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Abstract
Level set (LS) method is a widely used interface capturing method. In the simulations of
incompressible two-phase flows, in order to avoid discontinuities at interfaces, the LS func-
tion is usually taken as a smeared-out Heaviside function bounded on [0, 1] and advected by
a given velocity field u obtained from the solution of the incompressible Navier-Stokes equa-
tions. In the incompressible limit∇ ·u = 0, the advection equation for the LS function can be
written and discretized in conservative form. However, due to numerical errors, the resulting
velocity field is in general not divergence free which leads to the solution of the advection
equation in conservative formdoes not satisfy themaximumprinciple. To overcome this issue,
in this work, we develop a high-order discontinuous Galerkin (DG) method to directly solve
the advection equation for the LS function in non-conservative form. Moreover, we prove
that by applying a linear scaling limiter, the proposed method together with a strong stability
preserving (SSP) time discretization scheme can satisfy the strict maximum principle under a
suitable CFL condition. Numerical simulations of several well-known benchmark problems,
including the application to incompressible two-phase flows, are presented to demonstrate
the high-order accuracy andmaximum-principle-satisfying property of the proposedmethod.

Keywords Maximum principle · Discontinuous Galerkin method · Level set method ·
Incompressible two-phase flows

1 Introduction

Incompressible two-phase flows exist in a wide variety of natural processes and industrial
applications, e.g., geophysical flows,waterwaves, biomechanics andmany others. Numerical
simulations of such flows are difficult because the interface separating different fluids must
be accurately tracked or captured simultaneously with the evolution of the flow field [1,2].
Many methods have been developed for this purpose in literature. Among them, the level set
(LS) method enjoys considerable popularity for its simplicity and flexibility [3–5]. In order
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to avoid potential numerical oscillations around discontinuities, a smeared-out Heaviside
function which is bounded on [0, 1] is usually chosen as the LS function [6–8]. Under this
case, the LS function takes zero in one fluid and one in the other, and it varies smoothly over
the interface.

The LS method includes an advection equation that describes the evolution of the inter-
face and a re-initialization equation that retains the profile and thickness of the interface.
Numerical methods which are able to solve the advection equation with minimum numerical
dissipation and dispersion for a nearly discontinuous solution are ideal candidates for the LS
method. In this work, the discontinuous Galerkin (DG) method [9–11] is employed for the
spatial discretization of the LS equation. However, it is well known that using high-order
approximations in the DG discretization is prone to monotonicity violations. While small
oscillations might be acceptable in some cases, in many others they can lead to unphysical
values, e.g., values of the LS function outside of [0, 1] may produce negative density in
the context of incompressible two-phase simulations with large density ratio. Therefore, a
high-order accurate scheme satisfying a strict maximum principle [12] in the sense that the
numerical solution never goes out of the admissible set should be used in the computing.

In the simulations of incompressible two-phase flows, the LS function is advected by
the velocity field u obtained from the incompressible Navier-Stokes (INS) equations. In the
incompressible limit, i.e., ∇ · u = 0, the advection equation for the LS function can be writ-
ten in conservative form. Various maximum-principle-satisfying (MPS) numerical methods
have been developed for solving such conservation laws. One important breakthrough was
made by Zhang and Shu [13,14] who proposed a uniformly high-order accurateMPSDG and
weighted essentially non-oscillatory (WENO) schemes for scalar conservation laws. These
high-order schemes achieve the strict maximum principle by applying a linear scaling limiter
[15] at each stage of an explicit Runge-Kutta (RK) method or at each step of a multistep
method. This technique was later generalized to positivity preserving high-order DGmethod
for compressible Euler equations [16]. Another class of high-order parametrized maximum-
principle-preserving (MPP) flux limiters was proposed by Xu et al. [17,18] under a finite
volume framework, which limits a high-order numerical flux towards a first-order monotone
flux. In [19], Xiong et al. generalized the parametrized high-orderMPP flux limiters for finite
difference RK-WENO schemes with applications in inviscid incompressible flows. Exten-
sions of the high-order MPS or MPP methods for solving convection-diffusion equations
were also considered by many researchers, see for example [20–24].

For solutions containing discontinuities, in general, it is preferable to solve the conserva-
tive form of the advection equation rather than the non-conservative one. However, due to
numerical errors, the velocity field obtained by solving the INS equations will slightly deviate
from the divergence-free field. Under this case, the advection equation in conservation form
does not imply the maximum principle [13] and this is the main difficulty in developing a
high-order MPS method for solving the incompressible two-phase flows. In order to main-
tain a divergence-free velocity field, in [13,14], a high-order DG method was developed for
solving two-dimensional incompressible flows in the vorticity stream-function formulation
[25].

The main object of this work is to construct a high-order MPS DGmethod for solving the
LS problem in a given non-divergence-free velocity field such that the numerical solution
never goes out of the range of the admissible set. First, by carefully constructing the numerical
flux,we develop a high-orderDGmethod, termed as non-conservativeDGmethod, to directly
solve the advection equation for the LS function in non-conservative form. Then, following
the idea in [13,14], we prove that by applying a linear scaling limiter, this non-conservative
DG method together with a strong stability preserving (SSP) time discretization scheme can
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satisfy themaximum principle under a suitable CFL condition. Generally, it needs to consider
the following two steps:

1. To maintain the solution average in [0, 1] during the temporal evolution;
2. To maintain the whole polynomial solution in [0, 1] without losing accuracy.

The main challenge lies in retaining the cell averages in the next time step bounded in
[0, 1]. As for the second step, the linear scaling limiter introduced in [15] can be applied to
control the maximum/minimum of the original polynomial solutions. Numerical simulations
of several well-known benchmark problems, including the application to incompressible
two-phase flows, are presented to demonstrate the high-order accuracy and MPS property of
the proposed non-conservative DG method.

This paper is organized as follows. Section 2 gives a brief introduction of the LS method.
In Sect. 3, we develop a high-order DG method for solving the advection equation in non-
conservative form and prove that the proposed method satisfies the maximum principle with
arbitrary order accuracy. The high-order MPS DG method for solving the re-initialization
equation is given in Sect. 4. Numerical tests for the proposed method, including examples
from the incompressible two-phase flows, are shown in Sect. 5. Concluding remarks are given
in Sect. 6.

2 Level Set Method

The LS method has been first developed by Osher and Sethian for computing the motion of
two-phase flow [3]. In the standard LS method, the interface φ(x, t) is defined to be a signed
distance function, i.e.,

|φ(x, t)| = d(x, t) = min
xI∈Γ (t)

|x − xI |, (1)

where t is time, Γ (t) is the interface and xI is the location on the interface that is closest
to the point x. In practice, however, in order to avoid discontinuities at interface, the signed
distance function φ(x, t) is usually replaced with a smeared-out Heaviside function ϕ(x, t)
defined as follows

ϕ(x, t) = 1

2

(
tanh(

φ(x, t)
2ε

) + 1
)
, (2)

where ε is a parameter that represents the thickness of the profile. Then, ϕ(x, t) takes the
value 0 on one side of the interface and the value 1 on the other. The interface Γ (t) is defined
by the location of the ϕ(x, t) = 0.5 iso-surface, i.e.,

Γ (t) = {x|ϕ(x, t) = 0.5}. (3)

Consider a moving interface Γ (t) in two dimensional that bounds a region � ∈ R
2, see

Fig. 1. Motion of the interface is achieved by solving the following advection equation

∂ϕ

∂t
+ u · ∇ϕ = 0, ∀(x, t) ∈ � × [0, T ],

ϕ(x, 0) = ϕ0(x), ∀x ∈ �,

(4)

where 0 < T < R is the final time, ϕ : � × [0, T ] → R is the LS function, u = (u, v) :
� × [0, T ] → R

2 is the velocity field and ϕ0 : � → R is the initial condition. Due to
the existence of inevitable numerical errors or artificial diffusions together with velocity
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Fig. 1 Explanation of the level
set method

ϕ(x, t) > 0.5

ϕ(x, t) < 0.5

Γ (t) = {x ∈ R
2|ϕ(x, t) = 0.5}

variations, the shape of ϕ(x, t) across the interface will be distorted when ϕ(x, t) is advected.
As a result, a re-initialization step is necessary to retain the profile and thickness of the
interface. This is performed by solving the following advection-diffusion equation [6]

∂ϕ

∂τ
+ ∇ · (ϕ(1 − ϕ)̂n|τ=0) = ∇ · (ε∇ϕ). (5)

Here, τ is the pseudo-time and n̂ = (̂nx , n̂ y) = ∇ϕ/||∇ϕ|| is the interface normal vector. The
term ϕ(1−ϕ)̂n|τ=0 is the compressive flux that aims at sharpening the profile, while ε∇ϕ is
the diffusion flux that maintains characteristic thickness ε and avoids discontinuities at the
interface.

