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Abstract
In this paperwepropose and analyze an unconditionally stable leapfrogmethod forMaxwell’s
equations that removes the time step constraint for stability, which makes the proposed
scheme more efficient in computation and easier in algorithm implementation compared to
the same order Crank–Nicolson scheme. We also prove the unconditional stability and the
optimal error estimate of the proposed scheme. To show the generality of our technique,
we further develop similar unconditionally stable leapfrog schemes for other complicated
Maxwell’s equations. Numerical results are presented to justify our theoretical analysis and
demonstrate the practical applications in simulating wave propagation in metamaterials.

Keywords Maxwell’s equations · Unconditionally stable · Leapfrog scheme · Finite
element method · Perfectly matched layer · Metamaterials

Mathematics Subject Classification 65N30 · 35L15 · 78-08

1 Introduction

The FDTD method and the finite element method (FEM) are arguably the two most popular
numerical methods for solvingMaxwell’s equations. Due to the advantage of FEM in dealing
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with complex geometry problems, there exist many excellent works on FEMs for solving
Maxwell’s equations in free space (e.g., [2,6,8,10,12,13,17,29]) and in complex media (cf.
[3,5,7,9,24,32,33,35,37] and references therein). A comprehensive review [34] of FDTD and
FEMs on Maxwell’s equations in complex media contains more than 300 papers. Here we
propose an unconditionally stable leapfrog scheme by combining the advantage of finite
element method in dealing with complex geometry problems with the nice unconditional
stability for the leapfrog scheme. Our newly proposed scheme not only inherits the simple
implementation property of the traditional leapfrog scheme for the 3D Maxwell’s equations,
but also is unconditionally stable. Compared to the classical Crank–Nicolson scheme for
Maxwell’s equations [22,25,26], this scheme is much more efficient in computation and
enjoys the same convergence rate.

The rest of the paper is organized as follows. In Sect. 2, we first provide the details on how
to construct an unconditionally stable leapfrog scheme for the standardMaxwell’s equations.
Then we prove an energy conservation identity for this leapfrog scheme, which immediately
yields the unconditional stability. Furthermore, we prove the optimal error estimate for this
scheme. In Sect. 3, we extend the similar idea to develop an unconditionally stable leapfrog
scheme to solve the more complicated Drude metamaterial Maxwell’s equations. The uncon-
ditional stability and optimal error estimate are proved for the proposed scheme. For practical
applications, we further extend the same idea to construct a leapfrog scheme for a perfectly
matched layer (PML) model developed by Cohen and Monk [11]. In Sect. 5, we present
some numerical results to confirm our theoretical analysis and further apply our scheme to
simulate some interesting wave propagation phenomena which happen in metamaterials. We
conclude the paper in Sect. 6.

2 The Unconditionally Stable Leapfrog Scheme forMaxwell’s Equations

In this section, first we demonstrate how to develop an unconditionally stable leapfrog scheme
for the standardMaxwell’s equations, thenwe present the stability analysis and error estimate
for the proposed scheme.

2.1 Construction of the Semi-Discrete Scheme

Consider the time-dependent Maxwell’s equations in a linear, lossy, and non-dispersive
medium with electric conductivity σ in domain �:

ε0
∂E
∂t

= ∇ × H − σE, in � × (0, T ), (2.1)

μ0
∂H
∂t

= −∇ × E, in � × (0, T ), (2.2)

where T is the final simulation time, ε0 and μ0 are the vacuum permittivity and permeabil-
ity, respectively, and E(x, t) and H(x, t) are the electric and magnetic fields, respectively.
Furthermore, the conductivity is assumed to be spatially dependent and bounded above by
positive constant σmax , i.e., σ(x) ∈ [0, σmax ]. To make the problem complete, we assume
that the model (2.1)–(2.2) satisfies the perfect electric conductor (PEC) boundary condition:

n × E = 0, on ∂�, (2.3)
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where n is the unit outward normal vector on the boundary ∂�. Here we consider a bounded
and simply connected Lipschitz polyhedral domain � ⊂ R3.

To develop our unconditionally stable leapfrog scheme, we divide the time interval [0, T ]
into Nt uniform subintervals, i.e., we have discrete times tk = kτ for k = 0, 1, · · · , Nt ,
where the time step size τ = T

Nt
.

First, we consider a two step scheme for (2.1)–(2.2):
Step 1: backward

ε0En+ 1
2 = ε0En + τ

2

(
∇ × Hn+ 1

2 − σEn+ 1
2

)
, (2.4)

μ0Hn+ 1
2 = μ0Hn − τ

2
∇ × En+ 1

2 , (2.5)

Step 2: forward

ε0En+1 = ε0En+ 1
2 + τ

2

(
∇ × Hn+ 1

2 − σEn+ 1
2

)
, (2.6)

μ0Hn+1 = μ0Hn+ 1
2 − τ

2
∇ × En+ 1

2 . (2.7)

Note that Step 1 is a backward leapfrog scheme, and Step 2 is a forward leapfrog scheme.
Now we will develop an unconditionally stable leapfrog scheme for (2.1)–(2.2) by using
(2.4)–(2.7).

Substituting Hn+ 1
2 of (2.5) into (2.4), we have

ε0En+ 1
2 = ε0En + τ

2

[
∇ × (Hn − τ

2
μ−1
0 ∇ × En+ 1

2 ) − σEn+ 1
2

]

= ε0En + τ

2

(
∇ × Hn − σEn+ 1

2

)
− τ 2

4
∇ × (μ−1

0 ∇ × En+ 1
2 ). (2.8)

Substituting Hn+ 1
2 of (2.7) into (2.6) and reducing all n′s by 1 , we have

ε0En = ε0En− 1
2 + τ

2

[
∇ × (Hn + τ

2
μ−1
0 ∇ × En− 1

2 ) − σEn− 1
2

]

= ε0En− 1
2 + τ

2

(
∇ × Hn − σEn− 1

2

)
+ τ 2

4
∇ × (μ−1

0 ∇ × En− 1
2 ). (2.9)

Adding (2.8) and (2.9) together, and adding (2.5) and (2.7) together, respectively, we
obtain

ε0En+ 1
2 = ε0En− 1

2 + τ

(
∇ × Hn − σ

En+ 1
2 + En− 1

2

2

)

− τ 2

4
∇ × (μ−1

0 ∇ × (En+ 1
2 − En− 1

2 )), (2.10)

μ0Hn+1 = μ0Hn − τ∇ × En+ 1
2 . (2.11)

Using the average operator and central difference operator in time: un = un+ 1
2 +un− 1

2

2 , and

δτun = un+ 1
2 −un− 1

2

τ
, we can rewrite (2.10)–(2.11) as follows:

ε0δτEn + σ E
n + τ 2

4μ0
∇ × (∇ × δτ En) = ∇ × Hn, (2.12)

μ0δτ Hn+ 1
2 = −∇ × En+ 1

2 . (2.13)
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It is interesting to note that (2.12) is a small perturbation of a discretization of (2.1) at
time level n.

2.2 The Fully Discrete Finite Element Scheme

First, let us introduce some common Hilbert spaces to be used in the rest paper [22,27]:

H(div,�) = {
u ∈ (L2(�))3; ∇ · u ∈ (L2(�))3

}
,

H(curl;�) = {u ∈ (L2(�))3 : ∇ × u ∈ (L2(�))3},
H0(curl;�) = {u ∈ H(curl;�) : n × u = 0, on ∂�},
Hs(curl;�) = {u ∈ (Hs(�))3 : ∇ × u ∈ (Hs(�))3}, ∀ s ≥ 0,

where Hs(curl;�) is equipped with norm ‖u‖Hs (curl;�) = (‖u‖2s + ‖∇ × u‖2s )
1
2 , where

‖ · ‖s denotes the standard Sobolev space Hs norm over �. When s = 0, we simply denote
H(curl;�) := H0(curl;�) and ‖ · ‖0 for the L2(�) norm.

