Journal of Scientific Computing (2021) 87:59
https://doi.org/10.1007/510915-021-01474-3

®

Check for
updates

Convergence and Stability in Maximum Norms of Linearized
Fourth-Order Conservative Compact Scheme for
Benjamin-Bona-Mahony-Burgers’ Equation

Qifeng Zhang"2@® - Lingling Liu’

Received: 14 July 2020 / Revised: 10 February 2021 / Accepted: 22 March 2021/ Published online: 8 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

In the paper, a newly developed three-point fourth-order compact operator is utilized to
construct an efficient compact finite difference scheme for the Benjamin—Bona—Mahony—
Burgers’ (BBMB) equation. The detailed derivation is carried out based on the reduction
order method together with a three-level linearized technique. The conservative invariant,
boundedness and unique solvability are studied at length. The convergence is proved by
the technical energy argument and induction method with the optimal convergence order
O(x2 + h*) in the sense of the maximum norm. The stability under mild conditions can be
achieved based on the uniform boundedness of the numerical solution. The present scheme
is very efficient in practical computation since only a linear system needs to be solved at each
time. The extensive numerical examples verify our theoretical results and demonstrate the
scheme’s superiority when compared with state-of-the-art those in the references.

Keywords BBMB equation - Reduction order method - Linearized compact scheme -
Boundedness - Maximum norm
1 Introduction

The classical nonlinear Benjamin—Bona—Mahony (BBM) equation can describe the unidirec-
tional propagation of weakly nonlinear long waves in the presence of dispersion as follows
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= Bt + S+ =0, x€R 0<r=T, (1.1)

where ¢ > 0 and p are the parameters with the same order [8]. Compared with the well-known
Korteweg-de Vries (KdV) equation

u,+ux+3§uux+%ux”:0, xeR, 0<t<T, (1.2)
(1.1) is proposed as an analytically advantageous alternative. Both (1.1) and (1.2) are derived
from the Green—Naghdi equations and they are asymptotically equivalent in the limit ¢ =
n — 0since uyyy = uyxr + O(w), but enjoying different properties, see [26] for a detailed
explanation. In many applications, when the dissipation effect cannot be ignored, —vu
have to be added and (1.1) becomes the known BBMB equation as
1% 3e
ut—guxxt+7uux+ux—vu”:0, xeR, 0<t<T, (1.3)

which describes the propagation of small-amplitude long waves in a nonlinear dispersive
media. For the well-posedness, existence, uniqueness, regularity results, long time dynamics
and the numerical simulation for (1.3) and its special cases are referred to [22,28,31,32,38,
41,46,47,52].

In this paper, we are aimed to develop and analyze a high-order conservative difference
approximation for the BBMB equation as

Uy — Ullyyr + yutly +kuy — vy, =0, xeR, 0<t<T, (1.4)
with the periodic boundary condition
ux,t)=u(x+L,t), xeR, 0<t<T, (1.5)
and the initial-value condition
u(x,0 =px), xeR, (1.6)

where p and v are positive constants, y and « are parameters and L denotes the spatial period.

In order to explore the solutions and their properties of the BBMB equation, researchers
racked their wits to develop various analytical methods for seeking the exact solutions of
the BBMB equation. For instance, Yin et al. [S0] employed the weighted energy method
to investigate the time decay rate of traveling waves of Cauchy problem of the BBMB
equation. Estévez et al. [16] studied the travelling wave solutions for the generalized BBMB
equation systematically by using the factorization technique. Besse et al. [11] developed
the exact artificial boundary conditions for the linearized BBM equation. Al-Khaled et al.
[3] considered solitary wave solutions of the BBMB equation by using the decomposition
method. Fakhari et al. [17] approximated the nonlinear BBMB equation’s explicit solutions
with high-order nonlinear term via the homotopy analysis method. Tari et al. [45] used He’s
methods to obtain the explicit solutions of the BBMB equation and compared them with the
exact solutions. Ganji et al. [18] solved the special form solutions of the BBMB equation
by the Exp-Function method. Based on the well-known tanh-coth method, Cesar et al. [13]
obtained new periodic soliton solutions for the generalized BBMB equation. Noor et al. [34]
constructed some new solitary solutions of the BBM equation by using the exp-function
method. Abbasbandy [1] used the first integral method to find some new exact solutions
for the BBMB equation and Bruzoén [12] studied some nontrivial conservation laws for the
BBMB equation with the help of the multiplier’s method.
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On the other hand, many attempts have been carried out to approximate the solutions
for the BBMB equation and its simplified version numerically. For example, Guo [20] pro-
posed a Laguerre—Galerkin method to solve the BBM equation on a semi-infinite interval.
Omrani [35] considered a fully discrete Galerkin method for the BBM equation. Soon after-
ward, Omrani et al. [2,36] used the Crank—Nicolson-type implicit finite difference method to
solve the BBMB equation with the second-order accuracy in maximum norm. They [21] fur-
ther employed the Galerkin finite element method in space combined with the implicit Euler
method in time for solving the generalized BBMB equation. Berikelashvili et al. [9] explored
a linearized difference scheme for solving the regularized long-wave equation, which can be
viewed as a special case of the BBMB equation with v = 0. They [10] also analyzed the
convergence of a type of difference scheme for the generalized BBMB equation. Based on
the meshless method of radial basis functions, Dehghan et al. [14] solved a high dimensional
generalized BBMB equation. They [15] further considered the interpolating element-free
Galerkin technique for the high dimensional BBMB equation. Zarebnia et al. [40,51] used
the collocation method and spectral meshless radial point interpolation, respectively, to solve
the BBMB equation. Similar idea applied to BBMB is referred to the work in [4]. Based on
the hybridization of Lucas and Fibonacci polynomials, Orug et al. [37] solved the general-
ized BBMB equation in one and two dimension, respectively. Kundu et al. [25] proposed a
semidiscrete Galerkin method and discussed stabilization results for the semidiscrete scheme
with an optimal error estimate. Kundu et al. [24] discussed global stabilization results for the
semidiscrete solution based on finite element method. With the help of Legendre wavelets
and quasilinearization method, Kumar et al. [23] simulated multidimensional BBMB equa-
tion. Zhang et al. [53] established two linearized implicit difference schemes for the BBMB
equation, in which the convergence orders both were two.

A review of all the above numerical methods reveals that higher-order algorithms are still
scarce, let alone the uniform error estimate of the higher-order algorithms. To the authors’
best knowledge, only Mohebbi and Faraz [33] propose a fourth-order algorithm for solving
the BBMB equation with five points in space and obtains the infinite error estimate. However,
when deal with the points near the boundary, ghost points or fictitious points are requisite.
In addition, the stability in [33] is also missing. In order to avoid the difficulty caused by the
discretization near the boundary points, we first developed three-point fourth-order compact
technique for the Burgers’ equation in [48] and further extended it to the BBMB equation in
current paper. Moreover, we extensively and deeply studied the convergence and stability of
the compact difference scheme for the BBMB equation.

The compact difference scheme as one of the most practical numerical techniques has the
significant advantages over standard finite difference methods. Specifically: (1) A smaller
matrix stencil generates higher order accuracy; (2) A larger stability domain allows larger
spatial and temporal step sizes; (3) It owns a better resolution for high frequency waves; (4) It
is more suitable for long time integrations; (5) Fewer boundary point makes the discretization
of the boundary easier.