3 Maximum-Principle-Satisfying DGMethod for the Advection
Equation

3.1 Preliminaries

Before introducing the MPS DG method for the advection equation, we first introduce some
notations that will help us to obtain the primal formulation. Let �h be an approximation of
the solution domain � and for simplicity we partition �h by uniform rectangular cells such

that �h = ∪Nx
i=1 ∪Ny

j=1 Ii, j with Ii, j = [xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
], Δx = (xi+ 1

2
− xi− 1

2
),

Δy = (y j+ 1
2

− y j− 1
2
) and |Ii, j | = ΔxΔy. We define ∂ Ii, j as the cell interfaces of Ii, j and

we permanently associate it with a unit normal vector ne outward from the cell Ii, j .
We seek numerical solutions in the discontinuous piecewise polynomial space given as

V k
h

de f= {ψ ∈ L2(�) : ψ |Ii, j ∈ Pk(Ii, j ),∀Ii, j ∈ �h}, (6)

where Pk is the set of two-variable polynomials of degree equal or less than k. At each cell
Ii, j , we have an approximate polynomial solution ϕh(x, y) ∈ Pk with the cell average ϕi, j
defined as

ϕi, j = 1

|Ii, j |
∫

Ii, j
ϕh(x, y)dx. (7)
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Note that the functions in V k
h can be double-valued on the cell interfaces ∂ Ii, j . Hence, we

denote ϕ−
h and ϕ+

h as the left and right limits of ϕh , respectively, and denote the traces of ϕh

on the four edges of Ii, j as ϕ+
i− 1

2 , j
(y), ϕ−

i+ 1
2 , j

(y), ϕ+
i, j− 1

2
(x) and ϕ−

i, j+ 1
2
(x), respectively, as

illustrated in Fig. 2(a). Then, all of the traces are single-variable polynomials of degree k.
The integrals in the DG formulation are approximated by quadratures with sufficient

accuracy. In this work, we need to use two quadrature rules, namely the L-point Gauss-
Legendre quadrature rule and the N -point Gauss-Lobatto quadrature rule. Specifically, the
Gauss-Legendre quadrature points on [xi− 1

2
, xi+ 1

2
] and [y j− 1

2
, y j+ 1

2
] are denoted as

Sxi = {xα
i : α = 1, · · · , L}, Syj = {yα

j : α = 1, · · · , L}, (8)

respectively, with quadrature weights wα on interval [− 1
2 ,

1
2 ] satisfying

L∑

α=1
wα = 1. While

the Gauss-Lobatto quadrature points are denoted as

Ŝxi = {̂xβ
i : β = 1, · · · , N }, Ŝ yj = {ŷβ

j : β = 1, · · · , N }, (9)

with quadrature weights ŵβ on interval [− 1
2 ,

1
2 ] satisfying

N∑

β=1
ŵβ = 1. For example, for

k = 2, we use a three-point Gauss quadrature, i.e., Sx = Sy = {−
√
15
10 , 0,

√
15
10 } with

w = { 5
18 ,

8
18 ,

5
18 } and Ŝx = Ŝ y = {− 1

2 , 0,
1
2 } with ŵ = { 16 , 4

6 ,
1
6 }. Then, by introducing the

tensor product ⊗ and defining the following points set Si, j [13]

Si, j = (Sxi ⊗ Ŝ yj )
⋃

(Ŝxi ⊗ Syj ), (10)

see Fig. 2(b) for an illustration, the cell average ϕi, j can be approximated by

ϕi, j =
L∑

α=1

N∑

β=1

wαŵβϕh(x
α
i , ŷβ

j ). (11)

Similarly, we also have

ϕi, j =
L∑

α=1

N∑

β=1

wαŵβϕh (̂x
β
i , yα

j ). (12)

In the following, unless otherwise specified, subscripts α and β, γ will be used for Gauss-
Legendre and Gauss-Lobatto quadrature points, respectively.

3.2 Advection Equation with a Divergence-Free Velocity Field

In the context of a divergence-free velocity field, i.e., ∇ · u = 0, the advection equation for
the LS function Eq. (4) can be written in conservative form

∂ϕ

∂t
+ ∇ · (uϕ) = 0. (13)

Under this case, the exact solution of Eq. (13) is equivalent to that of Eq. (4) which satisfies
a strict maximum principle, i.e., if

m = min
x

ϕ0(x), M = max
x

ϕ0(x), (14)
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(x
i− 1

2
, y

j− 1
2

) (x
i+1

2
, y

j− 1
2

)

(x
i+1

2
, y

j+1
2

)(x
i− 1

2
, y

j+1
2

)

ϕ
+
i,j− 1

2
(x)

ϕ
−
i,j+1

2
(x)

ϕ
+
i− 1

2 ,j
(y) ϕ

−
i+1

2 ,j
(y)

(a) traces of ϕh(x, y) (b) points set Si,j

Fig. 2 The traces of solution and integral points in cell Ii, j

then ϕ(x, t) ∈ [m, M] for any x and t . Here, m = 0 and M = 1 for the LS function Eq. (2).
This property is also desired for numerical schemes solving Eq. (4) and Eq. (13), since the
violation of this property can lead to instability and breakdown during the simulation [26].

Multiplying Eq. (13) by any test function ψ ∈ V k
h , integrating over any cell Ii, j ∈ �h

and integrating by parts, we obtain the standard DG(Pk) method, i.e., we seek ϕh ∈ V k
h such

that
∫

Ii, j
(∂tϕh)ψdx −

∫

Ii, j
Fc(ϕh) · ∇ψdx +

∫

∂ Ii, j
ne · F̂c(ϕ

−
h , ϕ+

h )ψds = 0 (15)

holds for any ψ ∈ V k
h . Here, Fc(ϕ)

de f= [ fc(ϕ), gc(ϕ)] = uϕ and F̂c(·, ·) is any Lipschitz
continuous monotone flux as defined in [27], e.g., the global Lax-Friedrichs flux defined by

ne · F̂c(ϕ
−
h , ϕ+

h ) = 1

2

[
ne · (

Fc(ϕ
−
h ) + Fc(ϕ

+
h )

) − a(ϕ+
h − ϕ−

h )
]
, (16)

where a = max
x

|ne · F′
c(ϕh)| = max

x
|ne · uh | and uh is the given exact or approximate

solution of the velocity field u.
It is not natural for the DG method Eq. (15) to achieve a strict maximum principle in

the sense that the numerical solution ϕh never goes out of the range [m, M]. To overcome
this problem, Zhang and Shu [13,14] developed a uniformly high-order accurate DGmethod
for the conservation laws satisfying a strict maximum principle which needs to consider the
following two steps:

First, maintenance of the polynomial solution averages staying inside [m, M]. According
to Eq. (15), the scheme satisfied by cell averages with the Euler forward time discretization
can be written as

ϕn+1
i, j = ϕn

i, j − λx

Δy

∫ y
j+ 1

2

y
j− 1

2

f̂c
(
ϕ−
i+ 1

2 , j
(y), ϕ+

i+ 1
2 , j

(y)
) − f̂c

(
ϕ−
i− 1

2 , j
(y), ϕ+

i− 1
2 , j

(y)
)
dy

− λy

Δx

∫ x
i+ 1

2

x
i− 1

2

ĝc
(
ϕ−
i, j+ 1

2
(x), ϕ+

i, j+ 1
2
(x)

) − ĝc
(
ϕ−
i, j− 1

2
(x), ϕ+

i, j− 1
2
(x)

)
dx,

(17)

where the superscript n is the time level, λx = Δt/Δx , λy = Δt/Δy and f̂c(·, ·), ĝc(·, ·) are
the one-dimensional numerical fluxes. Then, we have [13,14].

