i = 1, 2) represent the ionic concentrations. Equation (1.3) clearly shows that the
gradients of ionic concentrations and of electrostatic potential are important to produce an
accurate electric current everywhere inside themembrane channel.Moreover, another impor-
tant electrokinetic phenomena existing in ion channels of electrophysiology, the electrical
double layer (Debye layer) [15], is formed near the surface of a charged object (membrane)
due to the exponential decreases of the electrostatic potential, further, of the ionic concentra-
tions, away from the surface, featuring a distance called Debye length [16]. Such exponential
decrease induces a large gradient, so an accurate computation of gradient for the electrostatic
potential and ionic concentrations are crucial to determine the location of Debye layer, which
has a significant influence on the behavior of surfaces of the charged objects in contact with
solutions or solid-state fast ion conductors. Therefore in the PNP system, it is highly nec-
essary to numerically resolve the gradients ∇C1, ∇C2 and ∇φ in an accurate and efficient
fashion.

To achieve the above goal, the mixed finite element method (FEM) shall be the best can-
didate for stably approximating the fourth-order modified PNP/NS coupling system with
the optimal convergence to both primary variables and their gradients, comparing with
conventional Lagrange-type finite element methods which need to use certain numerical
differentiation for computing the gradient and then lead to a loss in accuracy. In this paper we
will employ the Stokes-typemixed FEMbymeans of a stable Stokes-pairmixed element, e.g.,
Taylor–Hood element, to tackle each equation in PNP/NS coupling system. To that end, we
will need to first reformulate the fourth-order modified Poisson equation and two parabolic-
type ionic concentration equations to obtain their H(div)-type mixed formulations in terms
of both primary variables and their corresponding vector-valued gradient variables, then sta-
bilize them by appropriately introducing stabilization terms in order to apply the Stokes-type
mixed FEM to both modified PNP equations and Navier–Stokes equations, simultaneously.
Thus, we avoid to introduce different types of mixed finite elements for Stokes-type and
H(div)-type mixed problem, respectively, which shall be more convenient and more efficient
for us to analyze and implement the mixed finite element approximation for the modified
PNP/NS coupling in one unified finite element space, simultaneously, bearing with the ben-
efit of optimal convergence rates for all primary variables as well as their gradient variables
in respectively proper norms.

Numerical study and analysis for PNP equations [17–19] and PNP/NS coupling sys-
tem [20–23] have been extensively studied, where the standard FEM is most popularly
adopted in recent years. Prohl and Schmuck [19] propose two nonlinear schemes with a
linear FEMwhich preserve electric energy decay and entropy decay properties, respectively.
Later, numerical methods for PNP/NS coupling are investigated in [20]. Sun et al. [24]
develop a fully nonlinear Crank–Nicolson FEM for PNP equations, where a Picard lineariza-
tion is used in the inner iteration, an optimal error estimate in H1 norm and a suboptimal
error estimate in L2 norm are obtained. Then, Gao and He [25] propose a linearized finite
element discretization and establish unconditionally optimal error estimates for all variables
in both L2 and H1 norms. To overcome the convergence order reduction and to accurately
resolve the electric current that is the gradient of the electrostatic potential as well, He and
Sun [26] propose a nonlinear mixed FEM for Poisson equation and still apply the standard
FEM toNernst–Planck equations, which provides optimal error estimates for the electrostatic
potential and ionic concentrations in both H1 and L2 norms, moreover, for electric current in
H(div) norm as well. Later, Gao and Sun [27] develop a linearized mixed finite element dis-
cretization for both Poisson equation and Nernst–Planck equations by using Raviart–Thomas
element. Considering that the Lagrange-type Taylor–Hood mixed finite element is naturally
stable for Stokes equations and easily implementable, it inspires the authors of this paper to
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employ Taylor–Hood element as a unique mixed finite element to discretize both the mixed
Poisson equations and Stokes equations in [28], and obtain optimal convergence rates for
all variables of PNP equations and Stokes equations in their energy norms, respectively.
In this paper, we will consider to apply the stable Stokes-pair mixed finite element to dis-
cretize all solutions to the entire fourth-order modified PNP/NS coupling system, develop
its Stokes-type mixed FEM and analyze optimal convergence behaviors of primary variables
and of all vector-valued gradient variables of modified PNP equations in both semi- and full
discretizations.

This paper is organized as follows. In Sect. 2 we introduce the model of fourth-order
modified PNP/NS coupling system. The semi-discrete scheme of the mixed FEM and its
error analysis are given in Sect. 3. Section 4 contributes to the definition and analysis of the
full discretization. Numerical experiments and validations are illustrated in Sect. 5. Finally,
the paper ends with a conclusion in Sect. 6.

In what follows, we adopt the standard notation for Sobolev spaces Wl,p(	) and their
associated norms and seminorms. For p = 2,Wl,2(	) = Hl(	) and H l(	) = Hl(	)d . The
standard L2 inner product is adopted, as (ψ, ψ̃) = ∫

	
ψψ̃dx, < ψ, ψ̃ >∂	= ∫

∂	
ψψ̃ds.

Some norm notations are given as ‖ · ‖l = ‖·‖Hl (	), ‖ · ‖0 = ‖·‖L2(	), and ‖ · ‖Wl,m (W p,q ) =
‖ · ‖Wl,m (0,T ;W p,q (	)). For the sake of simplicity, we sometimes drop the time dependence in
variables, such as ψ = ψ(t), drop i = 1, 2 for explaining Ci , and use M to denote a generic
constant independent of any discretization parameter (h and �t) throughout the paper.

2 Model Description andWeak Formulations

In this section, we first present the model of fourth-order modified Poisson–Nernst–
Planck/Navier–Stokes coupling system, then reformulate it to a fully mixed form in terms
of primary variables and extra vector-valued gradient variables, finally define its stabilized
weak formulation in the sense that a stable Stokes-pair mixed finite element defined in a
subspace of H1(	) × L2(	) [26,28], instead of a H(div)-type mixed finite element space
belonging to H(div;	) × L2(	) [27], can be adopted to discretize the fully mixed modified
Poisson–Nernst–Planck system.

2.1 The Fourth-Order Modified PNP/NS Coupling System

Let	 ∈ R
d (d = 2, 3) be a boundedLipschitz domain and T > 0.We introduce the following

governing equations to describe the fourth-order modified PNP/NS coupling system in 	 ×
[0, T ] [11–13] :

⎧
⎪⎪⎨

⎪⎪⎩

�2φ − �φ = C1 − C2,

∂tCi − ∇ · (∇Ci + zi∇φCi − uCi ) = 0, i = 1, 2,
∂tu + (u · ∇)u − �u + ∇ p = − (C1 − C2) ∇φ,

∇ · u = 0,

(2.1)

where, ∂t = ∂/∂t , φ is the electrostatic potential, Ci (i = 1, 2) are the mass concentration
of ions carrying charge zi , (such as z1 = 1, z2 = −1), u and p are the fluid velocity and
pressure, respectively. Since in this paper we do not really consider the intrinsic physical
feature of the modified PNP/NS coupling system, but put our full efforts on developing
numerical discretizations and error analyses of the mixed FEM for the presented model in
mathematical and numerical sense, only. So, without loss of generality in this paper, we
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simply treat all involved physical coefficients as the unit constant “1”, which actually does
not really matter in the following error analyses since the value of physical coefficients which
are involved in the presented model are all positive constants. In addition, we impose the
following boundary conditions and initial conditions for (2.1):

⎧
⎨

⎩

φ = f1, ∇(�φ) · n = f2, on ∂	, t ∈ (0, T ],
Ci = gi , u = 0, on ∂	, t ∈ (0, T ],
Ci = C0

i , u = u0, in 	, t = 0,
(2.2)

where f1, f2, g1, g2, C0
1 , C0

2 and u0 are all given functions properly defined on ∂	 and
in 	, respectively.

2.2 Reformulation of MixedWeak Forms

We first reformulate (2.1) in terms of the following three extra vector-valued variables:

q = −∇φ, z = ∇ · q, Ji = ∇Ci − ziqCi − uCi . (2.3)

Here one can see that J1 and J2 are the mass flux of positively and negatively charged
particles, respectively, while q denotes the potential flux. With the above variables, we can
reformulate the original modified PNP/NS system (2.1) to the following three new systems
regarding the fourth-order elliptic equation, Nernst–Planck equations and Navier–Stokes
equations, respectively:

⎧
⎨

⎩

q = −∇φ,

z = ∇ · q,

−�z + z = C1 − C2,{
Ji = ∇Ci − ziqCi − uCi ,

∂tCi − ∇ · Ji = 0,{
∂tu + (u · ∇)u − �u + ∇ p = (C1 − C2) q,

∇ · u = 0,

(2.4)

with boundary conditions

φ = f1, ∇z · n = − f2, Ci = gi , u = 0, on ∂	, t ∈ (0, T ], (2.5)

and initial conditions

Ci = C0
i , u = u0, in 	. (2.6)

Define V := H(div;	) = {v ∈ L2(	),∇ · v ∈ L2(	)}, and ‖v‖2V = ‖v‖20 + ‖∇ · v‖20,
where ‖ · ‖0 is the usual L2(	)-norm for vector-valued variables or L2(	)-norm for scalar-
valued variables. Particularly, for the trial functional spaces of φ, Ci , u and p, we introduce
L2

f1
(	) := {φ ∈ L2(	)|φ = f1 on ∂	}, L2

gi (	) := {Ci ∈ L2(	)|Ci = gi on ∂	} (i =
1, 2), H1

0 (	) := {u ∈ H1(	)|u = 0 on ∂	}, and L2
0(	) := {p ∈ L2(	)| ∫

	
pdx = 0},

respectively.
Then, the mixed weak formulation of (2.4) can be defined as follows: find (φ, q, z) ∈

L2
f1
(	) × V × H1(	), (Ci , Ji ) ∈ L2

gi (	) × V , (u, p) ∈ H1
0 (	) × L2

0(	) such that
⎧
⎪⎪⎨

⎪⎪⎩

(q, q̃) − (φ,∇ · q̃) = − < f1, q̃ · n >∂	, ∀q̃ ∈ V , (2.7a)
(
∇ · q, φ̃

)
=
(
z, φ̃

)
, ∀φ̃ ∈ L2(	), (2.7b)

(∇z,∇ z̃) + (z, z̃) = (C1 − C2, z̃) − < f2, z̃ >∂	, ∀z̃ ∈ H1(	), (2.7c)
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⎧
⎪⎨

⎪⎩

(
Ji , J̃i

)
+
(
Ci , ∇ · J̃i

)
+
(
zi qCi , J̃i

)
+
(
uCi , J̃i

)
=< gi , J̃i · n >∂	, ∀ J̃i ∈ V , (2.8a)

(
∂tCi , C̃i

)
−
(
∇ · Ji , C̃i

)
= 0, ∀C̃i ∈ L2(	), (2.8b)

{
(∂tu, ũ) + β(u, u, ũ) + (∇u,∇ ũ) − (p, ∇ · ũ) = ((C1 − C2)q, ũ), ∀ũ ∈ H1

0 (	),

(∇ · u, p̃) = 0, ∀ p̃ ∈ L2(	),
(2.9)

where we introduce a trilinear form, β(μ, ν, ω) = 1
2 ((μ · ∇)ν,ω) − 1

2 ((μ · ∇)ω, ν), to (2.9) for μ, ν, ω ∈
H1
0 (	), and, if ∇ · μ = 0, we have β(μ, ν, ω) = ((μ · ∇)ν, ω). The following lemma holds for the trilinear

form β(·, ·, ·).
Lemma 2.1 [29–31]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β(μ, ν, ω) = −β(μ, ω, ν), ∀μ, ν, ω ∈ H1
0 (	),

|β(μ, ν, ω)| ≤ C‖∇μ‖0‖∇ν‖0‖∇ω‖0, ∀μ, ν, ω ∈ H1
0 (	),

|β(μ, ν, ω)| ≤ C‖μ‖
1
2
0 ‖∇μ‖

1
2
0 ‖∇ν‖0‖∇ω‖0, ∀μ, ν, ω ∈ H1

0 (	),

|β(μ, ν, ω)| ≤ C‖∇μ‖0‖ν‖2‖ω‖0, ∀ν ∈ H2(	), μ, ω ∈ H1
0 (	).

Moreover, if μ ∈ H1
0 (	) ∩ L∞(	), ν,ω ∈ H1

0 (	) with ∇ · μ = 0, then

|β(μ, ν,ω)| + |β(μ, ω, ν)| ≤ C‖μ‖∞‖ν‖0‖∇ω‖0.
For the well-posedness property of (2.7a)-(2.9), first of all, we know (2.7c) is well-posed by the Lax–

Milgram theorem since its bilinear form az(z, z̃) = (∇z,∇ z̃)+(z, z̃) satisfies the continuity and the coercivity
properties in H1(	). Secondly, based on Brezzi’s theory [32–34], the well-posedness of solutions to the above
three mixed weak formulations, (2.7a)–(2.7b), (2.8a)–(2.8b) and (2.9) are assured in V × L2(	), V × L2(	)

and H1
0 (	)× L2(	), respectively, if the following two compatibility conditions are held for each mixed weak

formulation:

(1) The coercivity property of bilinear forms aq (q, q̃) = (q, q̃) in (2.7a), aJ (Ji , J̃i ) = (Ji , J̃i ) in (2.8a),
and au(u, ũ) = (∇u, ∇ ũ) in (2.9);

(2) The Ladyzenskaja–Babus̆ka–Brezzi (LBB) or inf-sup condition of bilinear forms bq (q̃, φ̃) = (∇ · q̃, φ̃)

in (2.7a)–(2.7b), bJ ( J̃i , C̃i ) = (∇ · J̃i , C̃i ) in (2.8a)–(2.8b), and bu(ũ, p̃) = (∇ · ũ, p̃) in (2.9).

