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Abstract
In this paper, we propose a multiphase image segmentation method via solving the min-cut
minimization problem under the multigrid method framework. At each level of the multigrid
method for the min-cut problem, we first transfer it to the equivalent form, e.g., max-flow
problem, then actually solve the dual of the max-flow problem. Particularly, a classical
multigrid method is used to solve the sub-minimization problems. Several outer iterations
are used for the multigrid method. The proposed idea can be used for general min-cut/max-
flow minimization problems. We use multiphase image segmentation as an example in this
work. Extensive experiments on simulated and real images demonstrate the efficiency and
effectiveness of the proposed method.

Keywords Continuous min-cut and max-flow · Multiphase image segmentation · Multigrid
method

1 Introduction

Image segmentation is a fundamental task in image processing that divides an image into
several disjoint regions such that each region shares similar features, e.g., texture, and inten-
sity. By the results of image segmentation, many critical subsequent image applications can
be well addressed, such as recognition, detection, and searching. Compared with two-phase
image segmentation that only needs to divide an image into two disjoint parts, multiphase
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image segmentation is more practical and challenging. In this work, we mainly focus on the
task of multiphase image segmentation.

There exist many image segmentation approaches from different perspectives, e.g., con-
ventional discrete optimization-based methods, learning-based methods, and variational
methods. Since our method in this work belongs to the category of variational methods,
in what follows, we will mainly introduce recent development and trend of variational meth-
ods.

During the last two decades, variational methods have become a meaningful way to solve
problems related to image segmentation because of their flexibility in model formulation and
algorithm design. In particular, if we want to develop a competitive segmentation model, two
issues have to be considered. One is how to depict the desired segmented region, and the
other is how to model the characteristics and noise of each region [1–9].

The well-known Mumford–Shah model [10] penalizes the �2 error between the observed
image and an unknown piecewise smooth function, as well as the total length of the seg-
mentation boundaries. However, the Mumford–Shah model is challenging to solve since the
discretization of an unknown boundary is quite complicated. Therefore, Zhu and Yuille in
[11] proposed an explicit active contour approach represent the segmentation boundaries
such that the discretization of Mumford–Shah becomes easy and practical. Furthermore, a
particular case of the Mumford–Shah model with piecewise constant approximation, called
the Chan–Vese model, was proposed by Chan and Vese [12]. In particular, we may solve the
Chan–Vese model in [12] efficiently by the level set method [13] Different from the active
contour approach, the level set method uses an implicit representation of boundaries such that
it can take some advantages, e.g., automatical dealing with the topological change of zero
level sets [14–17]. The above mentioned explicit active contour and implicit level set meth-
ods both assume that each pixel belongs to a unique region. Different from the two methods,
a representative method using a fuzzy membership function considers that each pixel can
simultaneously belong to several regions with probability in [0, 1], see [2,18–20]. This type
of method has distinct advantages, such as the convex energy functional that guarantees the
convergence and stability of the solution, and larger feasible set to find better segmentation
results. In [2], based on fuzzy membership functions and �1 norm fidelity, Li et al. proposed
a variational model for multiphase image segmentation. An alternating direction method of
multipliers (ADMM) is employed to solve the proposedmodel efficiently.Moreover, Houhou
et al. [19] presented a fast texture segmentation model based on the specific shape operator
and active contour. The existence of a solution to the proposed segmentation model is proven,
and a simple yet fast algorithm is presented to solve the model.

There exist another explanation for fuzzy membership functions. They are, in fact, the
convex relaxation of binary representation, c.f [21]. In the seminal work of Chan–Esedougla–
Nikolova [22], itwas observed that binary segmentationmodels could be relaxed to get convex
global minimization models and then get a binary label by a threshold. This convex relax-
ation model is essentially the same as the fuzzy membership function approach. Chambolle,
Cremers, and Pock [23] extended this idea to more general problems by function-lifting,
i.e., transfer the non-convex minimization problem to a higher dimensional convex mini-
mization problem. There are interesting extensions using graph-cut algorithms and global
minimization in [24–29]. One interesting observation in [24–28] is that the convex relaxation
models of [22,23] are in fact the dual problem of a continuous min-cut problem which is also
equivalent to a continuous max-flow problem. The dual problem and the max-flow problem
are convex and thus have global minimizers. Using this interpretation, we could also cast the
lifting technique of [23] in the framework of continuous max-flow and min-cut as in [26–28].
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One of the purposes of this work is to use multigrid methods to get some fast solvers for this
kind of continuous max-flow and min-cut problems.

Since our work is about the multigrid (MG) method, it is necessary to introduce the
related works of themultigrid method. Themultigridmethod [30] is an efficient and recursive
approach for large scale systems. It projects the large problems on the finest level to smaller
problems on the next level and does this process until the problems can be solved suitably.
Multigrid method has been considered in many image applications, such as image restoration
[31–36], image registration [37], image segmentation [38,39]. This method is also an ideal
way to solve the signal processing problem that will also generate ill-posed linear systems
[40]. In [31], Donatelli applied the multigrid method to the task of image deblurring with
Tikhonov regularization for the case of shift-invariant point spread function with the periodic
boundary condition. In [32], Chen and Tai designed a multigrid method to solve the total
variationminimization by using piecewise linear function spanned subspace correction. Also,
Badshah and Chen [39] proposed two related multigrid methods for solving the Chan–Vese
model to address the problem of multiphase image segmentation.

