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Abstract
Galerkin finite element method is applied to dual-phase-lag bio heat model in heterogeneous
medium. Well-posedness of the model interface problem and a priori estimates of its solu-
tions are established. Optimal a priori error estimates for both semidiscrete and fully discrete
schemes are proved in L∞(L2) norm. The fully discrete space-time finite element discretiza-
tions is based on second order in time Newmark scheme. Finally, numerical results for two
dimensional test problems are presented in support of our theoretical findings. Finite element
algorithm presented here can contribute to a variety of engineering and medical applications.

Keywords General hyperbolic equation · Heterogeneous medium · Finite element method ·
A priori analysis · Optimal error estimates

Mathematics Subject Classification 35L05 · 65M15 · 65M60

1 Introduction

1.1 Modeling Background

It has long been established that body temperature is an indicator of health. Abnormalities
in local body surface temperature have been recognized as a sign of disease for centuries.
The modeling of heat related phenomena such as bio heat transfer is of great importance
for the development of biomedical technologies, such as thermotherapy in treating diseases
like tumor and injury involving skin tissue. Heating to the temperatures higher than that
required to treat the diseased tissue can result in inadmissible damage to the adjoining healthy
regions and insufficient heating can lead to under-treatment. Themost commonly usedmodel
among many bio heat transfer models is the Pennes [27] bio heat model for simplicity and
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validity. Pennes bio heat transfer equation is based on classical Fourier’s law. Pennes model
assumes that any thermal disturbance produced at a certain location will be felt throughout
the medium at that instant. In fact biological tissue, along with a number of other common
materials, exhibits a relatively long thermal lag time (e.g., [7,22,23,33]). Due to implication
of such relaxation time, heat conduction in biological media is generally not described by
Fourier’s law, but rather by theMaxwell–Cattaneo law, known as thermalwavemodel [10,11].
Although Maxwell–Cattaneo model has taken care of thermal relaxation time, the validity
of the thermal wave model becomes debatable in view of the fast-transient response with
microstructural interaction effects [32]. In order to consider the effect of micro-structural
interaction in the fast transient process of heat transport, a phase lag for temperature gradient,
τT ,which is absent in theMaxwell–Cattaneomodel, has been introduced in [20,32,34,38,39].
The corresponding model is called the dual-phase-lag (DPL) model. Mathematically, DPL
model is described by a time-dependent equation [38,39]

τqρc
∂2T

∂t2
= k∇2T + τT k∇2 ∂T

∂t
− ωbρbcbT − (τqωbρbcb + ρc)

∂T

∂t

+(
ωbρbcbTa + qmet + qext + τq

∂qmet
∂t

+ τq
∂qext

∂t

)
(1.1)

where ρ, c, k are the density, specific heat and thermal conductivity of skin tissue, respec-
tively; ρb, cb are the density and specific heat of blood, ωb is the blood perfusion rate; Ta and
T are the temperatures of arterial blood and skin tissue respectively; qmet is the metabolic
heat generation in the skin tissue and qext is the heat source due to external heating, and τq

is defined as the thermal relaxation time.

1.2 Basic Notations

Throughout the work, we will follow the usual notation for Sobolev spaces and norms. For
any domain M ⊂ � ⊂ R

2, each integer k ≥ 0 and real p with 1 ≤ p ≤ ∞, W k,p(M)

denotes the standard Sobolev space of functions with their weak derivatives of order up to
k in the Lebesgue space L p(M). When p = 2, we write Hk(M) for W k,2(M). We use
‖ · ‖s,M and | · |s,M to denote the norm and seminorm in the Sobolev space Hs(M) for any
s ≥ 1, respectively. The inner product in Hs(M) is denoted by (·, ·)s,M. The space H0(M)

coincides with L2(M), for which the norm and the inner product are denoted by ‖ · ‖M and
(·, ·)M, respectively. For simplicity of notation, we skip the subscript M in the norm and
inner product notation when M = �. H1

0 (�) is a closed subspace of H1(�), which is also
closure of C∞

0 (�) (the set of all C∞ functions with compact support) with respect to the
norm of Hs(�) (cf. [1]).

We also define the standard Bôchner spaces L2(J ;B) and L∞(J ;B), where B is a real
Banach space with norm ‖.‖B and J = [0, T ], consisting of all measurable functions φ :
J → B for which

‖φ‖L2(J ;B) :=
( ∫ T

0
‖φ(t)‖2Bdt

) 1
2

< ∞ and

‖φ‖L∞(J ;B) := ess sup
t∈[0,T ]

‖φ(t)‖B < ∞,
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Fig. 1 Domain � and its
subdomains �1, �2 with
interface �

respectively. We denote by Hm(J ;B), 1 ≤ m < ∞, the space of all measurable functions
φ : J → B for which

‖φ‖Hm (J ;B) =
( m∑

j=0

∫ T

0

∥∥
∥
∥
∂ jφ(t)

∂t j

∥∥
∥
∥

2

B
dt

) 1
2

< ∞.

For our notational convenience, we will be using ∂φ
∂t or φt or φ′ interchangeably to denote

time differentiation of φ. Similar remarks hold for other higher order time derivatives.
When no risk of confusion exists, we shallwrite L2(B) for L2(J ;B), L∞(B) for L∞(J ;B)

and Hm(B) for Hm(J ;B).

1.3 Problem Description

The goal of the present work is to study the following general linear second order hyperbolic
equation

u′′ + σu′ + δu − ∇.(ε∇u′ + β∇u) = f (x, t) in � × (0, T ], T < ∞ (1.2)

with initial and boundary conditions

u(x, 0) = u0, u′(x, 0) = v0 in � & u(x, t) = 0 on ∂� × (0, T ] (1.3)

where � is a convex polygonal domain in R
2 with a Lipschitz boundary ∂�. Here, σ =

σ(x), δ = δ(x), ε = ε(x), β = β(x) are non-negative real valued functions defined on
� and f denotes the source. In this work, it is implicitly assumed that initial data (u0, v0)

and the source function f are sufficiently smooth so that solution belongs to desired Sobolev
spaces.

In realistic applications it is often possible to have heterogeneity of the underlyingmedium.
In particular, media parametersmay have jump discontinuities across interfaces in the domain
of interest. As a model, we consider DPL bio heat transfer model (cf. [14,20,23,33,34,38,39]
and references therein) in multi-layered media. Since the thermal properties of biological
media vary between different layers, so, it is natural to have heterogeneity in the underlying
media. Of our special interest is the casewhen the domain� consists of two open subdomains
�1 and �2 with C2 smooth interface �, and physical coefficients are discontinuous and
piecewise constants in � (see, Fig. 1). We write

(σ, δ, ε, β) =
{

(σ1, δ1, ε1, β1) in �1,

(σ2, δ2, ε2, β2) in �2.

123



58 Page 4 of 32 Journal of Scientific Computing (2021) 87 :58

The problem (1.2)–(1.3) is completed with the following physical interface conditions (cf.
[20])

[u] = 0,

[
ε(x)

∂u′

∂n
+ β(x)

∂u

∂n

]
= 0 along � × [0, T ], (1.4)

where [u] = u1|� − u2|� and
[
ε(x) ∂u′

∂n + β(x) ∂u
∂n

]
= ε1

∂u′
1

∂n1
+ ε2

∂u′
2

∂n2
+ β1

∂u1
∂n1

+ β2
∂u2
∂n2

on

�. Here ui stands for the restriction of u to �i and ∂
∂ni

denotes the outer normal derivative
with respect to �i , i = 1, 2. The present work regards the temperature and the heat flux at
the interface of two regions as continuous. In other words, the heat contact resistance at the
interface between the two different media is neglected.

Interface problems are frequently encountered in scientific computing and many applied
sciences. Typical examples are the elliptic, parabolic and hyperbolic equations with discon-
tinuous coefficients. Due to the practical relevance of interface problems inmany engineering
and industrial applications, numerical methods for interface problems have been investigated
widely. Finite element method (FEM) is another class of important approaches for inter-
face problems and a wide variety of FEM approaches have been proposed in the literature.
Classical finite element methods for interface problems are mainly based on the interface-
fitted discretization. The performance of such kind of interface-fitted FEMs depends on the
quality of underlying finite element partition and how well the interface is resolved by the
finite element mesh (cf. [17]). A fitted finite element method is proposed and analyzed for
the interface problem (1.2)–(1.4). The main contribution of the current work is to derive
optimal order of convergence of the finite element solution of the BVP (1.2)–(1.4) in the
L∞-in-time/L2-in-space norm. The fully discrete scheme can be reinterpreted as the Crank–
Nicolson discretization of the reformulation of the governing equation in the first-order
system, as in Baker [4]. The derivation of the a priori error bound heavily depends on the
approximation properties (cf. Lemma 3.6) of a newly introduced non-standard projection
operator along with some new analytical tools and techniques, including a λ-strip argument
for quantifying the relation of error near the interface in terms of the mismatch parameter λ.
There is plenty of literature available on the numerical study of the DPL bio heat model with
discontinuous coefficients. One may refer to [20,33,34,39] and references therein. However,
to the best of our knowledge, finite element analysis for the general linear second order hyper-
bolic equation with discontinuous coefficients has not been studied earlier. In this work, we
are providing both mathematical and numerical framework for the study of BVP (1.2)–(1.4).
Convergence analysis, without the interface, for the general linear second order hyperbolic
equation via finite element algorithm has been well studied in literature (cf. [5,13,16,26] just
to name a few). More recently, the spatial discretization of Westervelt’s quasi-linear strongly
damped wave equation by piecewise linear finite elements has been discussed in [25]. A
priori error analysis in [25] heavily depends on general linear wave model with time depen-
dent coefficients. Optimal convergence in L∞(L2) norm is obtained for sufficiently smooth
solution. Fully discrete error analysis is still open for such problems. Our results are intended
to enhance the numerical analysis of strongly damped linear wave equations where physical
domain consists of heterogenous media.

The rest of the paper is organized as follows. In Sect. 2, we discuss the existence, unique-
ness and regularity for the solution to the interface problem. Finite element discretization and
some important theoretical results to be used in this article are discussed in Sect. 3. Section 4
is devoted to the error estimates for the semidiscrete scheme. The error analysis for the fully
discrete scheme is presented in Sect. 5. Section 6 focuses on numerical examples. Finally,
results are summarized in Sect. 7 with a brief outline on future work.
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2 Preliminaries

This section is devoted to existence, uniqueness and regularity for the solutions to the model
interface problem (1.2)–(1.4) in a convex polygonal domain� ⊂ R

2 with a Lipschitz bound-
ary ∂�. The solution to the interface problem has a higher regularity in each individual region
than in the entire domain. This regularity result is critical for our further numerical analysis.