It is well known that the above two compatibility conditions impose very severe limitations in the choice
of a stable mixed finite element for the mixed finite element approximation to the above three mixed weak
formulations, in general. For instance, the Stokes-pair mixed finite elements such as Taylor–Hood element is
stable for (2.9) in H1

0 (	) × L2(	), it is however unstable for (2.7a)–(2.7b) and (2.8a)–(2.8b) in V × L2(	)

since the coercivity properties of aq (q, q̃) and aJ (Ji , J̃i ) are not held in V if both q and Ji are chosen from
a Lagrange-type piecewise polynomial space in H1(	) ⊂ V . Only a locally divergence-free mixed finite
element such as Raviart–Thomas (RT) element [35] can fulfill the coercivity of aq (q, q̃) and aJ (Ji , J̃i ) in
V , but RT element cannot discretize the fluid velocity in H1(	) for the mixed formulation of Navier–Stokes
equations in (2.9). In order to apply the Lagrange-type Taylor–Hood mixed finite element to the above three
mixed weak formulations, (2.7a)–(2.7b), (2.8a)–(2.8b) and (2.9), simultaneously, we need to add additional
stabilization terms to (2.7a)–(2.7b) as well as (2.8a)–(2.8b) to guarantee the coercivity properties of aq (q, q̃)

and aJ (Ji , J̃i ) in V when both q and Ji are discretized by Taylor–Hood mixed element in H1(	) [36,37].

2.3 StabilizedMixedWeak Formulations

To make aq (q, q̃) coercive in V without a divergence-free condition for q, we need to change it by taking
φ̃ = ∇ · q in (2.7b) and then adding to (2.7a), resulting in the following stabilized mixed weak formulation
for the electrostatic potential equation [36]

⎧
⎨

⎩

(q, q̃) + (∇ · q, ∇ · q̃) − (φ, ∇ · q̃) = (z, ∇ · q̃)− < f1, q̃ · n >∂	, ∀q̃ ∈ V ,

(∇ · q, φ̃) = (z, φ̃), ∀φ̃ ∈ L2(	),

(∇z, ∇ z̃) + (z, z̃) = (C1 − C2, z̃)− < f2, z̃ >∂	, ∀z̃ ∈ H1(	),

(2.10)
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where, aq (q, q̃) is redefined as aq (q, q̃) = (q, q̃) + (∇ · q, ∇ · q̃) that is definitely coercive in V .
As to the mixed parabolic form of the concentration equations (2.8a)-(2.8b), we differentiate (2.8a) in time

and take C̃i = ∇ · Ji in (2.8b), leading to
{ (

∂t Ji , J̃i
)

+
(
∂tCi ,∇ · J̃i

)
+
(
zi ∂t (qCi ) , J̃i

)
+
(
∂t (uCi ) , J̃i

)
=< ∂t gi , J̃i · n >∂	, (2.11a)

(∂tCi ,∇ · Ji ) − (∇ · Ji , ∇ · Ji ) = 0. (2.11b)

Subtract (2.11b) from (2.11a), then add to (2.8a), yield a stabilized mixed weak formulation for the concen-
tration equations [37]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∂t Ji , J̃i

)
+
(
Ji , J̃i

)
+
(
∇ · Ji ,∇ · J̃i

)
+
(
Ci ,∇ · J̃i

)
+
(
zi qCi , J̃i

)
+
(
uCi , J̃i

)

+
(
zi ∂t (qCi ) , J̃i

)
+
(
∂t (uCi ) , J̃i

)
=< gi , J̃i · n >∂	 + < ∂t gi , J̃i · n >∂	, ∀ J̃i ∈ V ,

(
∂t Ci , C̃i

)
−
(
∇ · Ji , C̃i

)
= 0, ∀C̃i ∈ L2(	),

(2.12)

where, we can rewrite the bilinear form aJ (Ji , J̃i ) = (Ji , J̃i ) + (∇ · Ji ,∇ · J̃i ) that is certainly coercive in
V as well.

On the other hand, the bilinear form bq (q̃, φ̃) in (2.10), bJ ( J̃i , C̃i ) in (2.12) and bu(ũ, p̃) in (2.9) all
satisfy the inf-sup condition in their respective spaces [33,35,38], so by Brezzi’s theory, the above mixed weak
formulations (2.10), (2.12) and (2.9) are all well-posed in their own spaces.

In addition, we assume the following regularity properties hold for the real solutions φ, u, p and Ci
(i = 1, 2) to (2.1)

φ ∈
(
H1 ∩ L∞) (0, T ; Hk+3(	) ∩ Wk+2,∞(	)

)
∩ H2

(
0, T ; H1(	)

)
, (2.13)

Ci ∈
(
H1 ∩ L∞) (0, T ; Hk+3(	) ∩ L∞(	)

)
∩ H2

(
0, T ; H1(	)

)
, i = 1, 2, (2.14)

⎧
⎨

⎩

u ∈
(
H1 ∩ L∞) (0, T ; Hk+2(	) ∩ H1

0 (	) ∩ Wk+2,∞(	)
)

∩ H2
(
0, T ; L2(	)

)
,

p ∈ L2
(
0, T ; Hk+1(	) ∩ L20(	) ∩ Wk+1,∞(	)

)
.

(2.15)

3 Semi-discrete Mixed Finite Element Approximation

Let Th be a shape-regular simplicial triangulation of 	 on which we introduce the following finite element
spaces for k ≥ 1:

Vh :=
{
v ∈ H1(	) ⊂ V : v|K ∈

[
Pk+1(K )

]d
, ∀K ∈ Th

}
,

Wh :=
{
w ∈ L2(	) : w|K ∈ Pk (K ), ∀K ∈ Th

}
,

Wh, f1 :=
{
w ∈ L2(	) : w|∂	 = f1, w|K ∈ Pk (K ), ∀K ∈ Th

}
,

Wh,gi :=
{
w ∈ L2(	) : w|∂	 = gi , w|K ∈ Pk (K ), ∀K ∈ Th

}
(i = 1, 2), (3.1)

Zh :=
{
z ∈ H1(	) : z|K ∈ Pk (K ), ∀K ∈ Th

}
,

Uh,0 :=
{
u ∈ H1

0 (	) : u|K ∈
[
Pk+1(K )

]d
, ∀K ∈ Th

}
,

where the paris, Vh × Wh, f1 , Vh × Wh,gi and Uh,0 × Wh , are chosen as Taylor-Hood (Pk+1Pk ) mixed
finite element spaces, whereas Zh is a k-th order standard finite element. In what follows, we will develop
and analyze a fully mixed finite element discretization for (2.10), (2.12) and (2.9) in the above finite element
spaces.
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3.1 Semi-discrete Mixed Finite Element Discretization

According to weak forms (2.10), (2.12) and (2.9), the semi-discrete mixed finite element approximation to the
fourth-order modified PNP/NS model (2.1) is then defined as follows: find (φh , qh , zh) ∈ Wh, f1 × Vh × Zh ,
(Ci,h , Ji,h) ∈ Wh,gi × Vh , (uh , ph) ∈ Uh,0 × Wh such that
⎧
⎪⎨

⎪⎩

(qh , q̃) + (∇ · qh ,∇ · q̃) − (φh ,∇ · q̃) = (zh , ∇ · q̃)− < f1, q̃ · n >∂	, ∀q̃ ∈ Vh ,(
∇ · qh , φ̃

)
=
(
zh , φ̃

)
, ∀φ̃ ∈ Wh ,

(∇zh , ∇ z̃) + (zh , z̃) = (
C1,h − C2,h , z̃

)− < f2, z̃ >∂	, ∀z̃ ∈ Zh ,

(3.2)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∂t Ji,h , J̃i

)
+
(
Ji,h , J̃i

)
+
(
∇ · Ji,h , ∇ · J̃i

)
+
(
Ci,h ,∇ · J̃i

)
+
(
zi qhCi,h , J̃i

)
+
(
uhCi,h , J̃i

)

+
(
zi ∂t

(
qhCi,h

)
, J̃i

)
+
(
∂t
(
uhCi,h

)
, J̃i

)
=< gi , J̃i · n >∂	 + < ∂t gi , J̃i · n >∂	, ∀ J̃i ∈ Vh ,

(
∂tCi,h , C̃i

)
−
(
∇ · Ji,h , C̃i

)
= 0, ∀C̃i ∈ Wh ,

(3.3)
{

(∂tuh , ũ) + β (uh , uh , ũ) + (∇uh , ∇ ũ) − (ph , ∇ · ũ) = ((
C1,h − C2,h

)
qh , ũ

)
, ∀ũ ∈ Uh,0,

(∇ · uh , p̃) = 0, ∀ p̃ ∈ Wh .
(3.4)

3.2 Semi-discrete Error Analysis

It is always necessary to decompose the finite element approximation error of the time-dependent and/or
nonlinear PDE problems to two parts by introducing a linear and steady state H1-projection of the solution to
the original PDE problem, and, such H1-projection shall satisfy the Galerkin orthogonality property. Hence,
we introduce the H1-projection of (φ, q, z) that is defined in (2.10), (
hφ, 
hq, 
h z) ∈ Wh × Vh × Zh ,
such that the following system

⎧
⎪⎨

⎪⎩

(q − 
hq, q̃) + (∇ · (q − 
hq), ∇ · q̃) − (φ − 
hφ, ∇ · q̃) = 0, ∀q̃ ∈ Vh ,(
∇ · (q − 
hq), φ̃

)
= 0, ∀φ̃ ∈ Wh ,

(∇ (z − 
h z) , ∇ z̃) + (z − 
h z, z̃) = 0, ∀z̃ ∈ Zh .

(3.5)

Obviously, (3.5) satisfies all compatibility conditions (continuity, coercivity and inf-sup conditions) of aq (·, ·),
bq (·, ·) and az(·, ·), and is thus well-posed according to Brezzi’s theory. Then we have the following Lemma
[36,38,39].

Lemma 3.1 Let (φ, q, z) be the solution to (2.10), and (
hφ, 
hq, 
h z) be the solution to (3.5), then for
any t ∈ [0, T ], the following error estimates hold

‖q − 
hq‖V + ‖φ − 
hφ‖0 ≤ Mhk+1 (‖q‖k+2 + ‖φ‖k+1
) ≤ Mhk+1‖φ‖k+3, (3.6)

‖z − 
h z‖0 + h‖z − 
h z‖1 ≤ Mhk+1‖z‖k+1 ≤ Mhk+1‖φ‖k+3, (3.7)

‖∂t (q − 
hq) ‖V + ‖∂t (φ − 
hφ) ‖0 ≤ Mhk+1‖∂tφ‖k+3, (3.8)

‖q − 
hq‖∞ ≤ Mhk+1‖q‖k+1,∞ ≤ Mhk+1‖φ‖k+2,∞, (3.9)

‖∂t (q − 
hq) ‖∞ ≤ Mhk+1‖∂t q‖k+1,∞ ≤ Mhk+1‖∂tφ‖k+2,∞. (3.10)

Remark 3.1 The same L∞-error estimate as shown in (3.9) is presented in [39] for the mixed FEM using
RT element, which relies on the study of a weighted L2-projection, Rh , in a divergence-free finite element
space. In our case of using Taylor–Hood mixed finite element, to prove the L∞-error estimate (3.9), we only
need to replace the kernel space and the weighted L2-projection which are used in [39] by the following

kernel space
◦
Vh = {vh ∈ Vh : (∇ · vh , qh) = 0, ∀qh ∈ Wh}, and the following weighted L2-projection,

Rh : L1(	) → ◦
Vh such that ∀v ∈ L1(	), Rhv ∈ ◦

Vh , and

(v − Rhv, ṽ) + (∇ · (v − Rhv) , ∇ · ṽ) = 0, ∀ṽ ∈ ◦
Vh ,

to account for the adoption of a stable Stokes-pair mixed finite element. Thereafter, the rest analyses are the
same with [39, Theorem 3.1], then we can still obtain (3.9).
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The following theorem is related with error estimates of φ − φh , q − qh and z − zh in their corresponding
norms.

Theorem 3.1 Let (φh , qh , zh) be the solution to (3.2) and (φ, q, z) be the solution to (2.10), and the regularity
property (2.13) is held. Then for any t ∈ [0, T ], the following error estimates hold

‖q − qh‖L∞(V ) + ‖φ − φh‖L∞(
L2
) ≤ M

⎛

⎝
2∑

i=1

‖Ci − Ci,h‖L∞(
L2
) + hk+1

⎞

⎠ , (3.11)

‖z − zh‖L∞(L2) + h‖z − zh‖L∞(
H1
) ≤ M

⎛

⎝
2∑

i=1

‖Ci − Ci,h‖L∞(
L2
) + hk+1

⎞

⎠ , (3.12)

‖∂t (q − qh)‖L2(V ) + ‖∂t (φ − φh) ‖L2(L2) ≤ M

⎛

⎝
2∑

i=1

‖∂t
(
Ci − Ci,h

) ‖L2(L2) + hk+1

⎞

⎠ .