In this paper, we employ the multigrid method to deal with the min-cut model and its
equivalent form asmax-flowproblem.The golden section algorithm is employed to efficiently
solve the dual of the max-flow (DMF) problem on each level of the multigrid method.
Besides, due to the non-smoothness of the max-flow problem, the golden section algorithm
is implemented to the smoothed version of the sub-minimization problem. In particular, to
improve the computation efficiency, a classical Backslash-cycle type of multigrid method is
selected to solve the coarser level problems. Furthermore, some outer iterations are applied
to the Backslash-cycle multigrid method, aiming to enhance convergence speed. Due to the
high efficiency of the multigrid method, the new technique could get competitively fast speed
for multiphase image segmentation, competitive with and sometimes much faster than the
max-flow based approach [24,25]. Experiments on simulated and real examples show the
competitive results of multiphase image segmentation by the given method.

The organization of this paper is as follows. In Sect. 2, we introduce continuous min-cut
and max-flow problems which are related to the problem we intend to solve. Section 3 will
present the related notations and scheme of the multigrid method, and the details of how to
apply the multigrid method to our model for two-phase image segmentation. In Sect. 4, we
will first introduce the parallelization of themultigridmethod based on four-color subdivision,
then extend the two-phase image segmentation to multiphase cases. In Sect. 6, we report the
segmentation results by the given method and compare it with a state-of-the-art approach.
We also give some experimental analyses of our strategy. Finally, Sect. 7 will draw some
conclusions.

2 ContinuousMin-Cut andMax-Flow Problems

Given an image f , Mumford and Shah in [10] minimize the following functional:

E(u, �) =
∫

�\�
|∇u|2dx + λ

∫
�

(u − f )2dx + μLength(�), (1)

with respect to the function u defined on � which has discontinuities on �. Above, λ,μ are
two positive parameters. After [10], the Chan–Vese model was proposed for image segmen-
tation in [12], which minimizes the following energy functional:
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ECV (φ, c1, c2) =
∫

�

( f − c1)
2H(φ) + ( f − c2)

2(1 − H(φ)) + η

∫
�

|∇H(φ)|, (2)

where φ represents a level set function whose zero level curve is the segmentation boundary,
c1, c2 are two scalars that will be updated in the computing procedure, H(·) is the Heaviside
function, and η is a positive parameter. In particular, if the minimizer of the objective func-
tional ofMumford–Shah’s model is in the form of u = c1H(φ)+c2(1−H(φ)), i.e. a “binary
image”, then one can easily deduce the Chan–Vese’s model. Furthermore, the minimization
problem of (2) can be solved by a simple gradient flow.

Let u = H(φ), it is easy to get a solution of (2) by the following minimization problem

min
v∈{0,1}ECV (u, c1, c2) =

∫
�

( f − c1)
2v + ( f − c2)

2(1 − v) + η

∫
�

|∇v|, (3)

which was proposed in [21] and referred as binary level set approach. More generally, con-
sider

min
v∈{0,1}Epotts(v) =

∫
�

f1(x)v(x) + f2(x)(1 − v(x)) +
∫

�

g(x)|∇v(x)|, (4)

where fi are some given functions indicating the possibility of a point belonging to phase 0
or 1. The function g(x) can be just a constant or an edge detector function. Especially, the
Chan–Vese model in [12] is actually a special case of this model if ci are known. Recently, it
was observed that this is amin-cut problem [24,27] which is equivalent to amax-flow problem
that is written as

max
ps ,pt ,q

∫
�

psdx subject to:

ps(x) ≤ f1(x), pt (x) ≤ f2(x), |q(x)| ≤ g(x),∀x ∈ �,

divq(x) − ps(x) + pt (x) = 0,∀x ∈ �, q · n = 0 on ∂�, (5)

where n is the unit out normal vector of ∂�, ps is a scalar function and is the amount of
flow from a “source” to x , pt is a scalar function representing the amount of flow to the
“sink” and q(x) = (q1(x), q2(x)) is the flow inside the domain. It is necessary to emphasis

that |q| =
√
q21 + q22 . In particular, the method also works if using |q| = |q1| + |q2|. In

such a case, its discrete version is actually a max-flow problem that can be easily solved by
traditional graph cut method. Note that the functions fi and g in (5) are the same as in (4). The
goal is to maximize the total amount of flow in the system (which is the domain connected
with a “source” and a “sink”) with flow conservation governed by the last equation of (5).
Note that we also need to assume that there is no “flow” in and out from the domain boundary
∂�. The dual of the max-flow problem (5) can be written as follows (c.f. [27, Prop. 3.1]):

min
u(x)∈[0,1]

∫
�

( f1u + f2(1 − u) + g(x)|∇u|)dx . (6)

As explained in [27], the function u in (6) is actually the Lagrangian multiplier for the flow
conservation equation in (5).

Note that the above three problems are truly equivalent:

(4) ⇔ (5) ⇔ (6).

It is necessary to emphasize that the equivalence between (4) and (6) was first observed in
the seminal work of Chan–Esedouglu–Nikolova [22] by a different derivation. Connections
between these models with the well-known graph-cut approaches are also explained in some
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recent works, see [24–27,41]. There are two advantages of continuous min-cut and max-flow
models: (i) Both (5) and (6) are convex minimization problems; thus they are guaranteed to
have globalminimizers; (ii) A number of thewell developed convexminimization algorithms,
especially some operator splitting and augmented Lagrangian methods, can be employed to
solve them efficiently.