To design our finite element method, we partition the domain � by a family of regular
cubic (or tetrahedral) elements Th . We denote hK for the diameter of element K ∈ Th and set
the mesh size h = maxK∈Th hK . Depending on the regularity of the solution, a proper order
Raviar t − Thomas − Nédélec (RTN) mixed finite element spaces can be chosen [27,30].
For a cubic mesh, the RTN spaces are: For any l ≥ 1,

Vh = {�h ∈ H(div;�) : �h
∣∣
K ∈ Ql,l−l,l−l × Ql−l,l,l−l × Ql−l,l−l,l ,∀K ∈ Th

}
,

Uh = {�h ∈ H(curl;�) : �h
∣∣
K ∈ Ql−l,l,l × Ql,l−l,l × Ql,l,l−l ,∀K ∈ Th

}
,

where Qi, j,k denote the spaces of polynomials whose degrees are less than or equal to i , j
and k in variables x , y and z, respectively. The RTN spaces on the tetrahedral mesh can be
defined accordingly [27,30]. To accommodate the PEC boundary condition, we introduce
the subspace

U0
h = {�h ∈ Uh : n × �h = 0 on ∂�} .

From (2.12)–(2.13), we can develop the following leapfrog FEM scheme: Given proper

initial approximations E
1
2
h , H1

h , for any n ∈ [1, Nt − 1], find E
n+ 1

2
h ∈ U0

h and Hn+1
h ∈ Vh

such that

(
ε0δτEn

h,�h
)+

(
σE

n
h,�h

)
+ τ 2

4μ0

(∇ × δτEn
h,∇ × �h

)

− (Hn
h,∇ × �h

) = 0, ∀�h ∈ U0
h, (2.14)(

μ0δτH
n+ 1

2
h ,�h

)
+
(

∇ × E
n+ 1

2
h ,�h

)
= 0, ∀�h ∈ V h . (2.15)

Note that the scheme (2.14)–(2.15) can be implemented easily by first solving (2.14) for

E
n+ 1

2
h , then solving (2.15) for Hn+1

h . In next subsection, we will prove that this scheme
is unconditionally stable and has the same convergence rate O(τ 2) in time as the classical
implicit Crank–Nicolson (CN) scheme: Given proper initial approximations E0

h ,H
0
h , for any

n ∈ [0, Nt − 1], find En+1
h ∈ U0

h and Hn+1
h ∈ Vh such that

(
ε0δτE

n+ 1
2

h ,�h

)
+
(

σE
n+ 1

2
h ,�h

)
−
(
H

n+ 1
2

h ,∇ × �h

)
= 0, ∀�h ∈ U0

h, (2.16)
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(
μ0δτH

n+ 1
2

h ,�h

)
+
(

∇ × E
n+ 1

2
h ,�h

)
= 0, ∀�h ∈ V h . (2.17)

Remark 2.1 To clarify the differences between our scheme (2.14)–(2.15) and some other
CN schemes [25,26] and leapfrog schemes [15,16,36], we introduce mass matrix ME , mass
matrix Mσ , stiff matrix MS , convection matrix MC , and mass matrix MH , whose elements
are given as following:

(ME )i j = ε0(ψ j , ψi ), (Mσ )i j = (σψ j , ψi ), (MS)i j = μ−1
0 (∇ × ψ j ,∇ × ψi ), (2.18)

(MC )i j = (φ j ,∇ × ψi ), (MH )i j = μ0(φ j , φi ), (2.19)

where ψ j and φ j are the elementary basis functions of Uh and V h .
With those matrices introduced, it is not difficult to see that our scheme (2.14)–(2.15) can

be written as:
(
ME + τ

2
Mσ + τ 2

4
MS

)
E
n+ 1

2
h = τMCHn

h +
(
ME − τ

2
Mσ + τ 2

4
MS

)
E
n− 1

2
h , (2.20)

MHH
n+1
h = MHHn

h − τMT
CE

n+ 1
2

h , or Hn+1
h = Hn

h − τM−1
H MT

CE
n+ 1

2
h , (2.21)

where MT
C denotes the transpose of MC , and for simplicity we still use E

n+ 1
2

h and Hn+1
h to

represent the unknown variables at each time step.
Similarly, we can rewrite the corresponding CN scheme (2.16)–(2.17) as:

(
ME + τ

2
Mσ

)
En+1
h − τ

2
MCH

n+1
h =

(
ME − τ

2
Mσ

)
En
h + τ

2
MCHn

h, (2.22)

MHH
n+1
h + τ

2
MT

CE
n+1
h = MHHn

h − τ

2
MT

CE
n
h . (2.23)

The straight forward way to implement the CN scheme is to invert a big symmetric

matrix

[
ME + τ

2Mσ − τ
2MC

− τ
2M

T
C −MH

]
at each time step (taking a minus sign of (2.23)), which takes

much more memory and computational time than our scheme (2.20) -(2.21). To reduce the
computational cost, we can first solve Hn+1

h from (2.23):

Hn+1
h = Hn

h − τ

2
M−1

H MT
CE

n+1
h − τ

2
M−1

H MT
CE

n
h

= Hn
h − τ

2
M−1

H MT
C (En+1

h + En
h), (2.24)

then substitute Hn+1
h of (2.24) into (2.22) to obtain:
(
ME + τ

2
Mσ + τ 2

4
MCM

−1
H MT

C

)
En+1
h = τMCHn

h

+
(
ME − τ

2
Mσ − τ 2

4
MCM

−1
H MT

C

)
En
h . (2.25)

Comparing (2.20) with (2.25), we see clearly that they are different in both the signs and
coefficient matrices. Hence our scheme (2.14)–(2.15) is not equivalent to the classical CN
scheme (2.16)–(2.17).

As for computational cost, implementating the CN scheme by solving that big symmetric
matrix of course takes more time and memory than inverting a submatrix as in (2.20). Even
the improved CN implementation like (2.25) and (2.24) costs more than (2.21) and (2.20), by
noting that (2.20) and (2.25) are almost the same, but (2.24) has one more extra matrix-vector
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multiplication than (2.21). Of course, we can save the extra matrix-vector multiplication if
we do En+1

h + En
h , but this costs one extra memory space for storing En

h .
Furthermore, our scheme (2.14)–(2.15) is also different from another leapfrog scheme

proposed by Verwer [36] and studied by Hochbruck et al. [15,16]. The leapfrog method (3.7)
of [16] (same as (5.13) of [15]) is given as (by dropping the source term j nh ):

Hn+1
h + τ

2
CEE

n+1
h = Hn

h − τ

2
CEEn

h, (2.26)

− τ

2
CHH

n+1
h +

(
I − τ 2

4
Ce
HC

e
E

)
En+1
h = τ

2
CHHn

h +
(
I − τ 2

4
Ce
HC

e
E

)
En
h, (2.27)

where CE ,CH ,Ce
E ,Ce

H are some matrices defined in [16]. Left-Multiplying (2.26) by τ
2CH

and adding the result to (2.27), we have
(
I + τ 2

4
CHCE − τ 2

4
Ce
HC

e
E

)
En+1
h = τCHHn

h +
(
I − τ 2

4
CHCE − τ 2

4
Ce
HC

e
E

)
En
h .

(2.28)
Comparing (2.20) with (2.28), we see clearly that these two leapfrog schemes have at least
different signs of coefficient matrices on the left and right hand sides even if we reduce ME

to the identity matrix I and assume σ = 0.

2.3 Stability Analysis and Error Estimate

Denote Cv = 1√
ε0μ0

≈ 3 · 108m/s for the wave propagation speed in vacuum. First, we
prove the following energy identity, which implies the unconditional stability of the scheme
(2.14)–(2.15).