(3.13)

Proof Subtract (3.2) from (2.10), and apply the H1-projection (3.5), yield

(
hq − qh , q̃) + (∇ · (
hq − qh) , ∇ · q̃) − (
hφ − φh , ∇ · q̃) = (z − zh , ∇ · q̃) , ∀q̃ ∈ Vh , (3.14)
(
∇ · (
hq − qh) , φ̃

)
=
(
z − zh , φ̃

)
, ∀φ̃ ∈ Wh , (3.15)

(∇ (
h z − zh) ,∇ z̃) + (
h z − zh , z̃) = (
(C1 − C2) − (

C1,h − C2,h
)
, z̃
)
, ∀z̃ ∈ Zh . (3.16)

Let z̃ = 
h z − zh ∈ Zh in (3.16), utilize the Cauchy–Schwarz inequality, and Young’s inequality with ε:
pq ≤ ε p2 + 1

4ε q
2, results

‖∇ (
h z − zh) ‖0 + ‖
h z − zh‖0 ≤ M
2∑

i=1

‖Ci − Ci,h‖0. (3.17)

Further combining with (3.7), we have (3.12).
Because the discrete inf-sup condition holds for bq (q̃, φ̃) in Taylor–Hood finite element spaces [34,38],

we attain

‖
hφ − φh‖0 ≤ M sup
q̃∈Vh

(
hφ − φh , ∇ · q̃)

‖q̃‖V

(by (3.14)) ≤ M sup
q̃∈Vh

‖
hq − qh‖V ‖q̃‖V + ‖z − zh‖0‖q̃‖V
‖q̃‖V

≤ M (‖
hq − qh‖V + ‖z − zh‖0) . (3.18)

Let q̃ = 
hq − qh , φ̃ = 
hφ − φh in (3.14) and (3.15), then add them together, leads to

‖
hq − qh‖2V = (z − zh , ∇ · (
hq − qh)) + (z − zh ,
hφ − φh)

≤ ‖z − zh‖0‖∇ · (
hq − qh) ‖0 + ‖z − zh‖0‖
hφ − φh‖0
(by (3.18)) ≤ M

(
‖z − zh‖0‖
hq − qh‖V + ‖z − zh‖20

)

≤ M‖z − zh‖20 + ε‖
hq − qh‖2V . (3.19)

Take a sufficiently small ε, and apply (3.18), yield

‖
hq − qh‖V + ‖
hφ − φh‖0 ≤ M‖z − zh‖0. (3.20)

Combining with (3.6) and (3.12), then we have (3.11).
Differentiating (3.14)–(3.16) with respect to time, we have

(∂t (
hq − qh) , q̃) + (∇ · ∂t (
hq − qh), ∇ · q̃) − (∂t (
hφ − φh) , ∇ · q̃) = (∂t (z − zh), ∇ · q̃) ,

123



80 Page 10 of 33 Journal of Scientific Computing (2021) 87 :80

(
∇ · ∂t

(
(
hq − qh) , φ̃

)
=
(
∂t (z − zh) , φ̃

)
,

(∇∂t (
h z − zh) , ∇ z̃) + (∂t (
h z − zh) , z̃) = (
∂t
(
(C1 − C2) − (

C1,h − C2,h
)
, z̃
)

. (3.21)

Taking q̃ = ∂t (
hq − qh), φ̃ = ∂t (
hφ − φh), z̃ = ∂t (
h z − zh) in (3.21), and following the similar error
estimate process at above, we can also attain (3.13). 
�

We further define the H1-projection (
hu,
h p) ∈ Uh,0 ×Wh of (u, p) that is the solution to (2.9) such
that {

(∇
hu,∇ ũ) − (
h p, ∇ · ũ) = (∇u,∇ ũ) − (p, ∇ · ũ), ∀ũ ∈ Uh,0,
(∇ · 
hu, p̃) = (∇ · u, p̃) , ∀ p̃ ∈ Wh .

(3.22)

By [32, Theorems (12.6.7), (12.6.13)], and [29, Theorems 3.1-3.3 ], we have the following lemma.

Lemma 3.2 Let (uh , ph) be the finite element solution to (3.4). Suppose (
hu, 
h p) ∈ Uh,0 ×Wh is defined
in (3.22), then we have the following error estimates,

‖u − 
hu‖0 + h‖u − 
hu‖1 + h‖p − 
h p‖0 ≤ Mhk+2 (‖u‖k+2 + ‖p‖k+1
)
,

‖∂t (u − 
hu) ‖0 + h‖∂t (u − 
hu) ‖1 ≤ Mhk+2 (‖u‖k+2 + ‖∂tu‖k+2 + ‖p‖k+1
)
,

‖u − 
hu‖∞ + h| ln h| 12 ‖u − 
hu‖1,∞ ≤ Mhk+2| ln h|(‖u‖k+2,∞ + ‖p‖k+1,∞),

‖∂t (u − 
hu) ‖∞ ≤ Mhk+2| ln h| (‖u‖k+2,∞ + ‖∂tu‖k+2,∞ + ‖p‖k+1,∞
)
.

Now we carry out error estimates for u − uh and p − ph , as shown in the following theorem.

Theorem 3.2 Let (uh , ph) be the finite element solution to (3.4) and (u, p) is defined in (2.9), and the regularity
property (2.15) is held. Then the following error estimates hold

‖u − uh‖L∞(
L2
) + ‖u − uh‖L2(H1

)

≤ M

⎡

⎣
2∑

i=1

(
h− d

2 ‖Ci − Ci,h‖2
L2(L2)

+ ‖Ci − Ci,h‖L2(L2)
)

+ hk+1

⎤

⎦ . (3.23)

‖∂t (u − uh) ‖L2(L2) + ‖u − uh‖L∞(
H1
)

≤ M

⎡

⎣
2∑

i=1

(
h− d

2 ‖Ci − Ci,h‖2
L2
(
L2
) + ‖Ci − Ci,h‖L2(L2)

)

+hk+1 + h−1
2∑

i=1

(
h−d‖Ci − Ci,h‖4

L2
(
L2
) + ‖Ci − Ci,h‖2

L2
(
L2
)
)⎤

⎦ . (3.24)

‖p − ph‖L2(L2)

≤ M

⎡

⎣
2∑

i=1

(
h− d

2 ‖Ci − Ci,h‖2
L2
(
L2
) + ‖Ci − Ci,h‖L2(L2)

)
+ hk+1

+h−1
2∑

i=1

(
h−d‖Ci − Ci,h‖4

L2
(
L2
) + ‖Ci − Ci,h‖2

L2
(
L2
)
)
⎤

⎦ . (3.25)

Proof Subtract (3.4) from (2.9), and use (3.22), yield
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∂t (u − uh) , ũ) + au (
hu − uh , ũ) − bu (ũ,
h p − ph)

+ β (u, u, ũ) − β (uh , uh , ũ) =
2∑

i=1

zi
(
Ci q − Ci,hqh , ũ

)
, (3.26)

bu (
hu − uh , p̃) = 0. (3.27)

Let u − uh = (u − 
hu) + (
hu − uh) = η + ξ , and choose ũ = ξ , p̃ = 
h p − ph in (3.26) and (3.27).
Then

(∂t (η + ξ), ξ) + au (ξ, ξ) + β(u, u, ξ) − β (uh , uh , ξ) =
2∑

i=1

zi
(
Ci q − Ci,hqh , ξ

)
, (3.28)

123



Journal of Scientific Computing (2021) 87 :80 Page 11 of 33 80

leading to

1

2
∂t‖ξ‖20 + ‖∇ξ‖20 = − (∂tη, ξ) + β (uh , uh , ξ) − β (
hu,
hu, ξ)

+β (
hu, 
hu, ξ) − β(u, u, ξ) +
2∑

i=1

zi
(
Ci q − Ci,hqh , ξ

)
. (3.29)

We first estimate terms involving β(·, ·, ·) as follows.
β (uh , uh , ξ) − β (
hu,
hu, ξ) = −β (uh , ξ, ξ) − β (ξ, 
hu, ξ) = −β (ξ, 
hu, ξ)

(by Lemma 2.1) ≤ M‖∇
hu‖0‖ξ‖
1
2
0 ‖∇ξ‖

3
2
0

≤ M‖ξ‖20 + ε‖∇ξ‖20, (3.30)

where we employ the definition of β(·, ·, ·), the boundedness of ‖
hu‖1 due to Lemma 3.2, and Young’s
inequality with ε : pq ≤ Mp4 + εq4/3, and

β (
hu,
hu, ξ) − β(u, u, ξ) = β (u − 
hu, u − 
hu, ξ)

−β (u − 
hu, u, ξ) − β(u, u − 
hu, ξ)

(by Lemma 2.1) ≤ M
(
‖∇ (u − 
hu) ‖20 + ‖u − 
hu‖0

)
‖∇ξ‖0

(by Lemma 3.2) ≤ M
(
h4(k+1) + h2(k+2)

)
+ ε‖∇ξ‖20. (3.31)

Next, we estimate the last term on the right hand side of (3.29).

2∑

i=1

zi
(
Ci q − Ci,hqh , ξ

)

=
2∑

i=1

zi
((
Ci − Ci,h

)
q, ξ

)+
2∑

i=1

zi (Ci (q − qh), ξ) −
2∑

i=1

zi
((
Ci − Ci,h

)
(q − qh) , ξ

)

≤ M
2∑

i=1

(‖q‖L∞‖Ci − Ci,h‖0‖ξ‖0 + ‖Ci‖L∞‖q − qh‖0‖ξ‖0

+ (‖q − 
hqh‖L∞ + ‖
hq − qh‖L∞ ) ‖Ci − Ci,h‖0‖ξ‖0
)

≤ M‖ξ‖0
2∑

i=1

(‖Ci − Ci,h‖0 + ‖q − qh‖0

+
(

‖q − 
hq‖L∞ + h− d
2 ‖
hq − qh‖0

)
‖Ci − Ci,h‖0

)

≤ M‖ξ‖0
⎛

⎝
(
1 + hk+1− d

2

) 2∑

i=1

‖Ci − Ci,h‖0 + hk+1 + h− d
2

2∑

i=1

‖Ci − Ci,h‖20

⎞

⎠

≤ M‖ξ‖0
⎛

⎝
2∑

i=1

‖Ci − Ci,h‖0 + hk+1 + h− d
2

2∑

i=1

‖Ci − Ci,h‖20

⎞

⎠ , (3.32)

where we apply (3.9), (3.11) and the inverse inequality: ‖
hq − qh‖L∞ ≤ Mh− d
2 ‖
hq − qh‖0.

Combining the above error estimates together and applying Young’s inequality, we have the following
result for (3.29)

1

2
∂t‖ξ‖20 + ‖∇ξ‖20 ≤ M

⎡

⎢
⎣

⎛

⎝h− d
2

2∑

i=1

‖Ci − Ci,h‖20

⎞

⎠

2
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+
2∑

i=1

‖Ci − Ci,h‖20 + h2(k+1) + ‖ξ‖20

⎤

⎦+ ε‖∇ξ‖20.

Take a sufficiently small ε, integrate both sides with respect to time from 0 to t , then apply Grönwall’s
inequality with a proper choice on the initial condition u0h = 
hu0, leads to

‖ξ‖L∞(L2) + ‖ξ‖L2(H1) ≤ M

(

h− d
2

2∑

i=1

‖Ci − Ci,h‖2L2(L2)
+

2∑

i=1

‖Ci − Ci,h‖L2(L2) + hk+1

)

. (3.33)

Then (3.23) is obtained by combining (3.33) with Lemma 3.2.
On the other hand, choose ũ = ∂t ξ in (3.26), differentiate (3.27) in time and then choose p̃ = 
h p − ph ,

yield

‖∂t ξ‖20 + 1

2
∂t‖∇ξ‖20 = − (∂tη, ∂t ξ) + β (u − uh , u − uh , ∂t ξ)

−β (u, u − uh , ∂t ξ) − β (u − uh , u, ∂t ξ)

+
2∑

i=1

zi
(
Ci q − Ci,hqh , ∂t ξ

)
. (3.34)

By Lemmas 2.1 and 3.2, we have

|β (u − uh , u − uh , ∂t ξ) | ≤ M‖∇ (u − uh) ‖20‖∇∂t ξ‖0 ≤ M‖∇ (u − uh) ‖20 h−1‖∂t ξ‖0
≤ Mh−2‖∇ (u − uh) ‖40 + ε‖∂t ξ‖20,∣∣− β (u, u − uh , ∂t ξ) − β (u − uh , u, ∂t ξ)

∣∣

≤ M‖u‖∞‖∇ (u − uh) ‖0‖∂t ξ‖0 + ‖∇ (u − uh) ‖0‖u‖2‖∂t ξ‖0
≤ M‖∇ (u − uh) ‖20 + ε‖∂t ξ‖20
≤ M

(
h2k+2 + ‖∇ξ‖20

)
+ ε‖∂t ξ‖20

Similar to (3.32), the last term on the right hand side of (3.34) can be estimated as

2∑

i=1

zi
(
Ci q − Ci,hqh , ∂t ξ

) ≤ M‖∂t ξ‖0
(

h− d
2

2∑

i=1

‖Ci − Ci,h‖20 +
2∑

i=1

‖Ci − Ci,h‖0 + hk+1

)

≤ M

(

h− d
2

2∑

i=1

‖Ci − Ci,h‖20 +
2∑

i=1

‖Ci − Ci,h‖0 + hk+1

)2

+ ε‖∂t ξ‖20.
(3.35)

Then, take a sufficiently small ε, (3.34) yields

‖∂t ξ‖0 + ∂t‖∇ξ‖0 ≤ M

⎛

⎝h− d
2

2∑

i=1

‖Ci − Ci,h‖20 +
2∑

i=1

‖Ci − Ci,h‖0 + hk+1 + ‖∇ξ‖0

+h−1‖u − uh‖21
)

.

Integrate both sides in time from 0 to t , and apply Grönwall’s inequality with uh(0) = 
hu0, results

‖∂t ξ‖L2(L2) + ‖∇ξ‖L∞(
L2
) ≤ M

⎛

⎝h− d
2

2∑

i=1

‖Ci − Ci,h‖2
L2
(
L2
) +

2∑

i=1

‖Ci − Ci,h‖L2(L2)

+hk+1 + h−1‖u − uh‖2
L2
(
H1
)
)

. (3.36)

Applying (3.23), we obtain the desired (3.24) with Lemma 3.2.
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To prove (3.25), we need to apply the discrete form of inf-sup condition bu(·, ·), i.e., for any 
h p ∈ Wh ,
we have [38]

‖
h p − ph‖0 ≤ M sup
∀ũ∈Uh,0\{0}

bu (ũ, 
h p − ph)

‖ũ‖1 . (3.37)

Then from (3.26) we have

bu (ũ, 
h p − ph) = (∂t (u − uh), ũ) + au (
hu − uh , ũ) + β (u, u, ũ) − β (uh , uh , ũ)

−
2∑

i=1

zi
(
Ci q − Ci,hqh , ũ

)
.