Lemma 1 Consider the scheme satisfied by the cell averages of the DG(Pk) method Eq. (17)
for the advection equation in conservative form with a locally divergence-free velocity field.
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If the approximate polynomials satisfy ϕn
h (x, y) ∈ [m, M] for any (x, y) ∈ Si, j , then ϕn+1

i, j ∈
[m, M] under the CFL condition

axλx + ayλy ≤ min{ŵ1,
1

2k + 1
}. (18)

Here, ax = max | f ′
c(ϕ)| = ||u||∞, ay = max |g′

c(ϕ)| = ||v||∞ and 1/(2k + 1) is the require-
ment of linear stability for the DG(Pk) method [10].

Remark 1 Notice that the establishment of Lemma 1 relies on the fact that the incompress-
ibility ∇ · uh = 0 holds everywhere inside the cell Ii, j , otherwise the conservative form
Eq. (13) itself does not imply the maximum principle.

Second, maintenance of the whole polynomial solution staying inside [m, M] without los-
ing accuracy.To enforce this conditionwhich is required by Lemma 1,we can employ a linear
scaling limiter [15] to the original polynomial ϕn

h (x, y) such that the modified polynomial
ϕ̃n
h (x, y) ∈ [m, M] for all (x, y) ∈ Si, j , i.e.,

Lemma 2 For any cell Ii, j ∈ �h with the cell average ϕn
i, j ∈ [m, M], by applying the

following linear scaling limiter to the polynomial solution ϕn
h (x, y)

ϕ̃n
h (x, y) = θ

(
ϕn
h (x, y) − ϕn

i, j

) + ϕn
i, j , θ = min{| M − ϕn

i, j

Mi, j − ϕn
i, j

|, | m − ϕn
i, j

mi, j − ϕn
i, j

|, 1}, (19)

where

Mi, j = max
(x,y)∈Si, j

ϕn
h (x, y), mi, j = min

(x,y)∈Si, j
ϕn
h (x, y), (20)

then ϕ̃n
h (x, y) ∈ [m, M] approximates ϕn

h (x, y) with a (k + 1)-th order accuracy.

This completes the construction of the high-order MPS DG method for the advection
equation in conservative form Eq. (13). Following a similar approach, we will develop a
high-order MPS DG method for the advection equation in non-conservative form Eq. (4).

3.3 Advection Equation with a Non-Divergence-Free Velocity Field

In the simulation of incompressible two-phase flows, the velocity field is obtained by solving
the INS equations. Although the exact solution of the INS equations is always divergence
free, unfortunately, this is generally not strictly satisfied by the numerical solution due to the
existence of numerical errors. In this situation, the advection equation in non-conservative
form, i.e.,

∂ϕ

∂t
+ u · ∇ϕ = 0 (21)

is used and discretized in this work.
Similarly, multiplying Eq. (21) by any test function ψ ∈ V k

h , integrating over any cell
Ii, j ∈ �h and then performing a formal integration by parts, we have

∫

Ii, j
(∂tϕh)ψdx −

∫

Ii, j
ϕh∇ · (uhψ)dx +

∫

∂ Ii, j
ne · (̂uϕ)ψds = 0, (22)

where ne · (̂uϕ) is the numerical flux defined at the cell interfaces ∂ Ii, j . In order to avoid
computing the spatial derivatives with respective to uh , we perform an extra element-wise
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integration by parts locally in Ii, j to arrive at
∫

Ii, j
(∂tϕh)ψdx +

∫

Ii, j
(uh · ∇ϕh)ψdx −

∫

∂ Ii, j
ne · (̃uϕ)ψds +

∫

∂ Ii, j
ne · (̂uϕ)ψds = 0.

(23)

It should be noted that the second integration by parts is different from the first one since it
is performed based on the local discretized DG polynomial solution within the cell Ii, j , i.e.,
no numerical flux is entailed which leads to

ne · (̃uϕ) =
{
ne · (u−

h ϕ−
h ), in cell IL ,

ne · (u+
h ϕ+

h ), in cell IR .

(24)

Here, IL and IR are the left and right cells of ∂ Ii, j , respectively. Therefore, to fulfill the
DG discretization Eq. (23), we only need to specify the formulation of the numerical flux
ne · (̂uϕ) which is crucial to the successful implementation of the DG method.

By taking ϕ = 1 in Eq. (23), it gives that the numerical flux ne · (̂uϕ) should be coincide
with ne · (̃uϕ) [28,29]. Thus, we define the numerical flux as follows

ne · (̂uϕ)
de f= ne · F̂(ϕ−

h , ϕ+
h ) =

⎧
⎪⎨

⎪⎩

1

2

[
(ne · u−

h )(ϕ−
h + ϕ+

h ) − a(ϕ+
h − ϕ−

h )
]
, in cell IL ,

1

2

[
(ne · u+

h )(ϕ−
h + ϕ+

h ) − a(ϕ+
h − ϕ−

h )
]
, in cell IR .

(25)

Similarly, a is the global maximum value of |ne · uh |. With this choice, the numerical flux
Eq. (25) satisfies the following monotonicity property

∂(ne · F̂(ϕ−
h , ϕ+

h ))

∂ϕ−
h

≥ 0,
∂(ne · F̂(ϕ−

h , ϕ+
h ))

∂ϕ+
h

≤ 0. (26)

Remark 2 When a continuous interfacial normal velocity is applied, the proposed method
Eqs. (23–25) is coincided with the one given in [30] which was constructed for the Hamilton-
Jacobi equation. Moreover, if the velocity field is also locally divergence-free, the proposed
method is same as the standard DG method Eq. (15) associated with the flux Eq. (16).

Plugging Eq. (24) and Eq. (25) into Eq. (23), we can obtain the scheme satisfied by the
cell averages of the DG(Pk) method with the Euler forward scheme

ϕn+1
i, j = ϕn

i, j − Δt

|Ii, j |
∫

Ii, j
uh · ∇ϕhdx

+ λx

Δy

∫ y
j+ 1

2

y
j− 1

2

[u−
i+ 1

2 , j
(y)ϕ−

i+ 1
2 , j

(y) − u+
i− 1

2 , j
(y)ϕ+

i− 1
2 , j

(y)]

− [
f̂
(
ϕ−
i+ 1

2 , j
(y), ϕ+

i+ 1
2 , j

(y)
) − f̂

(
ϕ−
i− 1

2 , j
(y), ϕ+

i− 1
2 , j

(y)
)]
dy

+ λy

Δx

∫ x
i+ 1

2

x
i− 1

2

[v−
i, j+ 1

2
(x)ϕ−

i, j+ 1
2
(x) − v+

i, j− 1
2
(x)ϕ+

i, j− 1
2
(x)]

− [
ĝ
(
ϕ−
i, j+ 1

2
(x), ϕ+

i, j+ 1
2
(x)

) − ĝ
(
ϕ−
i, j− 1

2
(x), ϕ+

i, j− 1
2
(x)

)]
dx .

(27)
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Here,

f̂ (·, ·) = (1, 0) · F̂(·, ·), ĝ(·, ·) = (0, 1) · F̂(·, ·) (28)

are the one-dimensional numerical fluxes in the x- and y- directions, respectively.
Then, for a piecewise-linear DG approximation, we have the following theorem

Theorem 1 Consider the scheme satisfied by the cell averages of theDG(P1) method Eq. (27)
for solving the advection equation in non-conservative form Eq. (21). If the approximate
polynomials satisfy ϕn

h (x, y) ∈ [m, M] for any (x, y) ∈ Si, j , then ϕn+1
i, j ∈ [m, M] under the

CFL condition

axλx + ayλy ≤ min{ŵ1,
1

3
}. (29)

Here, ax = max | f ′(ϕ)| = ||u||∞ and ay = max |g′(ϕ)| = ||v||∞.

Proof When using P1 approximation, i.e., k = 1, the solution ϕn
h (x, y) is a polynomial

of degree no more than one with respect to its two variables. Thus, the surface integral in
Eq. (27) can be expressed as

∫

Ii, j
uh · ∇ϕhdx =

∫

Ii, j

[
uh

ϕ−
i+ 1

2 , j
(y) − ϕ+

i− 1
2 , j

(y)

Δx
+ vh

ϕ−
i, j+ 1

2
(x) − ϕ+

i, j− 1
2
(x)

Δy

]
dx.