For the sake of brevity, we write W = L2(�), V = H1
0 (�) with its dual space V ′ =

H−1(�) andX = L2(�)∩H1(�1)∩H1(�2) equippedwith norm ‖v‖X := ‖v‖+‖v‖1,�1+
‖v‖1,�2 . We also introduce two bilinear forms Aε(·, ·) and Aβ(·, ·) on V as follows

Aε(w, v) =
∫

�

ε∇w · ∇vdx = A1
ε(w, v) + A2

ε(w, v) ∀w, v ∈ V (2.1)

and

Aβ(w, v) =
∫

�

β∇w · ∇vdx = A1
β(w, v) + A2

β(w, v) ∀w, v ∈ V . (2.2)

Here,Al
ε, Al

β : H1(�l) × H1(�l) → R, l = 1, 2, are the local bilinear forms defined by

Al
ε(w, v) =

∫

�l

εl∇w · ∇vdx & Al
β(w, v) =

∫

�l

βl∇w · ∇vdx ∀w, v ∈ H1(�l).

Further, we define bilinear forms Bσ (·, ·), Bδ(·, ·) : L2(�) × L2(�) → R as

Bσ (w, v) =
∫

�

σwvdx & Bδ(w, v) =
∫

�

δwvdx ∀w, v ∈ L2(�).

Next, we define the weak form of our model problem (1.2)–(1.4). We adapt following
notion of weak solution.

Definition 2.1 A function u ∈ H1(V ) ∩ H2(W ) is called a weak solution of (1.2)–(1.3) if
u(0) = u0 and u′(0) = v0, and it satisfies following weak formulation

(u′′, v) + Bσ (u′, v) + Bδ(u, v) + Aε(u
′, v) + Aβ(u, v) = 〈 f (t, ·), v〉V ′×V (2.3)

for all v ∈ H1
0 (�) and a.e. t ∈ (0, T ]. Here, 〈·, ·〉V ′×V denotes the standard duality product.

Existence and uniqueness of a solution to the variational problem (2.3) is proved in [12,31,35,
36], for instance, we refer to ([35], Theorem 3). For suitable initial data (u0, v0) and forcing
function f , we assume that weak solution u ∈ C1([0, T ]; V ) ∩ C2([0, T ]; W ).

Remark 2.1 Apart from bio heat modeling, a substantial number of articles deal with model
problem (2.3) and it can be applied to any system where elastic bodies interact, provided that
the model problem is linear. Numerous examples can be found in [15,18,36], for example,
viscous wave equation, networks of linked beams, hybrid chimney etc.

To deal with the strong solution to the interface problem, we introduce a Banach space

Y := H1
0 (�) ∩ H2(�1) ∩ H2(�2)

equipped with the norm

‖v‖Y := ‖v‖1 + ‖v‖2,�1 + ‖v‖2,�2 .
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Definition 2.2 A function u ∈ H1(Y) ∩ H2(W ) is called a strong solution of (1.2)–(1.4) if
u(0) = u0 and u′(0) = v0 with jump conditions (1.4), and the relation

u′′(x, t) + σ(x)u′(x, t) + δ(x)u(x, t) − ∇ · (ε(x)∇u′(x, t) + β(x)∇u(x, t))

= f (x, t) (2.4)

holds for a.e. t ∈ (0, T ] and a.e. x ∈ �i (i = 1, 2).

Before proving the existence of a strong solution to the interface problem,we first establish
the following result.

Lemma 2.1 Let u be the weak solution of (1.2)–(1.3). Assume that u ∈ H1(Y) ∩ H2(W ),
then u is a strong solution for (1.2)–(1.4).

Proof For u ∈ H1(Y) ∩ H2(W ) and a.e. t ∈ (0, T ], upon integration by parts, we obtain
∫

�i

−∇ · (εi∇u′ + βi∇u)vdx

=
∫

�i

εi∇u′ · ∇vdx +
∫

�i

βi∇u · ∇vdx

= ( f − u′′ − σi u
′ − δi u, v)�i ∀v ∈ H1

0 (�i ), (2.5)

which implies that

−∇ · (εi∇u′(x, t) + βi∇u(x, t)) = f (x, t) − u′′(x, t) − σi u
′(x, t) − δi u(x, t)

holds for a.e. t ∈ (0, T ] and a.e. x ∈ �i (i = 1, 2). It remains to show that the weak solution
also satisfies the jump conditions (1.4). Applying integration by parts, for a.e. t ∈ (0, T ], we
have

0 =
2∑

i=1

∫

�i

(u′′ + σi u
′ + δi u − f )vdx +

2∑

i=1

∫

�i

−∇ · (εi∇u′ + βi∇u)vdx

=
2∑

i=1

∫

�i

(u′′ + σi u
′ + δi u − f )vdx +

2∑

i=1

∫

�i

(εi∇u′ · ∇v + βi∇u · ∇v)dx

−
∫

�

[
ε
∂u′

∂n
+ β

∂u

∂n

]
vds

=
2∑

i=1

(u′′ + σi u
′ + δi u − f , v)�i +

2∑

i=1

(Ai
ε(u

′, v) + Ai
β(u, v))

−
∫

�

[
ε
∂u′

∂n
+ β

∂u

∂n

]
vds ∀v ∈ V . (2.6)

Above relation and the definition of weak solution it follows that
∫

�

[
ε
∂u′

∂n
+ β

∂u

∂n

]
vds = 0 ∀v ∈ V .

The arbitrariness of v shows that u satisfies the second jump condition in (1.4). The first
condition in (1.4) is a direct consequence of the fact that u ∈ H1(V ). This completes the
proof. ��
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In general, the solution u of the problem (1.2)–(1.4) does not belong to H1(H2(�)) due
to the presence of discontinuous coefficients. We can get better local regularity using local
smoothness of the coefficients. From Lemma 2.1, it is clear that the existence of a strong
solution depends on higher regularity of the weak solution, which is the main object of the
Theorem 2.1. Further, a priori estimates for the solution to the problem (1.2)–(1.4) are also
presented in Lemma 2.2 under appropriate regularity conditions on the initial functions u0, v0
and source function f .

Theorem 2.1 Let u0 ∈ Y , v0 ∈ X and f ∈ H1(J ; W ), then the interface problem (1.2)–(1.4)
admits a unique strong solution.

Proof Let u ∈ C1(J ; V )∩C2(J ; W ) be aweak solution to the problem (1.2)–(1.3) satisfying
(2.3). We consider following auxiliary problem: Find w ∈ H1(J ;Y) such that

Aε(w
′, v) + Aβ(w, v) = ( f − u′′ − σu′ − δu, v) ∀v ∈ V , (2.7)

with [w] = 0 and
[
β ∂w

∂n + ε ∂w′
∂n

] = 0 across the interface �, and w(x, 0) = u0. For
the existence and uniqueness of a solution to the problem (2.7), we refer to [2]. Further,
w ∈ H1(Y) satisfies following a priori estimate

‖w‖H1(Y) ≤ C(‖ f − u′′ − σu′ − δu‖L2(J ;W ) + ‖u0‖Y ). (2.8)

Subtracting (2.7) from (2.3), we have

Aε(u
′ − w′, v) + Aβ(u − w, v) = 0 ∀v ∈ V ,

which implies that w(x, t) = u(x, t) for a.e. t ∈ (0, T ] and a.e. x ∈ �. Therefore u ∈
H1(J ;Y) and due to Lemma 2.1 it is a strong solution to the interface problem (1.2)–(1.4).
This completes the proof. ��
Remark 2.2 We are well aware of the fact that the rate of convergence of finite element
approximations depends on the ‘smoothness’ of a solution. In Theorem 2.1, we have shown
that interface problem (1.2)–(1.4) admits a unique strong solution u ∈ H1(Y) ∩ H2(W )

for appropriate initial data and source function. In fact, strong solution u ∈ H1(J ;Y) ∩
C1(J ; V ) ∩ C2(J ; W ). In articles on the finite element method for general second-order
hyperbolic equations without the interface, related to convergence, it is assumed higher
order time derivatives of the solutions ( cf. [5,13,16,25,26]). Therefore, we will be required
additional regularity of u which guarantee the convergence results.

Lemma 2.2 Let u0, v0 ∈ H3(�)∩H1
0 (�) and f ∈ H1(J ; H1(�)). Then the strong solution

u to the interface problem (1.2)–(1.4) satisfies following a priori estimate

‖u‖H2(Y) ≤ C(‖u0‖3 + ‖v0‖3 + ‖ f ‖H1(J ;H1(�))).

Proof Suppose z ∈ H1(J ;Y) ∩ C1(J ; V ) ∩ C2(J ; W ) satisfies following variational for-
mulation

(z′′, v) + Bσ (z′, v) + Bδ(z, v) + Aε(z
′, v) + Aβ(z, v) = ( f ′, v) ∀v ∈ V (2.9)

with z(0) = v0 and z′(0) = z0. Here, z0 ∈ X is defined as

z0 = −σlv0 − δlu0 + ∇ · (εl∇v0 + βl∇u0) + f (0) in �l , l = 1, 2.