Theorem 2.1 For the solution of (2.14)–(2.15) and any m ∈ [1, Nt − 1], we have

ε0‖Em+ 1
2

h ‖20 + ‖√μ0H
m+1
h + τCv

√
ε0

2
∇ × E

m+ 1
2

h ‖20 + 2τ
m∑

n=1

‖σ 1/2E
n
h‖20

= ε0‖E
1
2
h ‖20 + ‖√μ0H1

h + τCv
√

ε0

2
∇ × E

1
2
h ‖20 . (2.29)

Proof Let �h = τ(E
n+ 1

2
h + E

n− 1
2

h ) in (2.14) and let �h = τ(Hn+1
h + Hn

h) in (2.15), respec-
tively, we have

ε0(‖En+ 1
2

h ‖20 − ‖En− 1
2

h ‖20) + 2τ‖σ 1/2E
n
h‖20 + τ 2

4μ0
(‖∇ × E

n+ 1
2

h ‖20 − ‖∇ × E
n− 1

2
h ‖20)

− τ

(
Hn

h,∇ × (E
n+ 1

2
h + E

n− 1
2

h )

)
= 0, (2.30)

μ0(‖Hn+1
h ‖20 − ‖Hn

h‖20) + τ

(
Hn+1

h + Hn
h,∇ × E

n+ 1
2

h

)
= 0. (2.31)

Adding (2.30) and (2.31) together, and using the identity

τ

[
−
(
Hn

h,∇ × (E
n+ 1

2
h + E

n− 1
2

h )

)
+
(

∇ × E
n+ 1

2
h ,Hn+1

h + Hn
h

)]

= τ

[(
∇ × E

n+ 1
2

h ,Hn+1
h

)
−
(

∇ × E
n− 1

2
h ,Hn

h

)]
, (2.32)
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we have

ε0‖En+ 1
2

h ‖20 + μ0‖Hn+1
h ‖20 + τ

(
∇ × E

n+ 1
2

h ,Hn+1
h

)

+ τ 2

4μ0
‖∇ × E

n+ 1
2

h ‖20 + 2τ‖σ 1/2E
n
h‖20

= ε0‖En− 1
2

h ‖20 + μ0‖Hn
h‖20 + τ

(
∇ × E

n− 1
2

h ,Hn
h

)
+ τ 2

4μ0
‖∇ × E

n− 1
2

h ‖20. (2.33)

Using the notation Cv = 1√
ε0μ0

, we can rewrite (2.33) as

ε0‖En+ 1
2

h ‖20 + ‖√μ0H
n+1
h + τCv

√
ε0

2
∇ × E

n+ 1
2

h ‖20 + 2τ‖σ 1/2E
n
h‖20

= ε0‖En− 1
2

h ‖20 + ‖√μ0Hn
h + τCv

√
ε0

2
∇ × E

n− 1
2

h ‖20. (2.34)

Summing up (2.34) from n = 1 to any m ≤ Nt − 1, we complete the proof. �


By the definition of function spaces Uh and Vh , we have ∇ × E
n+ 1

2
h ∈ Vh . Hence, from

(2.15), we have

√
μ0(H

n+1
h − Hn

h) = −τCv

√
ε0∇ × E

n+ 1
2

h ,

which leads to

√
μ0H

n+1
h + τCv

√
ε0

2
∇ × E

n+ 1
2

h = √
μ0H

n+1
h + √

μ0
Hn

h − Hn+1
h

2
= √

μ0H
n+ 1

2
h .

(2.35)

Substituting (2.35) into (2.34), and summing up the result from n = 1 to anym ≤ Nt −1,
we obtain another energy identity.

Corollary 2.1 For the solution of (2.14)–(2.15) and any m ∈ [1, Nt − 1], we have

ε0‖Em+ 1
2

h ‖20 + μ0‖Hm+ 1
2

h ‖20 + 2τ
m∑

n=1

‖σ 1/2E
n
h‖20 = ε0‖E

1
2
h ‖20 + μ0‖H

1
2
h ‖20. (2.36)

To prove the error estimate, we need the following estimates (cf., Lemma 3.16 and Lemma
3.19 of [22]).

Lemma 2.1 For any u ∈ H2(0, T ; L2(�)), denoting u(tn) as un, we have

(i) ‖δτu
n+ 1

2 ‖20 = ‖u
n+1 − un

τ
‖20 ≤ 1

τ

∫ tn+1

tn
‖ut (t)‖20dt, (2.37)

(ii) ‖un+ 1
2 − 1

τ

∫ tn+1

tn
u(t)dt‖20 ≤ τ 3

4

∫ tn+1

tn
‖utt (t)‖20dt, (2.38)

(iii) ‖un+ 1
2 − 1

τ

∫ tn+1

tn
u(t)dt‖20 ≤ τ 3

4

∫ tn+1

tn
‖utt (t)‖20dt . (2.39)
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To make our error analysis easy to follow, we use the script letters to describe the corre-
sponding errors. For example, we define the errors between the exact solutions (E, H) of

(2.1)–(2.2) and the finite element solutions (E
n+ 1

2
h , Hn+1

h ) of (2.14)–(2.15):

En+ 1
2 = E(tn+ 1

2
) − E

n+ 1
2

h = E(tn+ 1
2
) − 
cEn+ 1

2 + (
cEn+ 1
2 − E

n+ 1
2

h )

:= E(tn+ 1
2
) − 
cE(tn+ 1

2
) + En+ 1

2
h ,

Hn+1 = H(tn+1) − Hn+1
h = H(tn+1) − PhHn+1

+ (PhHn+1 − Hn+1
h ) := H(tn+1) − PhHn+1 + Hn+1

h ,

where we denote En+ 1
2 = E(tn+ 1

2
) and Hn+1 = H(tn+1), 
cE ∈ Uh for the Nédélec

interpolation (i.e., H(curl; K )) of E, and PhH ∈ V h for the L2(�) projection of H , i.e.,

(PhH − H,�h) = 0, ∀�h ∈ Vh . (2.40)

Moreover, we have the following interpolation and projection error estimates:

‖E − 
cE‖0 + ‖∇ × (E − 
cE)‖0 ≤ Chl‖E‖Hl (curl,�), ∀ E ∈ Hl(curl,�), l ≥ 1,

(2.41)

‖H − PhH‖0 ≤ Chl‖H‖l , ∀H ∈ (Hl(�))3, l ≥ 1. (2.42)

To prove the error estimate, for simplicity we assume that the scheme (2.14)–(2.15) uses
the following initial conditions:

E
1
2
h (x) = 
cE

1
2 (x) = 
cE(x, t 1

2
), H1

h(x) = PhH1(x) = PhH(x, t1). (2.43)

Lemma 2.2 For the errors Hm+1
h and Em+ 1

2
h , we have: For any m ≥ 1,

‖√μ0Hm+1
h + τCv

√
ε0

2
∇ × Em+ 1

2
h ‖20

= μ0‖Hm+ 1
2

h ‖20 +
(

τCv
√

ε0

2

)2

‖Ph
(
∇ × (
cEm+ 1

2 − Em+ 1
2 )
)

‖20

+τ(Hm+ 1
2

h ,∇ × (
cEm+ 1
2 − Em+ 1

2 )). (2.44)

Proof From the error definitions of Hm+1
h and Em+ 1

2
h , we first note that

√
μ0Hm+1

h + τCv
√

ε0

2
∇ × Em+ 1

2
h

=
(√

μ0PhHm+1 + τCv
√

ε0

2
∇ × 
cEm+ 1

2

)

−
(√

μ0H
m+1
h + τCv

√
ε0

2
∇ × E

m+ 1
2

h

)

= Ph

(√
μ0Hm+1 + τCv

√
ε0

2
∇ × Em+ 1

2

+τCv
√

ε0

2
∇ × (
cEm+ 1

2 − Em+ 1
2 )

)
− √

μ0H
m+ 1

2
h , (2.45)
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where in the last step we used the identity (2.35), and the identity Ph
(
∇ × (
cEm+ 1

2 )
)

=
∇ × (
cEm+ 1

2 ) due to the fact that ∇ × (
cEm+ 1
2 ) ∈ V h .

Note that we can rewrite (2.11) as

√
μ0Hm+1 = √

μ0Hm − τCv

√
ε0∇ × Em+ 1

2 . (2.46)

Taking the projection Ph of (2.46), we have

Ph

(√
μ0Hm+1 + τCv

√
ε0

2
∇ × Em+ 1

2

)
= Ph

(√
μ0H

m+ 1
2

)
. (2.47)

Substituting (2.47) into (2.45), and using the error definition of Hm+1
h , we obtain

‖√μ0Hm+1
h + τCv

√
ε0

2
∇ × Em+ 1

2
h ‖20

= ‖√μ0Hm+ 1
2

h + Ph

(
τCv

√
ε0

2
∇ × (
cEm+ 1

2 − Em+ 1
2 )

)
‖20

= μ0‖Hm+ 1
2

h ‖20 +
(

τCv
√

ε0

2

)2

‖Ph
(
∇ × (
cEm+ 1

2 − Em+ 1
2 )
)

‖20

+2(
√

μ0Hm+ 1
2

h ,
τCv

√
ε0

2
Ph∇ × (
cEm+ 1

2 − Em+ 1
2 ))

= μ0‖Hm+ 1
2

h ‖20 +
(

τCv
√

ε0

2

)2

‖Ph
(
∇ × (
cEm+ 1

2 − Em+ 1
2 )
)

‖20

+τ(Hm+ 1
2

h ,∇ × (
cEm+ 1
2 − Em+ 1

2 )), (2.48)

where we used the property of projection operator Ph in the last step. This concludes our
proof. �


With the above preparations, we finally can prove the following optimal estimate for the
scheme (2.14)–(2.15).