These algorithms can classify the domain into two phases. There are three different ways
to extend it to multiphase segmentation with the same kind of advantages as outlined below,
and a brief survey of these approaches can also be found in [42].

Approach I: The first approach for multiphase min-cut/max-flow with a given graph was
explained in [25]. There exists a max-flow and min-cut problem on the graph
that are dual to each other and guaranteed to have global minimizers. This
graph is given in the continuous setting. When it is discretized, we get the
commonly used discrete graph with vertexes. The details of the graph and the
model can be found in [25, Prop. 1].

Approach II: Another multiphase image segmentation model using graphs is the Ishikawa
graph [43–45]. The interpretation of this graph model as a min-cut and max-
flow problem can be found in [41,46]. The interpretation of this model as
convex relaxation can be found in [23].

Approach III: A third approach for multiphase image segmentation is to use the product
of labels as in [28,29,47], which essentially extends the multiphase Chan–
Vese approach [48]. The interpretation of the product of labels as min-cut and
max-flow problems over a graph can be found in [28,29].

Later in thiswork, we shall usemultigridmethods to solve themultiphasemin-cut problem
related to Approach I. For this approach, the corresponding graph is shown in Figure 1 in
[25]. We need to copy the image domain K times and properly connect them, see [25, p.
385]. The min-cut on this graph solves the multiphase Potts model:

min
�i

K∑
i=1

∫
�i

fi (x)dx +
K∑
i=1

∫
∂�i

g(x)ds s.t. ∪M
i=1 �i = �, �k ∩ �l = ∅,∀k 	= l.

The correspondingmax-flowproblemneeds tomaximize an energy functionalwith functions:

1. A scalar function ps(x) which is the amount of flow from the source to x ;
2. A vectorial function h(x) = (h1(x), h2(x), · · · hK (x)) and each hi (x) is a scalar function

which is the amount of flow from a point x of the i th copy of the image domain to the
“sink”;

3. A vectorial function q(x) = (q1(x),q2(x), · · · ,qK (x)) and eachqi (x) = (q1i (x), q
2
i (x)

is the flow vector function on each copy of the image domain.

The max-flow problem needs to solve

max
ps ,h,q

∫
�

ps(x)dx, (7)

under constraints:

hi (x) ≤ fi (x), |qi (x)| ≤ g(x), (divqi − ps + hi )(x) = 0,∀x ∈ �, i = 1, 2 · · · K .(8)

The dual problem of the above max-flow problem is the following convex min-cut problem
(c.f [25, p. 386]):

min
u

K∑
i=1

( ∫
�

ui (x) fi (x)dx +
∫

�

g(x)|∇ui (x)|dx
)

, s.t.
k∑

i=1

ui (x) = 1, ui (x) ≥ 0. (9)
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Table 1 Main notations used in this work

Notation Meaning Remark

j Level # of MG method j = 0, 1, . . . , J

n j Element # on j th level n j = 4 j

i Index for elements on j th level i = 1, 2, . . . , n j

τi, j i th element on j th level (Fig. 1) i = 1, 2, · · · , n j ; j = 0, 1, . . . , J

N A gray image with size N × N N ∈ N
+

Pi, j Center points of elements over the
finest mesh that are inside τi, j

N2

4 j
center points, (Figs. 1, 2)

Bi, j Center points of elements over the
finest mesh that are inside τi, j and
adjacent to ∂τi, j

Fig. 2

B̃i, j Center points of elements over the
finest mesh that are outside τi, j
and adjacent to Bi, j

Fig. 2

p phase # p = 1, 2, . . . , K

N (x) Center points of the down and right
neighbor elements of the element
centered at x over the finest mesh

N (x) = {Nd (x), Nr (x)}

3 Multigrid Algorithm for Piecewise Constant Approximations for
Two-PhaseMin-Cut Minimization Problems

In the following, we try to use themultigrid method to solve the dual problem of themax-flow
problem (6), i.e., we will consider

min
u(x)∈[0,1] F(u), F(u) =

∫
�

( f1u + f2(1 − u) + g(x)|∇u|)dx .

We assume that� is a rectangular domain, and there is a coarse mesh partition that divides
the domain into some coarse rectangular elements. Then, we refine each rectangular element
into four equal rectangular sub-mesh elements to get the next level of fine mesh. We continue
this refinement J times, and the finest mesh is the one that we shall use for processing an
image. In practical applications for image processing, the pixels of the given image already
defined the finest mesh, and it is always possible to produce the mesh given by the pixels
from the above-outlined refinement process.

To explain the details in the derivation of the multigrid methods, we need to introduce
some nations. We use τi, j to denote the i th element on j th level with j = 0 be the coarsest
mesh. Pi, j denotes the center points of the element τi, j over the finest mesh. n j represents the
number of elements on level j . The other notations are summarized in Table 1 and explained
in Figs. 1 and 2.