Using the fact that u ∈ C2(J ; W ), it is easy to verify that (z0 − u′′(0), v) = 0 for all v ∈ V .
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Now, we define w(t) = u0 + ∫ t
0 zds, t ∈ [0, T ] so that w(0) = u0, w′(0) = z(0) = v0

and w′′(0) = z0. Further, for all v ∈ V , we observe that w satisfies following equation

(w′′′, v) + Bσ (w′′, v) + Bδ(w
′, v) + Aε(w

′′, v) + Aβ(w′, v) = ( f ′, v) ∀v ∈ V (2.10)

which can be written as

d

dt

{
(w′′, v) + Bσ (w′, v) + Bδ(w, v) + Aε(w

′, v) + Aβ(w, v) − ( f , v)
}

= 0. (2.11)

Now, we differentiate (2.3) with respect to t to obtain

d

dt

{
(u′′, v) + Bσ (u′, v) + Bδ(u, v) + Aε(u

′, v) + Aβ(u, v) − ( f , v)
}

= 0, (2.12)

for all v ∈ V . For similar type of arguments in the context of wave equations, we refer to
([19], pages 95-98). Then subtracting (2.11) from (2.12) yields

d

dt

{
(p′′, v) + Bσ (p′, v) + Bδ(p, v) + Aε(p′, v) + Aβ(p, v)

}
= 0 ∀v ∈ V ,

where p(t) = u(t) − w(t). Integrating the above equation from 0 to t , we derive

(p′′, v) + Bσ (p′, v) + Bδ(p, v) + Aε(p′, v) + Aβ(p, v) = 0 ∀v ∈ V . (2.13)

Note that p(0) = 0 and p′(0) = 0, which implies that u = w. Then use the fact u′ = w′ =
z ∈ H1(Y) to conclude that u ∈ H2(Y). Further, for v = u′′, Eq. (2.3) yields

∫ t

0
‖u′′‖2ds ≤ C

( 2∑

l=1

{‖u0‖21,�l
+ ‖v0‖21,�l

} + ‖ f ‖2L2(J ;W )

)
,

which together with (2.8) leads to following a priori estimate

‖u‖H1(Y) ≤ C(‖u0‖Y + ‖v0‖X + ‖ f ‖L2(J ;W )). (2.14)

Using estimate (2.14) for z satisfying (2.9), we obtain

‖z‖H1(Y) ≤ C(‖v0‖Y + ‖z′(0)‖X + ‖ f ′‖L2(J ;W ))

≤ C(‖u0‖3 + ‖v0‖3 + ‖ f ‖H1(J ;H1(�))). (2.15)

This together with the fact that u′ = z leads to desired estimate. This completes the rest of
the proof. ��

Remark 2.3 In the previous result, for u0, v0 ∈ H3(�) ∩ H1
0 (�) and f ∈ H1(J ; H1(�)),

we have shown that the strong solution u to the interface problem (1.2)–(1.4) belongs to
H2(J ;Y)∩C2(J ; V )∩C3(J ; W ).An argument similar to that of the preceding, and after hav-
ing change the smoothness condition to u0, v0 ∈ H4(�) ∩ H1

0 (�) and f ∈ H2(J ; H1(�))

leads to an improvement in the regularity of the strong solution u. More precisely, for suffi-
ciently smooth initial data and source function f , we assume u ∈ H3(J ;Y). Results of this
section are also hold true in a bounded and convex domain� ⊂ R

3 with C2 smooth interface
�.
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3 Finite Element Discretization

In this section, we describe a finite element discretization, introduce some auxiliary projec-
tions and prove their approximation properties.

For the purpose of finite element approximation of the problem (1.2)–(1.4), we now
describe the discretization of domain�. The following discussion is borrowed from [17]. We
assume that the family of triangulation {Th}h∈(0,h0), for some fixed h0 > 0, is quasi-uniform.
Wefirst approximate the domain�1 by a polyhedral domain�1,h using a quasi-uniformmesh
T 1

h such that all the boundary vertices of �1,h lie on the boundary of �1. Let �2,h be the
approximation for the domain �2 due to a quasi-uniform triangulation T 2

h with simplicial
elements of size h. The triangulation T 2

h is done such that all the vertices of the outer
polyhedral boundary ∂� are also the vertices of �2,h , while all the vertices on the inner
boundary of �2,h match the boundary vertices of �1,h . More precisely, the triangulation
Th := T 1

h ∪ T 2
h satisfies the following conditions:

(A1) � = ∪K∈Th K ,
(A2) if K1, K2 ∈ Th and K1 �= K2, then either K1 ∩ K2 = ∅ or K1 ∩ K2 is a common
vertex, an edge or a face,
(A3) for each K , all its vertices are completely contained in either �1 or �2.

Let Vh be a finite dimensional subspace of H1
0 (�) defined on Th consisting of piecewise

linear functions vanishing on the boundary ∂�. We now define a tubular neighborhood Sλ

of � by

Sλ = {x ∈ � : dist(x, �) < λ}
for some λ > 0 with λ = O(h2) (cf. [17]). Existence of such λ is possible due to the fact that
interface � is of class C2. A typical λ-strip is presented in Fig. 2. In fact the mesh Th can be
decomposed into three disjoint subsets Th = Ṫ 1

h ∪ Ṫ 2
h ∪ T�, where

Ṫ i
h = {K ∈ Th : K ⊂ �i\Sλ}, i = 1, 2,

and T� = Th\(Ṫ 1
h ∪ Ṫ 2

h ).An element K ∈ T∗ is called an interface element and K ∈ Th\T∗ is
called a non-interface element. Further, for i = 1, 2,we define following disjoint collections
of interface elements

T i
� := {K ∈ T� : K ⊂ �̄i ∪ Sλ}.

With above notations, we have

�i,h = ∪{K : K ∈ Ṫ i
h ∪ T i∗ },

so that for any K ∈ Th , either K ⊆ �1,h or K ⊆ �2,h .
In order to approximate Aε(·, ·), Aβ(·, ·), we now introduce approximate bilinear maps

Aεh,Aβh : H1(�) × H1(�) → R defined as

Aεh(w, v) =
∑

K∈Th

∫

K
εK (x)∇w.∇vdx ∀w, v ∈ H1(�),

Aβh(w, v) =
∑

K∈Th

∫

K
βK (x)∇w.∇vdx ∀w, v ∈ H1(�),

with εK (x) = εi and βK (x) = βi if K ⊂ �i,h, i = 1, 2.
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Fig. 2 An illustrative example of
interface triangles K and S with
λ-strip Sλ

Next, we approximate the bilinear maps Bσ (·, ·), Bδ(·, ·) by Bσh(·, ·) and Bδh(·, ·) respec-
tively, defined as

Bσh(w, v) =
∑

K∈Th

∫

K
σK (x)wvdx ∀w, v ∈ L2(�),

Bδh(w, v) =
∑

K∈Th

∫

K
δK (x)wvdx ∀w, v ∈ L2(�),

with σK (x) = σi and δK (x) = δi if K ⊂ �i,h, i = 1, 2.
For the simplicity of the exposition, we writeA forAε (orAβ ) andAh forAεh (orAβh),

respectively. Similarly, we write B for Bσ (or Bδ) and Bh for Bσh (or Bδh), respectively. For
the difference between the bilinear form A (B) and its approximated bilinear form Ah (Bh),
we have the following results. For a Proof of Lemma 3.1, we refer to [17].

Lemma 3.1 For u, v ∈ H1(�), we define A�
h (u, v) = A(u, v) − Ah(u, v), then we have

|A�
h (u, v)| ≤ C |u|1,Sλ |v|1,Sλ ∀u, v ∈ H1(�).

Lemma 3.2 For z ∈ H1(�), we have

|B(z, vh) − Bh(z, vh)| ≤ Ch2‖z‖1‖vh‖1 ∀vh ∈ Vh . (3.1)

Further, for z ∈ Y and vh ∈ Vh there holds

|B(z, vh) − Bh(z, vh)| ≤ C(h2 + λ)‖z‖Y‖vh‖. (3.2)

Proof We define

K̃ =
{

K ∩ �1 if K ∈ T 2∗ ,

K ∩ �2 if K ∈ T 1∗ .
(3.3)

Clearly, K̃ ⊂ Sλ ∩ �i , i = 1, 2. Then we get

|B(z, vh) − Bh(z, vh)| ≤
∑

K∈T∗
(z, vh)K̃ ≤ C

∑

K∈T∗
‖z‖K̃ ‖vh‖K̃ . (3.4)

Here, ‖ · ‖K̃ denotes the L2 norm over K̃ . Now, using Hölder’s inequality, we obtain

‖z‖K̃ ≤ Ch
3(p−2)

2p ‖z‖L p(K̃ )
∀ p > 2. (3.5)

123



Journal of Scientific Computing (2021) 87 :58 Page 11 of 32 58

We now recall Sobolev embedding inequality for two dimensions (cf. [29])

‖w‖L p(K ) ≤ Cp
1
2 ‖w‖1,K ∀w ∈ H1(K ), p > 2. (3.6)

Now, setting p = 6 in (3.5) and then using the Sobolev embedding inequality (3.6), we
obtain

‖z‖K̃ ≤ Ch‖z‖1,K . (3.7)

Proceeding in a similar way, we obtain

‖vh‖K̃ ≤ Ch‖vh‖1,K . (3.8)

Using estimates (3.7)–(3.8) in (3.4), we obtain the first inequality.
For the second inequality, let p → ∞ in (3.5) to have

‖z‖K̃ ≤ Ch
3
2 ‖z‖L∞(K̃ )

≤ Ch
3
2

2∑

i=1

‖z‖L∞(�i ) ≤ Ch
3
2 ‖z‖2,�i . (3.9)

In the last inequality, we have used standard Sobolev embedding inequality.
From Lemma 2.1 in [17] we then infer

‖vh‖2Sλ∩�i
≤ Cλ‖vh‖�i ‖vh‖1,�i , i = 1, 2. (3.10)

Finally, Poincaŕe inequality, inverse estimate ‖∇vh‖ ≤ Ch−1‖vh‖ together with (3.9)–(3.10)
and (3.4) leads to

|B(z, vh) − Bh(z, vh)| ≤ Ch
3
2 ‖z‖Y

( ∑

K∈T∗
‖vh‖2

K̃

) 1
2

≤ Ch
3
2 ‖z‖Y

( 2∑

i=1

‖vh‖2Sλ∩�i

) 1
2

≤ Ch
3
2 ‖z‖Y

( 2∑

i=1

λ‖vh‖�i ‖vh‖1,�i

) 1
2

≤ Ch
3
2 ‖z‖Y

√
λ‖vh‖ 1

2 ‖vh‖
1
2
1,�

≤ Ch
√

λ‖z‖Y‖vh‖ ≤ C(h2 + λ)‖z‖Y‖vh‖.
This completes the rest of the proof. ��

We, now, state following approximation result near interface. For a proof, we refer to [17].

Lemma 3.3 There exists a positive constant μ independent of h such that

‖vh‖H1(Sλ) ≤ C

√
λ

h
‖vh‖H1(Sμh) ∀vh ∈ Vh .

Now, we introduce our elliptic projection operators Qεh , Qβh : Y → Vh defined by

Aεh(Qεhv, vh) = A1
ε(v, vh) + A2

ε(v, vh) ∀vh ∈ Vh (3.11)

and

Aβh(Qβhv, vh) = A1
β(v, vh) + A2

β(v, vh) ∀vh ∈ Vh, (3.12)
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respectively. To simplify the notation, we will writeQh in place ofQεh orQβh when no risk
of confusion arises.

Regarding the approximation properties ofQh operator defined by (3.11)–(3.12), we have
following result (cf. [17])

Lemma 3.4 Let Qh be defined by (3.11) or (3.12). Then, for any v ∈ Y , there is a positive
constant C independent of the mesh parameter h such that

‖Qhv − v‖ + h‖Qhv − v‖1 ≤ C
(

h + √
λ + λ

h

)2‖v‖Y .