The compact difference scheme in the present paper not only possess all of these advan-
tages, but also does not incur an extra computational cost. Furthermore, our scheme is linearly
implicit with the exact well-defined conservative invariant. The main difficulties for the high-
order approximation of the strong nonlinear term uu, involving the optimal convergence and
stability are completely overcome based on the newly discovered compact operator, which
makes the numerical analysis feasible and toilless.

The main contribution lies in that the maximum error estimate and the optimal convergence
order O (z? + h*) are obtained. The proof of the convergence in a pointwise sense is novel
and technical. Compared our numerical results with those calculated in [33] is carried out,

@ Springer



59 Page4of31 Journal of Scientific Computing (2021) 87:59

which demonstrates the effectiveness and advantage of the present algorithm. Moreover, the
stability under very mild conditions in the maximum norm is also proved in detail.

The rest of the paper is organized as follows. In Sect. 2, some requisite notations and
useful lemmas are presented. A three-level linearized compact difference scheme is derived
in Sect. 3 based on the reduction order method. Conservative invariant and boundedness
are obtained in Sect. 4. The unique solvability is proved strictly in Sect. 5. The uniform
convergence and stability are proved at length in Sect. 6, which are the main part of the
paper. Several numerical experiments are presented in Sect. 7 followed by a conclusion in
Sect. 8.

2 Notations and Lemmas

We firstly introduce some useful notations. Take two positive integers M, N,leth = L/M,
t = T/N.Denote x; = ih, i € Z, ty = kr, 0 <k < N, tk+% = (tx + tr+1)/2;
Qn ={xi|lxi =ih, i € Z}, 2 ={tx |tx = kt, 0 <k < N}, 25 = £, x 2. For
any grid function u = {uf-< |i € Z, 0 <k < N} defined on £2;,;, following the notations in
[6,7,53], we introduce

1 1 1
Sfuf = Sy —up), Suf = (Tuf —sfui ), Awuf = -Gy, —uiy),
h h 2h
1 vy 1 A
k k k k k+1 k k—1 k+1
w1 =S U u =S +uith, uf = 5 +ui ™,

S T TR P TS Ry
Siu; 2=;(ui —u;), At“i=Z(“i —u; ).

Denote

Up ={ulu = {u;}, uiyp =u;}.

M

For any grid functions u, w € Uy, define the discrete inner product (u, w) = h Y u;w; and
i=1

the corresponding norms (seminorm)

lull = V@ ), July =/ 6w, 85u),  ulloo = max |u.
1<i<M
Moreover, define the function (see [19])
1
Y(u,v); = g[”iAin + A (wv);], 1<i<M.
Lemma 2.1 [44] For any grid functions u, w € Uy, we have

L 2 L
lulloo < ~——lult, luli < =llull, 6|u|1, (82u, w) = — (8 u, 87 w).

=7 = ||“||§7

Lemma 2.2 For any grid functions u, w € Uy, we have

W u,w),w) =0, (Ayu,u)=0, (A.u, 8)%u) =0.
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Proof The first and second equalities come from [42]. We will prove the third equality briefly
below. According to the notations defined previously, we have

1

8T (Ayu); = E(Axuﬂrl - Axui)
Ir1 1
= E[ﬁ(uwz —uj) — ﬁ(uiﬂ - uifl)]
111 1
= E[z(uwz —Ujy1) — %(”i - ui—l)]

1
= ﬂ(fsjuﬁl —8fui—1) = Ac(8Fu);.
From the definition of the discrete inner product and the second equality, we have
M
(A, 82u) = — (87 (Asu), 87u) = —h Y 87 (Asu)i - 85 u;
i=1

M
= —hY AGTwi 8Tui = —(A(8w), 855 u) = 0.
i=1

This completes the proof. O

Lemma2.3 Ler f(x) € C[xi_1, xiq1] and denote F; = f(x;) and G; = f"(x;), then we
have

2
fG) f/(xi) =¥ (F, F); — %w(G, F)i+0m", 1<i<M,
l’l2
fl(xi) = AvF; — 5 M0+ o, 1<i<M,
h2
i) = 8F = S8G+0MY, 1<i=M.

Proof The firstand third equalities come from [48] and [43], respectively. The second equality
is immediately obtained by Taylor expansion. We omit it here for sake of brevity. O

Lemma 2.4 For any grid functions u, v, S € Uy, satisfying

o R ,
v; —SXM,—ESXU,-‘FS,, 1<i<M, 2.1
ui =uiypm, 0<i <M, (2.2)
Vi = Vit M, 0<i<M, (2.3)
we have
h? n* h?
2 2 2
(v, u) = —luly — EIIUII + mlvll + E(v, S) + (S, u), 24
2 h? 2 h?
u) < — - — —(v, S S, u), 2.5
(v, u) < —luly 18||v|| + 12(v )+ (S, u) (2.5)
h2
(Axv,u) = E(Axv, S) + (AxS, u). (2.6)
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Proof Taking the inner product of (2.1) with « and noticing (2.2)—(2.3), we have

h2
_(s2 2
(v,u) = (qu — —lzéxv + S, u)

h2
(82u, u) — E(&fu, u) + (S, u)

w8
|ue]q 12(v,c%cu)wL(S,u)

h? h?
—lup - —(u, vt 2y — S) (S, u)

12 IV
L N IR B S
= —|ulf — —=lv —|v — (v, ,u).
D) 14412 !

With the help of Lemma 2.1, we have

2 2
(v,u) < —|ul? — R+ w5+ 0.
- 18 12

Combining (2.1) with Lemmas 2.1-2.2, we have

(4 (82u - gsﬁv +5).u)

(Axvs M)

h2
(Ax(afu), u) = 5(4: ), u> +(ALS. 1)

h2
= —(Ac(SFu), 85 u) — (A, 82u) + (A S, u)

h2
= —E(Axv, 82u) + (A, S, u)

h? h?
= _E(AXU7 v+ ﬁéxv —8) + (AxS,u)
2 4

h h h?
= _E(Axv7 v) + m(Ax(SIv), 8fv) + E(Axv, S) + (AxS, u)

h2
= E(Axv, $) + (AxS, u).
This completes the proof. O

Lemma 2.5 For any grid functions u, v € Uy, we have

1 1
Ay(uv); = 3 (8 ui) vi+1+§ (8 ui—1) vie1 + ui Agv;.

Proof Using the definition of the operator, we directly have

1
Ay(uv); = E(ui+lvi+1 —Uj—1vi—1)

1
= E[(Mwl —u)vi+1 + @i —ui—1)vi—1 +u;(Viy1 — vi-1)]

1 1
= 3 (8;Lu,') Viy1 + 5 (S;Fu,-_l) Vi1 + Ui Axv;.

This completes the proof. O
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3 Derivation of Compact Difference Scheme

Denote

co= max {lu(x, )], ux(x, D, luxx(x, D), luxxx(x, 0]} (3.1
0<x<L,0<t<T

Let v = u,, then the problem (1.4)—(1.6) is equivalent to

Uy — uvy + yuuy +kuy —vv=0, xeR, 0<r<T, 3.2)
V=uUyy, XER, 0<t<T, 3.3)
ulx,0) =px), xeR, (3.4
ux,t) =ulx+L,t), vix,t)=v(x+L,t), xeR, 0<t<T. 3.9

Define the grid functions
UF =u(xi,n), VE=v@in), 1<i<M,0<k<N.