We regard an image to be a piecewise constant function over the finest mesh. Themultigrid
method we shall use is to minimize the energy for the min-cut problem not only on the finest
mesh but also over all the coarser level meshes. The algorithm is given in Algorithm 1, andwe
shall explain the details in the following. The updating is shown as a diagram in Fig. 3. The
interpolation and prolongation between the levels are implicitly handled in the subproblem
updating.
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Fig. 1 An illustration of refinement and the finest mesh and notations of τi, j and Pi, j . Pi, j is the set containing
the center points for all the elements over the finest mesh that are inside τi, j . If j < J , Pi, j contains multiple

center points, e.g., Pi,0 containing N2 center points of τi,0 over the finest mesh

Fig. 2 An illustration of Pi, j ,

Bi, j and B̃i, j . Pi, j (blue points)
represents the center points for
all elements over the finest mesh
that are inside τi, j (the region
enclosed by the blue line), Bi, j
contains all the center points for
element over the finest mesh that
are inside τi, j and adjacent to

∂τi, j . B̃i, j contains all the center
points for elements over the finest
mesh that outside τi, j and
adjacent to Bi, j (Color figure
online)

Algorithm 1Multigrid algorithm for the dual problem of the max-flow (6)
1: Input: Input function f , the maximum iterations maxIter, the converged threshold tol
2: Output: uout
3: Initialization: Eold = 0, an initial value u ∈ [0, 1] for u
4: for k = 1 : maxIter do
5: for j = 0 : J do
6: for i = 1 : n j do
7: ei, j = argminc∈Ci, j F(u + cφi, j ) by (11)–(12)
8: u ← u + ei, jφi, j
9: end for
10: end for
11: Compute total energy E = E(u) via (6)
12: if |E − Eold |/|E | < tol then break;
13: else set Eold = E
14: end if
15: end for
16: Output uout = u
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Fig. 3 An illustration of Backslash-cycle multigrid method with several outer iterations

This multigrid algorithm is trying to minimize the min-cut energy functional in (6) suc-
cessively over all the elements from all the mesh levels. In the following, we explain the
details in solving the minimization subproblems and also give the definition of the constraint
Ci, j .

First, we note that the piecewise constant finite element functions space over the different
mesh levels can be written as:

Vj = {v| v|τi, j ∈ R, ∀τi, j }, j = 0, 1, 2 · · · J .

The basis functions for these spaces are:

φi, j (x) =
{
1, x ∈ τi, j ,

0, else.
(10)

We have that

Vj = span({φi, j }n j
i=1), j = 0, 1, 2 · · · J .

In our multigrid method, all the integrations will be done over the finest mesh. The function
u ∈ VJ is always updated over the finest mesh. For c ∈ R, we for simplicity define

vc(x) = u(x) + cφi, j (x) =
{
u(x) + c, ∀x ∈ τi, j ,

u(x), else

This is also a finite element function over the finest mesh due to the fact that φi, j ∈ Vj ⊂
VJ , ∀ j ≤ J .

The minimization subproblem in Step 7 in Algorithm 1 in the discrete setting is to solve:

ei, j = arg min
c∈Ci, j

F(vc) = arg min
c∈Ci, j

F(u + cφi, j )

= arg min
c∈Ci, j

( ∑
x∈Pi, j

[ f1(x)vc(x) + f2(x)(1 − vc(x))]

+
∑

x∈Pi, j \Bi, j
g(x)

√ ∑
y∈N (x)

|vc(y) − vc(x)|2

+
∑

x∈Bi, j
g(x)

√√√√
∑

y∈N (x)
⋂

Bi, j

|vc(y) − vc(x)|2 +
∑

y∈N (x)
⋂

B̃i, j

|u(y) − vc(x)|2

+
∑
y∈B̃i, j

g(y)

√√√√
∑

x∈N (y)
⋂

Bi, j

|vc(x) − u(y)|2 +
∑

z∈N (y)
⋂

B̃i, j

|u(z) − u(y)|2
)
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= arg min
c∈Ci, j

( ∑
x∈Pi, j

[ f1(x) − f2(x)] c

+
∑

x∈Bi, j
g(x)

√√√√v(x) +
∑

y∈N (x)
⋂

B̃i, j

|u(x) − u(y) + c|2

+
∑
y∈B̃i, j

g(y)
√ ∑

x∈N (y)
⋂

Bi, j

|u(x) − u(y) + c|2 + ṽ(y),

)
(11)

where N (x) is as defined in Table 1 and it represents the down and right neighbor elements
center points of the element centered at x , v(x) = ∑

y∈N (x)
⋂

Bi, j |u(x) − u(y)|2 with

x ∈ Bi, j , and ṽ(y) = ∑
z∈N (y)

⋂
B̃i, j

|u(z) − u(y)|2 with y ∈ B̃i, j . We have cast the terms
that are independent of c in getting equalities in the above formulas. The summations in the
above formula are done over the finest mesh as all the center points from Pi, j , Bi, j , B̃i, j are
centers of elements from the finest level.

For the minimization subproblem in Step 7 in Algorithm 1, we need to guarantee that all
the updated values for u satisfy u ∈ [0, 1]. This gives the constraint set Ci, j for c in Step 7
as follows:

u + cφi, j ∈ [0, 1] ⇔ − u(x)

φi, j (x)
≤ c ≤ 1 − u(x)

φi, j (x)
, x ∈ τi, j

⇔ Ci, j = [− min
x∈τi, j

u(x), 1 − max
x∈τi, j

u(x)].
(12)

Here are some remarks about this algorithm:

– Note that we always have u ∈ [0, 1] during the iterations, thus the constraint in (12) is
always non-empty.

– Function u(x) ∈ VJ is regarded as a finite element function defined over the finest mesh,
thus the min-max values of u(x) over τi, j in (12) is evaluated over the finest elements
that are inside τi, j .