Let Lh : L2(�) → Vh be the standard L2 projection defined by

(Lhv, φ) = (v, φ) ∀φ ∈ Vh, v ∈ L2(�). (3.13)

Previous result along with definition of L2 projection leads to the following error estimate.

Lemma 3.5 Let Lh be defined by (3.13), then for any v ∈ Y there is a positive constant C
independent of the mesh parameter h such that

‖Lhv − v‖ + h‖Lhv − v‖1 ≤ C
(

h + √
λ + λ

h

)2‖v‖Y .

Remark 3.1 Elliptic projection operator Qεh defined by (3.11) is also valid in the space
X̂ := {ξ ∈ X : [ξ ] = 0 along � & ξ = 0 on ∂�} and satisfies following stability

‖Qεhv‖1 ≤ C‖v‖X ∀v ∈ X̂ . (3.14)

Further, following approximation results hold

‖v − Qεhv‖ + h
2∑

l=1

‖v − Qεhv‖1,�l ≤ Ch2{‖v‖2,�1 + ‖v‖2,�2},

for all v ∈ X̂ ∩ H2(�1) ∩ H2(�2). Similar remarks hold for the elliptic projectionQβh and
L2 projection Lh . For details, we refer to [8].

For given v ∈ X̂ , there exists w ∈ Y (cf. [6]) satisfying

2∑

l=1

Al
ε(w, φ) = (v − Qεhv, φ) ∀φ ∈ X̂ . (3.15)

Equation (3.15) together with (3.11), Lemmas 3.1 and 3.4 leads to

‖v − Qεhv‖2 =
2∑

l=1

Al
ε(w − Qεhw, v − Qεhv) +

2∑

l=1

Al
ε(Qεhw, v − Qεhv)

≤ C‖w − Qεhw‖1
2∑

l=1

‖v − Qεhv‖1,�l − A�
εh(Qεhv,Qεhw)

≤ Ch‖w‖Y
2∑

l=1

‖v − Qεhv‖1,�l + Ch‖Qεhv‖1‖Qεhw‖1
≤ Ch‖v − Qεhv‖‖v‖X . (3.16)

123



Journal of Scientific Computing (2021) 87 :58 Page 13 of 32 58

In the last inequality, we have used the fact that ‖w‖Y ≤ C‖v−Qεhv‖ and stability estimate
(3.14). As a consequence of estimate (3.16), we obtain

‖v − Lhv‖ ≤ ‖v − Qεhv‖ ≤ Ch‖v‖X ∀v ∈ X̂ . (3.17)

Here, we have used the fact that Lhv is the best approximation of v ∈ L2(�) with respect to
L2 norm.

Now, inverse inequality and estimates (3.16)–(3.17) lead to following stability for L2

projection

‖Lhv‖1 ≤ ‖Lhv − Qεhv‖1 + ‖Qεhv‖1
≤ Ch−1‖Lhv − Qhv‖ + C‖v‖X
≤ C‖v‖X ∀v ∈ X̂ . (3.18)

Remark 3.2 In Lemma 2.2, we have proved that the solution to the interface problem is
sufficiently smooth in each individual subdomain�1 and�2 for smooth given data.Assuming
u ∈ C2(J ;X ) with [u] = 0 along � and u = 0 on ∂�, we obtain

[u′′(t)] = 0 on � & u′′(t) = 0 on ∂� for t ∈ [0, T ].
This together with (3.18) yields

‖Lhu′′(0)‖1 ≤ C‖u′′(0)‖X ≤ C(‖u0‖3 + ‖v0‖3 + ‖ f ‖H1(H1)). (3.19)

Now, we are in a position to define our new non-standard projection operator which is
crucial for our error analysis. For v ∈ H1(J ;Y), find ξv ∈ H1(J ; Vh) such that for a.e.
t ∈ [0, T ]

Aεh(ξ ′
v(t), vh) + Aβh(ξv(t), vh) = Aε(v

′(t), vh) + Aβ(v(t), vh) ∀vh ∈ Vh, (3.20)

with ξv(0) = Qβhv(0) ∈ Vh .
One can follow the Proof of Theorem 3.1 and Theorem 3.2 in [9] to derive the following

optimal point-wise-in time error estimates for the newly introduced projection operator.

Lemma 3.6 For any v ∈ H1(J ;Y) and a.e. t ∈ J , there is a positive constant C independent
of the mesh parameter h such that

‖v(t) − ξv(t)‖ + h‖v(t) − ξv(t)‖1 ≤ C(h2 + λ)
(
‖v‖H1(Y) + ‖v(0)‖Y

)
.

4 Semidiscrete Finite Element Approximation

In this section, we discuss the semidiscrete finite element method for the problem (1.2)–(1.4)
and derive optimal order error estimate in L2 norm.

The continuous time Galerkin finite element approximation to (2.3) is stated as follows:
Find uh ∈ C2(J ; Vh) such that

(u′′
h, vh) + Bσh(u′

h, vh) + Bδh(uh, vh) + Aεh(u′
h, vh) + Aβh(uh, vh)

= ( f , vh) ∀vh ∈ Vh, t ∈ (0, T ], (4.1)

with uh(0) = Qhu0 and u′
h(0) = Qhv0.

Following result deals with the existence and regularity of uh . The basic technique is
borrowed from [25].
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Theorem 4.1 For each h ∈ (0, h0), there exists a unique function uh ∈ C2(J ; Vh) satisfying
(4.1).

Proof LetVh ⊂ H1
0 (�) be the finite element space defined onTh with basis functions {φi }Nh

i=1.
We consider Galerkin approximations in space

uh(x, t) =
Nh∑

i=1

ci (t)φi (x)

where ci : (0, T ] → R are coefficient functions for i ∈ [1, Nh].
We denote by ch,0 = [c1,0, ..., cNh ,0]T and ch,1 = [c1,1, . . . , cNh ,1]T the components

of the given initial approximations uh(0) and u′
h(0), respectively. Then our semidiscrete

problem is to find ch(t) = [c1(t), . . . , cNh (t)]T , for t ∈ (0, T ], such that
{

Mhc′′
h(t) + Khc′

h(t) + Lhch(t) + Chc′
h(t) + Dhch(t) = Fh(t),

ch(0) = ch,0 and c′
h(0) = ch,1.

(4.2)

Coefficient matrices are given by

Mh = [Mi, j ], Mi, j = (φi , φ j ),

Kh = [Ki, j ], Ki, j = Bσ (φi , φ j ),

Lh = [Li, j ], Li, j = Bδ(φi , φ j ),

Ch = [Ci, j ], Ci, j = Aε(φi , φ j ),

Dh = [Di, j ], Di, j = Aβ(φi , φ j )

and the source term is given by Fh = [F1, ..., FNh ]T , Fj = ( f , φ j ), with 1 ≤ i, j ≤ Nh .
Note that the matrices and the right-hand-side vectors are all well-defined since

|(φi , φ j )| ≤ ‖φi‖‖φ j‖,
|B(φi , φ j )| ≤ C1‖φi‖‖φ j‖,
|A(φi , φ j )| ≤ C2‖φi‖1‖φ j‖1,
|( f , φ j )| ≤ ‖ f ‖‖φ j‖ ≤ ‖ f ‖L∞(L2)‖φ j‖,

for all t ∈ J . Furthermore, for any z ∈ R
Nh \ 0, we have

zT Mhz =
∫

�

∣∣∣
Nh∑

i=1

ziϕi

∣∣∣
2
dx ≥

∣∣∣
Nh∑

i=1

ziϕi

∣∣∣
2

L2
> 0

for all t ∈ J . Hence, the matrix Mh is invertible for all t ∈ J and the matrix equation in (4.2)
can be rewritten as

c′′
h + M−1

h Khc′
h + M−1

h Lhch + M−1
h Chc′

h + M−1
h Dhch = M−1

h Fh . (4.3)

Now the existence of a solution uh ∈ C2(J ; Vh) follows from the standard ODE theory. This
completes the rest of the proof.

Remark 4.1 Assuming f ∈ C1(J ; W ) and setting

c′′
h(0) = M−1

h Fh(0) − M−1
h Khch,1 − M−1

h Lhch,0 − M−1
h Chch,1 − M−1

h Dhch,0,

we further observe that uh ∈ C3(J ; Vh). Next Lemma assumes f ∈ H3(J ; H2(�)) and
which guarantee the existence of uh ∈ C4(J ; Vh) satisfying (4.1).
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Regarding the stability of uh at the initial stage, we have the following result. For a proof,
we refer to Appendix.

Lemma 4.1 Let uh satisfy (4.1). Then, for i = 2, 3, 4, we have

‖Di
t uh(0)‖ ≤ C

(‖u0‖2i−2 + ‖v0‖2i−2 + ‖ f ‖Hi−1(H2)

)
,

‖Di−1
t uh(0)‖1 ≤ C

(‖u0‖2i−3 + ‖v0‖2i−3 + ‖ f ‖Hi−2(H1)

)
,

where Di
t = ∂ i

∂t i .

Differentiating (4.1) twice with respect to t and substitute vh = u′′′
h to have

1

2

d

dt

{
‖u′′′

h ‖2 + Bδh(u′′
h, u′′

h) + Aβh(u′′
h, u′′

h)
}

+ Bσh(u′′′
h , u′′′

h ) + Aεh(u′′′
h , u′′′

h )

= ( f ′′, u′′′
h ). (4.4)

Integration from 0 to t and using standard arguments lead to

‖u′′
h(t)‖2 + ‖u′′′

h (t)‖2 + ‖u′′
h(t)‖21 +

∫ t

0
‖u′′′

h ‖2dt +
∫ t

0
‖u′′′

h ‖21dt

≤ C
(
‖u′′

h(0)‖2 + ‖u′′′
h (0)‖2 + ‖u′′

h(0)‖21 +
∫ t

0
‖ f ′′‖2dt

)
.

Using Lemma 4.1 in the above equation, we get

‖u′′′
h ‖2 + ‖u′′

h‖21 +
∫ t

0
‖u′′′

h ‖21dt ≤ C
(
‖u0‖24 + ‖v0‖24 + ‖ f ‖2H2(H2)

)
. (4.5)

Similarly, we obtain

‖u′′′′
h ‖2 + ‖u′′′

h ‖21 +
∫ t

0
‖u′′′′

h ‖21dt ≤ C
(
‖u0‖26 + ‖v0‖26 + ‖ f ‖2H3(H2)

)
. (4.6)

Now, we prove the convergence result for the semidiscrete scheme in L∞(L2) norm.