By (3.37), the continuity of au(·, ·) and the same error analyses for (3.30)–(3.32), we can obtain

‖
h p − ph‖0 ≤ M

⎛

⎝‖∂t ξ‖0 + ‖ξ‖1 + hk+1+
2∑

i=1

‖Ci − Ci,h‖0+h− d
2

2∑

i=1

‖Ci − Ci,h‖20

⎞

⎠ .

Then integrate both sides in time from 0 to t , by (3.36), (3.23), Lemma 3.2 and the triangular inequality, we
obtain (3.25). 
�

Now we analyze error estimates of (3.3) between (Ci , Ji ) ∈ L2(	) × V and (Ci,h , Ji,h) ∈ Wh × Vh . We
first introduce the H1-projection of (Ci , Ji ), (
hCi , 
h Ji ) ∈ Wh × Vh , satisfying

⎧
⎨

⎩

(
Ji − 
h Ji , J̃i

)
+
(
∇ · (Ji − 
h Ji ) , ∇ · J̃i

)
+
(
Ci − 
hCi , ∇ · J̃i

)
= 0, ∀ J̃i ∈Vh ,

−
(
∇ · (Ji − 
h Ji ) , C̃i

)
=0, ∀C̃i ∈Wh .

(3.38)

Clearly, (3.38) satisfies all compatibility conditions (continuity, coercivity and inf-sup conditions) of aJ (·, ·)
and bJ (·, ·) in Wh × Vh , it is thus well-posed according to Brezzi’s theory, and holds the following Lemma
[36,38].

Lemma 3.3 Let (Ci , Ji ) be the solution to (2.12), and (
hCi , 
h Ji ) be the solution to (3.38). Then for any
t ∈ [0, T ], we have the following error estimates

‖Ji − 
h Ji‖V + ‖Ci − 
hCi‖0 ≤ Mhk+1 (‖Ji‖k+2 + ‖Ci‖k+1
)
, (3.39)

‖∂t (Ji − 
h Ji ) ‖V + ‖∂t (Ci − 
hCi ) ‖0 ≤ Mhk+1 (‖∂t Ji‖k+2 + ‖∂tCi‖k+1
)
. (3.40)

The following theorem demonstrates error estimates of (3.3) approximating to (2.12).

Theorem 3.3 Let (Ci , Ji ) be the solution to (2.12) and (Ci,h , Ji,h) be the finite element solution to (3.3), the
regularity assumption (2.14) is held. Then we have the following error estimates

‖Ji − Ji,h‖L∞(
L2
) + ‖Ji − Ji,h‖L2(V ) + ‖Ci − Ci,h‖L∞(

L2
) ≤ Mhk+1, (3.41)

‖∂t
(
Ji − Ji,h

) ‖L2(L2) + ‖Ji − Ji,h‖L∞(V ) + ‖∂t
(
Ci − Ci,h

) ‖L2(L2) ≤ Mhk+1. (3.42)

Proof Subtract (3.3) from (2.12), and use (3.38), yield

(
∂t
(
Ji − Ji,h

)
, J̃i

)
+
(

h Ji − Ji,h , J̃i

)

+
(
∇ · (
h Ji − Ji,h

)
, ∇ · J̃i

)
+
(

hCi − Ci,h , ∇ · J̃i

)

+zi
(
qCi − qhCi,h , J̃i

)
+
(
uCi − uhCi,h , J̃i

)
+ zi

(
∂t
(
qCi − qhCi,h

)
, J̃i

)

+
(
∂t
(
uCi − uhCi,h

)
, J̃i

)
= 0, ∀ J̃i ∈ Vh , (3.43)

(
∂t
(
Ci − Ci,h

)
, C̃i

)
−
(
∇ · (
h Ji − Ji,h

)
, C̃i

)
= 0, ∀C̃i ∈ Wh . (3.44)
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Let Ji − Ji,h = (Ji −
h Ji )+(
h Ji − Ji,h) = ei +θi ,Ci −Ci,h = (Ci −
hCi )+(
hCi −Ci,h) = σi +δi ,
choose J̃i = θi , C̃i = δi in (3.43) and (3.44), and add them together, results

(∂t (ei + θi ) , θi ) + (θi , θi )

+ (∇ · θi ,∇ · θi ) + (∂t (σi + δi ) , δi )

+zi
(
qCi − qhCi,h , θi

)+ (
uCi − uhCi,h , θi

)+ zi
(
∂t (qCi − qhCi,h), θi

)

+ (∂t
(
uCi − uhCi,h

)
, θi
) = 0.

Then,

1

2
∂t‖θi‖20 + ‖θi‖2V + 1

2
∂t‖δi‖20

= − (∂t ei , θi ) − (∂tσi , δi ) − zi
(
qCi − qhCi,h , θi

)− (
uCi − uhCi,h , θi

)

−zi
(
∂t
(
qCi − qhCi,h

)
, θi
)− (

∂t
(
uCi − uhCi,h

)
, θi
) =

6∑

j=1

G j . (3.45)

By Cauchy–Schwarz inequality, Young’s inequality with ε and Lemma (3.3), we have

G1 ≤ M‖∂t ei‖20 + ε‖θi‖20 ≤ Mh2(k+1) + ε‖θi‖20, (3.46)

G2 ≤ M‖∂tσi‖20 + ε‖δi‖20 ≤ Mh2(k+1) + ε‖δi‖20. (3.47)

Utilize the same analysis skills for estimating (3.32), and apply Lemmas 3.1 and 3.2, Theorems 3.1 and 3.2
as well as corresponding inverse inequalities, leads to

G3 = −zi
((
Ci − Ci,h

)
q, θi

)− zi (Ci (q − qh) , θi ) + zi
((
Ci − Ci,h

)
(q − qh) , θi

))

≤ M‖θi‖0
(‖q‖L∞‖Ci − Ci,h‖0 + ‖Ci‖L∞‖q − qh‖0 + ‖q − qh‖L∞‖Ci − Ci,h‖0

)

≤ M‖θi‖0
(
‖Ci − Ci,h‖0 + ‖q − qh‖0 + h− d

2 ‖
hq − qh‖0‖Ci − Ci,h‖0
)

≤ M

⎡

⎢
⎣

2∑

i=1

‖δi‖20 + h2(k+1) +
⎛

⎝h− d
2 ‖δi‖0

2∑

j=1

‖δ j‖0
⎞

⎠

2

+ ‖θi‖20

⎤

⎥
⎦ , (3.48)

G4 = ((
Ci − Ci,h

)
u, θi

)+ (
(Ci (u − uh) , θi ) − ((

Ci − Ci,h
)
(u − uh) , θi

))

≤ M‖θi‖0
(‖u‖L∞‖Ci − Ci,h‖0 + ‖Ci‖L∞‖u − uh‖0 + ‖u − uh‖L∞‖Ci − Ci,h‖0

)

≤ M‖θi‖0
(
‖Ci − Ci,h‖0 + ‖u − uh‖0 + h− d

2 ‖
hu − uh‖0‖Ci − Ci,h‖0
)

≤ M

⎡

⎢
⎣

2∑

i=1

‖δi‖20 +
⎛

⎝h− d
2 ‖δi‖0

2∑

j=1

‖δ j‖0
⎞

⎠

2

+
⎛

⎝h−d‖δi‖0
2∑

j=1

‖δ j‖20
⎞

⎠

2

+ h2(k+1) + ‖θi‖20

⎤

⎥
⎦ ,

(3.49)

G5 = −zi
(
∂t
((
Ci − Ci,h

)
q
)
, θi
)− zi (∂t (Ci (q − qh)) , θi ) + zi

(
∂t
((
Ci − Ci,h

)
(q − qh)

)
, θi
)

≤ M‖θi‖0
(‖∂tq‖L∞‖Ci − Ci,h‖0 + ‖q‖L∞‖∂t

(
Ci − Ci,h

) ‖0
+ ‖∂tCi‖L∞‖q − qh‖0 + ‖Ci‖L∞‖∂t (q − qh)‖0
+ ‖q − qh‖L∞‖∂t

(
Ci − Ci,h

) ‖0 + ‖∂t (q − qh) ‖L∞‖Ci − Ci,h‖0
)

≤ M‖θi‖0
(‖Ci − Ci,h‖0 + ‖∂t

(
Ci − Ci,h

) ‖0 + ‖q − qh‖0 + ‖∂t (q − qh)‖0
+ h− d

2 ‖
hq − qh‖0‖∂t (Ci − Ci,h)‖0 + h− d
2 ‖∂t (
hq − qh)‖0‖Ci − Ci,h‖0

)

≤ M

⎡

⎢
⎣

2∑

i=1

‖δi‖20 + h2(k+1) + ‖θi‖20 +
⎛

⎝h− d
2 ‖θi‖0

2∑

j=1

‖δ j‖0
⎞

⎠

2

+
(
h− d

2 ‖δi‖0‖θi‖0
)2
⎤

⎥
⎦
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+ε

2∑

i=1

‖∂tδi‖20. (3.50)

By conducting the same analysis as for (3.49) and (3.50), we have

G6 = − (∂t
((
Ci − Ci,h

)
u
)
, θi
)− (∂t (Ci (u − uh)) , θi ) + zi

(
∂t
((
Ci − Ci,h

)
(u − uh)

)
, θi
)

≤ M‖θi‖0
(‖∂tu‖L∞‖Ci − Ci,h‖0 + ‖u‖L∞‖∂t

(
Ci − Ci,h

) ‖0
+‖∂tCi‖L∞‖u − uh‖0 + ‖Ci‖L∞‖∂t (u − uh) ‖0
+‖u − uh‖L∞‖∂t

(
Ci − Ci,h

) ‖0 + ‖∂t (u − uh) ‖L∞‖Ci − Ci,h‖0
)

≤ M‖θi‖0
(‖Ci − Ci,h‖0 + ‖∂t

(
Ci − Ci,h

) ‖0 + ‖u − uh‖0 + ‖∂t (u − uh) ‖0
+ h− d

2 ‖
hu − uh‖0‖∂t
(
Ci − Ci,h

) ‖0 + h− d
2 ‖∂t (
hu − uh) ‖0‖Ci − Ci,h‖0

)

≤ M

⎡

⎢
⎣

2∑

i=1

‖δi‖20 + ‖θ‖20 + h2(k+1) +
⎛

⎝h− d
2

2∑

j=1

‖δ j‖20
⎞

⎠

2

+
⎛

⎝h−d−1
2∑

j=1

‖δ j‖40
⎞

⎠

2

+
⎛

⎝h−1
2∑

j=1

‖δ j‖20
⎞

⎠

2

+
⎛

⎝h−d‖θi‖0
2∑

j=1

‖δ j‖20
⎞

⎠

2

+
⎛

⎝h− d
2 ‖θi‖0

2∑

j=1

‖δ j‖0
⎞

⎠

2

+
⎛

⎝h− 3
2 d−1‖θi‖0

2∑

j=1

‖δ j‖40
⎞

⎠

2

+
⎛

⎝h− d
2 −1‖θi‖0

2∑

j=1

|δ j‖20
⎞

⎠

2
⎤

⎥
⎦+ ε‖∂tδi‖20. (3.51)

Now we conduct a mathematical induction process and propose the following induction hypothesis:

h− d
2 ‖δi (t)‖0 ≤ M, ∀t ∈ [0, T ], i = 1, 2, d = 2, 3. (3.52)

When t = 0, by a properly chose initial value Ci,h(0) = 
hC
0
i , we have δi (0) = 0, thus (3.52) is satisfied.

Assume that (3.52) holds for G3,G4,G5 and G6 for t ∈ [0, T ∗], T ∗ < T , then

G3 + G4 + G5 + G6 ≤ M

⎛

⎝
2∑

i=1

‖δi‖20 + h2(k+1) + ‖θi‖20

⎞

⎠+ ε

2∑

i=1

‖∂t δi‖20. (3.53)

On the other hand, let C̃i = ∂t δi in (3.44), we have

(∂t (σi + δi ) , ∂t δi ) − (∇ · θi , ∂t δi ) = 0, (3.54)

thus

‖∂t δi‖0 ≤ ‖∂tσi‖0 + ‖∇ · θi‖0. (3.55)

Substitute (3.55) into (3.53), then (3.45) can be estimated as

1

2
∂t‖θi‖20 + ‖θi‖2V + 1

2
∂t‖δi‖20 ≤ M

⎛

⎝
2∑

i=1

‖δi‖20 + h2(k+1) + ‖θi‖20

⎞

⎠+ ε

2∑

i=1

‖θi‖2V . (3.56)

Sum over i from 1 to 2, take a sufficiently small ε, integrate both sides of (3.56) in time from 0 to t , then apply
Grönwall’s inequality with Ci,h(0) = 
hC

0
i and Ji,h(0) = 
h J0i (see Remark 3.2), yield

2∑

i=1

(
‖θi‖L∞(L2) + ‖θi‖L2(V ) + ‖δi‖L∞(L2)

)
≤ Mhk+1, (3.57)
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which is true for any t ∈ [0, T ∗]. (3.57) also shows that for k ≥ 1 and d = 2, 3, we always have

h− d
2 ‖δi (t)‖0 ≤ Mhk+1− d

2 ≤ M .

On the other hand, since h− d
2 ‖δi (t)‖0 is a continuous function with respect to t ∈ [0, T ], thus due to the

uniform continuity in time, there exists ε such that for any t ∈ [0, T ∗ + ε], we have h− d
2 ‖δi (t)‖0 ≤ M .