– The updating in Step 8 is always done over the finest mesh, i.e. over mesh at level J , and
so there is a piecewise constant interpolation from the j level to the finest mesh at level
J here.

The problem (11) is a minimization problem with real number c, we may denote the
objection function as h(c), thus the minimization problem can be written as:

min
a≤c≤b

h(c), (13)

which can be solved by golden section method, c.f. [49].

4 Parallelization of Mutligrid Method

Parallelization is crucial for many applications with the min-cut/max-flow approach. Here,
we shall partition the elements over each level onto four colors and do the updating with the
elements of the same color in parallel. As illustrated in Fig. 4, the element over each level j
can be partition into 4 groups that are marked with 4 colors. The elements of the same color
do not intersect each other. We use τ coli, j to denote the i th element over the j th level with
color numbered as col ∈ {1, 2, 3, 4}. We assume that the number of elements with the color
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Fig. 4 An illustration to partition the elements over each level into 4 groups marked with 4 colors

Table 2 Main notations used in
this work

Notation Meaning Remark

col Color index with the
4-color partition

col = 1, 2, 3, 4

τ colj Union of elements on
j th level with colth
color

See (14) and Fig. 4

ncolj Number of elements
in τ colj

–

Pcol
j Center points for

finest mesh
elements inside τ colj

See (14)

Bcol
j Center points for

finest mesh
elements inside τ colj
and adjacent to
∂τ colj

See (14)

B̃col
j Center points for

finest mesh
elements outside
τ colj and adjacent to

Bcol
j

See (14)

col at the j th level is ncolj . Then we know that ncolj = 4 j−1 and n j = 4 j . Correspondingly,
we define

τ colj = ⋃ncolj
i=1 τ coli, j , Pcol

j = ⋃ncolj
i=1 P

col
i, j ,

Bcol
j = ⋃ncolj

i=1 B
col
i, j , B̃col

j = ⋃ncolj
i=1 B̃

col
i, j ,

j = 0, 1, 2, · · · , J ; col = 1, 2, 3, 4, (14)

We emphasise again that all the center points are defined over the finest mesh. For conve-
nience, we use Icol

j to denote the indexes of the elements of τ colj , i.e

Icol
j = {i | τi, j has the color col}, j = 0, 1, 2, · · · , J ; col = 1, 2, 3, 4,

A summary with the notations with the 4-color partition is given in Table 2. With these
notations, the colored parallel multigrid algorithm for the max-flow/min-cut problem (6) is
written in detail in Algorithm 2. Next we explain the needed details for the minimization
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Fig. 5 An illustration of φi, j for the red color, i.e. col = 1. Take the level 1 to the level 3 as example (Color
figure online)

problem in Step 7 of Algorithm 2 in the discrete setting. For notation simplicity, for a given
vector c = (c1, c2, · · · , cncolj

) ∈ Rn
jcol , let us define

s(x) =
∑
i∈Icol

j

ciφi, j (x).

This function is a piecewise constant function taking the constant value ci in the elements
over the j th level with the color col, see Fig. 5 for an illustration of φi, j with the red color
as an example. The minimization problem in Step 7 of Algorithm 2 in the discrete setting is
to solve the following problem:

ecol, j = arg min
c∈Ccol

j

( ∑
x∈Pcol

j

[ f1(x) − f2(x)] s(x)

+
∑

x∈Bcol
j

g(x)

√√√√v(x) +
∑

y∈N (x)
⋂

B̃col
j

|u(x) − u(y) + s(y)|2

+
∑

y∈B̃col
j

g(x)

√√√√ṽ(y) +
∑

x∈N (y)
⋂

Bcol
j

|u(x) − u(y) + s(x)|2
)

.

(15)

The minimizer ecol,j of the above problem is a vector in Rncolj . Again, we emphasize
that the summation in the above formula is done over the finest mesh. The good point of
this algorithm is that the values of the ecol, j can be computed in parallel, i.e. minimization
problem in Step 7 of Algorithm 2 can be computed in parallel over elements for a fixed level
j and a fixed color col ∈ {1, 2, 3, 4}. The constraint set Ccolj can be deduced in the same way
as for Algorithm 1, which is:

Ccolj = {(c1, c2, · · · cncolj
)| ci ∈ [− min

x∈τi, j
u(x), 1 − max

x∈τi, j
u(x)], i = 1, 2, · · · , ncolj }. (16)

In the following, we give some detailed explanations about Algorithm 2. For the imple-
mentation, u will be a matrix on the finest mesh, and it will always be stored and updated on
the finest mesh.

In the Step 8 of Algorithm 2, (ecol,j)i are the values of the i th component of the minimizer

in Step 7 which is a vector in Rncolj . We have the following remarks about Algorithm 2:
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Algorithm 2 Parallel multigrid algorithm with four color partitions
1: Input: Input function f , themaximum iterationsmaxIter, the converged threshold tol, a smoothing constant

δ.
2: Output: uout .
3: Initialization: Eold = 0, an initial value u0 ∈ [0, 1] for u.
4: for k = 1 : maxIter do
5: for j = 0 : J do
6: for col = 1 : 4 do
7: ecol, j = argmin

(c1,c2,···cncolj
)∈Ccol

j
F(u + ∑

i∈Icol
j

ciφi, j )

8: u ← u + ∑
i∈Icol

j
(ecol, j )iφi, j

9: end for
10: end for
11: Compute total energy E = E(u) via (26)
12: if |E − Eold |/|E | < tol then break
13: else set Eold = E
14: end if
15: end for
16: Output uout = u