Theorem 2.2 Suppose that the solutions (E, H) of (2.1)–(2.2) satisfy the following regularity
assumptions:

E ∈ L∞(0, T ; (Hl(curl,�))3), ∂t E, ∇ × ∂t E ∈ L2(0, T ; (Hl(curl,�))3),

∇ × ∂t tH, ∂t t E, ∇ × ∂t t E, ∇ × ∇ × ∂t E ∈ L2(0, T ; (L2(�)3)),

then the numerical solutions (E
m+ 1

2
h , Hm+1

h ) of the scheme (2.14)–(2.15) have the optimal
error estimate:

max
1≤m≤Nt−1

{
ε0‖Em+ 1

2 − E
m+ 1

2
h ‖20 + μ0‖(Hm+ 1

2 − H
m+ 1

2
h )‖20

} 1
2 ≤ CT (τ 2 + hl), (2.49)

where l ≥ 1 is the order of basis function of space U0
h and Vh, and the positive constant

C = C(ε0, μ0,E,H) is independent of τ , h and T .

Proof Integrating (2.1) form tn− 1
2
to tn+ 1

2
, and integrating (2.2) form tn to tn+1, then mul-

tiplying the respective results by 1
τ
�h ∈ U0

h and 1
τ
�h ∈ Vh , and integrating over �, we
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have

(
ε0δτEn,�h

)+
⎛
⎝ 1

τ

∫ t
n+ 1

2

t
n− 1

2

E(s)ds, σ�h

⎞
⎠

−
⎛
⎝ 1

τ

∫ t
n+ 1

2

t
n− 1

2

H(s)ds,∇ × �h

⎞
⎠ = 0, ∀�h ∈ U0

h, (2.50)

(
μ0δτHn+ 1

2 ,�h

)
+
(
1

τ

∫ tn+1

tn
∇ × E(s)ds,�h

)
= 0, ∀�h ∈ V h . (2.51)

Subtracting (2.50)–(2.51) from (2.14)–(2.15), respectively, we obtain

(
ε0δτEn

h,�h
)+

(
En
h, σ�h

)
− (Hn

h,∇ × �h
)+ τ 2

4μ0

(
δτ (∇ × En

h),∇ × �h
)

= (ε0δτ (
cEn − En),�h
)+

⎛
⎝
cE

n − 1

τ

∫ t
n+ 1

2

t
n− 1

2

E(s)ds, σ�h

⎞
⎠

+
⎛
⎝ 1

τ

∫ t
n+ 1

2

t
n− 1

2

H(s)ds − PhHn,∇ × �h

⎞
⎠

+ τ 2

4μ0

(
δτ (∇ × 
cE

n
),∇ × �h

)
, ∀�h ∈ U0

h, (2.52)

and (
μ0δτHn+ 1

2
h ,�h

)
+
(

∇ × En+ 1
2

h ,�h

)

=
(
μ0δτ (PhHn+ 1

2 − Hn+ 1
2 ),�h

)

+
(

∇ × (
cEn+ 1
2 − 1

τ

∫ tn+1

tn
E(s)ds),�h

)
, ∀�h ∈ V h . (2.53)

Choosing�h = τ(En+ 1
2

h +En− 1
2

h ) = 2τEn
h in (2.52) and�h = τ(Hn+1

h +Hn
h) = 2τEn+ 1

2
h

in (2.53), adding the results together, and using the projection property of Ph , we obtain
(

ε0‖En+ 1
2

h ‖20 + ‖√μ0Hn+1
h + τCv

√
ε0

2
∇ × En+ 1

2
h ‖20

)
+ 2τ‖σ 1/2En

h‖20

−
(

ε0‖En− 1
2

h ‖20 + ‖√μ0Hn
h + τCv

√
ε0

2
∇ × En− 1

2
h ‖20

)

= 2τ
(
ε0δτ (
cEn − En),En

h

)
+ 2τ

⎛
⎝
cE

n − 1

τ

∫ t
n+ 1

2

t
n− 1

2

E(s)ds, σEn
h

⎞
⎠

+ 2τ

⎛
⎝ 1

τ

∫ t
n+ 1

2

t
n− 1

2

H(s)ds − Hn,∇ × En
h

⎞
⎠+ 2τ

(
τ 2

4μ0
δτ (∇ × 
cEn),∇ × En

h

)

+ 2τ

(
∇ × (
cEn+ 1

2 − 1

τ

∫ tn+1

tn
E(s)ds),Hn+ 1

2
h

)
=

5∑
k=1

Errk . (2.54)
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Using the arithmetic and geometric means (AGM) inequality:

(a, b) ≤ δ‖a‖20 + 1

4δ
‖b‖20, ∀δ > 0, (2.55)

Lemma 2.1, and the interpolation estimate (2.41), we have

Err1 ≤ τε0

(
2δ1‖En

h‖20 + 1

2δ1
‖δτ (
cEn − En)‖20

)

≤ τε0

⎡
⎣δ1

(
‖En+ 1

2
h ‖20 + ‖En− 1

2
h ‖20

)
+ 1

2δ1τ

∫ t
n+ 1

2

t
n− 1

2

‖∂t (
cEn − En)‖20ds
⎤
⎦

≤ τε0

⎡
⎣δ1

(
‖En+ 1

2
h ‖20 + ‖En− 1

2
h ‖20

)
+ 1

2δ1τ

∫ t
n+ 1

2

t
n− 1

2

Ch2l‖∂t E‖2l;curlds
⎤
⎦ . (2.56)

Similarly, under the assumption that σ ≤ σmax , we can obtain

Err2 = 2τ

⎛
⎝
cE

n − E
n + E

n − 1

τ

∫ t
n+ 1

2

t
n− 1

2

E(s)ds, σEn
h

⎞
⎠

≤ τσmax

⎡
⎣2δ2‖En

h‖20 + 1

2δ2

⎛
⎝‖
cE

n − E
n‖20 + ‖En − 1

τ

∫ t
n+ 1

2

t
n− 1

2

E(s)ds‖20
⎞
⎠
⎤
⎦

≤ τσmax

[
δ2

(
‖En+ 1

2
h ‖20 + ‖En− 1

2
h ‖20

)

+ 1

2δ2

⎛
⎝Ch2l‖E‖2L∞(0,T ;Hl (curl,�))

+ τ 3

4

∫ t
n+ 1

2

t
n− 1

2

‖∂t t E‖20ds
⎞
⎠
⎤
⎦ . (2.57)

Using integration by parts, the PEC boundary condition (2.3) and inequality (2.55), we
have

Err3 ≤ τ

⎡
⎣2δ3‖En

h‖20 + 1

2δ3
‖∇ ×

⎛
⎝ 1

τ

∫ t
n+ 1

2

t
n− 1

2

H(s)ds − Hn

⎞
⎠ ‖20

⎤
⎦

≤ τ

⎡
⎣δ3

(
‖En+ 1

2
h ‖20 + ‖En− 1

2
h ‖20

)
+ τ 3

8δ3

∫ t
n+ 1

2

t
n− 1

2

‖∇ × ∂t tH‖20ds
⎤
⎦ . (2.58)

Again, using integration by parts, Lemma 2.1 and inequality (2.55), we have

Err4 = 2τ

(
τ 2

4μ0
δτ (∇ × ∇ × (
cEn − En + En)),En

h

)