With the help of Lemma 2.3, we have

h2
utty (x;, i) = Y (U*, UX); — Ew(vk, Uk +om*), (3.6)
k h? k 4
uy(xi, ) = AxU,‘ - gAxV, + O, 3.7
277k h2 2v/k 4
uyx (xi, ) = 6;U; — EBXVZ- + Oh™). 3.8)

Considering (3.2) at the point (x;, ¢ 1 ), with the help of Taylor expansion and (3.6)—(3.8),
we have
1

1 1 h? 1
§UZ — nd VP + V[W(UO, U, — 7w(vo, U%),-] —I—K(AXU.Z

1
1 1
—foVz)—vW =0} 1=<izM, (3.9)
where
10 <ci(e+h%), 1<i<M, (3.10)

with ¢; being a positive constant. Analogously, considering (3.2) at the point (x;, ), we
have

AU = pAVE+y [yt Ub - h—;w(vk, URy ]+ (AU - thxvf)
—wf=0 1<i<M, 1<k<N-1, (3.11)
where
10 <ex(@®+ 1Y), 1<i<M, 1<k<N-1, (3.12)

with ¢; being a positive constant.

Again considering (3.3) at the point (x;, f;), we have
]’12
V/‘:S?U{‘—E(SfVik+Rf, 1<i<M,0<k<N, (3.13)
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where
IRK| < e3h*, |ARY) <32 +h*), 1<i<M,0<k<N, (3.14)

with ¢3 being a positive constant.
Noticing the initial and boundary conditions (3.4)—(3.5), we have

U =g(x), 1<i<M, (3.15)
Ubk=uUl,,, Vi=Vvi, 1<i<M 0<k<N. (3.16)

1

Omitting the small terms Q{f and R{‘, replacing the grid functions Ul.k, Vi" by uf.‘, vf‘ in (3.9),
(3.11), (3.13), respectively, and noticing the initial and boundary conditions (3.15)—(3.16),
then we construct a finite difference scheme for (3.2)—(3.5) as follows

! ! 0o 1 o, 1oRr 1 1
Sui — s + V[W(u Ui = P ,uf)i] +K(Axui2 - FAXU’?) —v? =0,
l<i<M, (3.17)
i i NG N AN
Alui _I'LAtUi —‘r)/l:'l/f(u s U )I - EW(U , U )1] +K<Axui — FAXUI') —\)Ul- =07
1<i<M, 1<k<N-1, (3.18)
h2
of = 8%uf — So%uf, 1<i<M 0<k<N, (3.19)
uf = o(x;), 1<i=<M, (3.20)
wb =l vE=0k,,, 1<i<M, 0<k<N. (3.21)

4 Conservative Invariant and Boundedness

Theorem 4.1 Suppose {u¥, v¥ |1 <i < M, 0 <k < N} is the solution of (3.17)~(3.21).
Then it holds that

1 1% h*
§(||u1||2+||u°||2)+—[(|u1|%+| |1>+ <||v I+ 10°1%) — (|v1|%+|v°|%>]

| X

se(df+ e —m|v2|1)=nu°u2+u|u°|% B o — B2 o

4.1)
E@ Wby =E@" u’, 1<k<N-1, (4.2)
where
1 L
k+1  k k+1,2 k2 l2 ] !
E@ by = S+ b 1) +20r Y (101 + —n 2 ‘m' V1)

KT k12 k2 n /:+1 2 k2 h* k+12 k|2
+ S[0HR + t + O R  1R) — S D
Proof Taking the inner product of (3.17) with u? and applying Lemma 2.2, we have

[ [ Kh? [ o1
(8,u2,u2)—,u(8,v2,u2)—?(AXUZ,Lﬂ)—v(lﬂ,uZ):O. 4.3)

@ Springer



Journal of Scientific Computing (2021) 87:59 Page90of31 59

Averaging (3.19) with superscripts k = 0 and k = 1, it holds

1
v} =8k — —8?, 1<i<M. (4.4)
With the help of (4.4) and summation by parts, we have

11 21 R,y
Sv7,ut) = (5,(3xuz —ESXUZ),u2>

T T R
—(5r(5xuz),5xu2)—E((Srv%(?xbﬂ)

1 h? [ BVt
—Zuulﬁ — 1u°P) — E(a,vz, v 4 Eafvz)

1 2 0,2 h? 1 h* Lo 1
= —27(|M1|1 — |u |1)—E(8,v2,v2)—m(&lﬂ,(sxlﬂ)

=Lt = w0+ et = 1) - o - )]
2t ! AP 1447 1 vl

4.5)
Applying (2.4) and (2.6) in Lemma 2.4, we have
(Ayv?,u?) =0,
W) = —uf} ||z||+h4|z|2 (4.6)
v2,u2) = —|u?|j 142 V2] .
Substituting (4.5)—(4.6) into (4.3), we have
1 1 02 K 12 02
O = 11 + [ = W + 35 <||v 12 = 10012 = = (0 = 101

B4
) 1.2 1)
+v(udff + Euvzn - mwzh) =o.

Rearranging the above formula, we have

1 % h*
5<||u1||2+||u°||2>+—[<|u1|1 Ju 0|1>+ <||v 124+ 10012 = (' + 101D

wh
—|v

o
144 1

19
+ve (i} + —||vz||2 - —|vz|l) = 12 + plu} +

02 _
144 2 ” |

1
4.7)

Taking the inner product of (3.18) with uk and applying Lemma 2.2, we have
o RN - PR
(Au™, u™) — (4w, u )—?(Axv ut) —vt,u") =0, 1<k<N-1. (438
Averaging (3.19) with superscripts k — 1 and k + 1, it holds

_ _ h2
=2k T s2k 1 <i<M,1<k<N-—1. (4.9)
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With the help of (3.19), (4.9), summation by parts and similar to the derivation of (4.5), we
have

_ 1 h2
k k k 2 k—12 k 2 k—12
(Atv,u>:—ﬂ[(|u = u l|1>+§(||v+1|| — %
h4 k+1,2 k 2
——144(|v+ [T — v ‘lll)], I<k<N-1. (4.10)

Applying (2.4) and (2.6) in Lemma 2.4, we have

(A uF) =0, 1<k<N-1,

PR N TR A

W u") =—|u |1—E||v I +m|v 1. 1<k<N-1L1 (4.11)
Substituting (4.10)—(4.11) into (4.8), we have for 1 <k < N — 1
Ukt ket 2 N AR AR
2o 2 = k) o[ 1 4+ S 11 = ]
Lad
47
Consequently

h2 n*

k+1,2 k—1,2 k+1,2 k—1,2 k+1,2 k—1,2

o [ D SR = D) = 0 = T | =0,
EW by = EWF u* Y, 1<k<N-1.

By the recursion, we have

EW, b =Ew',u®, 1<k<N-1.

]
Remark 4.1 (4.1) and (4.2) can be rewritten as
1
S U %)
TR A + I R 4 k1) — 2 R )]
2 ! Y12 144 ! !
| h2 | h4 1 k _ h2 _ h4 _
For (et} + 10212 = Tt ) + 2vr by (11} + 55 10707 = 5 '17)
2 4
uh uh
= 1 4 e+ = 0017 = T Ok =N -1 (4.12)

Remark 4.2 Combining (4.7) with (4.12), we have

h2
B Wop

2
k1l = 2l + e} + 0
- 12 144

), 1 <k<N.
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5 Uniqueness

Theorem 5.1 The finite difference scheme (3.17)—(3.21) is uniquely solvable.

Proof From (3.19)—(3.21), it is easy to know that 1% and v° have been determined. From
(3.17) and (3.19), a linear system of equations about u! and v! can be obtained with respect
to the first level. Now we consider its homogenous linear system of equations

yh?