Theorem 4.2 Let u and uh be the solutions of problems (1.2)–(1.4) and (4.1), respectively.
Then, for u0, v0 ∈ Y and f ∈ L2(J ; W ), we have

‖u − uh‖L∞(J ;L2(�)) ≤ C(u)

(
h + √

λ + λ

h

)2

, (4.7)

where C(u) := C

{
‖u0‖2Y + ‖v0‖2Y + ‖u‖H1(Y)

} 1
2

.

Proof Define the error e(t) as e(t) := u(t)−uh(t) and then subtracting (2.3) from (4.1) with
some natural rearrangements, we obtain

(e′′, vh) + Bσh(e′, vh) + Bδh(e, vh) + Aεh(e′, vh) + Aβh(e, vh)

= −B�
σh(u′, vh) − B�

δh(u, vh) − A�
εh(u′, vh) − A�

βh(u, vh) ∀vh ∈ Vh . (4.8)

Now, we split e(t) into standard ρ and θ as

e = ρ + θ, ρ := u − ξu, θ := ξu − uh, (4.9)

where ξu is the projection operator defined as in (3.20).
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Then Eq. (4.8) reduces to

(θ ′′, vh) + Bσh(θ ′, vh) + Bδh(θ, vh) + Aεh(θ ′, vh) + Aβh(θ, vh)

= −(ρ′′, vh) − Bσh(ρ′, vh) − Bδh(ρ, vh) − Aεh(ρ′, vh) − Aβh(ρ, vh)

−B�
σh(u′, vh) − B�

δh(u, vh) − A�
εh(u′, vh) − A�

βh(u, vh) ∀vh ∈ Vh . (4.10)

Using the definition of ξu , we observe that

Aεh(ρ′, vh) + Aβh(ρ, vh)

= Aεh(u′, vh) + Aβh(u, vh) − {
Aεh(ξ ′

u, vh) + Aβh(ξu, vh)
}

= Aεh(u′, vh) + Aβh(u, vh) − {
Aε(u

′, vh) + Aβ(u, vh)
}
.

Above equation together with (4.10) leads to

(θ ′′, vh) + Bδh(θ, vh) + Aεh(θ ′, vh) + Aβh(θ, vh)

= −(ρ′′, vh) − Bσh(e′, vh) − Bδh(ρ, vh)

−B�
σh(u′, vh) − B�

δh(u, vh) ∀vh ∈ Vh, (4.11)

which can be rewritten as

d

dt
(θ ′, vh) − (θ ′, v′

h) + Bδh(θ, vh) + d

dt
Aεh(θ, vh) − Aεh(θ, v′

h) + Aβh(θ, vh)

= − d

dt
(ρ′, vh) + (ρ′, v′

h) − d

dt
Bσh(e, vh) + Bσh(e, v′

h) − Bδh(ρ, vh)

−B�
σh(u′, vh) − B�

δh(u, vh) ∀vh ∈ Vh . (4.12)

Following Baker [4], we define v̂ : [0, T ] × � → R as

v̂(., t) =
∫ ζ

t
θ(., s)ds , 0 ≤ t ≤ T ,

for some fixed ζ ∈ [0, T ]. Then, clearly v̂ ∈ Vh as θ = ξu − uh ∈ Vh . Also, observe that

v̂(., ζ ) = 0 and
d

dt
v̂(., t) = −θ(., t) , 0 ≤ t ≤ T . (4.13)

Setting vh = v̂ in (4.12) and making some rearrangements, we obtain

d

dt
(θ ′, v̂) + 1

2

d

dt
(θ, θ) + Bσh(θ, θ) − 1

2

d

dt
Bδh(v̂, v̂)

+ d

dt
Aεh(θ, v̂) + Aεh(θ, θ) − 1

2

d

dt
Aβh(v̂, v̂)

= − d

dt
(ρ′, v̂) − (ρ′, θ) − d

dt
Bσh(e, v̂) − Bσh(ρ, θ) − Bδh(ρ, v̂)

−B�
σh(u′, v̂) − B�

δh(u, v̂).

Integrating from 0 to ζ and using v̂(ζ ) = 0, we get

−(θ ′(0), v̂(0)) + 1

2
‖θ(ζ )‖2 − 1

2
‖θ(0)‖2 +

∫ ζ

0
Bσh(θ, θ)ds + 1

2
Bδh(v̂(0), v̂(0))

−Aεh(θ(0), v̂(0)) +
∫ ζ

0
Aεh(θ, θ)ds + 1

2
Aβh(v̂(0), v̂(0))
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= (ρ′(0), v̂(0)) −
∫ ζ

0
(ρ′, θ)ds + Bσh(e(0), v̂(0)) −

∫ ζ

0
Bσh(ρ, θ)ds

−
∫ ζ

0
Bδh(ρ, v̂)ds −

∫ ζ

0
B�

σh(u′, v̂)ds −
∫ ζ

0
B�

δh(u, v̂)ds. (4.14)

Observe that θ(0) = ξu(0) − uh(0) = Qhu(0) − Qhu0 = 0, hence (4.14) becomes

1

2
‖θ(ζ )‖2 +

∫ ζ

0
‖θ‖2ds +

∫ ζ

0
‖θ‖21ds + 1

2
‖v̂(0)‖21

≤ (e′(0), v̂(0)) −
∫ ζ

0
(ρ′, θ)ds + Bσh(e(0), v̂(0)) −

∫ ζ

0
Bσh(ρ, θ)ds

−
∫ ζ

0
Bδh(ρ, v̂)ds −

∫ ζ

0
B�

σh(u′, v̂)ds −
∫ ζ

0
B�

δh(u, v̂)ds. (4.15)

Then Cauchy-Schwartz inequality, Lemma 3.2 and continuity of Bh operator leads to

1

2
‖θ(ζ )‖2 +

∫ ζ

0
‖θ‖2ds +

∫ ζ

0
‖θ‖21ds + 1

2
‖v̂(0)‖21

≤ C

(
‖e′(0)‖‖v̂(0)‖ +

∫ ζ

0
‖ρ′‖‖θ‖ds + ‖e(0)‖‖v̂(0)‖ +

∫ ζ

0
‖ρ‖‖θ‖ds

+
∫ ζ

0
‖ρ‖‖v̂‖ds +

(
h + √

λ + λ

h

)2 ∫ ζ

0
‖u′‖Y‖v̂‖ds

+
(

h + √
λ + λ

h

)2 ∫ ζ

0
‖u‖Y‖v̂‖ds

)
. (4.16)

Since θ is continuous in the time variable, we select ζ such that ‖θ(ζ )‖ = max0≤t≤T ‖θ(t)‖.
Then we observe that ‖v̂(t)‖ ≤ C(T )‖θ(ζ )‖, t ∈ [0, T ], which in combination with (4.16)
leads to

‖θ(ζ )‖ ≤ C

(
‖e′(0)‖ + ‖e(0)‖ +

∫ ζ

0
(‖ρ′‖ + ‖ρ‖)ds

+
(

h + √
λ + λ

h

)2 ∫ ζ

0
(‖u′‖Y + ‖u‖Y )ds

)
.

This together with Lemma 3.6 leads to Theorem 4.2. ��

Remark 4.2 Theorem 4.2 is an extension of Theorem 5.6 in [25] to general linear hyperbolic
equation with interface. It is worth to note that Theorem 5.6 in [25] is concerned on the
convergence of finite element solution to the exact solution of linearizedWestervelt equation
with variable coefficients without interface.

5 Fully Discrete Scheme

This section is dedicated to the derivation of the L2 norm error estimate. The basic technique
used here is borrowed from Baker [4] with a modification to include the damping term.

First we divide the time interval I = [0, T ] into N equally spaced subintervals In =
(tn−1, tn], n = 1, 2, . . . , N with t0 = 0, and tN = T and τ = tn − tn−1, the time step. For a
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sequence {pn}N
n=0 ⊂ L2(�), we define

∂τ pn = pn+1 − pn

τ
and pn+ 1

2 = 1

2
(pn+1 + pn), n = 0, 1, . . . , N − 1.

Also, for a continuous mapping φ : [0, T ] → L2(�), we define φn = φ(., tn), 0 ≤ n ≤ N .
Then the fully discrete finite element approximation to the problem (1.2)–(1.4) is defined as
follows: Find U n ∈ Vh such that

∂τ U n = pn+ 1
2 for n = 0, 1, . . . , N − 1 (5.1)

and

(∂τ pn, ψ) + Bσh(pn+ 1
2 , ψ) + Bδh(U n+ 1

2 , ψ) + Aεh(pn+ 1
2 , ψ) + Aβh(U n+ 1

2 , ψ)

= ( f n+ 1
2 , ψ) ∀ψ ∈ Vh, (5.2)

with U 0 = Qhu0 and p0 = Qhv0.
The following Lemma gives the existence and uniqueness of the fully discrete solution

U n of un in terms of the auxiliary variable pn and in fact gives a computational algorithm to
find U n .

Lemma 5.1 There exists a unique sequence {U n}N
n=0 ⊂ Vh and a corresponding unique

sequence {pn}N
n=0 ⊂ Vh satisfying (5.1)–(5.2).

Proof From (5.1), we have

U n+1 = τ

2
(pn+1 + pn) + U n . (5.3)

Using (5.3) in (5.2), we get

Aτ (pn+1, ψ) = Fn(ψ) ∀ψ ∈ Vh, (5.4)

where Aτ is the bilinear form given by

Aτ (w, v) = (w, v) + τ

2
Bσh(w, v) + τ 2

4
Bδh(w, v)

+τ

2
Aεh(w, v) + τ 2

4
Aβh(w, v) ∀w, v ∈ V

and Fn is the linear functional given by

Fn(ψ) = (pn, ψ) − τ

2
Bσh(pn, ψ) − τBδh(U n, ψ) − τ 2

4
Bδh(pn, ψ)

−τ

2
Aεh(pn, ψ) − τ 2

4
Aβh(pn, ψ) − τAβh(U n, ψ) + τ( f n+ 1

2 , ψ) ∀ψ ∈ V .

Due to the positivity of bilinear forms Bh and Ah , there exists uniquely defined pn+1 ∈ Vh

satisfying equation (5.4) and subsequently U n+1 exists uniquely for n = 0, 1, . . . , N − 1. ��
Later on, we will need the following results. The proofs involve the use of Taylor’s series

and standard arguments, and therefore, details are omitted.