≤ τ

[
2δ4‖En

h‖20 + 1

2δ4τ

(
τ 2

4μ0

)2

∫ t
n+ 1

2

t
n− 1

2

(‖∇ × ∇ × ∂t (
cE − E)‖20 + ‖∇ × ∇ × ∂tE‖20
)
ds

⎤
⎦
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≤ τ

[
δ4

(
‖En+ 1

2
h ‖20 + ‖En− 1

2
h ‖20

)
+ τ 3

2δ4(4μ0)2

∫ t
n+ 1

2

t
n− 1

2

Ch2l
(‖∇ × ∂t E‖2l,curl + ‖∇ × ∇ × ∂t E‖20

)
ds

⎤
⎦ . (2.59)

Finally, by the inequality (2.55), we have

Err5 = 2τ

(
∇ × (
cEn+ 1

2 − En+ 1
2 ) + ∇ × (En+ 1

2 − 1

τ

∫ tn+1

tn
E(s)ds),Hn+ 1

2
h

)

≤ τ

[
δ5‖Hn+ 1

2
h ‖20 + 1

δ5

(
‖∇ × (
cEn+ 1

2 − En+ 1
2 )‖20

+‖∇ × (En+ 1
2 − 1

τ

∫ tn+1

tn
E(s)ds‖20

)]

≤ τ

[
δ5‖Hn+ 1

2
h ‖20 + 1

δ5

(
Ch2l‖E‖2L∞(0,T ;Hl (curl,�))

+ τ 3

4

∫ tn+1

tn
‖∇ × ∂t t E‖20ds

)]
.

(2.60)

Substituting the estimates of Errk into (2.54), summing up the result from n = 1 to any
m ∈ [1, Nt ], then choosing

δ2 = δ1

σmax
, δ3 = δ4 = ε0δ1, δ5 = μ0δ1,

and using the initial assumptions (2.43) and the facts mτ ≤ T , we can obtain

ε0‖Em+ 1
2

h ‖20 + ‖√μ0Hm+1
h + τCv

√
ε0

2
∇ × Em+ 1

2
h ‖20

≤ 8δ1τ
m∑

n=1

(
ε0‖En+ 1

2
h ‖20 + μ0‖Hn+ 1

2
h ‖20

)
+ C

δ1

(
Th2l + τ 4

)
. (2.61)

Using Lemma 2.2 in (2.61), inequality (2.55) and interpolation estimate (2.41), we have

ε0‖Em+ 1
2

h ‖20 + μ0‖Hm+ 1
2

h ‖20 ≤ 8δ1τ
m∑

n=1

(
ε0‖En+ 1

2
h ‖20 + μ0‖Hn+ 1

2
h ‖20

)
+ C

δ1

(
Th2l + τ 4

)

+ τ(Hm+ 1
2

h ,∇ × (
cEm+ 1
2 − Em+ 1

2 ))

≤ 8δ1τ
m∑

n=1

(
ε0‖En+ 1

2
h ‖20 + μ0‖Hn+ 1

2
h ‖20

)
+ C

δ1

(
Th2l + τ 4

)

+ τ

(
δ1μ0‖Hm+ 1

2
h ‖20 + Ch2l

δ1μ0
‖Em+ 1

2 ‖2Hl (curl;�)

)

≤ 9δ1T max
1≤n≤Nt−1

(
ε0‖En+ 1

2
h ‖20 + μ0‖Hn+ 1

2
h ‖20

)
+ C

δ1

(
Th2l + τ 4

)
, (2.62)

where in the last step we first took the maximum over all n ∈ [1, Nt − 1] for the right hand
side (RHS) term, and used the fact that mτ ≤ T .

Now taking the maximum over m for the left hand side (LHS) terms, then choosing δ1
small enough (e.g., δ1 ≤ 1

18T ) so that the RHS terms can be bounded by the corresponding
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LHS terms, we obtain

max
1≤m≤Nt−1

(
ε0‖Em+ 1

2
h ‖20 + μ0‖Hm+ 1

2
h ‖20

)
≤ CT 2

(
h2l + τ 4

)
. (2.63)

Finally, using the triangle inequality, the estimates (2.41) and (2.42), we completes the
proof. �


3 Extension to the DrudeMetamaterial Model

In this section, we show how to use the similar idea as last section to develop an uncondi-
tionally leapfrog scheme for solving the Drude metamaterial model.

3.1 Construction of the Leapfrog Scheme

We consider the Drude metamaterial model given as follows [22]:

ε0
∂E
∂t

= ∇ × H − J, (3.1)

μ0
∂H
∂t

= −∇ × E − K, (3.2)

1

ε0ω2
pe

∂J
∂t

+ �e

ε0ω2
pe
J = E, (3.3)

1

μ0ω2
pm

∂K
∂t

+ �m

μ0ω2
pm

K = H, (3.4)

where ωpe and ωpm are the electric and magnetic plasma frequencies respectively, �e and
�m are the electric and magnetic damping frequencies respectively, E(x, t) and H(x, t) are
the electric and magnetic fields respectively, and J(x, t) and K (x, t) are the induced electric
and magnetic currents respectively. To make the problem well-posed, we simply assume that
the model (3.1)–(3.4) satisfies the PEC boundary condition (2.3) and the initial conditions:

E(x, 0) = E0(x), H(x, 0) = H0(x), J(x, 0) = J0(x), K (x, 0) = K 0(x), (3.5)

where E0, H0, J0 and K 0 are some given functions.
To derive our unconditionally stable leapfrog scheme, we first consider the following two

step scheme for (3.1)–(3.4):

Step 1:

ε0En+ 1
2 = ε0En + τ

2

(
∇ × Hn+ 1

2 − Jn+ 1
2

)
, (3.6)

μ0Hn+ 1
2 = μ0Hn + τ

2

(
−∇ × En+ 1

2 − Kn
)

, (3.7)

Jn+ 1
2 = Jn + τ

2

(
−�eJn+ 1

2 + ε0ω
2
peE

n+ 1
2

)
, (3.8)

Kn+ 1
2 = Kn + τ

2

(
−�mKn + μ0ω

2
pmH

n
)

, (3.9)

Step 2:

ε0En+1 = ε0En+ 1
2 + τ

2

(
∇ × Hn+ 1

2 − Jn+ 1
2

)
, (3.10)
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μ0Hn+1 = μ0Hn+ 1
2 + τ

2

(
−∇ × En+ 1

2 − Kn+1
)

, (3.11)

Jn+1 = Jn+ 1
2 + τ

2

(
−�eJn+ 1

2 + ε0ω
2
peE

n+ 1
2

)
, (3.12)

Kn+1 = Kn+ 1
2 + τ

2

(
−�mKn+1 + μ0ω

2
pmH

n+1
)

. (3.13)

Reducing all n′s of (3.10) by 1 and adding the result with (3.6), we have

ε0En+ 1
2 = ε0En− 1

2 + τ∇ × Hn+ 1
2 + Hn− 1

2

2
− τ

Jn+ 1
2 + Jn− 1

2

2
. (3.14)

Reducing (3.11)’s n by 1, then subtracting the result from (3.7), we have

μ0(Hn+ 1
2 + Hn− 1

2 ) = 2μ0Hn − τ 2

2
∇ × δτ En . (3.15)

Then substituting (3.15) into (3.14), we obtain

ε0δτ En = ∇ × Hn − J
n − τ 2

4μ0
∇ × ∇ × δτ En . (3.16)

Adding (3.7) and (3.11) together, we have

μ0δτ Hn+ 1
2 = −∇ × En+ 1

2 − K
n+ 1

2 . (3.17)

Reducing all n′s of (3.12) by 1 and adding the result with (3.8), we obtain

δτ Jn = −�e J
n + ε0ω

2
peE

n
. (3.18)

Finally, adding (3.9) and (3.13) together, we have

δτ K n+ 1
2 = −�mK

n+ 1
2 + μ0ω

2
pmH

n+ 1
2 . (3.19)

Based on (3.16)–(3.19), we propose the following leapfrog scheme for (3.1)–(3.4): Given

proper initial approximations E
1
2
h , J

1
2
h ,H

1
h , K

1
h , for any n ≥ 1, find E

n+ 1
2

h , J
n+ 1

2
h ∈ U0

h ,H
n+1
h ,

Kn+1
h ∈ Vh such that

ε0
(
δτEn

h,�h
) = (Hn

h,∇ × �h
)−

(
J
n
h,�h

)

− τ 2

4μ0

(∇ × δτEn
h,∇ × �h

)
, ∀�h ∈ U0

h, (3.20)

μ0

(
δτH

n+ 1
2

h ,�h

)
= −

(
∇ × E

n+ 1
2

h ,�h

)
−
(
K
n+ 1

2
h ,�h

)
, ∀�h ∈ V h, (3.21)

1

ε0ω2
pe

(
δτJnh, �̃h

)+ �e

ε0ω2
pe

(
J
n
h, �̃h

)
=
(
E
n
h, �̃h

)
, ∀�̃h ∈ U0

h, (3.22)

1

μ0ω2
pm

(
δτK

n+ 1
2

h , �̃h

)
+ �m

μ0ω2
pm

(
K
n+ 1

2
h , �̃h

)
=
(
H

n+ 1
2

h , �̃h

)
, ∀�̃h ∈ V h .