Because [0, T ] is a finite interval, so the induction hypothesis (3.52) holds true for all t ∈ [0, T ]. Therefore,
for any t ∈ [0, T ] we have (3.57).

Combine (3.57) with (3.55), apply Lemma 3.3 and the triangular inequality, (3.41) is then obtained. On
the other hand, choose J̃i = ∂t θi , C̃i = ∂t δi in (3.43) and (3.44), yields

‖∂t θi‖20 + 1

2
∂t‖θi‖20 + 1

2
∂t‖∇ · θi‖20 = − (∂t ei , ∂t θi ) + (∂t (σi + δi ) , ∂t δi ) − ∂t (δi , ∇ · θi )

−zi
(
qCi − qhCi,h , ∂t θi

)− (
uCi − uhCi,h , ∂t θi

)− zi
(
∂t
(
qCi − qhCi,h

)
, ∂t θi

)

− (∂t
(
uCi − uhCi,h

)
, ∂t θi

) =
7∑

j=1

R j . (3.58)

By Cauchy–Schwarz inequality, Young’s inequality with ε, Lemma 3.3 and (3.55), we have

R1 ≤ M‖∂t ei‖20 + ε‖∂t θi‖20 ≤ Mh2(k+1) + ε‖∂t θi‖20, (3.59)

R2 ≤ M
(
‖∂tσi‖20 + ‖∂t δi‖20

)
≤ M

(
h2(k+1) + ‖∇ · θi‖20

)
. (3.60)

Utilize the same analysis skills as conducted in (3.48), (3.49), (3.50) and (3.51) for Terms R4-R7, results

R4 + R5 + R6 + R7 ≤ M

⎛

⎝
2∑

i=1

(
‖δi‖20 + ‖∇ · θi‖20

)
+ h2(k+1)

⎞

⎠+ ε‖∂t θi‖20. (3.61)

Take a sufficiently small ε, and apply (3.57), then (3.58) can be estimated as

‖∂t θi‖20 + 1

2
∂t‖θi‖2V ≤ M(h2(k+1) + ‖∇ · θi‖20) − ∂t (δi ,∇ · θi ). (3.62)

Integrate both sides in time from 0 to t , yields

∫ t

0
‖∂t θi‖20dτ + ‖θi‖2V ≤ M

(
h2(k+1) +

∫ t

0
‖θi‖2V dτ

)
− (δi , ∇ · θi )

≤ M

(
h2(k+1) +

∫ t

0
‖θi‖2V dτ

)
+ ‖δi‖20 + ε‖θi‖2V . (3.63)

Then, further take a sufficiently small ε, apply Grönwall’s inequality and (3.57), leads to

‖∂t θi‖L2(L2) + ‖θi‖L∞(V ) ≤ Mhk+1. (3.64)

Combine (3.64) with (3.55), apply Lemma 3.3 and the triangular inequality, (3.42) is then obtained. 
�
Combining Theorems 3.1, 3.2, 3.3, we finally obtain a complete convergence theorem for the semi-discrete

scheme (3.2)–(3.4) as follows.

Theorem 3.4 Let (φ, q, z, u, p,Ci , Ji ) be the solution to (2.7a)–(2.9) satisfying the regularity properties
(2.13)–(2.15), and (φh , qh , zh , uh , ph , Ci,h , Ji,h) be the solution to (3.2)–(3.4). Then the following error
estimates hold

‖q − qh‖L∞(V ) + ‖∂t
(
q − qh

) ‖L2(V ) + ‖φ − φh‖L∞(
L2
) + ‖∂t (φ − φh) ‖L2(L2)

+‖z − zh‖L∞(
L2
) + h‖z − zh‖L∞(H1) ≤ Mhk+1, (3.65)

‖u − uh‖L∞(
L2
) + ‖u − uh‖L∞(

H1
) + ‖∂t (u − uh) ‖L2(L2)
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+‖p − ph‖L2(L2) ≤ Mhk+1, (3.66)

‖Ci − Ci,h‖L∞(L2) + ‖∂t
(
Ci − Ci,h

) ‖L2(L2)

+‖Ji − Ji,h‖L∞(V ) + ‖Ji − Ji,h‖L∞(L2) ≤ Mhk+1. (3.67)

Remark 3.2 Given initial values C0
i and u0, we can obtain φ0 = φ(0) that is determined by the fourth-order

elliptic equation in (2.1) at t = 0 with the boundary condition shown in (2.2). Thereafter, by the definition
(2.4), we have J0i = Ji (0) = ∇C0

i + zi∇φ0C0
i − u0C0

i . Thus, all discrete initial values can be defined as:

Ci,h(0) = 
hC
0
i , Ji,h(0) = 
h J0i and uh(0) = 
hu0 by their own H1-projection.

4 Fully Discrete Mixed Finite Element Approximation

In order to develop a full discretization for (2.9), (2.10) and (2.12) , we first define a uniform partition in the
time interval [0, T ]: 0 = t0 < t1 < · · · < tN = T with the time-step size �t = T /N , then set tn = n�t

(0 ≤ n ≤ N ). Let ϕn = ϕ(tn), and dtϕn+1 = ϕn+1−ϕn

�t . In what follows, we employ the backward Euler
scheme together with Taylor–Hood mixed finite element approximation to define the fully discrete scheme of
(2.9), (2.10) and (2.12).

4.1 Fully Discrete Mixed Finite Element Discretization

For n = 0, 1, · · · , N − 1, suppose (φn
h , qnh , znh ,Cn

i,h , Jni,h , unh , pnh ) are given, find (φn+1
h , qn+1

h ,

zn+1
h ) ∈ Wh, f1×Vh×Zh , (C

n+1
i,h , Jn+1

i,h ) ∈ Wh,gi ×Vh , (u
n+1
h , pn+1

h ) ∈ Uh,0×Wh ,∀(q̃, φ̃, z̃, J̃i , C̃i , ũ, p̃) ∈
Vh × Wh × Zh × Vh × Wh × Uh,0 × Wh , such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
qn+1
h , q̃

)
+
(
∇ · qn+1

h ,∇ · q̃
)

−
(
φn+1
h ,∇ · q̃

)
=
(
zn+1
h ,∇ · q̃

)
− < f n+1

1 , q̃ · n >∂	,
(
∇ · qn+1

h , φ̃
)

=
(
zn+1
h , φ̃

)
,

(
∇zn+1

h ,∇ z̃
)

+
(
zn+1
h , z̃

)
=
(
Cn+1
1,h − Cn+1

2,h , z̃
)

− < f n+1
2 , z̃ >∂	,

(4.1)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
dt J

n+1
i,h , J̃i

)
+
(
Jn+1
i,h , J̃i

)
+ (∇ · Jn+1

i,h ,∇ · J̃i ) +
(
Cn+1
i,h ,∇ · J̃i

)
+ zi

(
qn+1
h Cn+1

i,h , J̃i
)

+
(
un+1
h Cn+1

i,h , J̃i
)

+ zi
(
dt
(
Cn+1
i,h qn+1

h

)
, J̃i

)
+
(
dt
(
Cn+1
i,h un+1

h

)
, J̃i

)

=< gn+1
i , J̃i · n >∂	 + < ∂t g

n+1
i , J̃i · n >∂	,(

dtC
n+1
i,h , C̃i

)
−
(
∇ · Jn+1

i,h , C̃i

)
= 0,

(4.2)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
dtu

n+1
h , ũ

)
+ β

(
un+1
h , un+1

h , ũ
)

+
(
∇un+1

h ,∇ ũ
)

−
(
pn+1
h ,∇ · ũ

)

=
((

Cn+1
1,h − Cn+1

2,h

)
qn+1
h , ũ

)
,

(
∇ · un+1

h , p̃
)

= 0.

(4.3)

We use Picard’s method to linearize nonlinear terms in (4.1)–(4.3), and implement the following Algorithm
4.1 to carry out the mixed finite element computation for the presented modified PNP/NS coupling system
(2.1).

Algorithm 4.1 1. Initialization of time marching: set n = 0 and adopt the discrete initial values
(C0

i,h , J0i,h , u0h) as shown in Remark 3.2.

2. Initialization of nonlinear iteration: let (φ
n+1,0
h , qn+1,0

h , zn+1,0
h ,Cn+1,0

i,h , Jn+1,0
i,h , un+1,0

h ,

pn+1,0
h ) = (φn

h , qnh , znh ,Cn
i,h , Jni,h , unh , pnh ) as n ≥ 0. Set m = 0.

3. Mixed finite element computation at each nonlinear iteration: for m ≥ 0, find
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(φ
n+1,m+1
h , qn+1,m+1

h , zn+1,m+1
h ,Cn+1,m+1

i,h , Jn+1,m+1
i,h , un+1,m+1

h , pn+1,m+1
h ) ∈ Wh, f1 × Vh ×

Zh × Wh,gi × Vh × Uh,0 × Wh , ∀(q̃, φ̃, z̃, J̃i , C̃i , ũ, p̃) ∈ Vh × Wh × Zh × Vh × Wh × Uh,0 × Wh
such that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
qn+1,m+1
h , q̃

)
+
(
∇ · qn+1,m+1

h ,∇ · q̃
)

−
(
φ
n+1,m+1
h ,∇ · q̃

)
−
(
zn+1,m+1
h ,∇ · q̃

)

= − < f n+1
1 , q̃ · n >∂	,(

∇ · qn+1,m+1
h , φ̃

)
−
(
zn+1,m+1
h , φ̃

)
= 0,

(
∇zn+1,m+1

h ,∇ z̃
)

+
(
zn+1,m+1
h , z̃

)
=
(
Cn+1,m
1,h − Cn+1,m

2,h , z̃
)

− < f n+1
2 , z̃ >∂	,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Jn+1,m+1
i,h −Jni,h

�t , J̃i

)
+
(
Jn+1,m+1
i,h , J̃i

)
+
(
∇ · Jn+1,m+1

i,h ,∇ · J̃i
)

+
(
Cn+1,m+1
i,h ,∇ · J̃i

)

+
(
zi q

n+1,m
h Cn+1,m+1

i,h , J̃i
)

+
(
un+1,m
h Cn+1,m+1

i,h , J̃i
)

+
(
zi

qn+1,m
h −qnh

�t Cn+1,m+1
i,h , J̃i

)

+
(
zi q

n+1,m
h

Cn+1,m+1
i,h −Cn

i,h
�t , J̃i

)
+
(

un+1,m
h −unh

�t Cn+1,m+1
i,h , J̃i

)
+
(
un+1,m
h

Cn+1,m+1
i,h −Cn

i,h
�t , J̃i

)

=< gn+1
i , J̃i · n >∂	 + < ∂t g

n+1
i , J̃i · n >∂	,(

Cn+1,m+1
i,h −Cn

i,h
�t , C̃i

)
−
(
∇ · Jn+1,m+1

i,h , C̃i

)
= 0,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
un+1,m+1
h −unh

�t , ũ
)

+ β
(
un+1,m
h , un+1,m+1

h , ũ
)

+
(
∇un+1,m+1

h ,∇ ũ
)

−
(
pn+1,m+1
h ,∇ · ũ

)

=
((

Cn+1,m
1,h − Cn+1,m

2,h

)
qn+1,m
h , ũ

)
,

(
∇ · un+1,m+1

h , p̃
)

= 0.

4. Check stopping criteria for the nonlinear iteration: for a given tolerance ε, stop the iteration if

‖φn+1,m+1
h − φ

n+1,m
h ‖0 + ‖qn+1,m+1

h − qn+1,m
h ‖0 + ‖zn+1,m+1

h − zn+1,m
h ‖0

+
2∑

i=1

‖Cn+1,m+1
i,h − Cn+1,m

i,h ‖0 + ‖un+1,m+1
h − un+1,m

h ‖0 + ‖pn+1,m+1
h − pn+1,m

h ‖0 ≤ ε,

and set
(
φn+1
h , qn+1

h , zn+1
h ,Cn+1

i,h , Jn+1
i,h , un+1

h , pn+1
h

)

=
(
φ
n+1,m+1
h , qn+1,m+1

h , zn+1,m+1
h ,Cn+1,m+1

i,h , Jn+1,m+1
i,h , un+1,m+1

h , pn+1,m+1
h

)
.

Otherwise, set m ← m + 1 and go to Step 3 to continue.
5. Time marching: stop marching if n + 1 = N , otherwise set n ← n + 1 and go to Step 2 to continue.

4.2 Fully Discrete Error Analysis

First, let each term in weak formulations (2.9), (2.10) and (2.12) take the value at tn+1, yields
⎧
⎪⎪⎨

⎪⎪⎩

(
qn+1, q̃

)+ (∇ · qn+1,∇ · q̃)− (
φn+1,∇ · q̃) = (

zn+1,∇ · q̃)− < f n+1
1 , q̃ · n >∂	,(

∇ · qn+1, φ̃
)

=
(
zn+1, φ̃

)
,

(∇zn+1,∇ z̃
)+ (

zn+1, z̃
) =

(
Cn+1
1 − Cn+1

2 , z̃
)

− < f n+1
2 , z̃ >∂	 .

(4.4)

{ (
∂tun+1, ũ

)+ β
(
un+1, un+1, ũ

)+ (∇un+1,∇ ũ
)− (

pn+1,∇ · ũ) =
((

Cn+1
1 − Cn+1

2

)
qn+1, ũ

)
,

(∇ · un+1, p̃
) = 0.

(4.5)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
∂t J

n+1
i , J̃i

)
+
(
Jn+1
i , J̃i

)
+
(
∇ · Jn+1

i ,∇ · J̃i
)

+
(
Cn+1
i ,∇ · J̃i

)
+
(
zi qn+1Cn+1

i , J̃i
)

+
(
un+1Cn+1

i , J̃i
)

+
(
zi∂t

(
qn+1Cn+1

i

)
, J̃i

)
+
(
∂t

(
un+1Cn+1

i

)
, J̃i

)

=< gn+1
i , J̃i · n >∂	 + < ∂t g

n+1
i , J̃i · n >∂	,(

∂tC
n+1
i , C̃i

)
−
(
∇ · Jn+1

i , C̃i

)
= 0.