(30)

Substituting Eq. (30) into Eq. (27) and then using an L-point Gauss-Legendre quadrature
rule and an N -point (N = 2) Gauss-Lobatto quadrature rule that are exact for polynomials
of degree one, we have

ϕn+1
i, j = γx ŵ1

L∑

α=1

wα

[
(1 + λx

γx ŵ1
ui,α − λx

γx ŵ1
u+
i− 1

2 ,α
)ϕ+

i− 1
2 ,α

+ λx

γx ŵ1
f̂ (ϕ−

i− 1
2 ,α

, ϕ+
i− 1

2 ,α
)
]

+ γx ŵ2

L∑

α=1

wα

[
(1 − λx

γx ŵ2
ui,α + λx

γx ŵ2
u−
i+ 1

2 ,α
)ϕ−

i+ 1
2 ,α

− λx

γx ŵ2
f̂ (ϕ−

i+ 1
2 ,α

, ϕ+
i+ 1

2 ,α
)
]

+ γyŵ1

L∑

α=1

wα

[
(1 + λy

γyŵ1
vα, j − λy

γyŵ1
v+
α, j− 1

2
)ϕ+

α, j− 1
2

+ λy

γyŵ1
ĝ(ϕ−

α, j− 1
2
, ϕ+

α, j− 1
2
)
]

+ γyŵ2

L∑

α=1

wα

[
(1 − λy

γyŵ2
vα, j + λy

γyŵ2
v−
α, j+ 1

2
)ϕ−

α, j+ 1
2

− λy

γyŵ2
ĝ(ϕ−

α, j+ 1
2
, ϕ+

α, j+ 1
2
)
]
.

(31)

Here, γx = (axλx )/(axλx + ayλy), γy = (ayλy)/(axλx + ayλy),

ui,α = 1

Δx

∫ x
i+ 1

2

x
i− 1

2

uh(x, y
α
j )dx, vα, j = 1

Δy

∫ y
j+ 1

2

y
j− 1

2

vh(x
α
i , y)dy, 1 ≤ α ≤ L, (32)

and we use the properties that

ϕn
h (̂x1i , y

α
j ) = ϕ+

i− 1
2 , j

(yα
j )

de f= ϕ+
i− 1

2 ,α
, ϕn

h (̂xNi , yα
j ) = ϕ−

i+ 1
2 , j

(yα
j )

de f= ϕ−
i+ 1

2 ,α
,

ϕn
h (xα

i , ŷ1j ) = ϕ+
i, j− 1

2
(xα

i )
de f= ϕ+

α, j− 1
2
, ϕn

h (xα
i , ŷNj ) = ϕ−

i, j+ 1
2
(xα

i )
de f= ϕ−

α, j+ 1
2
.

(33)
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Next, based on Eq. (31), we introduce the following formulations

H (1)
x,α(ϕ−

i− 1
2 ,α

, ϕ+
i− 1

2 ,α
) = (1 + λx

γx ŵ1
ui,α − λx

γx ŵ1
u+
i− 1

2 ,α
)ϕ+

i− 1
2 ,α

+ λx

γx ŵ1
f̂ (ϕ−

i− 1
2 ,α

, ϕ+
i− 1

2 ,α
),

H (2)
x,α(ϕ−

i+ 1
2 ,α

, ϕ+
i+ 1

2 ,α
) = (1 − λx

γx ŵ2
ui,α + λx

γx ŵ2
u−
i+ 1

2 ,α
)ϕ−

i+ 1
2 ,α

− λx

γx ŵ2
f̂ (ϕ−

i+ 1
2 ,α

, ϕ+
i+ 1

2 ,α
).

(34)

Substituting the numerical flux Eq. (25) into Eq. (34), it gives

H (1)
x,α(ϕ−

i− 1
2 ,α

, ϕ+
i− 1

2 ,α
) = 1

2

λx

γx ŵ1
(u+

i− 1
2 ,α

+ ax )ϕ
−
i− 1

2 ,α
+ [

1 + 1

2

λx

γx ŵ1
(2ui,α − u+

i− 1
2 ,α

− ax )
]
ϕ+
i− 1

2 ,α
,

H (2)
x,α(ϕ−

i+ 1
2 ,α

, ϕ+
i+ 1

2 ,α
) = [

1 − 1

2

λx

γx ŵ2
(2ui,α − u−

i+ 1
2 ,α

+ ax )
]
ϕ−
i+ 1

2 ,α
− 1

2

λx

γx ŵ2
(u−

i+ 1
2 ,α

− ax )ϕ
+
i+ 1

2 ,α
.

(35)

Since a two-point Gauss-Lobatto quadrature rule is applied, the solution average ui,α can be
expressed as

ui,α = ŵ1u
+
i− 1

2 ,α
+ ŵ2u

−
i+ 1

2 ,α
= 1

2
(u+

i− 1
2 ,α

+ u−
i+ 1

2 ,α
). (36)

Then, it is easy to check that under the CFL condition Eq. (29), the formulations Eq. (35) are
monotone with respect to their two arguments, i.e.,

∂H (1)
x,α(ϕ−

i− 1
2 ,α

, ϕ+
i− 1

2 ,α
)

∂ϕ±
i− 1

2 ,α

≥ 0,
∂H (2)

x,α(ϕ−
i+ 1

2 ,α
, ϕ+

i+ 1
2 ,α

)

∂ϕ±
i+ 1

2 ,α

≥ 0. (37)

Moreover, we have

H (1)
x,α(m,m) = (1 + λx

γx ŵ1
ui,α)m, H (1)

x,α(M, M) = (1 + λx

γx ŵ1
ui,α)M,

H (2)
x,α(m,m) = (1 − λx

γx ŵ2
ui,α)m, H (2)

x,α(M, M) = (1 − λx

γx ŵ2
ui,α)M,

(38)

which results in

ŵ1H
(1)
x,α(m,m) + ŵ2H

(2)
x,α(m,m) = m, ŵ1H

(1)
x,α(M, M) + ŵ2H

(2)
x,α(M, M) = M . (39)

Similar results can be obtained for the following formulations

H (1)
α,y(ϕ

−
α, j− 1

2
, ϕ+

α, j− 1
2
) = (1 + λy

γyŵ1
vα, j − λy

γyŵ1
v+
α, j− 1

2
)ϕ+

α, j− 1
2

+ λy

γyŵ1
ĝ(ϕ−

α, j− 1
2
, ϕ+

α, j− 1
2
),

H (2)
α,y(ϕ

−
α, j+ 1

2
, ϕ+

α, j+ 1
2
) = (1 − λy

γyŵ2
vα, j + λy

γyŵ2
v−
α, j+ 1

2
)ϕ−

α, j+ 1
2

− λy

γyŵ2
ĝ(ϕ−

α, j+ 1
2
, ϕ+

α, j+ 1
2
).

(40)

Thus, ϕn+1
i, j is a monotonically increasing function of all the arguments involved, i.e., ϕ∓

i± 1
2 ,α

and ϕ∓
α, j± 1

2
, which implies the strict maximum principle

m ≤ ϕn+1
i, j ≤ M, (41)

provided that m ≤ ϕn
h (x, y) ≤ M for any (x, y) ∈ Si, j . ��
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Now, we complete the first step in constructing a MPS DG(P1) method for solving the
advection equation in non-conservative form, i.e., maintaining the polynomial solution aver-
age ϕn+1

i, j falling in [m, M]. Next, in order to enforce the condition in Theorem 1, the same
linear scaling limiter as given in Lemma 2 can be employed to modify ϕn

h (x, y) such that
the modified polynomial solution ϕ̃n

h (x, y) ∈ [m, M] for all (x, y) ∈ Si, j without losing
accuracy.