(3.23)

The scheme (3.20)–(3.23) can be implemented as follows:
Step 1: Regrouping (3.22), we obtain

J
n+ 1

2
h = 2 − τ�e

2 + τ�e
J
n− 1

2
h + τε0ω

2
pe

2 + τ�e
(E

n+ 1
2

h + E
n− 1

2
h ). (3.24)

123



Journal of Scientific Computing (2021) 86 :35 Page 15 of 33 35

Then substituting (3.24) into (3.20), and we can solve the resulting equation for E
n+ 1

2
h .

Step 2: Update J
n+ 1

2
h by using (3.24).

Step 3: Rewritting (3.23), we have

Kn+1
h = 2 − τ�m

2 + τ�m
Kn
h + τμ0ω

2
pm

2 + τ�m
(Hn+1

h + Hn
h). (3.25)

Substituting (3.25) into (3.21), and we can solve the resulting equation for Hn+1
h .

Step 4: Finally, update Kn+1
h by using (3.25).

3.2 The Stability Analysis and Error Estimate

Below we will establish the stability analysis and error estimate analysis.

Theorem 3.1 For the solution (E
n+ 1

2
h , Hn+1

h , J
n+ 1

2
h , K n+1

h ) of (3.1)–(3.4), we have: For any
m ∈ [1, Nt − 1],

ε0‖Em+ 1
2

h ‖20 + ‖√μ0H
m+1
h + τCv

√
ε0

2
∇ × E

m+ 1
2

h ‖20
+ 1

ε0ω2
pe

‖Jm+ 1
2

h ‖20 + 1

μ0ω2
pm

‖Km+1
h ‖20

+ 2τ�e

ε0ω2
pe

m∑
n=1

‖Jnh‖20 + 2τ�m

μ0ω2
pm

m∑
n=1

‖Kn+ 1
2

h ‖20

= ε0‖E
1
2
h ‖20 + ‖√μ0H1

h + τCv
√

ε0

2
∇ × E

1
2
h ‖20

+ 1

ε0ω2
pe

‖J
1
2
h ‖20 + 1

μ0ω2
pm

‖K1
h‖20. (3.26)

Proof Let�h = τ(E
n+ 1

2
h +E

n− 1
2

h ) in (3.20),�h = τ(Hn+1
h +Hn

h) in (3.21), �̃h = τ(J
n+ 1

2
h +

J
n− 1

2
h ) in (3.22), �̃h = τ(Kn+1

h + Kn
h) in (3.23), respectively, we have

ε0(‖En+ 1
2

h ‖20 − ‖En− 1
2

h ‖20) + τ 2

4μ0
(‖∇ × E

n+ 1
2

h ‖20 − ‖∇ × E
n− 1

2
h ‖20)

− τ

(
Hn

h,∇ × (E
n+ 1

2
h + E

n− 1
2

h )

)
+ 2τ

(
J
n
h,E

n
h

)
= 0, (3.27)

μ0(‖Hn+1
h ‖20 − ‖Hn

h‖20) + τ

(
Hn+1

h + Hn
h,∇ × E

n+ 1
2

h

)
+ 2τ

(
K
n+ 1

2
h ,H

n+ 1
2

h

)
= 0,

(3.28)

1

ε0ω2
pe

(‖Jn+ 1
2

h ‖20 − ‖Jn− 1
2

h ‖20) + 2τ
�e

ε0ω2
pe

‖Jnh‖20 − 2τ
(
E
n
h, J

n
h

)
= 0, (3.29)

1

ε0ω2
pm

(‖Kn+1
h ‖20 − ‖Kn

h‖20) + 2τ
�m

ε0ω2
pm

‖Kn+ 1
2

h ‖20 − 2τ

(
H

n+ 1
2

h ,K
n+ 1

2
h

)
= 0. (3.30)

Adding the above four equations together and using (2.32), we have
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ε0‖En+ 1
2

h ‖20 + ‖√μ0H
n+1
h + τCv

2

√
ε0∇ × E

n+ 1
2

h ‖20
+ 1

ε0ω2
pe

‖Jn+ 1
2

h ‖20 + 1

μ0ω2
pm

‖Kn+1
h ‖20

+ 2τ
�e

ε0ω2
pe

‖Jnh‖20 + 2τ
�m

μ0ω2
pm

‖Kn+ 1
2

h ‖20

= ε0‖En− 1
2

h ‖20 + ‖√μ0Hn
h + τCv

2

√
ε0∇ × E

n− 1
2

h ‖20
+ 1

ε0ω2
pe

‖Jn− 1
2

h ‖20 + 1

μ0ω2
pm

‖Kn
h‖20. (3.31)

Summing up (3.31) from n = 1 to any m ∈ [1, Nt − 1], we complete the proof. �


Remark 3.1 Using the similar technique as Sect. 2, we can only obtain

√
μ0H

n+1
h + τCv

√
ε0

2
∇ × E

n+ 1
2

h = √
μ0H

n+ 1
2

h − τ

2
√

μ0
K

n+ 1
2

h .

Hence, for the Drude model, we cannot get any simpler stability result like Corrollary 2.1.

Theorem 3.2 For the solution (E
n+ 1

2
h , Hn+1

h , J
n+ 1

2
h , K n+1

h ) of scheme (3.1)–(3.4) with the
following initial conditions:

E
1
2
h (x) = 
cE(x,

τ

2
), J

1
2
h (x) = 
c J(x,

τ

2
), H1

h(x) = 
cH(x, τ ), K 1
h(x) = 
cK (x, τ ),

we have the optimal error estimate: For any m ∈ [1, Nt − 1],

max
1≤m≤Nt−1

(
ε0‖Em+ 1

2 − E
m+ 1

2
h ‖20 + ‖√μ0(H

m+1 − Hm+1
h ) + τCv

√
ε0

2
∇ × (Em+ 1

2 − E
m+ 1

2
h )‖20

+ 1

ε0ω
2
pe

‖Jm+ 1
2 − J

m+ 1
2

h ‖20 + 1

μ0ω
2
pm

‖Km+1 − Km+1
h ‖20

) 1
2

≤ CT (τ2 + hl ), (3.32)

where l ≥ 1 is the order of basis function of space U0
h and V h, and the positive constant

C = C(ε0, μ0, E, H) is independent of τ, h and T .

Proof Before we start the error estimate analysis, we denote the script letters En+ 1
2 andHn ,

J n+ 1
2 , Kn for the errors as defined in last section.

Integrating (3.1) from tn− 1
2
to tn+ 1

2
, multiplying the result by 1

τ
�h ∈ U0

h , integrating over
�, then subtracting (3.20), we have

(
ε0δτEn,�h

)−
⎛
⎝ 1

τ

∫ t
n+ 1

2

t
n− 1

2

Hds − Hn
h,∇ × �h

⎞
⎠

+
⎛
⎝ 1

τ

∫ t
n+ 1

2

t
n− 1

2

Jds − J
n
h,�h

⎞
⎠− τ 2

4μ0

(
δτ (∇ × En

h),∇ × �h
) = 0,

which leads to the first error equation
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(
ε0δτEn

h,�h
)− (Hn

h,∇ × �h
)+

(
J n

h,�h

)
+ τ 2

4μ0

(
δτ (∇ × En

h),∇ × �h
)

= (ε0δτ (
cEn − En),�h
)+

⎛
⎝ 1

τ

∫ t
n+ 1

2

t
n− 1

2

Hds − PhHn,∇ × �h

⎞
⎠

−
⎛
⎝ 1

τ

∫ t
n+ 1

2

t
n− 1

2

Jds − 
cJ
n
,�h

⎞
⎠+ τ 2

4μ0

(
δτ (∇ × 
cE

n
),∇ × �h

)
, ∀�h ∈ U0

h,

(3.33)

here and in the rest of this section, we denote En+ 1
2 = E(tn+ 1

2
) for simplicity. Similar

notations Jn+ 1
2 = J(tn+ 1

2
) , Hn = H(tn), Kn = K(tn) are adopted also.