1 w 14
;u} - ;vil + Elﬁ(uo, ul); — 7 w0, ul);
2
A A Y 0 1 <i< M (5.1)
p St Ty Al TRl =t=
h2
v}:&ﬁu}—ﬁafv}, l<i<M. (5.2)

Taking the inner product of (5.1) with «!, and combining Lemma 2.2 with (5.2), we have

1 w kh? v
;nuln2 — ;(vl, ul) — E(Axvl, ul) — E(vl, ul) = 0. (5.3)

Applying (2.5) in Lemma 2.4, we have

h
= (5.4)
(Apv', ul)y =0. (5.5)
Substituting (5.4)—(5.5) into (5.3) and a calculation shows that

Dl (B 2) (W %nv‘nz) <0,

Thus, it holds that
lu'l =0, Jv')=0.

Therefore, (5.1) and (5.2) only allow zero solutions, which implies that (3.17) and (3.19)
determine «!, v! uniquely.

Now we suppose that uF=1 uk vk=1 ¥ have been determined. From (3.18)—(3.19), a
linear system of equations with respect to u**! and v¥*! is obtained. Now we consider the

homogenous system of equations as follows

1 I y yh? K
S 7vl{<+1 + El/f(uk’ uk+]),- _ Tw(vk’ uk+1),- + EAfoH

27 ! 27

_ﬁA vk+1_Evk+1—0 1<i<M (5.6)

127 27t T T =h =T :

h2

vt = §2uf T — Eafuf“, l<i<M. (5.7)

Taking the inner product of (5.6) with u**! and applying Lemma 2.2 and (5.7), we have
) - (52 +3) 0 ukh - A =0, 5)

27 2t 2 ’ 2 ' '
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Combining (2.5) in Lemma 2.4 and noticing S¥ = 0, we have

h2 k+1,2
ﬁllv R (5.9)
(A 05Tk = 0. (5.10)

k+1  k+1 k41,2
@ < = -

Substituting (5.9)—(5.10) into (5.8), we have

1 "w v h?
St (B DY (W TR <0,

Then it holds that
W+ =0, [v* 1 =o0.

Therefore, (5.6) and (5.7) only allow zero solutions, which implies that (3.18)—(3.19) deter-
mine #**! and v¥*! uniquely. By the mathematical induction, this completes the proof.

O
6 Convergence and Stability

6.1 Convergence

Let /g and tp be two positive constants. Denote

27 (vro 23,5, 3 5 ph3  vhdt
S Bl e hg ha(h 1
c4 [4<2 M)+16 r0+4yc0r0 0(o+)+16+ 3
3 B21)) 2 2 3Lc

5 = fy (Lco+f) +§(Lcoh0

5 102 5
+3f,/8+2Lc§h1°) 5+ g Lo+ ).

2h2 Zhé thg 2h%

v

161 481 72 8’

(3,uh(2J 57 1 5/<2h2 512 )L 5Lc2
32 2 2 18 2 2

6T 5 l
cg = max{cs, ¢, c7}, €9 = ( CS) (c4+ “hiLc )

2
clo = max{ 674’ \/269}.
Vo

We have the following convergence result.

c6 = Sy*(hoco + co)* +

c7 =

Theorem 6.1 (Convergence) Suppose {UX, VF|1 <i < M, 0 < k < N} is the solution
of (3.9), (3.11), (3.13), (3.15), (3.16) {uX, v¥ |1 < i < M, 0 < k < N} is the solution of
(3.17)~(3.21). Denote ek = UF —uk, fF=VvFk—vk 1 <i <M, 0 <k <N, when
h <hy t <19and 24 ht < 1/c10, we have the error estimate

lekly < cro(z> +h%), 0<k <N.
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Proof Subtracting (3.9), (3.11), (3.13), (3.15), (3.16) from (3.17)—(3.21), the error system is
written as
1 1 1 h2 1 1 1
Sref — ud f;7 + yu®, e); — J/T[w(VO, U2); — 0 u2)l+ KAe?

kh? 1 1
— e AT v = 0, 1<i<M, 6.1)

_ _ 2 _ _
Arek — A fF+y UK, UY — w @k, ub)in - %[w(vk, Ub); — ok, ub)l
2

- h - -
+KAxeff—%Axﬁk—vﬁk:Q{?, l<i<M 1<k<N-1, 6.2)
h2
ﬁ":éﬁe{f—ﬁafffﬂef, 1<i<M,0<k<N, (6.3)
=0, 1<i<M, (6.4)
ek =y fE=fly 1<i<M 0<k<N. (6.5)
Denote

1 _ h? -
FE= S0 + 161 + U+ 1471

h4 k2 k—1,2
- — - , 1 <k<N. 6.6
LR 1skes (6.6)
From (3.1), we have
|U¥; < VLeo, 1UMloo <o, 0<k <N, 6.7)
IVEI < VLo, 11IVFlloo <o, VX1 <V/Lep, 0<k<N. (6.8)

Taking the inner product of (6.3) with f¥, we have

h2
517 = 826k, £5) — E(Sif", 5+ (RE, 5

IA

h2
I3eM 1N+ 5 LA IR L

IA

1 k2 3 2 k2 1 k2 1 k2 3 k2
- + 218 +- + - + 2R
6IIf ll 2|| el 3||f I 6||f ll 2|| ll
2

6 3
§||fk||2+ h—2|ek|%+ 5||R"||2, 0<k<N.

IA

Thus, we have
18 9
A% < ﬁ|ek|%+5||R"||2, 0<k<N. (6.9)

Then the proof is divided into three main steps.
Step 1: Establish the error estimate in the first level. Taking the inner product of (6.1)
with (S,e% , we have

1 [ 0o L 1 yh? 0 1 0o L 1
8re2 (17 — (8 f2,8i€2) +y (¥ (u ,62),5tez)—7(¢(V L UZ) =y (v, u?),8ie?)

11 Kkh? 1ol 11 0 ¢ 1
+K(Aye?, 5e2) — ?(Axf275t€2) —v(f2,8e2)=(0Q", 5e2). (6.10)
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From (6.4), we have

1 1
1€ 1 = —lle'1, 6.11)
1
(Q°.8e7) = —(Q°. eh). (6.12)
T
Applying (2.4) in Lemma 2.4, we have
3 3 Lo Lo i
(0 f2,8e2) = ﬁ(f ,e) — *(f ve)
S e P MY
o2 144" 1
n? 1
+ (L RY +(R1,e1>] - S (f%eh. (6.13)
12 T
According to the definition of ¥ (u, v); and applying Lemma 2.2, we have
0,3 3 1 0 1y I
(Y™, ez),8;e2) = E(lﬁ(u ;e ),e)=0. (6.14)
Moreover, combining (6.7) and Lemma 2.5, we have
0 1 0o 1 1
WV, U2) =y (v, u2),be?)
1 1 1 1
= WV e) +y(f, U =y (s e7), 5e7)
1 1 1
= WD)+ - (O U ) — (0 el e
2t T 2t
1 0 yriy 1 h 0 3 0y74 1
= — (U = Y[ FAU} + AUl
i=1
IR Y S B R Lo o)
= §;<2fz “AL; +§Ui—15 fisa Uz+15xfz)'ei
‘o 2\, 40 1
< 5o (24 )10 e (6.15)
Noticing (6.4) and applying Lemma 2.2, we have
3 3 1 1,1
(Aye?,8,e2) = Z—(Axe ,e)=0. (6.16)
T
Applying (2.4) and (2.6) in Lemma 2.4, we have
1 1
(Axf2,8e2) = *(A s €)+ (A 10eh
1 1
= —[—(Axf‘,RIH(Ale,el)]+—(Axf°,e1> 6.17)
2t L12 2t
and
3 S % Lo 1 2o
(f2,8e2)=—(f,e)+—=(f",e)
2t 2t
-2 [l - —||f RSP —2<f‘ RY) + (R' e1>]+i<f° eh)
2t ! 1447 1T ’ 207 T
(6.18)
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Substituting (6.11)—(6.1 8) into (6.10), we have

le' i < paf —le'R - —nf ||2+m|f 1

2
+ %(fl, R+ (R ') = (£ eh ] + (% e

yh% cot ( 2) 0 | kh?t [h2 1 o1
—_— (24 - . —(Axf", R
t 55 @) e ¢ Log (<SR

+ l(AXR‘, el + l(AxfO, e‘)]