(4.6)
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Subtracting (4.1) from (4.4), and utilizing the H1-projection (3.5) at tn+1, we can have the following lemma
by doing an analogous proof as for Theorem 3.1 because of its steady state feature.

Lemma 4.1 Let (φn+1
h , qn+1

h , zn+1
h ) be the solution to (4.1), and (φn+1, qn+1, zn+1) be the solution to (4.4).

Then the following error estimates hold

‖qn+1 − qn+1
h ‖V + ‖φn+1 − φn+1

h ‖0 ≤ M

⎛

⎝
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖0 + hk+1

⎞

⎠ , (4.7)

‖zn+1 − zn+1
h ‖0 + h‖zn+1 − zn+1

h ‖1 ≤ M

⎛

⎝
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖0 + hk+1

⎞

⎠ . (4.8)

Next, we analysis the fully discrete error estimates for un+1 − un+1
h , Jn+1

i − Jn+1
i,h and Cn+1

i − Cn+1
i,h ,

respectively. Subtract (4.2) from (4.5), and use (3.22) at tn+1, reads

(
∂tun+1 − dtu

n+1
h , ũ

)
+ au

(

hu

n+1 − un+1
h , ũ

)
− bu

(
ũ,
h p

n+1 − pn+1
h

)

+β
(
un+1, un+1, ũ

)
− β

(
un+1
h , un+1

h , ũ
)

=
2∑

i=1

zi
(
Cn+1
i qn+1 − Cn+1

i,h qn+1
h , ũ

)
, (4.9)

bu
(

hu

n+1 − un+1
h , p̃

)
= 0. (4.10)

Let un+1 − un+1
h = (un+1 − 
hun+1) + (
hun+1 − un+1

h ) = ηn+1 + ξn+1, choose ũ = ξn+1,

p̃ = 
h p
n+1 − pn+1

h , and then add (4.9) and (4.10), yield

(
dt ξ

n+1, ξn+1)+ au
(
ξn+1, ξn+1)

= − (∂tun+1 − dtun+1, ξn+1)+ (
∂tη

n+1 − dtη
n+1, ξn+1)− (

∂tη
n+1, ξn+1)

+β
(
un+1
h , un+1

h , ξn+1
)

− β
(
un+1, un+1, ξn+1)+

2∑

i=1

zi
(
Cn+1
i qn+1 − Cn+1

i,h qn+1
h , ξn+1

)
. (4.11)

By Taylor’s expansion, we have

∂tϕ
n+1 − dtϕ

n+1 = 1

�t

∫ tn+1

tn

(
t̃ − tn

) ∂2ϕ

∂t2
dt̃, ∀φ ∈ H2

(
0, T ; L2(	)

)
, (4.12)

then

‖∂tϕn+1 − dtϕ
n+1‖0 ≤ M(�t)

∥∥∥
∥

∂2ϕ

∂t2

∥∥∥
∥
0
. (4.13)

Thus, we have
(
∂tun+1 − dtun+1, ξn+1

)
≤ M(�t)‖u‖H2

(
L2
)‖ξn+1‖0 ≤ M

(
(�t)2 + ‖ξn+1‖20

)
,

(4.14)

(∂tη
n+1 − dtη

n+1, ξn+1) ≤ M(�t)‖η‖H2(L2)‖ξn+1‖0 ≤ M
(
(�t)2 + ‖ξn+1‖20

)
,

(4.15)
(
∂tη

n+1, ξn+1
)

≤ M‖∂tηn+1‖0‖ξn+1‖0 ≤ M
(
h2(k+2) + ‖ξn+1‖20

)
. (4.16)

Analyses of the rest terms in (4.11) are similar with (3.30), (3.31) and (3.32) in the proof of Theorem 3.2 and
are thus omitted here, then we obtain

‖ξn+1‖20 + �t‖∇ξn+1‖20 ≤
(
ξn, ξn+1

)
+ M�t

(

h−d
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖40 +
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖20
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+‖ξn+1‖20 + (�t)2 + h2(k+1)
)

+ ε�t‖∇ξn+1‖20.

Apply Cauchy–Schwarz inequality and Young’s inequality with ε = 1
2 to the first term on the right hand side,

and take a sufficiently small ε, yield

1

2
‖ξn+1‖20 + �t‖∇ξn+1‖20 ≤ M�t

⎛

⎝h−d
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖40 +
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖20

+‖ξn+1‖20 + (�t)2 + h2(k+1)
)

+ 1

2
‖ξn‖20.

Sum over the time step n from 0 to L − 1 (1 ≤ L ≤ N ), and apply the telescoping technique, results

1

2
‖ξ L‖20 + �t

L−1∑

n=0

‖∇ξn+1‖20 ≤ 1

2
‖ξ0‖20 + M�t

L−1∑

n=0

⎛

⎝h−d
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖40

+
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖20 + ‖ξn+1‖20 + (�t)2 + h2(k+1)

⎞

⎠ .

Then, by the discrete Grönwall’s inequality, and properly choosing the initial value u0h = 
hu0, we have

‖ξ L‖20 + �t
L−1∑

n=0

‖∇ξn+1‖20

≤ M

[

�t
L−1∑

n=0

(

h−d
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖40 +
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖20
)

+ (�t)2 + h2(k+1)

]

. (4.17)

If choose ũ = dt ξn+1, p̃ = dt (
h p
n+1 − pn+1

h ) in (4.9) and (4.10), then

(
dt ξ

n+1, dt ξ
n+1

)
+ au

(
ξn+1, dt ξ

n+1
)

= −
(
∂tun+1 − dtun+1, dt ξ

n+1
)

+
(
∂tη

n+1 − dtη
n+1, dt ξ

n+1
)

−
(
∂tη

n+1, dt ξ
n+1

)

+β
(
un+1
h , un+1

h , dt ξ
n+1

)
− β

(
un+1, un+1, dt ξ

n+1
)

+
2∑

i=1

zi
(
Cn+1
i qn+1 − Cn+1

i,h qn+1
h , dt ξ

n+1
)

.

By similar analysis skills as for (4.11) and (3.34), we can have

�t
L−1∑

n=0

‖dt ξn+1‖20 + ‖∇ξ L‖20

≤ M

⎡

⎣�t
L−1∑

n=0

(
h−2‖∇(un+1 − un+1

h )‖40 + ‖∇
(
un+1 − un+1

h

)
‖20

+h−d
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖40 +
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖20

⎞

⎠+ (�t)2 + h2(k+1)

⎤

⎦ . (4.18)

Then by (4.17) we obtain

�t
L−1∑

n=0

‖dt ξn+1‖20 + ‖∇ξ L‖20

≤ M

⎡

⎣�t
L−1∑

n=0

⎛

⎝h−2

⎛

⎝h−2d
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖80 +
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖40

⎞

⎠
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+h−d
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖40 +
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖20

⎞

⎠+ (�t)2 + h2(k+1)

⎤

⎦ . (4.19)

As for the fully discrete error estimates of Nernst-Planck equations, we subtract (4.3) from (4.6), and utilize
(3.38) at tn+1 to have

(
∂t J

n+1
i − dt J

n+1
i,h , J̃i

)
+
(

h J

n+1
i − Jn+1

i,h , J̃i
)

+
(
∇ ·

(

h J

n+1
i − Jn+1

i,h

)
, ∇ · J̃i

)

+
(

hC

n+1
i − Cn+1

i,h , ∇ · J̃i
)

+ zi
(
qn+1Cn+1

i − qn+1
h Cn+1

i,h , J̃i
)

+
(
un+1Cn+1

i − un+1
h Cn+1

i,h , J̃i
)

+ zi
(
∂t

(
qn+1Cn+1

i

)
− dt

(
qn+1
h Cn+1

i,h

)
, J̃i

)

+
(
∂t

(
un+1Cn+1

i

)
− dt

(
un+1
h Cn+1

i,h

)
, J̃i

)
= 0, ∀ J̃i ∈ Vh , (4.20)

(
∂tC

n+1
i − dtC

n+1
i,h , C̃i

)
−
(
∇ ·

(

h J

n+1
i − Jn+1

i,h

)
, C̃i

)
= 0, ∀C̃i ∈ Wh . (4.21)

Let Jn+1
i − Jn+1

i,h = (Jn+1
i − 
h J

n+1
i ) + (
h J

n+1
i − Jn+1

i,h ) = en+1
i + θn+1

i , Cn+1
i − Cn+1

i,h =
(Cn+1

i − 
hC
n+1
i ) + (
hC

n+1
i − Cn+1

i,h ) = σ n+1
i + δn+1

i , choose J̃i = θn+1
i , C̃i = δn+1

i in (4.20) and
(4.21), and add them together, yield
(
dtθ

n+1
i , θn+1

i

)
+
(
θn+1
i , θn+1

i

)
+
(
∇ · θn+1

i ,∇ · θn+1
i

)
+
(
dt δ

n+1
i , δn+1

i

)

= −
(
∂t J

n+1
i − dt J

+1
i , θn+1

i

)
+
(
∂t e

n+1
i − dt e

n+1
i , θn+1

i

)
−
(
∂t e

n+1
i , θn+1

i

)

−
(
∂tC

n+1
i − dtC

n+1
i , δn+1

i

)
+
(
∂tσ

n+1
i − dtσ

n+1
i , δn+1

i

)
−
(
∂tσ

n+1
i , δn+1

i

)

−zi
(
qn+1Cn+1

i − qn+1
h Cn+1

i,h , θn+1
i

)
−
(
un+1Cn+1

i − un+1
h Cn+1

i,h , θn+1
i

)

−zi
(
∂t

(
qn+1Cn+1

i

)
− dt

(
qn+1
h Cn+1

i,h

)
, θn+1

i

)
−
(
∂t

(
un+1Cn+1

i

)
− dt

(
un+1
h Cn+1

i,h

)
, θn+1

i

)

=
10∑

k=1

Tk . (4.22)

The analysis of Terms T1–T6 are similar to (4.14), (4.15) and (4.16), leading to

T1 + T2 + T3 ≤ M
(
(�t)2 + h2(k+1) + ‖θn+1

i ‖20
)

,

T4 + T5 + T6 ≤ M
(
(�t)2 + h2(k+1) + ‖δn+1

i ‖20
)

.

As for T7 and T8, we will do an analogous error estimate with (3.48) and (3.49), i.e., we need to conduct a
mathematical induction by assuming the following induction hypothesis for any n = 0, 1, · · · , N :

h− d
2 ‖δni ‖0 ≤ M, i = 1, 2, (4.23)

which is obviously true when n = 0 since δ0i = 0 by choosing Ci,h(0) = 
hC
0
i . Now we assume (4.23)

holds for any n = 0, 1, · · · , L − 1, where 1 ≤ L ≤ N . Then,

T7 + T8 ≤ M

⎛

⎝
2∑

i=1

‖δn+1
i ‖20 + ‖θn+1

i ‖20 + h2(k+1)

⎞

⎠ .

Next we estimate T9 and T10. Let C̃i = dt δ
n+1
i in (4.21), yields

(
∂tC

n+1
i − dtC

n+1
i,h , dt δ

n+1
i

)
−
(
∇ · θn+1

i , dt δ
n+1
i

)
= 0, (4.24)

that is
(
∂tC

n+1
i − dtC

n+1
i , dt δ

n+1
i

)
+
(
dtσ

n+1
i − ∂tσ

n+1
i , dt δ

n+1
i

)
+
(
∂tσ

n+1
i , dt δ

n+1
i

)
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+
(
dt δ

n+1
i , dt δ

n+1
i

)
−
(
∇ · θn+1

i , dt δ
n+1
i

)
= 0. (4.25)

By Cauchy–Schwarz inequality and applying similar estimates as in (4.14), (4.15) and (4.16), we obtain

‖dt δn+1
i ‖0 ≤ M

(
�t + hk+1

)
+ ‖∇ · θn+1

i ‖0. (4.26)

Then,

‖∂tCn+1
i − dtC

n+1
i,h ‖0 ≤ ‖∂tCn+1

i − dtC
n+1
i ‖0 + ‖dtσ n+1

i

−∂tσ
n+1
i ‖0 + ‖∂tσ n+1

i ‖0 + ‖dt δn+1
i ‖0

≤ M
(
�t + hk+1

)
+ ‖∇ · θn+1

i ‖0. (4.27)

On the other hand, differentiate (2.10) in time, and then fully discretize it in both space and time as done
for (4.2). The error equation between them can then be obtained by means of the differentiation of (3.5) in
time, where, we choose q̃ = dt (
hqn+1−qn+1

h ) and φ̃ = dt (
hφn+1−φn+1
h ). By Taylor Expansion (4.12)

and the same analysis techniques for proving Theorem 3.1, we can obtain

‖dt (
hq
n+1 − qn+1

h )‖0 ≤ M
(
�t + hk+1

)
+

2∑

i=1

‖∂tCn+1
i − dtC

n+1
i,h ‖0. (4.28)

Thus by the triangular inequality, (4.13), Lemma 3.1, (4.28) and (4.27), we have

‖∂t qn+1 − dt q
n+1
h ‖0 ≤ ‖∂t qn+1 − dt qn+1‖0

+‖dt
(
qn+1 − 
hq

n+1
)

‖0 + ‖dt
(

hq

n+1 − qn+1
h

)
‖0

≤ M
(
(�t) + hk+1

)
+ ‖∇ · θn+1

i ‖0. (4.29)

Therefore, apply an analogous analysis as for (3.50) and (3.51), and utilize Lemma 4.1, (4.29), (4.27) and the
mathematical induction (4.23), yield

T9 = −zi
(
qn+1∂tC

n+1
i − qn+1

h dtC
n+1
i,h , θn+1

i

)
− zi

(
Cn+1
i ∂tqn+1 − Cn+1

i,h dtq
n+1
h , θn+1

i

)

= −zi
((

qn+1 − qn+1
h

)
∂tC

n+1
i , θn+1

i

)
− zi

(
qn+1
h

(
∂tC

n+1
i − dtC

n+1
i,h

)
, θn+1

i

)

−zi
((

Cn+1
i − Cn+1

i,h

))
∂tqn+1, θn+1

i

)
− zi

(
Cn+1
i,h

(
∂tqn+1 − dtq

n+1
h

)
, θn+1

i

)

≤ M

(
2∑

i=1

‖δn+1
i ‖20 + ‖θn+1

i ‖20 + (�t)2 + h2(k+1)

)

+ ε‖∇ · θn+1
i ‖20,

T10 = −
(
un+1∂tC

n+1
i − un+1

h dtC
n+1
i,h , θn+1

i

)
−
(
Cn+1
i ∂tun+1 − Cn+1

i,h dtu
n+1
h , θn+1

i

)

= −
((

un+1 − un+1
h

)
∂tC

n+1
i , θn+1

i

)
−
(
un+1
h

(
∂tC

n+1
i − dtC

n+1
i,h

)
, θn+1

i

)

−
((

Cn+1
i − Cn+1

i,h

))
∂tun+1, θn+1

i

)
−
(
Cn+1
i,h

(
∂tun+1 − dtu

n+1
h

)
, θn+1

i

)

≤ M

(
2∑

i=1

‖δn+1
i ‖20 + ‖θn+1

i ‖20 + (�t)2 + h2(k+1) + ‖ξn+1‖20 + ‖dtξn+1‖20
)

+ ε‖∇ · θn+1
i ‖20.