Similarly, integrating (3.2) form tn to tn+1, multiplying the resultant by 1
τ
�h ∈ Vh ,

integrating over �, then subtracting (3.21), we obtain the second error equation
(

μ0δτHn+ 1
2

h ,�h

)
−
(

∇ × En+ 1
2

h ,�h

)
+
(
Kn+ 1

2
h ,�h

)

=
(
μ0δτ (PhHn+ 1

2 − Hn+ 1
2 ),�h

)
+
(

∇ ×
(
1

τ

∫ tn+1

tn
Eds − 
cEn+ 1

2

)
,�h

)

+
(
1

τ

∫ tn+1

tn
Kds − PhK

n
,�h

)
, ∀�h ∈ V h . (3.34)

Integrating (3.3) form tn− 1
2
to tn+ 1

2
, multiplying the resultant by 1

τ
�̃h ∈ U0

h , and integrat-
ing over �, then subtracting (3.22), we obtain the third error equation
(

1

ε0ω2
pe

δτJ n
h, �̃h

)
+
(

�e

ε0ω2
pe
J n

h, �̃h

)
−
(
En
h, �̃h

)

=
⎛
⎝ 1

ε0ω2
pe

1

τ

∫ t
n+ 1

2

t
n− 1

2

∂t (
cJ − J)ds, �̃h

⎞
⎠+

⎛
⎝ �e

ε0ω2
pe

⎛
⎝
cJ

n − 1

τ

∫ t
n+ 1

2

t
n− 1

2

Jds

⎞
⎠ , �̃h

⎞
⎠

+
⎛
⎝ 1

τ

∫ t
n+ 1

2

t
n− 1

2

Eds − 
cE
n
, �̃h

⎞
⎠ , ∀�̃h ∈ U0

h . (3.35)

Similarly, integrating (3.4) form tn to tn+1, multiplying the resultant by 1
τ
�̃h ∈ Vh , and

integrating over �, then subtracting (3.23), we obtain the fourth error equation
(

1

μ0ω
2
pe

δτKn+ 1
2

h , �̃h

)
+
(

�m

μ0ω
2
pm

Kn+ 1
2

h , �̃h

)
−
(
Hn+ 1

2
h , �̃h

)

=
(

1

μ0ω
2
pm

1

τ

∫ tn+1

tn
∂t (PhK − K)ds, �̃h

)
+
(

�m

μ0ω
2
pm

(
PhK

n+ 1
2 − 1

τ

∫ tn+1

tn
Kds

)
, �̃h

)

+
(
1

τ

∫ tn+1

tn
Hds − PhH

n+ 1
2 , �̃h

)
, ∀�̃h ∈ V h . (3.36)

Note that the error equations (3.33)–(3.36) have exactly the same form as the finite element
scheme (3.20)–(3.23), except those extra terms added to the right hand sides of (3.33)–(3.36)
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due to the time and spatial discretization. Moreover, by the interpolation error estimates of

c and Ph , these extra terms have the local truncation errors O(τ 2 + hl), where l ≥ 1 is
the order of basis function of space U0

h and Vh . Hence, by following the same techniques
developed for proving the discrete stability given in Theorem 3.1 and the error estimate given
in Theorem 2.2, we conclude the proof. �


4 Extension to the Cohen-Monk PMLModel

To simulate a practical wave propagation problem, we usually use a PML model to reduce
the unbounded domain simulation problem to a bounded domain simulation. There are many
studies on the mathematical analysis of PMLmodels forMaxwell’s equations (cf. [1,2,4] and
references therein), here we consider the Cohen-Monk PML model, which was originally
developed in 1999 by Cohen and Monk [11] by using the stretched coordinates approach. In
2014, we [19] proved the existence, uniqueness, and stability of this PMLmodel. To develop
a leapfrog scheme, we introduce two auxiliary variables J and K based on the governing
equations (1)-(4) of [19] and rewrite the governing equations of the Cohen-Monk PMLmodel
as follows:

∂J
∂t

= E, (4.1)

∂K
∂t

= H, (4.2)

ε0
∂E∗

∂t
− ∇ × H = 0, (4.3)

μ0
∂H∗

∂t
+ ∇ × E = 0, (4.4)

∂E
∂t

+ CmE + DJ = ∂E∗

∂t
+ GE∗, (4.5)

∂H
∂t

+ CmH + DK = ∂H∗

∂t
+ GH∗, (4.6)

where ε0 and μ0 are the vacuum permittivity and permeability, respectively, E(x, t) and
H(x, t) are the electric and magnetic fields, respectively, and E∗(x, t) and H∗(x, t) are the
auxiliary electric andmagnetic fields, respectively.Moreover,Cm , D andG are 3×3 diagonal
matrices given by

Cm = diag(σy+σz, σx+σz, σx+σy), D = diag(σyσz, σxσz, σxσy),G = diag(σx , σy, σz),

(4.7)
where σx , σy and σz are nonnegative functions and represent the dampings along the x , y,
and z directions, respectively.

First, we consider the following two step scheme for (4.1)–(4.6):
Step 1:

Jn+ 1
2 = Jn + τ

2
En+ 1

2 , (4.8)

Kn+ 1
2 = Kn + τ

2
Hn, (4.9)

ε0E∗n+ 1
2 = ε0E∗n + τ

2
∇ × Hn+ 1

2 , (4.10)
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μ0H∗n+ 1
2 = μ0H∗n − τ

2
∇ × En+ 1

2 , (4.11)

En+ 1
2 = En +

(
E∗n+ 1

2 − E∗n)+ τ

2

(
GE∗n+ 1

2 − CmEn+ 1
2 − DJn+ 1

2

)
, (4.12)

Hn+ 1
2 = Hn +

(
H∗n+ 1

2 − H∗n)+ τ

2

(
GH∗n − CmHn − DKn) , (4.13)

Step 2:

Jn+1 = Jn+ 1
2 + τ

2
En+ 1

2 , (4.14)

Kn+1 = Kn+ 1
2 + τ

2
Hn+1, (4.15)

ε0E∗n+1 = ε0E∗n+ 1
2 + τ

2
∇ × Hn+ 1

2 , (4.16)

μ0H∗n+1 = μ0H∗n+ 1
2 − τ

2
∇ × En+ 1

2 , (4.17)

En+1 = En+ 1
2 +

(
E∗n+1 − E∗n+ 1

2

)
+ τ

2

(
GE∗n+ 1

2 − CmEn+ 1
2 − DJn+ 1

2

)
, (4.18)

Hn+1 = Hn+ 1
2 +

(
H∗n+1 − H∗n+ 1

2

)
+ τ

2

(
GH∗n+1 − CmHn+1 − DKn+1) . (4.19)

Then using (4.8)–(4.19), we can construct our leapfrog scheme for (4.1)–(4.6). Reducing
all n′s of (4.14) by 1, and adding the resultant with (4.8), we can obtain the scheme for J:

Jn+ 1
2 = Jn− 1

2 + τ

2

(
En+ 1

2 + En− 1
2

)
, or δτ Jn = E

n
. (4.20)

Adding (4.9) and (4.15) together, we obtain the scheme for K:

Kn+1 = Kn + τ

2

(
Hn+1 + Hn) , or δτ K n+ 1

2 = H
n+ 1

2 . (4.21)

Reducing all n′s of (4.16) by 1, and adding the resultant with (4.10), we have

ε0E∗n+ 1
2 = ε0E∗n− 1

2 + τ

2
∇ ×

(
Hn+ 1

2 + Hn− 1
2

)
. (4.22)

Reducing all n′s of (4.19) by 1, and subtracting the result from (4.13), we have

Hn+ 1
2 + Hn− 1

2

2
= Hn + H∗n+ 1

2 − 2H∗n + H∗n− 1
2

2
. (4.23)