Following a similar approach, the previous theorem can be extended to a general DG(Pk)
method, which is given as follows

Theorem 2 Consider the scheme satisfied by the cell averages of theDG(Pk)method Eq. (27)
for solving the advection equation in non-conservative form Eq. (21). If the approximate
polynomials satisfy ϕn

h (x, y) ∈ [m, M] for any (x, y) ∈ Si, j , then ϕn+1
i, j ∈ [m, M] under the

CFL condition

axλx + ayλy ≤ min{min
β

{ ŵβ

N∑

γ=1
ŵγ |∂x h(β)

x (̂xγ

i )Δx | + 1

,
ŵβ

N∑

γ=1
ŵγ |∂yh(β)

y (ŷγ

j )Δy| + 1

}, 1

2k + 1
}.

(42)

Here, k ≥ 1, ax = max | f ′(ϕ)| = ||u||∞, ay = max |g′(ϕ)| = ||v||∞ and

h(β)
x (x) =

N∏

γ=1
γ �=β

(x − x̂γ

i )

(̂xβ
i − x̂γ

i )
, h(β)

y (y) =
N∏

γ=1
γ �=β

(y − ŷγ

j )

(ŷβ
j − ŷγ

j )
(43)

The detailed proof of Theorem 2 is given in Appendix A for interested readers.

3.4 High-Order Temporal Discretization

The temporal discretizations in Eq. (15) and Eq. (23) are conducted by a strong stability pre-
serving Runge-Kutta (SSP-RK) scheme [31]. For example, the DG(P1) spatial discretization
is employed together with the following second-order SSP-RK scheme

ϕ(1) = ϕn + Δt R(ϕn),

ϕn+1 = 1

2
ϕn + 1

2
[ϕ(1) + Δt R(ϕ(1))].

(44)

Here, R(ϕ) is the spatial operator in either conservative or non-conservative form. While
for the DG(P2) spatial discretization, the third-order SSP-RK scheme is used to evolve the
solution

ϕ(1) = ϕn + Δt R(ϕn),

ϕ(2) = 3

4
ϕn + 1

4

[
ϕ(1) + Δt R(ϕ(1))

]
,

ϕn+1 = 1

3
ϕn + 2

3
[ϕ(2) + Δt R(ϕ(2))].

(45)

We remark that since the multi-stage SSP-RK scheme can be regarded as a convex combi-
nations of the Euler forward temporal discretization, the previous analysis keeps validity.
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4 Maximum-Principle-Satisfying DGMethod for the Re-initialization
Equation

In order to maintain the shape of the hyperbolic tangent function and limit mass loss, a re-
initialization procedure is carried out after every real time step. The DG discretization of the
re-initialization Eq. (5) can be written as

∫

Ii, j
(∂τ ϕh)ψdx −

∫

Ii, j
(Gc − Gd) · ∇ψdx +

∫

∂ Ii, j
ne · (Ĝc − Ĝd)ψds = 0. (46)

Here, Gc = ϕ(1 − ϕ)̂n|τ=0 and Gd = ε∇ϕ are the compressive and diffusion terms,
respectively. For the compressive part, we use the Lax-Friedrichs flux

ne · Ĝc(ϕ
−
h , ϕ+

h ) = 1

2

[
ne · (

Gc(ϕ
−
h ) + Gc(ϕ

+
h )

) − a(ϕ+
h − ϕ−

h )
]
, (47)

where a is the global maximum value of |(∂/∂ϕ)
(
ne · Ĝc(ϕh)

)| = |ne · (1 − 2ϕh )̂n|τ=0|,
while for the diffusive part, we adopt the direct DG (DDG) flux [32,33]. Specifically, in the
DG(P2) formulation, the diffusive flux is defined as

ne · Ĝd(ϕ
−
h , ϕ+

h ) = ne · (ε∇̂ϕ) = ε(β0
[[ϕ]]
Δ

+ {∂nϕ} + β1Δ[[∂2nϕ]]). (48)

Here, Δ is the characteristic length, ∂nϕ = ne · ∇ϕ, [[·]] and {·} are the jump and average
operators, respectively. (β0, β1) are constant coefficients need to be specified such that the
DG method Eq. (46) can satisfy the maximum principle.

Eq. (46) is marched in pseudo-time τ by the third-order SSP-RK scheme Eq. (45). Theo-
retically, Eq. (46) should be solved to steady state. However, in practice we typically perform
only a few, e.g., 10∼20, iterations for improving efficiency. Before giving the sufficient con-
dition for the cell averages of the DG method Eq. (46) to be bounded in [m, M], we first
introduce Lemma 3 [21].

Lemma 3 Consider the DGmethod associated with piecewise-quadratic polynomial approx-
imations for solving the two-dimensional diffusion equation

∂ϕ

∂t
= ∇ · (ε∇ϕ), (x, t) ∈ � × (0, T ). (49)

Given ϕn
h (x, y) ∈ [m, M] for any (x, y) ∈ Si, j , we have ϕn+1

i, j ∈ [m, M] provided that

β0 ≥ 3

2
− 4β1,

1

8
≤ β1 ≤ 1

4
(50)

combined with a suitable CFL condition

εΔt

|Ii, j | ≤ min

{
1

6(β0 + 8β1 − 2)
,

1

6(1 − 4β1)

}
min

{
λx

λx + λy
,

λy

λx + λy

}
. (51)

Based on Lemma 3, we then have the following result

Theorem 3 Consider the scheme satisfied by the cell averages of theDG(P2) method Eq. (46)
for the re-initialization equation. If the approximate polynomials satisfy ϕs

h(x, y) ∈ [m, M]
for any (x, y) ∈ Si, j and the coefficients (β0, β1) satisfy the condition Eq. (50), then ϕs+1

i, j ∈
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[m, M] under the CFL condition
⎧
⎪⎪⎨

⎪⎪⎩

a1λ1 + a2λ2 ≤ 1

16
,

λd ≤ min

{
1

12(β0 + 8β1 − 2)
,

1

12(1 − 4β1)

}
min

{
λ1

λ1 + λ2
,

λ2

λ1 + λ2

}
.

(52)

Here, s is the pseudo-time level, λ1 = Δτ/Δx, λ2 = Δτ/Δy, a1 = ||(1 − 2ϕ)̂nx ||∞,
a2 = ||(1 − 2ϕ)̂ny ||∞ and λd = εΔτ/|Ii, j |.

Proof We present the proof in four steps:

– 1. Split: We split the average ϕs+1
i, j into two halves such that

ϕs+1
i, j = 1

2
Cni, j + 1

2
Dn
i, j , (53)

where the convection term is

Ci, j = ϕs
i, j − 2Δτ

|Ii, j |
∫

∂ Ii, j
ne · Ĝcds (54)

and the diffusion term is

Di, j = ϕs
i, j + 2Δτ

|Ii, j |
∫

∂ Ii, j
ne · Ĝdds. (55)

It should be noted that the this split is designed for convenient presentation purpose and
may not lead to an optimal CFL condition [22].

– 2. Convection: Following the same arguments as in Theorem 2 and replacing Δt with
2Δτ , it gives that if ϕs

h(x, y) ∈ [m, M] for any (x, y) ∈ Si, j , then Ci, j ∈ [m, M] under
the CFL condition

a1λ1 + a2λ2 ≤ 3

8
ŵ1 = 1

16
. (56)

– 3. Diffusion: Applying the results in Lemma 3 and replacing Δt with 2Δτ , it provides
that with ϕs

h(x, y) ∈ [m, M] for any (x, y) ∈ Si, j and (β0, β1) satisfy the condition
Eq. (50), we have Di, j ∈ [m, M] under the CFL condition

λd ≤ min

(
1

12(β0 + 8β1 − 2)
,

1

12(1 − 4β1)

)
min

(
λ1

λ1 + λ2
,

λ2

λ1 + λ2

)
. (57)

– 4. Summation: Plugging the results of m ≤ Ci, j ,Di, j ≤ M in Eq. (53) gives

m ≤ ϕs+1
i, j ≤ M . (58)

��

Again, the boundof the approximate polynomialϕs
h(x, y) required inTheorem3 is guaranteed

by simply applying the linear scaling limiter Eq. (19).
Finally, taking the third-order MPS DG method as an example, we summary the solution

algorithm for each time step from tn to tn+1 as follows:

123



45 Page 14 of 30 Journal of Scientific Computing (2021) 87 :45

Algorithm 1MPS DG method for the level set problem.
1. At time level tn , apply the linear scaling limiter Eq. (19) to ϕnh to obtain ϕ̃nh ∈ [m, M].
2. Advance ϕ̃nh by the non-conservative DGmethod Eq. (23) with the SSP-RK scheme Eq. (45) under the CFL

condition Eq. (42) to obtain ϕn+1
h .