Then, (4.22) finally yields
(

θn+1
i − θni

�t
, θn+1

i

)

+ ‖θn+1
i ‖20 + ‖∇ · θn+1

i ‖20 +
(

δn+1
i − δni

�t
, δn+1

i

)

≤ M

(
2∑

i=1

‖δn+1
i ‖20 + ‖θn+1

i ‖20 + (�t)2 + h2(k+1) + ‖ξn+1‖20 + ‖dtξn+1‖20
)

+ ε‖∇ · θn+1
i ‖20.
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Take a sufficiently small ε, apply Cauchy–Schwarz inequality and Young’s inequality with ε = 1
2 , yield

1

2

(
‖θn+1

i ‖20 + ‖δn+1
i ‖20

)
+ �t‖θn+1

i ‖20 + �t‖∇ · θn+1
i ‖20

≤ M�t

⎛

⎝
2∑

i=1

‖δn+1
i ‖20 + ‖θn+1

i ‖20 + (�t)2 + h2(k+1) + ‖ξn+1‖20 + ‖dt ξn+1‖20

⎞

⎠

+ 1

2

(
‖θni ‖20 + ‖δni ‖20

)
.

Sum over the time step n from 0 to L − 1 (1 ≤ L ≤ N ) on both sides, apply the telescoping technique, and
properly choose initial values C0

i,h = 
hC
0
i and J0h = 
h J0, yield

‖θ Li ‖20 + ‖δLi ‖20 + �t
L−1∑

n=0

‖θn+1
i ‖2V

≤ M�t
L−1∑

n=0

⎛

⎝
2∑

i=1

‖δn+1
i ‖20 + ‖θn+1

i ‖20 + ‖ξn+1‖20 + ‖dt ξn+1‖20 + (�t)2 + h2(k+1)

⎞

⎠ .(4.30)

Due to the mathematical induction (4.23) and Poincaré inequality, (4.17) leads to

�t
L−1∑

n=0

‖ξn+1‖20 ≤ M�t
L−1∑

n=0

‖∇ξn+1‖20 ≤ M

⎡

⎣�t
L−1∑

n=0

2∑

i=0

‖δn+1
i ‖20 + (�t)2 + h2(k+1)

⎤

⎦ , (4.31)

and so does (4.19), resulting in

�t
L−1∑

n=0

‖dt ξn+1‖20 ≤ M

⎡

⎣�t
L−1∑

n=0

2∑

i=0

‖δn+1
i ‖20 + (�t)2 + h2(k+1)

⎤

⎦ . (4.32)

Take the sum over i from 1 to 2 in (4.30), then apply the discrete Grönwall’s inequality, results

2∑

i=1

⎡

⎣‖θ Li ‖20 + ‖δLi ‖20 + �t
L−1∑

n=0

‖θn+1
i ‖2V

⎤

⎦ ≤ M
(
(�t)2 + h2(k+1)

)
. (4.33)

Because k + 1− d
2 > 0 for k ≥ 1 and d = 2, 3, (4.33) implies that when �t is sufficiently small, we have

h− d
2 ‖δLi ‖0 ≤ M,

which proves the mathematical induction hypothesis (4.23) uniformly holds for all 1 ≤ n ≤ N .
Combining (4.33) with Lemma 3.3 at t = tL (1 ≤ L ≤ N ), by the triangular inequality we obtain

‖J Li − J Li,h‖0 + ‖CL
i − CL

i,h‖0 ≤ M
(
�t + hk+1

)
. (4.34)

Then Lemma 4.1 results

‖qL − qLh ‖V + ‖φL − φL
h ‖0 ≤ M

(
�t + hk+1

)
, (4.35)

‖zL − zLh ‖0 + h‖zL − zLh ‖1 ≤ M(�t + hk+1). (4.36)

Further combining (4.17)and (4.19) with Lemma 3.2 at t = tL (1 ≤ L ≤ N ), we have

‖uL − uLh ‖0 + ‖uL − uLh ‖1 ≤ M(�t + hk+1). (4.37)

On the other hand, taking J̃i = dt θ
n+1
i , C̃i = dt δ

n+1
i in (4.20) and (4.21) , we have

(
dt θ

n+1
i , dt θ

n+1
i

)
+
(
θn+1
i , dt θ

n+1
i

)
+
(
∇ · θn+1

i , dt∇ · θn+1
i

)
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= −
(
∂t J

n+1
i − dt J

+1
i , dt θ

n+1
i

)
+
(
∂t e

n+1
i − dt e

n+1
i , dt θ

n+1
i

)

−
(
∂t e

n+1
i , dt θ

n+1
i

)
−
(
δn+1
i , dt∇ · θn+1

i

)

−zi
(
qn+1Cn+1

i − qn+1
h Cn+1

i,h , dt θ
n+1
i

)
−
(
un+1Cn+1

i − un+1
h Cn+1

i,h , dt θ
n+1
i

)

−zi
(
∂t

(
qn+1Cn+1

i

)
− dt

(
qn+1
h Cn+1

i,h

)
, dt θ

n+1
i

)
−
(
∂t

(
un+1Cn+1

i

)

−dt
(
un+1
h Cn+1

i,h

)
, dt θ

n+1
i

)
.

By using similar analysis techniques as for (4.22), we can obtain the following estimate for any 1 ≤ L ≤ N :

�t
L−1∑

i=0

‖dt θn+1
i ‖20 + ‖θ Li ‖2V

≤ �t
L−1∑

n=0

⎡

⎣M

⎛

⎝
2∑

i=1

‖δn+1
i ‖20 + ‖θn+1

i ‖2V + (�t)2 + h2(k+1)

⎞

⎠+ ε‖dt θn+1
i ‖20

⎤

⎦ .

Take a sufficiently small ε, apply the discrete Grönwall’s inequality and (4.34), yield

‖θ Li ‖V ≤ M(hk+1 + �t).

Further, we have

‖J Li − J Li,h‖V ≤ M(hk+1 + �t). (4.38)

To estimate pn+1 − pn+1
h , we need the discrete form of inf-sup condition for bu(·, ·) in (3.37). First, apply

(4.9), the continuity of au(·, ·) and the same error analyses for (4.14) and (3.30)–(3.32), yield

bu
(
ũ, 
h p

n+1 − pn+1
h

)
=
(
∂tun+1 − dtu

n+1
h , ũ

)
+ au

(

hun+1 − un+1

h , ũ
)

+β
(
un+1, un+1, ũ

)

−β
(
un+1
h , un+1

h , ũ
)

−
2∑

i=1

zi
(
Cn+1
i qn+1 − Cn+1

i,h qn+1
h , ũ

)
.

≤ M
[(

�t + hk+1 + ‖dtξn+1‖0
)

‖ũ‖0 + ‖∇ξn+1‖0‖ũ‖1
+
(
‖∇

(
un+1 − un+1

h

)
‖20 + ‖∇un+1‖0‖∇

(
un+1 − un+1

h

)
‖0
)

‖ũ‖1

+
(

h− d
2

2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖20

+
2∑

i=1

‖Cn+1
i − Cn+1

i,h ‖0 + hk+1

)

‖ũ‖0
]

.

After combining the above inequalitywith (4.34) and (4.37), we can obtain the following error estimate through
(3.37) as:

‖
h p
n+1 − pn+1

h ‖0 ≤ M
(
�t + hk+1 + ‖dt ξn+1‖0

)
.

Then apply (4.32) and (4.33), and combine with Lemma 3.2, yield

⎛

⎝�t
L−1∑

n=0

‖pn+1 − pn+1
h ‖20

⎞

⎠

1
2

≤ M
(
�t + hk+1

)
.

Therefore, the following convergence theorem is eventually derived for the fully discrete scheme (4.1)–
(4.3).
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Theorem 4.1 Let (φn+1, qn+1, zn+1, un+1, pn+1,Cn+1
i , Jn+1

i ) be the solution to (2.7a)–(2.9) satisfying

the regularity properties (2.13)–(2.15), and (φn+1
h , qn+1

h , zn+1
h , un+1

h , pn+1
h ,

Cn+1
i,h , Jn+1

i,h ) be the solution to (4.1)–(4.3). Then for 1 ≤ L ≤ N, we have the following error estimates,

‖qL − qLh ‖V + ‖φL − φL
h ‖0 + ‖zL − zLh ‖0 + h‖zL − zLh ‖1 ≤ M

(
hk+1 + �t

)
,

‖uL − uLh ‖0 + ‖uL − uLh ‖1 +
⎛

⎝�t
L∑

n=1

‖pn − pnh‖20

⎞

⎠

1
2

≤ M(hk+1 + �t),

‖CL
i − CL

i,h‖0 + ‖J Li − J Li,h‖0 + ‖J Li − J Li,h‖V ≤ M
(
hk+1 + �t

)
.

Remark 4.1 The error estimate of pressure in Theorem 4.1 is consistent with its continuous form in Theorem
3.4 which bears L2(L2) norm. To obtain the same error estimate for pressure in L∞(L2) norm, i.e., ‖p −
ph‖L∞(L2) = O

(
hk+1

)
, we need to differentiate (3.26) and (3.27) in time, and choose ũ = ∂t (
hu − uh)

and p̃ = ∂t (
h p − ph), then conduct similar semi-discrete error estimates by means of analogous analysis
skills for proving Theorem 3.2. A similar error analysis process can be carried out for the fully discrete scheme
to obtain the error estimate of pressure in the discrete L∞(L2) norm, as: ‖pL − pLh ‖L2 = O(hk+1 + �t)
for 1 ≤ L ≤ N . We thus omit its proof in this paper to avoid the high similarity, on the other hand, it will be
numerically validated in Sect. 5.

5 Numerical Experiments

5.1 Example 1: Convergence Test

In this section we apply the fully discrete mixed FEM and the numerical algorithm developed in Sect. 4 to a
numerical example defined below, then validate all theoretical results shown in Theorem 4.1. Let

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ = e(x+y) sin t,
C1 = sin(2πx) sin(2π y) sin t,
C2 = sin(2πx) sin(2π y) sin(2t),
u = (− cos(πx) sin(π y) sin(3t), sin(πx) cos(π y) sin(3t))� ,

p = (sin x + sin y) (1 − e−t )

(5.1)

be real solutions to the following fourth-order modified PNP/NS problem defined in 	 = [0, 1] × [0, 1] and
the time interval [0, 0.25]:

⎧
⎪⎪⎨

⎪⎪⎩

�2φ − �φ = C1 − C2 + F3,
∂tCi − ∇ · (∇Ci + zi∇φCi − uCi ) = Fi , i = 1, 2,
∂tu + (u · ∇)u − �u + ∇ p = − (C1 − C2) ∇φ + F4,
∇ · u = 0,

(5.2)

by appropriately choosing right hand side functions Fi ∈ L∞(0, T ; L2(	)) (1 ≤ i ≤ 4), where all Fi are
nonzero functions and do not actually affect our error analyses and theoretical results shown in Sects. 3 and 4 at
all. And, all boundary and initial conditions are homogeneous, which matches with the adopted real solutions
(5.1) on the boundary ∂	 or at t = 0.

In the following, we implement Algorithm 4.1 to find discrete solutions of (φ, q, z,C1,C2,
J1, J2, u, p) to the fully discrete mixed finite element discretization (4.1)–(4.3), and compute convergence
errors in corresponding norms for these variables. To that end, we adopt�t = 4h3 with the grid doubling, i.e.,
choose mesh sizes h = 1/4, 1/8, 1/16 and 1/32 to form a series of nested uniform grids, on which we define
corresponding P2P1 (Taylor–Hood) element to discretize (φ, q), (u, p) and (Ji ,Ci ) (i = 1, 2), respectively,
and P1 (linear) element to discretize the variable z by choosing k = 1 in (3.1).