– The minimization problem in Step 7 can be done in parallel over the elements in τ colj , i.e.

i ∈ Icol
j . Our code is implemented inMatlab. By implementing theminimization over the

elements with the same color in parallel, we observe huge computing time improvement.
– The function u(x) is a finite element function over the finest mesh. So the updating in

Step 8 is always done over the finest mesh, and there is a piecewise constant interpolation
from the j th level to the finest mesh at level J . Even more, they can be updated in parallel
over the elements of the same color. The coloring of the elements is done over each level.
The updating for u is done over the finest mesh elements that are inside each τi, j ⊂ τ colj ,

i.e. we add value (ecol, j )i to all elements over the finest mesh that are inside τi, j ⊂ τ colj .
Element τi, j is on the j th level, and it can contain many elements over the finest mesh
on level J .

5 Multigrid Method for MultiphaseMin-Cut/Max-Flow

In this section, we intend to use multigrid for multiphase (K phases) min-cut problem (9).
We will present the algorithm without the coloring of the elements. The parallel colored
multigrid algorithm can be deduced in a similar way as for Algorithm 2. For the multiphase
min-cut problem, we only need to replace the scalar function u in Algorithm 1 by a vector
function

u(x) = (u1(x), u2(x), · · · , uK (x)) ∈ S,

with

S = {(v1(x), v2(x), · · · , vK (x))| vk(x) ≥ 0, k = 1, 2, · · · K ,

K∑
k=1

vi (x) = 1}.

We still try to update the u values over all elements τi, j with all i and j . Let u be a given
values at a given iteration, we update by

u(x) ← u(x) + cφi, j = (
u1(x) + c1φi, j , u2(x) + c2φi, j , · · · , uK (x) + cKφi, j

)
, c ∈ RK .
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To guarantee that u(x) + cφi, j ∈ S, we need
⎧⎪⎪⎨
⎪⎪⎩

K∑
p=1

(u p + cp) = 1,

0 ≤ u p + cp ≤ 1.

(17)

Here u p represents the values of the vector function u of the last iteration on the pth phase,
and thus it satisfies u ∈ S. Especially, (17) can be simplified to the following

K∑
p=1

cp = 0, − u p ≤ cp ≤ 1 − u p. (18)

Thus, to extend Algorithm 1 to the multiphase min-cut/max-flow problem (9), we just
need to change the scalar label function u(x) to a vector label function u(x) ∈ S and replace
the minimization problem in Step 7 by solving an approximate minimizer for

ei, j = arg min
c∈Ci, j

F(u + cφi, j ), (19)

with F being the energy functional given in (9), i.e.

F(v) =
K∑
p

∫
�

(
vp(x) f p(x)dx + g(x)|∇vp(x)|

)
dx, v = (v1(x), v2(x), · · · vK (x)).

(20)

From (18), the constraint set Ci, j for (19) is

Ci, j =
{
c|

K∑
p=1

cp = 0, in τi, j , − minx∈τi, j (u p)(x) ≤ cp ≤ 1 − maxx∈τi, j (u p)(x)

}
.

(21)

In our implementations, we first solve (19) without the constraint Ci, j and then project the
minimizer to the simplex Ci, j . We just do this once and take it as an approximate minimizer
for (19). It is clear that F is separable, i.e.

F(v) =
∑
p

Fp(vp), with Fp(vp) =
∫

�

vp(x) f p(x)dx + g(x)|∇vp(x)|dx . (22)

This means that the computation for minimization problem (19) without the constraint Ci, j
can be done in parallel for each p.

If we let ei, j,p be the value of the pth component of an approximate minimizer of the (19),
then the updating of the label functions u p(x) can be done in parallel for p = 1, 2, · · · K by

u p ← u p + ei, j,pφi, j , p = 1, 2, · · · K . (23)

From these explanations, we can see that the extension from 2-phase min-cut/max-flow to
multiphase is very easy. All the codes for the 2-phase min-cut problem can be used for each
u p(x). The only extra task is to handle the extra constraint

∑K
p=1 cp = 0 . We have tested

both on the algorithm of [50,51]. Both are rather fast. In the tests given later, we have used
the algorithm of [50].

The algorithm is summarized in Algorithm 3.
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Algorithm 3Multigrid algorithm for the dual problem of the max-flow (9)
1: Input: Input function fi and g, the maximum iterations maxIter, the converged threshold tol
2: Output: uout
3: Initialization: Eold = 0, an initial value u p ∈ [0, 1] for p = 1, 2, · · · K
4: for k = 1 : maxIter do
5: for j = 0 : J do
6: for i = 1 : n j do
7: Find a minimizer in parallel for p = 1, 2, · · · K for
8: ẽi, j,p = argmincp∈R Fp(u p + cpφi, j ).

9: Project (ẽi, j,p)
K
p=1 into the simplex Ci, j in (21) to get (ei, j,p)Kp=1.

10: Update u p in parallel for p as u p ← u p + ei, j ,pφi, j
11: end for
12: end for
13: Compute total energy E = E(u) via (9)
14: if |E − Eold |/|E | < tol then break
15: else set Eold = E
16: end if
17: end for
18: Output uout = u

The first minimization problem in Step 8 in Algorithm 3 is again solved by the Golden
section with the lower and upper bound given by the second inequality in the definition of
Ci, j in (21). It is easy to implement this algorithm with 4-color partition of the elements over
each level j = 0, 1, · · · J .