3. Update the normal vector n̂|τ=0 from ϕn+1
h .

4. Solve the re-initialization Eq. (5) iteratively by the DG method Eq. (46) with the SSP-RK scheme Eq. (45)
under the CFL condition Eq. (52) to obtain ϕ̂n+1

h .

5. Reset ϕn+1
h as ϕ̂n+1

h .
6. Repeat step 1 to step 5 until the desired time level is reached.

Table 1 Convergence results of the conservative and non-conservative DG methods

Grid number Conservative DG method Non-conservative DG method
L1-error Order L2-error Order L1-error Order L2-error Order

P1

10 × 10 4.50E-03 6.04E-03 4.49E-03 6.03E-03

20 × 20 9.53E-04 2.24 1.23E-03 2.30 9.52E-04 2.24 1.23E-03 2.29

40 × 40 2.21E-04 2.11 2.64E-04 2.22 2.21E-04 2.11 2.64E-04 2.22

80 × 80 5.47E-05 2.01 6.24E-05 2.08 5.47E-05 2.01 6.24E-05 2.08

P2

10 × 10 2.88E-04 3.95E-04 2.87E-04 3.94E-04

20 × 20 3.06E-05 3.23 4.32E-05 3.19 3.06E-05 3.23 4.31E-05 3.19

40 × 40 3.23E-06 3.24 4.51E-06 3.26 3.23E-06 3.24 4.50E-06 3.26

80 × 80 3.64E-07 3.15 4.89E-07 3.21 3.64E-07 3.15 4.89E-07 3.20

5 Numerical Tests

In this section, a number of benchmark test cases are carried out to illustrate the performance
of the proposed method. For simplicity, in the following, the DG(Pk) methods Eq. (15) with
and without the MPS limiter for solving the advection equation in conservative form will be
denoted as conservativeMPSDG(Pk) and conservativeDG(Pk)methods, respectively.While
the DG(Pk) methods Eq. (23) with and without the MPS limiter for solving the advection
equation in non-conservative form will be denoted as non-conservative MPS DG(Pk) and
non-conservative DG(Pk) methods, respectively. The union of these four methods will be
denoted as DG(Pk) method.

5.1 Convergence Test

We perform a convergence test on the high-order DG methods for solving the advection
equations in both conservative and non-conservative forms. Consider an initial condition
given by [34]

ϕ(x, t = 0) = tanh((y − 0.5)/0.25) (59)

on a unit-sized domain with velocity

u(x, t) = (sin(πx) cos(π y) sin(2π t),− cos(πx) sin(π y) sin(2π t))T. (60)
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(a) P (b) (c)

(d) (e) (f)

Fig. 3 Interface location for the Zalesak’s disk after one full rotation (red solid line: exact solution, green
dashed line: non-conservative MPS DG method) (Color figure online)
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Fig. 4 Minimum and maximum values of ϕ in the Zalesak’s disk obtained by the DG(P1) method
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Fig. 5 Minimum and maximum values of ϕ in the Zalesak’s disk obtained by the DG(P2) method

Since the velocity field is periodic and the problem is linear, the exact solution at t = 1
coincides with the initial condition.

The convergence results obtained by the conservative and non-conservativeDG(Pk)meth-
ods are listed in Table 1. One can see that both these two methods can deliver the optimal
(k + 1)-th order of accuracy. Moreover, due to the velocity field used in this test problem is
exactly divergence free, the resulting solutions of these two methods are nearly the same as
stated in Remark 2.

5.2 Solid Body Rotation of a Notched Disk

The solid body rotation of a notched circle, also known as Zalesak’s disk [35], is one of the
standard test problems for testing the ability of the level set methods to transport a complex
geometry with sharp corners. The Zalesak’s disk is defined as follows

– Domain=[0, 100]2;
– Radius=15, initial center=(50, 75);
– Slot width=5, slot length=25.

The constant vorticity velocity field is given by

u(x, t) = (π/314)(50 − y, x − 50)T, (61)

so that the disk completes one revolution every 628 time units. In order to test how mesh
refinement and polynomial order affect the final shape of the notched disk, this problem will
be solved by the DG(P1) and DG(P2) methods with three different meshes consisting of
50 × 50, 100 × 100 and 200 × 200 grids.
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Fig. 6 Interface location for the circle in a deformation field obtained by the non-conservative MPS DG(P2)
method with 256 × 256 mesh grids
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Fig. 7 Interface location for the circle in a deformation field at t = T (black solid line: exact solution, red
dash dotted line: 64 × 64 grids, green dash dotted dotted line: 128 × 128 grids, blue dashed line: 256 × 256
grids)

Figure 3 shows that compared with the DG(P1) method, the DG(P2) method greatly
improves the shape of the notch after one period rotation, especially on the coarsest mesh.
When the mesh is refined to 100×100 and 200×200 grids, the shape corners of the notched
disk are well resolved by the DG(P2) method and visually no difference can be discerned in
comparison with the exact solution.

Next, we validate the maximum-principle-satisfying property of the proposed method.
Time-variations of the minimum and maximum values of the cell average solutions are
shown in Fig. 4 and 5 for the DG(P1) and DG(P2) methods, respectively. It can be observed
that as the velocity field is divergence free, the solutions obtained by the conservative and
non-conservative schemes are very close. Moreover, the numerical solutions of the DG(P1)
and DG(P2) methods with the MPS limiter are strictly in the interval [0, 1], while there are
obvious overshoots and undershoots outside [0, 1] for the results without the MPS limiter.
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Fig. 8 Temporal evolution of the normalized mass errors for the circle in a deformation field obtained by the
non-conservative MPS DG method (Color figure online)

This clearly demonstrates that the MPS limiter can preserve the strict maximum principle for
the proposed DG(Pk) method for solving the advection equation in non-conservative form.

5.3 Single Vortex Deformation of a Circle

To test the ability of the proposed MPS DG methods to resolve and maintain ever thinner
filaments, a circle in a deformation field problem, which was first introduced by Bell et al.
[36] and then applied as a level set test problem by Enright et al. [37], is conducted. A circle
of radius r = 0.15, initially centered at (0.5, 0.75)T is deformed inside a unit sized box under
a solenoidal velocity

{
u(x, t) = − sin2(πx) sin(2π y) cos(π t/T ),

v(x, t) = + sin2(π y) sin(2πx) cos(π t/T ),
(62)

where T = 8 is the time at which the flow returns to its initial state.
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Fig. 9 Comparison of the normalized mass error E1(t) for the circle in a deformation field obtained by the
conservative and non-conservative MPS DG methods

Fig. 6 shows the evolution of the circle shape in the deformation field obtained by the
non-conservative MPS DG(P2) method on a 256 × 256 mesh grid. It can be seen that the
circle is stretched by the velocity field onto ever thinner filaments until t = 4. Then, as the
velocity field reverses for another four time units, it pulls the filaments back into the initial
circular shape [38]. We observe that during the entire stretching process, our method is able
to capture very thin fluid filament.

Now, we turn our attention the convergence property of the proposed method, computa-
tions on three different mesh resolutions, refined from 64×64, 128×128 to 256×256 mesh
grids, are performed and compared in Fig. 7. It is clear to see that the recovered circle is very
comparable to its initial shape when a fine mesh and a high-order method are applied. Next,
for further quantitatively comparing the mass conservation property of the proposed method,
we define the relative mass errors as follows

E0(t) =
∫
Ω

ϕ(x, t)dx − ∫
Ω

ϕ(x, 0)dx
∫
Ω

ϕ(x, 0)dx
,

E1(t) =
∫
Ω

ϕ(x, t)dx − ∫
Ω

ϕ(x, 0)dx
∫
Ω

ϕ(x, 0)dx
, for 0.5 ≤ ϕ ≤ 1.