2
+ [ ||f 2 +m|f B+ R+ R e+ (0 )]

- —(u+—)|e1|%—(“1'; e

(144 288)|f [T+70"eh
(“—h2 e =) ULRD+ (n+ ) R+ (T ) (€D
12 2 2
htt
+ S (A RY
2
+Ki’ CARL M+ f0 e %}””-wou-neln

2 2 2

< —(u+7)|el|%—(ﬂ+“h NI + (B + D) + gl i?

2
T wh? vh T wh®>  vh?t 1
+—||Q°||2+( TN (B IR + e P

36 72 12 " 24
3 2
+5(n+ ) IR +6|| il
3/v 0 uh? vkt
N T G na 1l
. 2142
1 1,2 1,2 h*t 12, Ly
( ) hz(uhz e >||R [ +6||€ I~ + 9% AR +8||€ I
72
2 4_2 2 2 2 2
ht y c h“(h+1)
+ 1A £ + — | 2 +—6 7002
3 /vT 2 P2 23+ D
< - (M+— )w|1+ueu +[2(37—u) gt c ]HfH
IIQ e+ (“h2 + ”h2’)+ Y Y
12 24 2\H T
2h4 2 21,22

+ + TR
2882w + vt) 24 '
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When h < hg, T < 10, We have

VT
le'1? < —(n+ =) 1€} + 112

P(Lfo_ )2 K*hitg Vzc%réh%<ho+1>2]”fo”2

2\ 24 6
32 5 [3/mhd vkt 3 vTp 2

1P+ (R 5 3+ )
2h4 2 2h2 2

4 £ 10T m]||R‘||2. (6.19)
5761 24

Taking k = 0 in (6.9), substituting the result into (6.19) and using (3.10), (3.14), we have

V= T
(“+2)|e|1—22 > M

hoty | yean oot g0y 3T oo
24 6 2
3 ,uh(z) vh(z)ro 3 V70 2
() (e )
*hizg | Kot i1
576, 24

< 04(r2 + h4)2.

Rearranging the above term, we have

C. C.
eI} < Wri“ﬁ(r2 +hh? < f(r2 +hh2. (6.20)
2
Consequently
le'l1 < cro(r? + h*). 6.21)

From (6.6), (6.9) and (6.20), we have

ot Ie'|2+£2(||f‘||2+||f°||2)—£(|f1|2+|f°|2)
) D) 144 1 1

1 1,2 h2 12 02
Slel S AP+ 1701

IA

IA

Loip h2<18 12 9 pti2 o 24 p02
- ~ (= 2R + 2R )
Sle' it 4+ 25 (G te 1T+ SIRI2 4+ IR
27 .2
_ (5& n 3h“Lcs
— \du 8
Step 2: Establish the error estimate for 2 < k < N by induction method. Taking the inner
product of (6.2) with A,ek, we have

)(1’2 12, (6.22)

_ _ h2 _
1A 12 — w(Ar f5, Ared) + y (p (UF, UR) — gk, ub), Aek) — %(w(vk, Uk
_ _ Kh2 _
— @k, uh), Arek) +i(Aer, Aek) — ?(Axf’ﬂ Are)

—v(fF Ak) = (0%, Ared), 1<k<N-—1 (6.23)
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Now we suppose that |ek|1 <cio(t?+hM holdsfork =1,2,--- ,Iwithl <] < N—1.
When (2 + h*) < 1/c10, using (6.7)—(6.9), we have

TP A Ly 6.24)
—_— hz 2 9 J— — 9, .
Wby < UM + ekl < VEeo+1, 1<k<l, (6.25)
L L
¥ oo < gwkh < g (\/ZC() + 1), 1<k<lI, (6.26)
2 8
WA= VA 15 = VEeo + 2 < \FLCO+3,/h—4 +2L2R6, 1<k <,
(6.27)
L L 3L |8
0¥ ]loo < gwkh < % + Tf w +2Lc3hS, 1<k <L (6.28)

Using (6.3) and applying (2.4) in Lemma 2.4, we have (1 < k <)

(A fr, Aeh)

h? h* h?
= Ak} - EIIA,f"IIZ + mlArf"l% + E<A,f", ARY) 4 (ARK, Ave®)

h? h* h?
< Ak — Enalfk I+ mm,fkl% + EllAtf"ll NARN A+ 14 RE - (AR

(6.29)
Noticing that
Ip(Uk7 Ulz)i — W(uk, ulz)i
= YU, UR); — (U — & UF — )y = g )+ (b, UP;
1 - _ | i )
= g [quxef + AX(Mkek)i] + 5 I:e{'(AXUik 4 Ax(ekUk)i] ’
and applying Lemma 2.5, we have
YUk, U =y, by,
! Ry 1/, ¢ ]
= gl:quxelk + E(Sjelk)uf+l + E(‘S;—eﬁl)”f’:l + ezkAxuij
1 -] _ | _ )
+ g[efoU,k + 5(8;_61[()1]11(-}-] + 5(8;_(3{'(_])111'/(_1 + elkAxUlk] (630)
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Combining (6.7), (6.25), (6.26) with (6.30), we have
— (v UH =yt i), )

M
h c ol 1 .
- —EZ[quxef + 5(5;65'()”{';1 T3 <5x e 1) R efouf] - Avef

- fZ[ CacUf + 5 (57eb Uy + 5 (576 JUE + e acf] - avel
1 i 1 i i
< 2 (1 oo - 1K1 + 5|ek|1 Moo + 1eF 11 - oo + e oo - 111 ) - 14re |
1 P 1 P
5 (e oo 1UF1 4+ S1e1 - 105 oo
3 2
1 - -
31K U oo + e oo - 1UF1 ) - 1A€A
VL ;
§[ (fCO—I-l)-Iekll
VL - VL ;
7(\F60+1>'|€k|1+(\/260+1)'7|6k|1]'llAze’kll

L
+5[VEe L o 1kl + o - Yole ] et

L

CO;I A ||+%+C‘)-|ek|l-|m,ekn, l<k<l. (631

Similarly, it is concluded that
yvE R = of, dby = w ok b+, U
= 31,[ fAvef + 2(5+ k) Vi1 t+ 2(5; e 1) vy +E§Axvf]
+ g[ﬁ»"Afo (8+fk)U,+1 (Sjﬁ»"_l)uf_l + f,.kAfo]. (6.32)
Combining (6.7), (6.27) and (6.28), we have for 1 <k <1
(v (vh, 05—yt ub), aet)

M—1
- 1 - -
I:kAxe + - (5je§)v§‘+l+§(5je{11)vﬁl+ef‘Axvl’.‘].A,ef

i=1

_h
3

S [ttt (5t )0 (5 O+ ]

h
3 i=1
k L k L k k k k
g(nv oo - 511 + 516811 0¥ oo + 1681 108 oo + ek - 10411) - 1 4ve¥
1 -
+ 3 (Ilfkll 14U oo + 517411 - 105 o