6 Numerical Results

In this section, we compare the proposed method with three state-of-the-art approaches,
named FCM-L1 method [2], SLaT method [52] and max-flow method [24]. Note that the
solved model in this work is the similar as that in the max-flow method; thus, we will do
some discussions for the two approaches in this section. Especially, the model used in the
FCM-L1 and SLaTmethods are different from that of the max-flowmethod and the proposed
method; thus, we only present the simple visual and quantitative comparisons for the FCM-L1
approach. All examples are mainly divided into two categories, one is for synthetic images
that may be corrupted by random noise, and the other is for real images. Besides, all tests
are implemented in MATLAB(R2017a) on a laptop of 8Gb RAM and Intel(R) Core(TM) i5
CPU: @3.10 GHz.

Parameter setting: In our experiments, it is reasonable to stop the iteration if the following
relative total energy (ReEng) is smaller than a pre-defined positive threshold tol, i.e.,

ReEng = |E − Eold |
|E | < tol, (24)

where tol is set as 1×10−5 in our experiments. The bigger tol will lead to the faster stopping
of the iterative method. E and Eold are with the same definitions as in Algorithm 3. Also, we
set 4 levels for the multigrid method, i.e., J = 3, which means that the multigrid method will
start from (J −3)th level (viewed as the coarsest level) and end in J th level (the finest level).
Therefore, the pixel numbers for each Pcol

i, j on the coarsest and the finest levels are respectively
8 × 8 and 1 × 1 (denoted as 8 × 8 → 1 × 1). Note that we also implement thresholding
(with a value of 0.5 for all experiments) to the outcomes of the max-flow and the proposed
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methods, which makes sure the produced results being piecewise constant [22]. Moreover,
the maximum number maxIter of outer iteration in Algorithm 3 is set as 150. Besides, the
parameters in our method are easy to select because the proposed approach is not sensitive
to the associated parameters. Actually, choosing suitable parameters is always a difficulty in
many image algorithms. Empirical tuning is a popular way to determine parameters; thus,
we take this way to obtain the parameters in our work.

Smoothing Implementation: Before the experiments, a smoothing implementation is
taken to smooth the singularity of the model. Note that the dual form of max-flow problem
(6) in the multigrid method is non-smoothness, since the corresponding Euler-Lagrange
equation

α∇ ·
( ∇u

|∇u|
)

− ( f1 − f2) = 0, (25)

contains a singularity of |∇u| = 0. To address this issue, a common strategy that incorporates
a small constant δ to eliminate the singularity is used, which makes the new minimization
problem become

min
u∈[0,1] Fδ(u) =

∫
�

f1u + f2(1 − u) + α
(√

|∇u|2 + δ2 − δ
)
dx . (26)

Therefore, in practical implementation, the F function in Algorithm 1, 2 and 3 should
be replaced by Fδ that is defined in (26). Additionally, the δ is fixed as 5 × 10−2 in the
experiments.

6.1 Segmentation Results

In this section, we report the total energy changes for the max-flow method and the proposed
method in Fig. 6, since they are all to solve the samemodel.1 It indicates that both our method
and the max-flow based method get similar converged total energy. Particularly, the reason
why the final converged total energy of the multigrid method is slightly bigger than that of the
max-flow approach is that the multigrid method uses the smoothed energy (26). In contrast,
the max-flow approach is only applied to the original TV minimization problem.

In Fig. 7, we test the performance of computational time for both the max-flow method
and our method with the increased image size on a noisy synthetic image (see Fig. 7a). In
Fig. 7b, the image size is increased from 100×100 to 1000×1000. When the image content
is simple, and the image size is small (see e.g., smaller than 300×300), the max-flowmethod
uses less computational time than the given approach, while our method will be significantly
faster than the max-flow method when the image content is complex and the image size is
bigger.

In Fig. 8, we take some simple synthetic and real images for the test of multiphase image
segmentation. They include one synthetic imagewith the noise of unknown level (i.e., the first
image) and five real images without any corruption (i.e., the second to the sixth image). In
particular, these test images are first pre-processed by the region forcemethod [42,53] (see the
second column in Fig. 8). Themax-flowand the proposedmethod are both implemented based
on these pre-processed images for fair comparisons. From the last four columns of Fig. 8, it is
easy to see that the four comparedmethods perform similarly well for the synthetic image that

1 The models used in the FCM-L1 and SLaT methods are different, thus it is not meaningful to discuss the
energy change.
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Fig. 6 The comparison of total energy for the max-flow method and the multigrid method implemented on a
test image
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Fig. 7 The comparison of computational time with increased image sizes. Here we synthesize images with
the sizes from 100 × 100 to 1000 × 1000. a An example with 3 phases (i.e., K = 3); b The comparison of
computational time for both compared methods

only contains simple image content and some unknown noise. For the segmentation of real-
world images (i.e., the last five examples), the proposed method produces competitive visual
results comparedwith three other approaches. For the segmentation of small objects, themax-
flow method and our method are slightly better. For instance, for the real image “zebra”, the
max-flow method and the proposed method could segment the black and white stripes well
while other two methods are much less accurate. Another example is the “strawberry”, in
which the results by our method and the max-flow method show a better visual performance
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Fig. 8 The results of K-phase segmentation by various methods on the synthetic image “ball” (size of 256 ×
256×3), five real-world images “zebra” (size of 195×290×3), “pepper” (size of 256×256×3), “strawberry”
(size of 135 × 115 × 3), “flower” (size of 500 × 500 × 3) and “house” (size of 474 × 474 × 3). From left to
right are a images to be segmented; b initial segmentation using the region force as the prior; c the results by
the FCM-L1 method [2]; d the results by the SLaT method [52]; e The results by the max-flow method [24];
f The results by the multigrid method

than the other two approaches. The observation on other examples in comparison also confirm
our conclusion.