(63)

The effect of mesh refinement on the mass conservative property of the proposed method is
studied and the computed mass losses are plotted in Fig. 8. As we expect, on the finest mesh,
the amount of the tail region that falls below mesh resolution and transfers into resolvable
droplets is the least and therefore the conservation error around t = 4 is the smallest. For the
coarsermeshes, more of the tail region falls belowmesh resolution and transfers into droplets,
which leads to large curvature changes and significant loss of mass during the simulation.
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Fig. 10 Temporal evolution of the interface for the Rayleigh–Taylor instability at t∗ obtained by the non-
conservative MPS DG method (At = 0.5, Re = 1000, top: P1, bottom: P2)

In the end, we compare the normalized mass error E1(t) obtained by the conservative and
the non-conservative MPS DG methods. The comparisons are shown in Fig. 9. Again, as
stated in Remark 2, since a smooth and divergence-free velocity field is applied in this test,
the results obtained by these two methods are very close to each other which demonstrate
the accuracy and effectiveness of the proposed non-conservative DG method.

5.4 Viscous Rayleigh–Taylor Instability

In this subsection, we combine our high-order MPS DG method for the LS function with an
incompressible two-phase flow solver to illustrate the performance of the proposed method
for a practical problem, namely the Rayleigh–Taylor instability [39–42]. The determination
of the incompressible two-phase fluids requires the solution of the following INS equations

∂u
∂t

+ u · ∇u = 1

ρ

( − ∇ p + ∇ · [
μ(∇u + ∇uT)

]) + g,

∇ · u = 0.
(64)

123



Journal of Scientific Computing (2021) 87 :45 Page 21 of 30 45

-0.4 -0.2 0 0.2 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) 0.0 (b) 1.0T0 (c) 1.5T0 (d) 2.0T0 (e) 2.5T0 (f) 3.0T0 (g) 3.5T0

(h) 0.0 (i) 1.0T0 (j) 1.5T0 (k) 2.0T0 (l) 2.5T0 (m) 3.0T0 (n) 3.5T0

Fig. 11 Temporal evolution of the interface for the Rayleigh–Taylor instability at t∗ obtained by the non-
conservative MPS DG method (At = 0.5, Re = 5000, top: P1, bottom: P2)

Here, u = u(x, t) is the velocity vector, p = p(x, t) is the pressure and g is a unit vector
aligned with gravity. ρ(x, t) is the density calculated by

ρ(x, t) = ρm + (ρM − ρm)ϕ(x, t), (65)

where ρM and ρm (ρM > ρm) denote the densities of the heavier fluid and the light fluid,
respectively, and μ > 0 is the dynamic viscosity of the fluid (supposed to be constant in
the whole domain). Initially, the heavier fluid superposed to the light fluid and the perturbed
interface is described by

η(x) = −0.1d cos(2πx/d), d = 1. (66)

The computing domain is � = (−d/2, d/2) × (−2d, 2d). Non-slip boundary condition is
enforced at the bottom and topwalls and symmetry boundary condition is imposed on the two
vertical sides. In this work, numerical discretization of the INS equations (64) is performed
using a high-order DG method proposed in [43–45] for its simplicity in implementation.

The difficulty of this problem essentially depends on:
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Fig. 12 Temporal evolution of the interface for the Rayleigh–Taylor instability at t∗ obtained by the non-
conservative MPS DG method (At = 0.75, Re = 1000, top: P1, bottom: P2)
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Fig. 13 Temporal evolution of the highest (top line) and the lowest (bottom line) interface locations for the
Rayleigh–Taylor instability
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Fig. 14 Minimum and maximum values of ϕi, j for the Rayleigh–Taylor instability (At = 0.5, Re = 1000)

1. The density ratio between the heavy fluid and the light fluid, which is measured by the
so-called Atwood number

At = ρM − ρm

ρM + ρm
. (67)

2. The viscosity of the fluid, which is measured by the Reynolds number

Re = ρmd3/2g1/2

μ
. (68)

We compare the solutions at different Atwood and Reynolds numbers. A uniform mesh with
50 × 200 grids is employed for all the computations.

– A low Atwood number problem at a low Reynolds number: Setting At = 0.5 (ρM = 3,
ρm = 1),we beginwith a lowReynolds number case, Re = 1000. The temporal evolution
of the interface at t∗ = (t/t0)T0 = (0.0, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5)T0, where T0 = √

At ,
is displayed in Fig. 10. The results are very close to those in [39,40], and we can only
observe some slight difference nearly at the end of the simulation.
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Fig. 15 Minimum and maximum values of ϕi, j for the Rayleigh–Taylor instability (At = 0.5, Re = 5000)

– A low Atwood number problem at a high Reynolds number: Setting At = 0.5 (ρM = 3,
ρm = 1) and Re = 5000. The temporal evolution of the interface at t∗ = (t/t0)

√
At =

(0.0, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5)T0 under this case is displayed in Fig. 11. We observe
that when the Reynolds number increases, the velocity of the characteristic mushroom
shape remains the same as that of the lower Reynolds case. The influence of increasing
Reynolds number appears only in the shape of the rising counter-rotating vortices, which
induces many different small structures for t∗ ≥ 3.0T0.

– A high Atwood number problem at a low Reynolds number: Setting At = 0.75
(ρM = 7, ρm = 1) and Re = 1000. The temporal evolution of the interface at
t∗ = (0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0)T0 under this case is displayed in Fig. 12. Compared
with the above test, we can observe the similar structure and the global characteristic of
the flow in the early stage. At the same time, we find that the heavy fluid falls faster
compared with the low Atwood number problem. The simulation results coincide well
with those presented in [41].

Next, to quantitively measure the motion of the interface for the Rayleigh–Taylor instabil-
ity problem, we track the highest and the lowest vertical locations of the interface obtained
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Fig. 16 Minimum and maximum values of ϕi, j for the Rayleigh–Taylor instability (At = 0.75, Re = 1000)

by the conservative and non-conservative MPS DG(P1) methods and compare them with the
available results [40,42]. The comparison is presented in Fig. 13 which clearly shows good
agreement.

In the end,wevalidate themaximumpreservingproperty of the proposedMPSDGmethod.
In this test, due to numerical oscillations, the divergence of the discrete velocity field is not
identically equal to zero. Thus, the conservative DG method can not satisfy the maximum
principle even though implemented with the MPS limiter. However, the non-conservative
MPS DG method can still keep the strict maximum principle and no value greater than
M = 1 or smaller than m = 0 is encountered during the simulation as shown in Figs. 14,
15, 16. Thus, the high-order non-conservative MPS DG method can be used to solve the
incompressible two-phase flows with large density ratio.

6 Concluding Remarks

In this paper, a general framework to construct high-order accurate maximum-principle-
satisfying DG method has been developed for solving the level set problem with a
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non-divergence-free velocity field. We proved that by applying a linear scaling limiter and
a strong stability preserving time discretization scheme, the numerical solutions of the level
set function obtained by the proposed DGmethod satisfy the strict maximum principle under
a suitable CFL condition. Various numerical test cases, including the application to incom-
pressible two-phase flows, have been presented to demonstrate the validity and accuracy of
the proposed method. Generalizations to unstructured grids constitute our ongoing work.

Acknowledgements Thiswork is supported byNationalNatural Science Foundation ofChina (No. 12001020)
and China Postdoctoral Science Foundation (No. 2020M680176).