+ §|f"|1 MU oo + 141 14U o) - 1 Asek]
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Ir, Lo 3L [38 26
3250+ e+ 2eedne)

VL 8 .
+ T(\/Zco +3,) 7+ 2Lc§h6)] AL AR

1 2
+ g(zco + co) - IFEN - e

=(@ 3VL [8

i 2 c
216 k k 0 k k
o S 2Le3n0) Ll A+ S (o + ) 1T A

(6.33)

=

In addition, applying Cauchy-Schwarz inequality, we have
—(Acek, Areh) < acek] - Aek], 1<k <l

Moreover, it holds for 1 < k </

(AcfF, Aty = (A (52" - i’—;aﬁfk' + RF), Aet)

_ ]’l2 _ _
= (A (82¢h), Aeh) — E(Ax(a,%fk), Are®) + (ALRK, Aeb)
_ h2 _ _
= —(A:(85Feb), A (5T — E(Axfk, Ar(82e)) + (AL RF, Areh)

_ h2 _ h? -
< 14 18k = T (A A (7 4 5007 = RY)) + R4

_ h2 _ h4 _
= [Acek 1Ak — E(Axf", Acff + m(ajmxfk), s A )

h2 _ _
+ E(Axfk, A RY) + RNy 1A

_ h2 _ ]’l4 _
< 1Ak 1Ak + E|f"|1 AR+ mmxfkn 1A fE

h2 _ _
+§|ka1 AR+ IRM - AR (6.34)

and

_ _ hZ _ _
(%, Aeky = (S%ek _ E<s§f" + Rk, A,ek)
_ h2 _ _
= (8265, Aeh) — E(éﬁfk, Are®) + (RF, Areb)

_ h2 _ _
= —(8Fek, A (5Fe)) — E(f", A1(825)) + (R¥, Areh)

1 k+12 k—12 h? k k h? 2 rk k k k
= —Eﬂe IT—le |1)_E<f 7At(f + 128xf - R >)+(R s Are’)
1 k41,2 k—12 h? k k h* k 2k
= gl Tl D = R U A = g O AT

]’12 _ _
+ E(fk’ ARY) + (R, Ae)

< 1(| R P P b i 1(||f"“||2 %)
- 4t ¢ 1 ¢ 1 12 47
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h4
T o
Substituting (6.29), (6.31)—(6.35) into (6.23), we have

2 _ _
LR - ) + 2Ilf"||~||AfR’<||+||R"||-||Ate"||- (6.35)

h2
I T Al &

h* h?
g AR+ SIAP - NARN + 14 RE - 14t ]

144
LC()—}—f Lco + co
+ 7[5 1 A ||+f-|e"|1-||Ate"||]
; yh®r/Leo | 3W/L ;
elalnaet+ L[ (B0 E S ancne) ikl -faet

2 co ich? :
+§(co+;)-||f"||-||Afe’<||]+—[|Axe"|1-|A,e"|1
h? n*
+ gl A 1A - 1A f"|1+—|f"|1 A RY|
i :
+ IR Ak ]+ v] = (e = e D

h* 1 k+1,2 k—1 K k+12 k—12
TR el V) ||>+144 4<|f =1

h2 - _
+ I AR+ IRF - 140 1] + 1041 - 1A

/thz /~Lh2 Mhz
< ——nA,fku2 + —nAtfknz + 5—4||Arf"||2

3u 5u2
+ —HA RYP + - ||A, P+ =1 RE
Sy (LCo+«E)2

+ muAte"n2 + o €13
1 51/ (Lco + c0)? 1
gl AP+ =l 4 Sl
S5k? Sy2h* Ly 3WL 2 ;
6 k2
D L e B N

1 5y2h2(hc0 + co)? 1 K2

+—||Aze"||2+—||f’<||2+—-—|A,e"|%
18 4

5k 2h ;
+ |Acek? + ||A 12 + |f"|%

le k2 ich® ) k2 ( k k

— . —A —) = AR
N |1+(864 Mh4| SR (Y 1R+ Dna

52t ¢ v _
ool + 2R 4—[(|ek+1|% 11

h? -
S Rl Vil D (If"“ — 171
2 L k2 k2, SV R
— AR —lA — IR
+ 144||f I+ || RY +10|| I+ IR
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1 5
ZOAKI? & 20k 12
+ g lae P+ 210k

v _ h? _
< ||A,e"||2—4—[(|ek“|%—|ek D+ U =

Sy%(Leo + ~/L)?

k+12 k—1,2
144(|f f-1r ]+ [ -

592 /Leoh?  34/L
+L< 0 + =

2 52 10k%7
8 +2Le3h10) +L+ RGT

8 9 !
592 (Lco—l—co) | k|2 5y2h%(heo + co)? ||fk||2+(K2h4

18 18 9614
2 K2h6

k
* 8641 * 1296 144 )”f I?
2,2 2

3uh? | su? k SKk*h v B2 O oky2
BN AR ( 7) R = . (636
+< » Tt )|| R + 5 T IR+ (6.36)

Simplifying and rearranging (6.36), then using (3.12) and (3.14), we have

1 h? h*
=[50+ 1 + —(Ilf"“ 12+ 141 = g AR+ 14D
04
= LA R D +  E TD — e 1]

5y2(L 2 5 Leoh® 3 5 102 :
= [ il c°+f) Sv? == f,/8+2L 2h10) ‘ ;]le"l?

SVZ(LCO + ¢p)? ke 5V2h2(h60 + ¢0)?

00N ok 4 5 Vs
214 274 2p6
+ (K%Z + 8K6ZM + ';226 T )Ilf"ll
5 CS(|ek+1|%2+ i Ie"l%+2lek 1I%)

+e [’“—2<||f"+‘||2 FIAR R 11D + er(e? 4+ a2
°L36 36 !

|ek+]|2 4 |€k|2 h2
= o[ 1+ —(Hf"“ 12+ 17415
e[ + e 7
+cg[f (IIf 124 1757 + s+ 12, (6.37)

whenh < hg,t <719 forl < k < [. Thanks to

R+ AP —h4 SU 1D
24 ! !
h2 4 k+1 k 2 k+12 k2
= (- 288)(nf AR = S0 A,

we have

1 3 h? _
E(|e"|%+|e" ll?)+%(||f"||2+llfk N2 < Ff, 1<k<N. (6.38)
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Combining (6.37) with (6.38), we have
S PR P < cg(FF b P e 4 1<k <L
T

According to the Gronwall inequality, when 2cg7/v < 1/3, we have

6T cg

P <exp (20) [P+ %(rz +h42) 1=k=l.
From (6.22), when h < hg, we have
FF <o +1M?, 1<k <. (6.39)
A combination of (6.6), (6.38) and (6.39), we have
ety < V2FkH < aeo (22 + 1Y) < cro(@® + 1Y), 1<k <l
By the mathematical induction, we have
e < ot +hY), 1<k<N-1. (6.40)

Step 3: Step 1 adding Step 2 yields the final result. Combining (6.4), (6.21) and (6.40),
we have

ekl < cro(z® +h*), 0<k<N.
This completes the proof. O

Remark 6.1

£|ek| < LO@( 2
p o 2

lleklloo < 24+h%, 0<k<N.