Table 3 reports the computational time of different approaches, which may be affected by
the image size, image type, and image noise, etc. From Table 3, it is clear that the multigrid
method is faster than the FCM-L1 method and the max-flow method for all compared exam-
ples. Note that themultigridmethod could get a larger leading than themax-flowmethodwith
the bigger image size and themore complex real image structure (see the last two examples in
Table 3). This conclusion also holds for the FCM-L1 approach. Especially for all the exam-
ples, the three stages’ SLaT method’s computational time is faster than the other methods. It
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Table 3 The comparison of computational time for the compared methods (unit: second)

Example FCM-L1 [2] SLaT [52] Max-flow [24] Multigrid

Ball (K=4) 9.12 2.05 9.65 8.24

Zebra (K=3) 3.79 1.58 3.21 2.75

Pepper (K=3) 14.67 3.40 9.99 9.60

Strawberry (K=4) 3.58 1.19 5.71 5.16

Flower (K=4) 52.50 16.46 110.23 51.37

House (K=4) 80.87 10.40 95.57 47.56

Fig. 9 The computational time with the increased level number for Backslash-cycle multigrid method on a
test image “ball”

is mainly due to the fast algorithm (e.g., primal-dual) and the closed-form operations used in
the method. However, we observe that SLaT has problems to segment real complex images,
c.f. Fig. 8 2nd-6th examples. The simple smoothing and threshold procedures in SLaT make
it fast to be solved, but this also leads to missing details for real complex images. In sum-
mary, we could conclude that the multigrid method could cost less computational time than
the FCM-L1 method and the max-flow method, especially with a bigger image size and a
complex real example. Although the SLaT approach gets less computational time than other
methods, it performs unsatisfactorily on the real complex examples. In Fig. 9, we also show
the computational time of each level of the multigrid method. From the result, it is easy to
see that the computational time will increase with the increased level number.

6.2 More Discussions

It is observed that is often better to skip some of the coarser meshes for the multigrid method
for image segmentation. In this section’s tests, we choose the coarsestmeshwith each element
containing 8×8 finest elements.We denote this setting as 8×8 → 1×1). In Fig. 10, it shows
the performance of computational time for our methods with the increased element size on
the coarsest level. Actually, the level number can be computed by the coarsest element size.
For instance, if it is 8× 8 → 1× 1 which means the level number is log28− log21+ 1 = 4.
From Fig. 10, the element size on coarsest level increases from 2 × 2 to 16 × 16 which
indicates the level number should increase from 2 to 5. The computational time is decreased
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Fig. 10 The comparison of computational time with different element sizes on the coarsest level (from 1 × 1
to 16 × 16), i.e., 1 × 1 → 1 × 1, 2 × 2 → 1 × 1, · · · , 16 × 16 → 1 × 1. Note that the default setting
is 8 × 8 → 1 × 1 where 1 × 1 represents the finest level, and the level number is actually determined by
element size of the corasest mesh. For instance, if it is 8 × 8 → 1 × 1 which means the level number is
log28 − log21 + 1 = 4. The test is implemented on the third example in Fig. 8

from about 14 to 9 s, demonstrating that the multigrid method uses less computational time
(or faster speed) than the direct method applied to the finest level. If we use even coarser
mesh, the multigrid method’s computational time will not reduce further, which indicates
that it is not necessary to use very coarse mesh for our multigrid algorithm.

Our tests showed that we might also skip the computation on the finest mesh to get better
computing time. For some real images, it is unnecessary to apply the multigrid method
to the finest grid, i.e., the finest level with element size 1 × 1. We only need to use the
multigrid algorithm on levels with element sizes 2 × 2 to the coarsest mesh. This strategy
could significantly reduce computational time and get good segmentation results. Figure 11
shows the segmentation results with K = 2 by our method with the levels of element size
ranging from 8 × 8 → 1 × 1 and 8 × 8 → 2 × 2, respectively. From the figure, it is clear
that using 8 × 8 → 1 × 1 (Fig. 10b) will take more computational time than that of using
8× 8 → 2× 2 (see Fig. 10c). Actually, the segmentation result using 8× 8 → 2× 2 is just
as good.

7 Conclusions

In this paper, amultiphase image segmentationmethod via themin-cutminimization problem
was proposed under the framework of the multigrid (MG) method. We first transferred the
min-cut on each level of the multigrid method to its max-flow problem equivalent form,
then solved the equivalent form by the golden section method. A classical multigrid type of
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Fig. 11 The results of real images. a Real image; b results by our method with patch size 8 × 8 → 1 × 1; c
results by our method with patch size 8 × 8 → 2 × 2

so-called Backslash-cycle was selected to address the sub-minimization problems. Extensive
experiments demonstrated the effectiveness of the proposed method, e.g., the convergence
and efficiency of the given approach, the competitive multiphase segmentation performance,
especially the efficient multiphase segmentation of real images.
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