Numerical results are reported in Tables 1, 2, and 3 and Figs. 1, 2, and 3, from which we can see all results
are at least in accordance with or even better than the theoretical results of optimal error estimates shown in
Theorem 4.1. In particular, optimal (second-order) convergence rates are illustrated for approximation errors
of all variables in their corresponding energy norm and L2 norm, except for the velocity’s and the pressure’s
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Table 1 Convergence results of the electrostatic potential and relevant vector- and scalar-valued variables

h 1/4 1/8 1/16 1/32

‖φ − φh‖0 5.37E−03 1.08E−03 2.25E−04 4.93E−05

Order 2.311 2.265 2.193

‖q − qh‖0 3.98E−04 8.46E−05 1.95E−05 4.73E−06

Order 2.234 2.121 2.039

‖q − qh|V 5.60E−03 1.18E−03 2.67E−04 6.35E−05

Order 2.242 2.149 2.072

‖z − zh‖0 5.89E−03 1.48E−03 3.70E−04 9.27E−05

Order 1.992 1.999 1.998

‖z − zh‖1 1.61E−01 8.06E−02 4.03E−02 2.02E−02

Order 0.997 0.999 1.000

Table 2 Convergence results of fluid velocity and pressure

h 1/4 1/8 1/16 1/32

‖u − uh‖0 1.72E−03 2.06E−04 2.54E−05 3.16E−06

Order 3.061 3.021 3.007

‖u − uh|1 3.44E−02 8.68E−03 2.17E−03 5.44E−04

Order 1.988 1.997 1.999

‖p − ph‖0 1.64E−02 2.33E−03 3.05E−04 3.99E−05

Order 2.818 2.934 2.936

errors in L2 norm, i.e., ‖u − uh‖0 and ‖p − ph‖0 that even show a third-order spatial convergence rate in
Table 2, which is however one order higher than the result demonstrated in our convergence theorem. Due to
the nonlinear source term of the momentum equation that involves ionic concentrations and the gradient of
electrostatic potential, our proofs for Theorems 3.4 and 4.1 can only show a second-order convergence rate in
space for the velocity’s error in both H1 norm and L2 norm, as well as for the pressure’s error in L2 norm.
But, as illustrated by numerical results, it seems that such nonlinear source term does not prevent the mixed
FEM for Naiver-Stokes equations from achieving an optimal (third-order) convergence rate for ‖u − uh‖0
with P2 element, moreover, a nearly third-order superconvergence property for ‖p − ph‖0 with P1 element
is illustrated as well. Further theoretical studies would be needed in the future to verify both the optimal
convergence of velocity and the superconvergence of pressure in L2 norms, for the fourth-order modified
PNP/NS coupling system.

5.2 Example 2: A Practical Problem to Investigate the Force Between Two Charged
Particles

To explain why the modified model with a fourth-order elliptic equation for the electrostatic potential is sig-
nificant and necessary in contrast to the classical Poisson equation, in this section we use both the classical
model and the modified model to study a practical example in two dimension for the electrostatic interaction
force between two charged particles, and compare numerically obtained forces with experimental results to
show that only the modified model can demonstrate a reasonable result that is consistent with experimental
phenomena. Figure 4 depicts two spherical particles (represented by 	2) that is submerged into an electrolyte
(represented by 	1) and is surrounded by a uniformly alternating electric current field. Two spherical parti-
cles are uniformly charged dielectrics whose electrostatic potentials are defined through either the modified
model—the fourth order elliptic equation (1.1) or the classical model—Poisson equation that is reduced from
(1.1) by letting �c = 0 , while the electrolyte, which is an ionic solvent containing ions (cations and anions),
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Table 3 Convergence results of
ionic concentrations and relevant
vector-valued variables

h 1/4 1/8 1/16 1/32

‖C1 − C1,h‖0 2.11E−02 4.33E−03 1.02E−03 2.53E−04

Order 2.285 2.080 2.021

‖J1 − J1,h |0 1.05E−01 2.36E−02 5.48E−03 1.34E−03

Order 2.154 2.107 2.036

‖J1 − J1,h |V 2.02E−01 3.62E−02 7.99E−03 1.93E−03

Order 2.479 2.179 2.049

‖C2 − C2,h‖0 4.09E−02 8.40E−03 1.99E−03 4.89E−04

Order 2.286 2.080 2.021

‖J2 − J2,h |0 2.18E−01 4.97E−02 1.16E−02 2.82E−03

Order 2.131 2.106 2.037

‖J2 − J2,h |V 4.43E−01 7.86E−02 1.72E−02 4.13E−03

Order 2.493 2.196 2.055

Fig. 1 Linear least squares fitting of convergence trends against mesh size for φ, q and z in respective norms

supposes to be modeled by Nernst-Planck equations, as shown in (2.1), for ionic concentrations. But, since
in this section we only focus on the comparison between the modified and the classical models of the electro-
static potential, we simply replace Nernst-Planck equations by an empirical function for ionic concentrations
that explicitly depends on the electrostatic potential [12]. Such an empirical function is derived based on the
Bikerman model [40] for volume constraints only with equal sized cations and anions, as shown below in
(5.3).

All necessary physical parameters involved in this section are labeled and explained in Table 4. In particular,
we let the charge density ρ = z1eC1−z2eC2 in (1.1), whereC1 andC2 are concentrations of the ionic species,
and, we use ε1 and ε2 to denote the dielectric permittivity in the electrolyte and the particles, respectively,
which describes different polarizability of ions. Here we let ε1 = ε0εs , ε2 = ε0εm . In addition, we assume a
binary z1 : z2 electrolyte such that the far field concentrations of cations and anions satisfy z1C

+∞ = z2C
−∞.

Following the aforementioned reason, in this section we replace ionic concentration (Nernst-Planck) equations
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Fig. 2 Linear least squares fitting of convergence trends against mesh size for u and p in respective norms

Fig. 3 Linear least squares fitting of convergence trends against mesh size for Ci and Ji in respective norms

by two empirical functions at equilibrium which are explicit functions of the electrostatic potential, defined
by [12]

{
C1 = C+∞e

−z1
e

KB T φ
,

C2 = z1
z2
C+∞e

z2
e

KB T φ
,

(5.3)

where the far field concentration,C+∞ (in the SI unit of 1/m3), describes the degree of concentration of cations

in physical spaces, while c0 = C+∞
NA

, is often adopted to change the unit of the far field cationic concentration
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Fig. 4 The schematics of the submerged particles in an electrolyte

Table 4 Notations and physical constants

Symbol Physical parameter Value Unit

R1 Radius of the spherical electrolyte field 5000 nm

R2 Radius of spherical particles 1000 nm

e Charge of one electron 1.6 × 10−19 C

KBT Boltzmann energy 4.14 × 10−21 J (or Nm)

ε0 Permittivity of vacuum 8.85 × 10−12 C2/(Nm2)

εs Dielectric constant of electrolyte 80

εm Dielectric constant of particle 2

z1 Valence number of cation 3

z2 Valence number of anion 1

�c Electrostatic correlation length 1 nm

NA Avogadro constant 6.02 × 1023 mol−1

to the most commonly used molar concentration unit: mol/m3 [12]. Moreover, to compute the interactional
force between two particles, we need to introduce the expression of the Maxwell stress tensor, τ , for a fluid
(that is the electrolyte in this example) with a non-local permittivity ε, defined as [13],

τ = εqqT − 1

2
εq ·q I+ε�2c

[
q · (∇(∇ · q)) I − q (∇(∇ · q))T − (∇(∇ · q)) qT + 1

2
(∇ · q)2 I

]
,

where q = −∇φ is the electric current field. Then the total electrostatic force, F, acting on the surface of the
particle, e.g., the surface of the right spherical particle, �3 (see Fig. 4), can be calculated by F = ∫

�3
τnds.

Since the vertical component of this total force does not contribute to the interaction between two charged
particles that lie along a horizontal direction (as shown in Fig. 4), in what follows, we only take the horizontal
component of this total force to investigate the interaction effect between them.

Specifically in this example, we set two charged particles to carry opposite charges, as shown in Fig. 4. Then
due to the Coulomb’s law, their interaction force in between shall be anti-proportional to (the square of) the
distance between them.On the other hand, the classical electromagnetism theory tells that two opposite electric
charges attract each other, which however no longer holds for the experimental setup in this example when
ionic concentrations in the electrolyte increase to a certain extent, i.e., under that circumstance two oppositely
charged particles turns out to repel each other instead. It is the most significant phenomenon that only the
BSK theory can explain but classical theories cannot. A physically experimental study in [41] fully supports
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Table 5 Horizontal forces (nN) acting on the right particle (see Fig. 4) by two models

dL c0=1.585E−3mol/m3 c0 = 0.1585mol/m3 c0 = 253.6mol/m3 c0 = 1014.4mol/m3

(nm) Model I Model II Model I Model II Model I Model II Model I Model II

8 −1.6750 −1.7315 −0.0908 −0.0969 3.29E−3 −1.66E−4 4.18E−3 −6.45E−7

16 −1.3217 −1.3718 −0.0544 −0.0569 3.16E−3 −1.63E−4 3.98E−3 −6.09E−7

24 −0.9524 −0.9915 −0.0440 −0.0427 3.17E−3 −1.60E−4 3.97E−3 −6.42E−7

32 −0.7434 −0.7687 −0.0426 −0.0408 3.17E−3 −1.63E−4 3.87E−3 −6.27E−7

40 −0.6034 −0.6188 −0.0403 −0.0391 3.07E−3 −1.58E−4 3.64E−3 −6.30E−7

this interesting force reserving phenomenon, and we will essentially validate it in our numerical experiment
using the modified fourth-order electrostatic potential model that is derived from the BSK theory, i.e., we
still expect from our numerical results that the horizontal force between two oppositely charged particles will
decrease along the increase of the distance between them, simultaneously, we will see that their interaction
force is gradually reversed from the attractive force to the repulsive force, e.g., the sign of the horizontal force
acting on the right particle shown in Fig. 4) will be gradually changed from negative to positive along with
the increase of ionic concentrations, which means that its horizontal force is eventually reversed from the left
(attractive) direction to the right (repulsive) direction.

After applying the developed mixed finite element method to the fourth-order electrostatic potential equa-
tion, which is defined in the domain shown in Fig. 4 and involves with simplified ionic concentration functions
defined in (5.3), then numerically computing the Maxwell stress tensor τ as well as the total electrostatic
force F, we obtain horizontal forces in the unit of Nanonewton (nN) acting on the surface of the right particle
with respect to the distance from the left particle, dL, and with respect to the far field ionic concentration, c0,
as shown in Table 5, where Model I represents the modified model with a fourth-order elliptic equation, and
Model II represents the classical model with Poisson equation, both are solved for the electrostatic potential.
From Table 5 and Fig. 5 we can see that both models show that the magnitude of horizontal forces decreases
along with the increase of the distance between two particles, which is consistent with the trend of experimen-
tal results shown in [41, Figure 1]. On the other hand, when c0 increases, the direction of horizontal forces
computed byModel I are eventually reversed from negative to positive, which is still consistent with the pattern
of change of experimental results shown in [41, Figure 2]. Nevertheless, such a phenomenon of reversing the
interaction force is not observed in numerical results of Model II due to the lacking of considering the ion-ion
electrostatic correlation, which is however fully reflected by the modified Model I.

Thus, we can conclude that themodifiedmodel for the electrostatic potential characterized as a fourth-order
elliptic equation is superior to the classical Poisson equation in terms of the applicability, the accuracy and
the practicality.

6 Conclusion and FutureWork

In this paper,we analyze error estimates of a fullymixedfinite element approximation to a recently founded new
electrohydrodynamical (Bazant–Storey–Kornyshev) theory driven model –- a coupled fourth-order modified
Poisson–Nernst–Planck/Navier–Stokes equations. Both semi- and fully discrete Stokes-type mixed finite ele-
ment methods are developed and are analyzed for a stabilized mixed weak formulation of PNP/NS coupling
system, and optimal error estimates are obtained for all primary variables and their vector-valued gradi-
ent variables in corresponding energy norms, that is, if Taylor–Hood Pk+1Pk element is employed, then
we can obtain optimal error estimates for the electrostatic potential flux q = ∇φ and ionic mass fluxes
Ji = ∇Ci − zi qCi − uCi in L∞(H(div)) norm, for the electrostatic potential φ, ionic concentrations Ci and
the fluid pressure p in L∞(L2) norm, and for the fluid velocity u in L∞(H1) norm. To the authors’ best knowl-
edge, this seems to be the first time to apply a fully mixed FEM with Pk+1Pk element to a time-dependent,
coupled fourth-order modified PNP/NS equations and obtain optimal convergence rates for all primary vari-
ables and their vector-values variables in respective energy norms. In particular, due to the nonlinear coupling
effect of PNP/NS system, the fluid velocity’s error in L2 norm reaches a suboptimal (second-order) conver-
gence rate in the convergence theorem, which is however illustrated as an optimal (third-order) convergence
behavior in numerical experiments and thus may be considered as a superconvergence property. The same
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Fig. 5 Horizontal forces (nN) acting on the right particle versus distances and ionic concentrations by two
models

superconvergence behavior is also observed in numerical experiments for the pressure’s convergence rate in
L2 norm as well. In addition, we also numerically study a practical example to validate the necessity of
introducing the modified electrostatic potential equation characterized as a fourth-order elliptic equation by
comparing with the classical Poisson equation. We observe that numerical trends obtained from the modified
model are all consistent with experimental results shown in [41], which however cannot be predicted by the
classical model.

On the other hand, numerical methodology and analysis tools developed in this paper for the mixed FEM
is not limited to the presented fourth-order modified PNP/NS equations with unit constant coefficients, which
is the case we study in this paper though, all developed numerical techniques can be easily extended to other
kinds of PNP/NS systemwith more complicated physical coefficients as long as all coefficients are sufficiently
differentiable and necessarily bounded. Our future work will be dedicated to applying the newly developed
mixed FEM to a physically realistic fourth-order modified PNP/NS problem which could reflect the case of
small Debye length and boundary layer effects, etc.
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