A Proof of Theorem 2

Consider an arbitrary order Pk approximation (k ≥ 1). By using an N -point Gauss-Lobbato
and an L-point Gauss-Legendre quadrature rules exact for single-variable polynomials of
degree k, we can represent the solution ϕh(x, y) along the line y = yα

j (1 ≤ α ≤ L) as

ϕh(x, y
α
j ) =

N∑

β=1

ϕβ̂,α

N∏

γ=1,γ �=β

(x − x̂γ

i )

(̂xβ
i − x̂γ

i )

de f=
N∑

β=1

ϕβ̂,αh
(β)(x). (69)

Here, ϕβ̂,α

de f= ϕh (̂x
β
i , yα

j ). Taking derivative once with respect to x results in

∂xϕh(x, y
α
j ) =

N∑

β=1

ϕβ̂,α

N∑

κ=1
κ �=β

N∏

s=1
s �=β,κ

(x − x̂ si )

N∏

γ=1
γ �=β

(̂xβ
i − x̂γ

i )

de f=
N∑

β=1

ϕβ̂,αh
(β)
x (x). (70)

Similarly, we have

∂yϕh(x
α
i , y) =

N∑

β=1

ϕα,β̂

N∑

κ=1
κ �=β

N∏

s=1
s �=β,κ

(y − ŷsj )

N∏

γ=1
γ �=β

(ŷβ
j − ŷγ

j )

de f=
N∑

β=1

ϕα,β̂h
(β)
y (y). (71)

123



Journal of Scientific Computing (2021) 87 :45 Page 27 of 30 45

Here, ϕα,β̂

de f= ϕh(xα
i , ŷβ

j ). Then, the surface integral in Eq. (27) can be further written as

Δt

|Ii, j |
∫

Ii, j
uh · ∇ϕhdx

= λx

L∑

α=1

wα

∫ x
i+ 1

2

x
i− 1

2

uh(x, yα
j )∂xϕh(x, yα

j )dx + λy

L∑

α=1

wα

∫ y
j+ 1

2

y
j− 1

2

vh(xα
i , y)∂yϕh(xα

i , y)dy

= λx

L∑

α=1

N∑

γ=1

wαŵγ uγ̂ ,α

( N∑

β=1

ϕβ̂,αh
(β)
x (̂xγ

i )
)
Δx + λy

L∑

α=1

N∑

γ=1

wαŵγ vα,γ̂

( N∑

β=1

ϕα,β̂h
(β)
y (ŷγ

j )
)
Δy.

(72)

Substituting Eq. (72) into the scheme Eq. (27), it gives

ϕn+1
i, j

= γx

L∑

α=1

wαŵ1
[(
1 − λx

γx ŵ1

N∑

γ=1

ŵγ uγ̂ ,αh
(1)
x (̂xγ

i )Δx − λx

γx ŵ1
u+
i− 1

2 ,α

)
ϕ+
i− 1

2 ,α
+ λx

γx ŵ1
f̂ (ϕ−

i− 1
2 ,α

, ϕ+
i− 1

2 ,α
)
]

+ γx

L∑

α=1

N−1∑

β=2

wαŵβ

(
1 − λx

γx ŵβ

N∑

γ=1

ŵγ uγ̂ ,αh
(β)
x (̂xγ

i )Δx
)
ϕβ̂,α

+ γx

L∑

α=1

wαŵN
[(
1 − λx

γx ŵN

N∑

γ=1

ŵγ uγ̂ ,αh
(N )
x (̂xγ

i )Δx + λx

γx ŵN
u−
i+ 1

2 ,α

)
ϕ−
i+ 1

2 ,α
− λx

γx ŵN
f̂ (ϕ−

i+ 1
2 ,α

, ϕ+
i+ 1

2 ,α
)
]

+ γy

L∑

α=1

wαŵ1
[(
1 − λy

γyŵ1

N∑

γ=1

ŵγ vα,γ̂ h
(1)
y (ŷγ

j )Δy − λy

γyŵ1
v+
α, j− 1

2

)
ϕ+

α, j− 1
2

+ λy

γyŵ1
ĝ(ϕ−

α, j− 1
2
, ϕ+

α, j− 1
2
)
]

+ γy

L∑

α=1

N−1∑

β=2

wαŵβ

(
1 − λy

γyŵβ

N∑

γ=1

ŵγ vα,γ̂ h
(β)
y (ŷγ

j )Δy
)
ϕα,β̂

+ γy

L∑

α=1

wαŵN
[(
1 − λy

γyŵN

N∑

γ=1

ŵγ vα,γ̂ h
(N )
y (ŷγ

j )Δy + λy

γyŵN
v−
α, j+ 1

2

)
ϕ−

α, j+ 1
2

− λy

γyŵN
ĝ(ϕ−

α, j+ 1
2
, ϕ+

α, j+ 1
2
)
]
.

(73)

Let us introduce the following formal formulations

H (1)
x,α = (

1 − λx

γx ŵ1

N∑

γ=1

ŵγ uγ̂ ,αh
(1)
x (̂xγ

i )Δx − λx

γx ŵ1
u+
i− 1

2 ,α

)
ϕ+
i− 1

2 ,α
+ λx

γx ŵ1
f̂ (ϕ−

i− 1
2 ,α

, ϕ+
i− 1

2 ,α
),

H (β)
x,α = (

1 − λx

γx ŵβ

N∑

γ=1

ŵγ uγ̂ ,αh
(β)
x (̂xγ

i )Δx
)
ϕβ̂,α, 2 ≤ β ≤ N − 1

H (3)
x,α = (

1 − λx

γx ŵN

N∑

γ=1

ŵγ uγ̂ ,αh
(N )
x (̂xγ

i )Δx + λx

γx ŵN
u−
i+ 1

2 ,α

)
ϕ−
i+ 1

2 ,α
− λx

γx ŵN
f̂ (ϕ−

i+ 1
2 ,α

, ϕ+
i+ 1

2 ,α
).

(74)
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Plugging the expression of f̂ (·, ·) Eq. (25) into Eq. (74), it gives

H (1)
x,α = [

1 − λx

γx ŵ1

( N∑

γ=1

ŵγ uγ̂ ,αh
(1)
x (̂xγ

i )Δx + 1

2
u+
i− 1

2 ,α
+ 1

2
ax

)]
ϕ+
i− 1

2 ,α
+ 1

2

λx

γx ŵ1
(u+

i− 1
2 ,α

+ ax )ϕ
−
i− 1

2 ,α
,

H (β)
x,α = [

1 − λx

γx ŵβ

N∑

γ=1

ŵγ uγ̂ ,αh
(β)
x (̂xγ

i )Δx
]
ϕβ̂,α, 2 ≤ β ≤ N − 1

H (3)
x,α = [

1 − λx

γx ŵN

( N∑

γ=1

ŵγ uγ̂ ,αh
(N )
x (̂xγ

i )Δx − 1

2
u−
i+ 1

2 ,α
+ 1

2
ax

)]
ϕ−
i+ 1

2 ,α
− 1

2

λx

γx ŵN
(u−

i+ 1
2 ,α

− ax )ϕ
+
i+ 1

2 ,α
.

(75)

Then, it is easy to verify that under the CFL condition Eq. (42), H (1)
x,α , H

(β)
x,α (2 ≤ β ≤ N −1)

and H (N )
x,α are monotonically increasing with respect to their arguments, i.e.,

∂H (1)
x,α(ϕ−

i− 1
2 ,α

, ϕ+
i− 1

2 ,α
)

∂ϕ±
i− 1

2 ,α

≥ 0,
∂H (β)

x,α (ϕβ̂,α)

∂ϕβ̂,α

≥ 0,

∂H (N )
x,α (ϕ−

i+ 1
2 ,α

, ϕ+
i+ 1

2 ,α
)

∂ϕ±
i+ 1

2 ,α

≥ 0.

(76)

Moreover, we have

ŵ1H
(1)
x,α(m,m) +

N−1∑

β=2

ŵβ H
(β)
x,α (m) + ŵ3H

(N )
x,α (m,m) = m,

ŵ1H
(1)
x,α(M, M) +

N−1∑

β=2

ŵβ H
(β)
x,α (M) + ŵ3H

(N )
x,α (M, M) = M .

(77)

Similar results can be obtained for

H (1)
α,y = [

1 − λy

γyŵ1

N∑

γ=1

ŵγ vα,γ̂ h
(1)
y (ŷγ

j )Δy − λy

γyŵ1
v+
α, j− 1

2

]
ϕ+
α, j− 1

2
+ λy

γyŵ1
ĝ(ϕ−

α, j− 1
2
, ϕ+

α, j− 1
2
),

H (2)
α,y = [

1 − λy

γyŵβ

N∑

γ=1

ŵγ vα,γ̂ h
(β)
y (ŷγ

j )Δy
]
ϕα,β̂ ,

H (3)
α,y = [

1 − λy

γyŵN

N∑

γ=1

ŵγ vα,γ̂ h
(N )
y (ŷγ

j )Δy + λy

γyŵN
v−
α, j+ 1

2

]
ϕ−
α, j+ 1

2
− λy

γyŵN
ĝ(ϕ−

α, j+ 1
2
, ϕ+

α, j+ 1
2
).

(78)

Therefore, ϕn+1
i, j ∈ [m, M] under the CFL condition Eq. (42) since it is a convex combination

of all the points values involved.
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