Lemma 5.2 For any v ∈ H3(J ; L2(�)), we have

‖∂τ v
n − v

n+ 1
2

t ‖2 ≤ Cτ 3
∫ tn+1

tn
‖v′′′‖2dt .
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In order to compute the error between U n and un , it suffices to establish the error ωn :=
un

h − U n , for 1 ≤ n ≤ N and un
h = uh(·, tn). Once we have estimate for ωn , we can easily

get the error estimate for en := U n − un by using the triangle inequality, Theorem 4.2 and
the Lemma 5.3 given below.

Lemma 5.3 Let u and U n be the solutions of the interface problem (1.2)–(1.4) and the finite
element approximation (5.1)–(5.2), respectively. Then, we have

max
1≤n≤N

‖ωn‖2 ≤ Cτ 4
( ∫ T

0
‖u′′′′

h ‖2dt +
∫ T

0
‖u′′′

h ‖21dt
)
.

Proof Substitute t = tn and t = tn+1 in (4.1) and then add to have

(∂τ un
ht , ψ) + Bσh(u

n+ 1
2

ht , ψ) + Bδh(u
n+ 1

2
h , ψ) + Aεh(u

n+ 1
2

ht , ψ) + Aβh(u
n+ 1

2
h , ψ)

= ( f n+ 1
2 , ψ) + (ρn, ψ) ∀ψ ∈ Vh, (5.5)

where ρn := ∂τ un
ht − u

n+ 1
2

htt .
Now, subtracting (5.2) from (5.5), we have

(∂τ qn, ψ) + Bσh(qn+ 1
2 , ψ) + Bδh(ωn+ 1

2 , ψ) + Aεh(qn+ 1
2 , ψ) + Aβh(ωn+ 1

2 , ψ)

= (ρn, ψ) ∀ψ ∈ Vh, (5.6)

with qn := un
ht − pn .

From (5.1), it is easy to observe that

∂τω
n = qn+ 1

2 + ∂τ un
h − u

n+ 1
2

ht = qn+ 1
2 + αn, αn := ∂τ un

h − u
n+ 1

2
ht , (5.7)

so that

ωn = τ

n−1∑

k=0

∂τω
k = τ

n−1∑

k=0

qk+ 1
2 + τ

n−1∑

k=0

αk & qn = τ

n−1∑

k=0

∂τ qk .

Here, we have used the fact that ω0 = u0
h − U 0 = Qhu0 −Qhu0 = 0 and q0 = u0

ht − p0 =
Qhv0 − Qhv0 = 0.
Hence, using the above relations it follows that

∂τω
n = τ

2

( n∑

k=0

∂τ qk +
n−1∑

k=0

∂τ qk
)

+ αn, (5.8)

ωn+ 1
2 = τ

2

( n∑

k=0

qk+ 1
2 +

n−1∑

k=0

qk+ 1
2

)
+ τ

2

( n∑

k=0

αk +
n−1∑

k=0

αk
)

. (5.9)

Now, we define a sequence {sn}N
n=0 such that s0 = 0 and

sn = τ

n−1∑

k=0

ωk+ 1
2 , n = 1, . . . , N − 1,

so that

sn+ 1
2 = τ

2

( n∑

k=0

ωk+ 1
2 +

n−1∑

k=0

ωk+ 1
2

)
. (5.10)
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Hence, for any ψ ∈ Vh , using the identities (5.8)–(5.10) we obtain

(∂τω
n, ψ) + Bσh(ωn+ 1

2 , ψ) + Bδh(sn+ 1
2 , ψ) + Aεh(ωn+ 1

2 , ψ) + Aβh(sn+ 1
2 , ψ)

= τ

2

n∑

k=0

{
(∂τ qk, ψ) + Bσh(qk+ 1

2 , ψ) + Bδh(ωk+ 1
2 , ψ) + Aεh(qk+ 1

2 , ψ)

+Aβh(ωk+ 1
2 , ψ)

}
+ τ

2

n−1∑

k=0

{
(∂τ qk, ψ) + Bσh(qk+ 1

2 , ψ) + Bδh(ωk+ 1
2 , ψ)

+Aεh(qk+ 1
2 , ψ) + Aβh(ωk+ 1

2 , ψ)
}

+ (αn, ψ) + τ

2
Bσh

( n∑

k=0

αk +
n−1∑

k=0

αk, ψ
)

+τ

2
Aεh

( n∑

k=0

αk +
n−1∑

k=0

αk, ψ
)
.

Using (5.6), for 1 ≤ n ≤ N − 1, we derive

(∂τω
n, ψ) + Bσh(ωn+ 1

2 , ψ) + Bδh(sn+ 1
2 , ψ) + Aεh(ωn+ 1

2 , ψ) + Aβh(sn+ 1
2 , ψ)

= (T n
1 , ψ) + Bσh(T n

2 , ψ) + Aεh(T n
2 , ψ) ∀ψ ∈ Vh, (5.11)

where

T n
1 := τ

2
ρn + τ

n−1∑

k=0

ρk + αn & T n
2 := τ

2
αn + τ

n−1∑

k=0

αk .

Substituting ψ = ωn+ 1
2 = ∂τ sn in (5.11) and making some rearrangements, we arrive at

(ωn+1, ωn+1) + 2τBσh(ωn+ 1
2 , ωn+ 1

2 ) + Bδh(sn+1, sn+1) + 2τAεh(ωn+ 1
2 , ωn+ 1

2 )

+Aβh(sn+1, sn+1) = (ωn, ωn) + Bδh(sn .sn) + Aβh(sn, sn) + 2τ(T n
1 , ωn+ 1

2 )

+2τBσh(T n
2 , ωn+ 1

2 ) + 2τAεh(T n
2 , ωn+ 1

2 ).

Next, using Cauchy-Schwartz inequality, coercivity and continuity of the bilinear maps B
and A, we obtain

(ωn+1, ωn+1) + 2τ‖ωn+ 1
2 ‖2 + Bδh(sn+1, sn+1) + 2τ‖ωn+ 1

2 ‖21 + Aβh(sn+1, sn+1)

≤ (ωn, ωn) + Bδh(Sn, Sn) + Aβh(sn, sn) + 2τ‖T n
1 ‖‖ωn+ 1

2 ‖ + 2τ‖T n
2 ‖‖ωn+ 1

2 ‖
+2τ‖T n

2 ‖1‖ωn+ 1
2 ‖1.

Finally, applying the Young’s inequality ab ≤ κa2 + 1
κ

b2 for a, b > 0 and choosing κ > 0
appropriately, above relation leads us to

(ωn+1, ωn+1) + Bδh(sn+1, sn+1) + Aβh(sn+1, sn+1)

≤ (ωn, ωn) + Bδh(sn, sn) + Aβh(sn, sn)

+2τ
(
‖T n

1 ‖2 + ‖T n
2 ‖2 + ‖T n

2 ‖21
)
. (5.12)

Summing (5.12) from n = 1 to n = l − 1 with 2 ≤ l ≤ N , we obtain

max
2≤n≤N

‖ωn‖2 ≤ ‖ω1‖2 + ‖s1‖21 + 2τ
l−1∑

n=0

(‖T n
1 ‖2 + ‖T n

2 ‖21
)
. (5.13)
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For estimation of the terms ω1 and s1, we note that

s1 = τω
1
2 = τ

2
ω1 & q

1
2 = q1

2
= ω1

τ
− α0.

Now, putting n = 0 in the error Eq. (5.6) and using the above identities, we have

2

τ 2
(ω1, ψ) + 1

τ
Bσh(ω1, ψ) + 1

2
Bδh(ω1, ψ) + 1

τ
Aεh(ω1, ψ) + 1

τ
Aβh(s1, ψ)

= (ρ0, ψ) + 2

τ
(α0, ψ) + Bσh(α0, ψ) + Aεh(α0, ψ) ∀ψ ∈ Vh . (5.14)

Substitutingψ = ω1 = 2
τ
in (5.14) and using coercivity of the operators B andA, we obtain

‖ω1‖2 + ‖s1‖21 ≤ τ 2

2
(ρ0, ω1) + τ(α0, ω1) + τ 2

2
Bσh(α0, ω1) + τAεh(α0, s1).

Next, use Cauchy–Schwartz and Young’s inequality to have

‖ω1‖2 + ‖s1‖21 ≤ τ 4

4
‖ρ0‖2 + κ1‖ω1‖2 +

(
τ 2 + τ 4

4

)
‖α0‖2

+κ2‖ω1‖2 + τ 2‖α0‖21 + κ3‖s1‖21.
Finally, choosing κi > 0 appropriately leads us to

‖ω1‖2 + ‖s1‖21 ≤ C
(
τ 4‖ρ0‖2 + τ 2‖α0‖21

)
. (5.15)

Combining (5.13) and (5.15), we have

max
1≤n≤N

‖ωn‖2 ≤ C
(
τ 4‖ρ0‖2 + τ 2‖α0‖21 + 2τ

l−1∑

n=0

(‖T n
1 ‖2 + ‖T n

2 ‖21
))

. (5.16)

Now, we shall estimate both terms T n
1 and T n

2 . For the estimation of T n
1 , use triangle

inequality and Cauchy-Schwartz inequality to have

‖T n
1 ‖2 ≤ C

(τ 2

4
‖ρn‖2 + τ 2‖

n−1∑

k=0

ρk‖2 + ‖αn‖2
)

≤ C
(τ 2

4
‖ρn‖2 + τ 2N

n−1∑

k=0

‖ρk‖2 + ‖αn‖2
)

≤ C
(τ 2

4
‖ρn‖2 + τ

n−1∑

k=0

‖ρk‖2 + ‖αn‖2
)
.

Then, using Lemma 5.2, we obtain

‖T n
1 ‖2 ≤ C

(
τ 5

∫ tn+1

tn
‖u′′′′

h ‖2dt + τ 4
∫ T

0
‖u′′′′

h ‖2dt

+τ 3
∫ tn+1

tn
‖u′′′

h ‖2dt

)
. (5.17)

The following estimate for T n
2 is achieved using the same technique as used for deriving T n

1

‖T n
2 ‖21 ≤ C

(
τ 5

∫ tn+1

tn
‖u′′′

h ‖21dt + τ 4
∫ T

0
‖u′′′

h ‖21dt

)
. (5.18)
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Finally, using (5.17)–(5.18) in (5.16), we obtain

max
1≤n≤N

‖ωn‖2 ≤ Cτ 4
( ∫ T

0
‖u′′′′

h ‖2dt +
∫ T

0
‖u′′′

h ‖21dt

)
.