6.2 Stability

In the below, we will discuss the stability of the difference scheme (3.17)—(3.21). Here we
only consider the stability with respect to the initial value. Suppose {12{.‘, ﬁl’.‘ [1<i<M, 0<
k < N} is the solution of

1 N 0 Al R o a1 LRt N
it} — 18,07 + y[l/f(u J02); — ?w(v 0 )i] +K(Axui2 — ZAXD’?) -7 =0,
1<i<M, (6.41)

i ‘ P N SN SN AN

Avif = A+ y [t i = Zu @i ]+ (Al - T Af) —vif =0,
1<i<M,1<k<N-1, (6.42)
h2
Of = 8% — SO, 1<i<M, 0<k=N, (6.43)
0 = () + (), 1<i<M, (6.44)
af =0k, =05, 1<i<M 0<k<N. (6.45)
Denote
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Subtracting (3.17)—(3.21) from (6.41)—(6.45), we have
1 1 o h? o 1 h? 1
o — s +y[w @ ity — Ty ady ] -y [ uby - Svelud]
1 2 1 1

1 h 1 1
+re(Amf - T A ) —vEF =0, 1=i=M, (6.46)

- h2 - _ h2 _
Aunf = wagf +y v iy = Sy @i = [t b = Sw et ]

_ ]’l2 _ _
+ k(A - ZAxsgik) —vEF =0, 1<i<M, 1<k<N-1, (6.47)
h2
g =8 — ;0E, 1=i=M 0=k=N, (6.48)
n=¢"(x), 1<i=<M, (6.49)
nf =k, &8 =8y 1<i<M, 0<k<N. (6.50)

Similar to the proof of Theorem 6.1, we can obtain the stability with respect to the initial
value.

Theorem 6.2 (Stability) Suppose {nf, Sik |1 <i <M, 0 <k < N} is the solution of
(6.46)—(6.50), then there are positive constants hy and vy, such that when h < hy, T < 10,
we have

Il < enle’h, 0<k<N,

where c11 only depends on the coefficients of (1.4)—(1.6), the final time T and the spatial
period L, however independent of the temporal step size h and spatial step size .

7 Numerical Experiments

In the section, we will implement several numerical examples to verify the effectiveness of
our scheme and the correctness of theoretical results.
When the exact solution is known, we define the discrete error in the L°°-norm as follows
Ex(h, 1) = max |Uik—uf-‘|,
1<i<M, 0<k<N
where Uik and uf represent the exact solution and the numerical solution, respectively. Fur-
thermore, denote the spatial and temporal convergence orders, respectively, as
Es(2h, T) Exo(h,27)
=logy, ————~, Order’, = log, ———"~.
Eoo(h, 7) Eco(h, 7)
When the exact solution is unknown, we use the posterior error estimation to testify the
convergence orders in temporal direction and spatial direction, respectively. For sufficient
small /2, we denote

OrderﬁO

Foo (2h, T)
k k h o0
Foo(h, T) = ISiSAr}ll,a(;(SkSN luj (h, T) —u3;(h/2, )|, Orders, =log, <m> ,
and for sufficient small 7, we denote
Goo(h, 27)
k 2k
Goolh, 1) = max fuf(h,7) —ui*(h, 7/2)I, Ordery, =log, (%) :
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Table 1 Maximum norm errors behavior versus /-grid size reduction with the fixed temporal step-size T =
1/5000 in Example 1

h Difference scheme (3.17)—(3.21) Difference scheme in [33]
Ex(h, 1) Ordergo Exo(h, 1) Ordergo

1/4 9.0677e—3 * 1.8968e—2 #*

1/8 5.9120e—4 3.9390 1.3213e-3 3.8436

1/16 3.7491e—5 3.9790 8.7856e—5 3.9107

1/32 2.3538e—6 3.9935 5.5096e—6 3.9951

1/64 1.2326e—7 4.2552 3.1792e—7 4.1152

Example 1 We first consider the following BBMB equation (see [37])
Up — Upxr Uy Uy — Uy = f(x,1), O0<x<2, 0<t <1,
where

T
fl, 1) = (1+27%)e sinwx + 562’ sin 27 x + we' cos wx.

The initial condition is determined by the exact solution u(x, t) = e’ sin wx with the period
L=2.

The numerical results are reported in Tables 1-2 and Figs. 1-2.

In Table 1, we fix the temporal step-size T = 1/5000, meanwhile, reduce the spatial step-
size h half by half (h = 1/4,1/8,1/16, 1/32,1/64). As we can see, the spatial convergence
order approaches to four order approximately, which is consistent with our convergence
results.

In Table 2, we fix the spatial step-size h = 1/50, meanwhile, reduce the temporal step-
size t half by half (r = 1/20, 1/40, 1/80, 1/160, 1/320). We observe that the temporal
convergence order approaches to two order in maximum norm.

Compared our numerical results with those in [33] from Tables 1 and 2, we find our
scheme is more efficient and accurate.

Moreover, in order to verify the stability of the difference scheme (3.17)—(3.21), we have
drawn the stable error curves in Fig. 1. For each curve, we fixed different temporal step-
size (t = 1/8, 1/16, 1/32, 1/64, 1/128) by reducing the spatial step-size & half by half
(h=1/2,1/4,1/8,1/16,1/32, 1/64). We observe that the spatial error in maximum norm
approaches to a fixed value since the numerical errors mainly come from the discretization
in time, which verifies the difference scheme (3.17)—(3.21) is almost unconditional stable.
In Fig. 2, the numerical panorama for u(x, t) and numerical profiles are displayed, which
further demonstrate the high accuracy of our scheme in practical simulation.

Example 2 Then, we consider the following BBMB equation
U — Ulyyr +UUy + Uy — VU =0, =25 <x <25, 0<r<1,

with the initial condition

1 X
[0) = osech? (3), =25 =x =25,
u(x,0) 2sec i =x=
where the exact solution is unknown and the period L = 50.
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Table2 Maximum norm errors behavior versus 7-grid size reduction with the fixed spatial step-size & = 1/50
in Example 1

T Difference scheme (3.17)—(3.21) Difference scheme in [33]
Exo(h, T) Order, Eoo(h, T) Order,

1/20 1.9486e—3 * 2.3772e—-3 *

1/40 4.8670e—4 2.0013 6.0794e—4 1.9673

1/80 1.2144e—4 2.0028 1.5342e—4 1.9865

1/160 3.0162e—5 2.0094 3.8242e—5 2.0042

1/320 7.3615e—6 2.0346 9.2928e—6 2.0410
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Fig. 1 Numerical stability test chart
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T
(a) The numerical panorama for u(z,t) (b) Numerical solution profiles

Fig.2 a The numerical solution, b the solution profiles for u(x, ) witht = 0.5, 1, 1.5,2,2.5,3
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Table 3 Maximum norm errors behavior versus /-grid size reduction with the fixed temporal step-size T =
1/2000 in Example 2

h Difference scheme (3.17)—(3.21) Difference scheme in [33]
Foo(h, T) Ordergo Foo(h, T) Ordergo

5/4 4.2025e—4 * 8.1169¢—3 #*

5/8 3.2284e—5 3.7024 7.6856e—4 3.4007

5/16 2.0457e—6 3.9801 5.7840e—5 3.7320

5/32 1.2833e—7 3.9946 3.8500e—6 3.9091

5/64 7.9715e—9 4.0089 2.4304e—7 3.9856

Table 4 Maximum norm errors behavior versus t-grid size reduction with the fixed spatial step-size h =
1/2 (M = 100) in Example 2

T Difference scheme (3.17)—(3.21) Difference scheme in [33]
Goo(h, T) Order, Goo(h, T) Order},

1/20 2.1054e—5 * 3.8007e—4 *

1/40 5.4491e—6 1.9500 9.9663e—5 1.9311

1/80 1.3852e—6 1.9759 3.0017e—5 1.7313

1/160 3.4915e—7 1.9882 1.3680e—5 1.1337

1/320 8.7641e—8 1.9942 1.0438e—5 0.3903

The numerical results are showed in Tables 3, 4, 5 and 6 and Fig. 3 with & = 1 and
v=1.

Firstly, we fix the temporal step-size T = 1/2000, in the meantime, decrease the spatial
step-size & half by half (M = 20, 40, 80, 160, 320, 640). As we can see from Table 3, the
spatial convergence orders approach to fourth order for both schemes. However, our scheme
is more accurate than that in the reference [33].

Next, we fix the spatial step-size h = 1/2, and then reduce the temporal step-size t
half by half. The maximum norm error and the temporal convergence orders are listed in
Table 4. The temporal convergence order approaches to O(z2) approximately. However, the
difference scheme in [33] is less than two and the accuracy is far from enough. We further
refine the spatial grid (fixed step size & = 1/100) and decrease the temporal step-size t half
by half again in Table 5, though both schemes can achieve orders two, our scheme (3.17)—
(3.21) is still better than that in [33] with respect to the accuracy. Combining Tables 4 and
5, we conclude that our scheme is more robust and stable that the scheme in [33], which
illustrates the superiority of our scheme.

To further verify the performance of the numerical scheme (3.17)—(3.21) more rigorously,
we test the energy conservation invariants (4.12) with different ; and v. The conservation
invariants of E" at different time are demonstrated in Table 6. It is easy to see from Table 6
that the three-point four-order compact difference scheme can keep the conservative invariant
even for the very small parameters, which demonstrate that our numerical scheme is stable
and robust. The result is also consistent with Theorem 4.1.
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Table 5 Maximum norm errors behavior versus t-grid size reduction with the refined spatial step-size h =
1/100 (M = 5000) in Example 2

T

Difference scheme (3.17)—(3.21)

Difference scheme in [33]

Goo(h, T) Order, Goo(h, T) Order,
1/10 3.0686e—4 * 1.4755e—-3 *
1720 7.8967e—5 1.9583 3.7422e—4 1.9793
1/40 2.1227e—5 1.8954 9.4215e—5 1.9898
1/80 5.4878e—6 1.9516 2.3636e—5 1.9950
1/160 1.3945e—6 1.9765 5.9192e—6 1.9975

Table 6 Numerical invariants of E” at time ¢ with h = 1/5 and T = 1/256 in Example 2

t (m,v) = (100, 1) (n,v)=(1,1) (p,v) = (0.01,0.01) (m, v) = (0.0001, 0.0001)
0 7.999997216956726 1.399999972059210 1.333999999610235 1.333339999885745
2 7.999997216861070 1.399999972053378 1.333999999610103 1.333339999885731
4 7.999997216774900 1.399999972048419 1.333999999609973 1.333339999885733
6  7.999997216690209 1.399999972044242 1.333999999609848 1.333339999885742
8  7.999997216644139 1.399999972040209 1.333999999609709 1.333339999885743

—t=2
—t=4
t=06
=
—t=10
t=12

(b) Numerical solution profiles

(@) The numerical panorama for u(z, t)

Fig.3 a The numerical solution r = 12, b the solution profiles for u(x, #) with t = 2, 4, 6, 8, 10, 12

Example 3 Finally, we consider a nonlinear BBMB equation

Uy — Wlhxxr + YUy + KUy — Vixy + F/(”) =0,
u(x,0) = ¢(x),

where F(u) = 1/4- (1 —u®?, x;, = =50, x, = 50, u = y = k = v = 1. The initial
condition is ¢ (x) = ésechz (%)

x<x<x, 0<t<T,

X =X < Xp,

Since the above problem is nonlinear, we use Newton linearized technique (see [53]) for
practical implementation. In order to demonstrate the superiority of the present scheme,
we compare it with the numerical result in [53] with the period boundary condition. The
corresponding convergence orders in spatial direction and temporal direction are reported in

@ Springer



59 Page28o0f31 Journal of Scientific Computing (2021) 87:59

Table 7 Maximum norm errors behavior versus /-grid size reduction with the fixed temporal step-size T =
1/100 in Example 3

h Difference scheme (3.17)—(3.21) Difference scheme in [53]
Foo(h, T) Order” Foo(h, T) Order”

1/10 1.7767e—5 #* 5.2399¢e—4 #*

1/20 1.1166e—6 3.9920 1.3105e—4 1.9994

1/40 6.9998¢—8 3.9957 3.2769¢—5 1.9997

1/80 4.4432e—9 3.9776 8.1942e—6 1.9996

1/160 3.0875e—10 3.8471 2.0495e—6 1.9993

Table 8 Maximum norm errors behavior versus 7-grid size reduction with the fixed spatial step-size h =
1/100 (M = 10000) in Example 3

T Difference scheme (3.17)—(3.21) Difference scheme in [53]
Goo(h, 7) Ordery, Goo(h, ) Order,

1/10 9.7617e—3 * 2.4014e—3 *

1/20 2.9675e—3 1.7179 6.7036e—4 1.8409

1/40 7.5462e—4 1.9754 1.7703e—4 1.9209

1/80 1.9088e—4 1.9831 4.5492¢—5 1.9603

1/160 4.8043e—5 1.9903 1.1531e—5 1.9801

12 : :
t=2
gH—t=4 - .
t=6 / \
ost|—t =8 / \
= —t=10 |/ \
g 06
s
04 |
| \
|
02 \ 1
/. \
i 0 X ) . y y
x 50 -40 30 -20 -0 0 10 20 30 40 50
50 0
x
(a) The numerical panorama for u(z,t) (b) Numerical solution profiles

Fig.4 a The numerical solution # = 8, b the solution profiles for u(x, t) witht = 2, 4,6, 8, 10

Tables 7 and 8, respectively. We see from Table 7 that the numerical errors are better than
those in [53] along with the spatial direction. According to the results in Tables 7 and 8, we
know that the convergence orders are two in time and four in space for difference scheme
(3.17)—(3.21), which are consistent with our theoretical results.

The numerical surfaces and the numerical curves are simulated by difference scheme
(3.17)—(3.21) in Figs. 4, 5. Our scheme is much more accurate than that in [53] and clearly
depicts the evolutionary process of the solution.
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—t=16

—t=17

t=18

—t=19

—t=20

x t 065 I
&5 0 50 40 -30 20 10 0 10 20 30 40 50
T
(a) The numerical panorama for u(z,t) (b) Numerical solution profiles

Fig.5 a The numerical solution t = 20, b the solution profiles for u(x, t) with t = 16, 17, 18, 19, 20

8 Conclusions

In the work, incorporating the reduction order method, a three-point four-order compact dif-
ference scheme and a three-level linearized technique, we propose and analyze a linearized
implicit, fourth-order compact scheme for the BBMB equation. We have obtained the unique
solvability, conservative invariant, and boundedness. Moreover, we have rigorously proved
the maximum error estimation and stability. Compared presented scheme with those in the
references, the novel fourth-order compact scheme reliably improve the computational accu-
racy. Moreover, presented scheme can be extended to the BBMB equation with homogeneous
boundary conditions without any difficulty. In the future, extended our technique and idea
to other nonlocal or nonlinear evolution equations [5,6,27,29,30,39,49] will be our on-going
project.
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