��
Now, we are in a position to state the main result of this section.

Theorem 5.1 Let u and U n be the solutions of the interface problem (1.2)–(1.4) and the
finite element approximation (5.1)-(5.2), respectively. Assume that u0 ∈ H6(�) ∩ H1

0 (�),
v0 ∈ H6(�) ∩ H1

0 (�) and f ∈ H3(J ; H2(�)), then we have

max
0≤n≤N

‖un − U n‖ ≤ C(u)

((
h + √

λ + λ

h

)2

+ τ 2
)

,

where C(u) = C

{
‖u0‖2H6(�)

+ ‖v0‖2H6(�)
+ ‖u‖2

H2(Y)

} 1
2

.

Proof Applying the triangle inequality to

un − U n = un − un
h + un

h − U n,

followed by estimates (4.5)–(4.6), Theorem 4.2 and Lemma 5.3 leads to desire result. ��
Remark 5.1 (a) The proposed fully discrete finite element scheme can be easily extended for
the numerical approximation of the solutions to the following IBVP

u′′ + σu′ + δu − ∇ · (ε∇u′ + β∇u) = f in � × (0, T ], (5.19)

coupled with the following jump conditions

[u] = 0,

[
ε(x)

∂u′

∂n
+ β(x)

∂u

∂n

]
= g along � × [0, T ]. (5.20)

For numerical validation, we refer to numerical examples 6.1.-6.2.
(b) In developing numerical methods for interface problems, higher order of convergence
is always one of the major research goals, because high order methods are more accurate
and cost-efficient. Present analysis provides a scope for the generalization of these works to
higher order finite element methods by combining the theory in this work with the analysis
in [17]. A higher order finite element approximation and its convergence is illustrated in
Example 6.3.

6 Numerical Results

In this section, we present some numerical experiments to validate the theoretical findings
presented in the previous section. To illustrate the flexibility of the method, different forms
of interfaces along with a large scale of variation in the physical coefficients are considered.
The nodes of the triangulations of �1 and �2 coincide on the interface � as stated in Sect. 2.
All the numerical computations are done in the time interval J = (0, 1].

Our main emphasis here is to understand the behavior of the true errors obtained in
Theorem 5.1 on uniform meshes with uniform time steps. For each quantities of interest
we observe its experimental order of convergence (EOC). For a given finite sequence of
successive runs (indexed by i), let
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Fig. 3 Exact solution (left) and triangulation(right) of � with h = 0.305091 (Test Example 6.1)

Table 1 Parameters used in computation (see, Xu et al. [39])

Parameters Domain �1 Domain �2

k(W/mK ) Thermal conductivity 0.235 0.445

ρ(kg/m3) Skin density 1500 1116

c(J/kgK ) Specific heat 3600 3300

wb(kg/m3s) Blood perfusion rate 0.5 0.5

cb(J/kgK ) Specific heat of blood 3770 43770

ρb(kg/m3) Density of blood 1060 1060

• e(i) = the error corresponding to the L2-norm and H1-norm on the i th iteration and
• h(i) = the mesh size of the run i .

Then the experimental order of convergence (E OC) is computed by

E OC(i + 1) = log(e(i + 1)/e(i))

log(h(i + 1)/h(i))
.

Example 6.1 For our first numerical experiment, we consider a square domain� = (−1, 1)×
(−1, 1), where interface � is a circle centered at (0, 0) with radius 0.5. We select the data in
(5.19)-(5.20) such that the exact solution u is given by

u(x, y, t) =
{

(r20 − r2)t2 if r ≤ r0,
(r20 − r2)t sin(πx) sin(π y) if r > r0,

where r2 = x2 + y2 and r0 = 0.5.

In Fig. 3 we show the exact solution and triangulation of the domain � with mesh size
h = 0.305091. In our numerical convergence test, we choose two different sets of physical
coefficients borrowed from Xu et al. [39] that corresponds to two different forms of bio heat
transfer model. Following [39], physical parameters employed in the computation are as in
Table 1. Dual-phase-lag (DPL) bio heat transfer is characterized by thermal relaxation time
τq and phase lag for temperature gradient τT . Vedavarz et al. [37] found that τq for some
biological tissues lies in the range of 1s − 100s at room temperature. Following the paper
by Mitra et al. [22], we take the thermal lag time (τq ) and phase lag time (τT ) as 16 s and
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Table 2 Example 6.1. E OC for τT �= 0 at t = 1 and τ = 10−3

h ‖u − uh‖L2(�) E OC ‖u − uh‖H1(�) E OC

0.3050910 5.03668e-002 – 9.99850e-001 –

0.1673780 1.11142e-002 2.2414 4.64219e-001 1.1025

0.0828717 2.77700e-003 2.1093 2.30304e-001 0.9971

0.0420952 7.65119e-004 2.0718 1.20741e-001 1.0877

Table 3 Example 6.1. E OC for τT = 0 at t = 1 and τ = 10−3

h ‖u − uh‖L2(�) E OC ‖u − uh‖H1(�) E OC

0.3050910 1.17510e-002 – 7.11408e-001 –

0.1673780 3.24310e-003 2.1444 3.54219e-001 1.1615

0.0828717 7.31190e-004 2.1191 1.70304e-001 1.0418

0.0420952 1.85119e-004 2.0280 8.47410e-002 1.0305

0.043s, respectively. Then using Table 1, we have the first set of physical coefficients for the
DPL bio heat model:

(σ, δ, ε, β) =
(τqwbρbcb + ρc

τqρc
,
wbρbcb

τqρc
,

τT κ

τqρc
,

κ

τqρc

)

=
{(

0.4325, 0.0231, 1.1696 × 10−10, 2.7199 × 10−9
)
if r ≤ r0,(

0.6050, 0.0339, 1.2083 × 10−7, 7.5520 × 10−9
)

if r > r0.

In the absence of phase lag time (τT ), Eq. (1.1) reduces to the thermal wave model of bio
heat transfer [10,11]. The second set of physical coefficients that corresponds to the thermal
wave model of bio heat transfer is given by

(σ, δ, ε, β) =
{(

0.4325, 0.0231, 0, 2.7199 × 10−9
)
if r ≤ r0,(

0.6050, 0.0339, 0, 7.5520 × 10−9
)
if r > r0.

Tables 2 and 3 represent the numerical solution errors and convergence rates in both L2 and
H1 norms for τT �= 0 (DPL bio heat transfer) and τT = 0 (thermal wave bio heat transfer),
respectively. In both cases, we choose the uniform time step size τ = 10−3. The errors at
time t = 1 are listed in the Tables 2 and 3. Figure 4 clearly demonstrates the second order
of convergence in L2 norm and first order of convergence in H1 norm. Note that the second
set of physical coefficients are chosen to emphasize the fact that our numerical scheme is
consistent for the thermal wave model of bio heat transfer and is clearly depicted in Table 3.

Example 6.2 For our second numerical example, we consider the interface to be a curve given
by y = x2 in the computational domain� = (−1, 1)×(−1, 1). We select the data appearing
in (5.19)–(5.20) setting the exact solution as

u(x, y, t) =
{
0.25 exp(t)(y − x2) sin(πx) sin(π y) if y ≤ x2,
−5t2(y − x2)(y − 1) if y > x2.

With the development of high-power short impulse lasers, use of dual-phase-lag (DPL)model
has become common in the study of heat transport in metallic films during ultrafast laser
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Fig. 4 Log-log plot of the L2 norm and H1 norm versus the mesh size at time t = 1 in Example 6.1
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Fig. 5 Exact solution (left) and triangulation(right) of � with h = 0.286172 (Test Example 6.2)

Table 4 Example 6.2. E OC at t = 10−12 and τ = 10−14

h ‖u − uh‖L2(�) E OC ‖u − uh‖H1(�) E OC

0.2861720 1.14180e-002 – 2.16910e-001 –

0.1656240 3.05842e-003 2.4088 1.09996e-001 1.2417

0.0888431 7.67597e-004 2.2195 5.48601e-002 1.1169

0.0478408 1.94671e-004 2.2164 2.74689e-002 1.1175

heating [28,34]. The phase-lag time varies for different materials and it may take values in
the range of 10−3s − 103s for heterogeneous materials (cf. [21]). To mark the significance
of our model problem, we choose the physical coefficients from the paper by Tzou et al. [32]

(σ, δ, ε, β) =
(C2

E

αE
, 0, αe, C2

E

)

=
{(

1.2 × 1012, 0, 1.2 × 10−4, 1.44 × 108
)
if y ≤ x2,

(
1.2 × 1012, 0, 1.6 × 10−4, 1.96 × 108

)
if y > x2.
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Fig. 6 Log-log plot of the L2

norm and H1 norm versus the
mesh size at time t = 10−12 in
Example 6.2
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Fig. 7 Exact solution (left) and triangulation(right) of � with h = 0.2969850 (Test Example 6.3)

Here CE represents the equivalent thermal wave speed, αE denotes the equivalent thermal
diffusivity and αe is the electron thermal diffusivity of the material. In Fig. 5, we show
the exact solution and the triangulation of the domain � with mesh size h = 0.285956.
The numerical solution errors and convergence rates in both L2 and H1 norms at final time
t = 10−12 are listed in Table 4. The final time step is taken in pico-second (ps) as the thermal
lagging model describes the pico-second (ps) heat transport in metal films (cf. [32,34]). It
is clear from Fig. 6 that we have achieved optimal order of convergence in both L2 and H1

norms, which confirm the theoretical prediction as proved in Theorem 5.1

Example 6.3 For our final numerical example, the computational domain � = (−1, 1) ×
(−1, 1) is divided into four subdomains �i , i = 1, 2, 3, 4 using the interface � := {(x, y) ∈
� : xy = 0}. We select the data appearing in (5.19)–(5.20) setting the exact solution as

u(x, y, t) =

⎧
⎪⎪⎨

⎪⎪⎩

−0.5x2 sin(πx) sin(π y2) if (x, y) ∈ �1,

0.5t y2 sin(πx2) sin(π y) if (x, y) ∈ �2,

0.5 sin(t)x2 sin(πx) sin(π y2) if (x, y) ∈ �3,

−0.5y2 sin(πx2) sin(π y) if (x, y) ∈ �2.

In Fig. 7, we show the exact solution and triangulation of the domain � with mesh size
h = 0.2969850. Equation (1.2) also represents the linearized Westervelt’s equation for
classical model for nonlinear ultrasound propagation through thermoviscous fluids [25].
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Table 5 Parameters used in computation for Example 6.3 (cf. [3,25])

Parameters Domain �1 Domain �2 Domain �3 Domain �4

σ 5 4 4 7

δ 0 0 0 0

ε 6 × 10−9 4 × 10−9 4 × 10−2 4 × 10−9

β 15002 10002 10002 30002

Table 6 Example 6.3 E OC at t = 1 and τ = 10−2 for P1 elements

h ‖u − uh‖L2(�) E OC ‖u − uh‖H1(�) E OC

0.2969850 9.90197e-003 – 2.39631e-002 –

0.1542410 2.70301e-003 1.9817 1.20437e-002 1.0501

0.0765776 6.69095e-004 1.9940 6.01226e-003 0.9922

0.0410173 1.80135e-004 2.1019 2.92771e-003 1.1526

Table 7 Example 6.3 E OC at t = 1 and τ = 10−2 for P2 elements

h ‖u − uh‖L2(�) E OC ‖u − uh‖H1(�) E OC

0.2969850 4.75802e-004 – 2.77468e-002 –

0.1542410 6.63167e-005 3.0077 7.11948e-003 2.0762

0.0781625 8.56805e-006 3.0106 1.82065e-003 2.0062

0.0435878 1.47599e-006 3.0114 5.47462e-004 2.0576

Table 8 Example 6.3 E OC at t = 1 and τ = 10−2 for P3 elements

h ‖u − uh‖L2(�) E OC ‖u − uh‖H1(�) E OC

0.2969850 4.32487e-005 – 1.9120e-003 –

0.1542410 3.02790e-006 4.0587 2.60082e-004 3.0449

0.0781625 1.94952e-007 4.0353 2.97168e-005 3.1914

0.0435878 1.85633e-008 4.0266 4.63975e-006 3.1798

Following [3,25], in each subdomain we use different material parameters for the physical
coefficients, given in Table 5.

Tables 6, 7 and 8 represent the numerical solution errors and convergence rates in both
L2 and H1 norms for P1, P2 and P3 finite elements, respectively. In all cases, we choose
the uniform time step size τ = 10−2. The errors at time t = 1 are listed in the Tables 6,
7 and 8. Note that the finite element spaces P2 and P3 are chosen to emphasize the fact
that our numerical scheme is consistent for the higher order finite element spaces under the
assumption that λ = O(h3) and λ = O(h4), respectively. It is clear from Fig. 8 that we have
achieved optimal order of convergence in both L2 and H1 norms which consolidates our
theoretical findings.
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Fig. 8 Log-log plot of the L2 norm and H1 norm versus the mesh size at time t = 1 in Example 6.3

7 Conclusion

Time-dependent interface problems are frequently encountered in scientific computing and
many applied sciences. The typical mathematical models are the heat or wave type equations
with discontinuous coefficients, which arise when the physical processes involve two or more
materials or media with non-identical properties. In this article, we have presented finite
element analysis for linear general hyperbolic equations with interfaces. The discretization
with respect to space is by the piecewise linear finite elements and in timewe have applied the
Crank-Nicolsion scheme by setting the governing equation as a first-order system in time.
We have established second order convergence in time and optimal order convergence in
space with respect to L∞(L2)-norm. Present analysis provides a scope for the generalization
of these works to higher order finite element methods under the assumption that λ = O(h2p)

and solution belongs to L∞(L2(�) ∩ H p+1(�1 ∪ �2)), p is the order of approximating
polynomial spaces (see, [17] for elliptic type problems with interfaces). Further, we believe
that present work can be easily extended to following linearized Westervelt equation with
variable coefficients (cf. [25])

γ (x, t)u′′ + σ(x, t)u′ − ∇ · (ε∇u′ + β∇u) = f (x, t) in � × (0, T ], (7.1)
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where � ⊂ R
3 is a bounded and convex domain with C2 smooth interface �. It is worth

to note that only semidiscrete error analysis has been discussed in Nikolić et al. [25] for
non-interface problems.

Futureworkwill be focussed on the extension of this theory to theWestervelt’s quasi-linear
acoustic wave equation

c−2u′′ − ∇ · (∇u(x, t) + β(x)∇u′) = γ (u2)′′ in (0, T ] × �, (7.2)

with interfaces. Equation (7.2) with interfaces are motivated by lithotripsy where a silicone
acoustic lens focuses the ultrasound traveling through a nonlinearly acoustic fluid to a kidney
stone (cf. [24]). In [24], the authors have investigated interface coupling problems involving
Westervelt equation for different types of boundary conditions. Currently, we are working
on the extension of the work of Nikolić et al. [25] for interface problems.

Acknowledgements The authors are grateful to the anonymous referee for valuable comments and suggestions
which greatly improved the presentation of this paper.

Appendix

Proof of Lemma 4.1: Taking t → 0+ in (4.1) and then using definition of Qh operator, we
obtain

(u′′
h(0), vh) = −Bσh(u′

h(0), vh) − Bδh(uh(0), vh)

−Aεh(u′
h(0), vh) − Aβh(uh(0), vh) + ( f (0), vh)

= −Bσh(Qεhv0, vh) − Bβh(Qβhu0, vh)

−Aεh(Qεhv0, vh) − Aβh(Qβhu0, vh) + ( f (0), vh)

= −Bσh(Qεhv0, vh) − Bβh(Qβhu0, vh)

−Aε(v0, vh) − Aβ(u0, vh) + ( f (0), vh). (7.3)

Here, we have used the fact that uh ∈ C2(J ; Vh). For the third term and fourth term in (7.3),
we use Green’s formula and boundary condition to derive

Aε(v0, vh) = −(∇ · (ε∇v0), vh) ≤ C‖v0‖2‖vh‖,
Aβ(u0, vh) = −(∇ · (β∇u0), vh) ≤ C‖u0‖2‖vh‖.

Hence, (7.3) yields

‖u′′
h(0)‖ ≤ C

(‖u0‖2 + ‖v0‖2 + ‖ f ‖H1(L2)

)
. (7.4)

In the previous estimate, we have used the fact that

sup
0≤t≤T

‖ f (t)‖ ≤ C(T )‖ f ‖H1(J ;W ).

In fact, for any Banach space B, we know that (cf. [30], Proposition 7.1)

sup
0≤t≤T

‖v(t)‖B ≤ C(T )‖v‖H1(J ;B) ∀v ∈ H1(J ;B). (7.5)

Also, from the definition of Qh operator, we can easily derive

‖u′
h(0)‖1 = ‖Qεhv0‖1 ≤ C‖v0‖1. (7.6)
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For i = 3, taking t → 0+ in (2.3) and using (7.3), we have

(u′′
h(0) − u′′(0), vh) = Bσ (v0, vh) − Bσh(Qεhv0, vh) + Bδ(u0, vh)

−Bδh(Qβhu0, vh)

= B�
σ (v0, vh) + Bσh(v0 − Qεhv0, vh) + B�

δ (u0, vh)

+Bδh(u0 − Qβhu0, vh)

≤ C(h2 + λ)(‖u0‖2 + ‖v0‖2)‖vh‖. (7.7)

In the last inequality, we have used Lemmas 3.2 and 3.4, and the fact that u ∈ C2(J ; W ).
Then use definition of L2 projection and (7.7) to obtain

(u′′
h(0) − Lhu′′(0), vh) = (u′′

h(0) − u′′(0), vh)

≤ C(h2 + λ)(‖u0‖2 + ‖v0‖2)‖vh‖, (7.8)

which imply

‖u′′
h(0) − Lhu′′(0)‖ ≤ Ch(‖u0‖2 + ‖v0‖2). (7.9)

Estimate (7.9) together with inverse inequality and (3.19) yields

‖u′′
h(0)‖1 ≤ Ch−1‖u′′

h(0) − Lhu′′(0)‖ + ‖Lhu′′(0)‖1
≤ C(‖u0‖3 + ‖v0‖3 + ‖ f ‖H1(H1)). (7.10)

Next, for uh ∈ C3(J ; Vh), we differentiate (4.1) with respect to t and then take t → 0+ to
have

(u′′′
h (0), vh) = −Bσh(u′′

h(0), vh) − Bδh(u′
h(0), vh)

−Aεh(u′′
h(0), vh) − Aβh(u′

h(0), vh) + ( f ′(0), vh)

= −Bσh(u′′
h(0), vh) − Bδh(Qεhv0, vh)

−Aεh(u′′
h(0) − Qεhu′′(0), vh) − Aβh(Qεhv0 − Qβhu′(0), vh)

−
2∑

l=1

{
Al

ε(u
′′(0), vh) + Al

β(u′(0), vh)
}

+ ( f ′(0), vh).

Now, for u ∈ H3(J ;Y) or equivalently u ∈ C2(J ;Y), use the fact that
[
ε(x)

∂u′′(t)
∂n

+ β(x)
∂u′(t)

∂n

]
= 0 along � × [0, T ]

in the Eq. (7.11) to obtain

(u′′′
h (0), vh) = −Bσh(u′′

h(0), vh) − Bδh(Qεhv0, vh)

−Aεh(u′′
h(0) − Qεhu′′(0), vh) − Aβh(Qεhv0 − Qβhv0, vh)

+
2∑

l=1

{
(∇ · εl∇u′′(0), vh)�l + (∇ · β∇u′(0), vh)�l

}
+ ( f ′(0), vh)

≤ C
{
‖u′′

h(0)‖ + h−1(‖u′′
h(0) − Qεhu′′(0)‖1 + ‖Qεhv0 − Qβhv0‖1)

+
2∑

l=1

‖u′′(0)‖2,�l + ‖v0‖2 + ‖ f ‖H2(L2)

}
‖vh‖. (7.11)
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From (7.8) and Remark 3.1, we have

‖u′′
h(0) − Qεhu′′(0)‖1
≤ Ch−1‖u′′

h(0) − Lhu′′(0)‖ + ‖Lhu′′(0) − Qεhu′′(0)‖1

≤ C(‖u0‖2 + ‖v0‖2) + Ch
2∑

l=1

‖u′′(0)‖2,�l

≤ Ch(‖u0‖4 + ‖v0‖4 + ‖ f ‖H1(H2)). (7.12)

In the last inequality, we have used the fact that ‖u0‖K ≤ Ch‖u0‖2,K for all K ∈ Th . Using
(7.12) in (7.11), we obtain

‖u′′′
h (0)‖ ≤ C(‖u0‖4 + ‖v0‖4 + ‖ f ‖H2(H2)). (7.13)

The case i = 4 can be done in a similar way and hence details are omitted. This completes
the rest of the proof. ��
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