Substituting (4.23) into (4.22) we have

ε0E∗n+ 1
2 = ε0E∗n− 1

2 + τ∇ × Hn + τ∇ × H∗n+ 1
2 − 2H∗n + H∗n− 1

2

2
. (4.24)

Substituting H∗n+ 1
2 of (4.11) into (4.24), reducing all n′s of (4.17) by 1 and substituting

H∗n− 1
2 of the resultant into (4.24), we can obtain the scheme for E∗:

ε0δτ E∗n = ∇ × Hn − τ 2

4μ0
∇ × ∇ × δτ En . (4.25)

Adding (4.11) and (4.17) together, we obtain the scheme for H∗:

μ0H∗n+1 = μ0H∗n − τ∇ × En+ 1
2 , i.e., μ0δτ H∗n+ 1

2 = −∇ × En+ 1
2 . (4.26)
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Reducing all n′s of (4.18) by 1, and adding the resultant with (4.12), we can obtain the
scheme for E:

δτ En = δτ E∗n + GE
∗n − CmE

n − D J
n
. (4.27)

Adding (4.13) and (4.19) together, we can obtain the scheme for H:

δτ Hn+ 1
2 = δτ H∗n+ 1

2 + GH
∗n+ 1

2 − CmH
n+ 1

2 − DK
n+ 1

2 . (4.28)

From (4.20), (4.21), (4.25), (4.26), (4.27), (4.28) and using the finite element spaces
U0
h and Vh , we can construct the following leapfrog scheme for (4.1)–(4.6): given initial

approximations E
1
2
h , E

∗ 1
2

h , J
1
2
h , H

1
h , H

∗1
h , K1

h , for any n ≥ 1, find E
n+ 1

2
h , E

∗n+ 1
2

h , J
n+ 1

2
h ∈ U0

h ,
Hn+1

h , H∗n+1
h , Kn+1

h ∈ Vh such that

(
δτJnh,�h

) =
(
E
n
h,�h

)
, ∀�h ∈ U0

h, (4.29)
(

δτK
n+ 1

2
h ,�h

)
=
(
H

n+ 1
2

h ,�h

)
, ∀�h ∈ V h, (4.30)

(
ε0δτE∗n

h , �̃h
) = (Hn

h,∇ × �̃h
)− τ 2

4μ0

(∇ × δτEn
h,∇ × �̃h

)
, ∀�̃h ∈ U0

h, (4.31)
(

μ0δτH
∗n+ 1

2
h , �̃h

)
= −

(
∇ × E

n+ 1
2

h , �̃h

)
, ∀�̃h ∈ V h, (4.32)

(
δτEn

h, �̂h
)+

(
CmE

n
h, �̂h

)
+
(
DJ

n
h, �̂h

)

= (δτE∗n
h , �̂h

)+
(
GE

∗n
h , �̂h

)
, ∀�̂h ∈ U0

h, (4.33)
(

δτH
n+ 1

2
h , �̂h

)
+
(
CmH

n+ 1
2

h , �̂h

)
+
(
DK

n+ 1
2

h , �̂h

)

=
(

δτH
∗n+ 1

2
h , �̂h

)
+
(
GH

∗n+ 1
2

h , �̂h

)
, ∀�̂h ∈ V h . (4.34)

The scheme (4.29)–(4.34) can be implemented as follows:

Step 1: Obtain J
n+ 1

2
h from (4.29) and E

∗n+ 1
2

h from (4.31), respectively, then substitute

them into (4.33), which can be solved for E
n+ 1

2
h .

Step 2: Solve for J
n+ 1

2
h from (4.29), H∗n+1

h from (4.32), and E
∗n+ 1

2
h from (4.31), respec-

tively. Note that these three solvers can be done in parallel.
Step 3: Obtain K n+1

h from (4.30), then substitute the result into (4.34), which can be
solved for Hn+1

h .
Step 4: Update K n+1

h by using (4.30).

5 Numerical Results

In this section, we present some numerical results to demonstrate the performance of our
proposed leapfrog scheme. Since our 3D theoretical analysis holds true for the corresponding
2Dmodels, all our numerical tests are carried out for 2Dmodels. More specifically, we focus
on solving the 2D T Ez model with unknowns E = [Ex , Ey]T and H = Hz . For simplicity,
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we only employ the lowest order Raviart-Thomas-Nédélec mixed finite element spaces on
rectangular elements [22]:

Vh = {ψh ∈ L2(�) : ψh
∣∣
K = Q0,0,∀K ∈ Th

}
,

Uh = {φh ∈ H(curl;�) : φh
∣∣
K = Q0,1 × Q1,0,∀K ∈ Th

}
,

and on triangular elements [22]:

Vh = {ψh ∈ L2(�) : ψh
∣∣
K = constant,∀K ∈ Th

}
,

Uh = {φh ∈ H(curl;�) : φh
∣∣
K = span{λi∇λ j − λ j∇λi },∀K ∈ Th

}
,

where Qi, j denotes the set of polynomials of degrees of i and j in x and y variables, and λi
are the barycentric coordinate functions.

Example 1 The first example is used to justify the convergence rate of our scheme with
an exact solution. The T Ez governing equations of (2.1)–(2.2) with added source terms
g = [gx , gy]T and f = fz are given as follows:

ε0
∂E
∂t

− ∇ × Hz + σE = g, (5.1)

μ0
∂Hz

∂t
− ∇ × E = fz, (5.2)

where ∇ ×E = ∂Ey
∂x − ∂Ex

∂ y and ∇ × Hz = [ ∂Hz
∂ y ,− ∂Hz

∂x ]T . Moreover, the exact solution and
corresponding source terms are given as:

E =
(
Ex

Ey

)
=
(
e−π t cos(πx) sin(π y)
−e−π t sin(πx) cos(π y)

)
,

Hz = e−π t cos(πx) cos(π y), g = σE, fz = −3πe−π t cos(πx)cos(π y).

(5.3)

We choose σ = 3π , ε0 = μ0 = 1, mesh size h varying from 1/10 to 1/160 for the
physical domain � = [0, 1]2, and solve this model problem by the scheme (2.14)–(2.15) till
T = 1 with various time step sizes satisfying τ

h = 2, 1, 1
2 . The obtained errors at T = 1 and

convergence rates are presented in Tables 1, 2 and 3. The results clearly show that our scheme
is indeed unconditionally stable and convergences as O(h2 + τ 2) in both L∞ and L2 norms
(approximated by the numerical solution at element centers). The superconvergence O(h2)
in the discrete L2 norm for the lowest-order rectangular edge element has been proved in our
early work [18].

To compare the numerical performance of our proposed scheme to the classical Crank–
Nicolson (CN) scheme, we also solve this example by the CN scheme given as: Given initial
approximations E0

h , H0
h , find E

n+1
h ∈ U0

h , Hn+1
h ∈ Vh for any n ≥ 0 such that

(ε0δτE
n+ 1

2
h ,�h) + (σE

n+ 1
2

h ,�h) − (H
n+ 1

2
h ,∇ × �h) = (gn+ 1

2 ,�h), ∀�h ∈ U0
h,

(5.4)

(μ0δτH
n+ 1

2
h ,�h) + (∇ × E

n+ 1
2

h ,�h) = ( f
n+ 1

2
z ,�h), ∀�h ∈ V h . (5.5)

The obtained errors at T = 1 and convergence rates are presented in Tables 4, 5 and 6,
which clearly shows O(h2 + τ 2) in both L∞ and the discrete L2 norms. The CPU times
used by the CN scheme (denoted as TCN ), the improved CN scheme (2.24)–(2.25) (denoted
as TICN ) and our scheme (denoted as TLF ) are compared in Table 7. The ratios TCN/TLF
and TICN /TLF show that the CN and ICN schemes take more CPU time than our scheme.
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We observed that the condition number of the system matrix for our scheme (denoted as
CondLF in Table 7) deteriorates as the time step increments becomes larger as observed in
[28]. Though the overall total simulation time decreases as the Courant number C = uτ

h
(the velocity u = 1√

ε0μ0
= 1 in our test) becomes larger, a large Courant number increases

the solution error as pointed in [28] for general unconditionally stable finite element time-
domain schemes. Note that CondLF is smaller than the condition number of CN scheme
CondCN (except the case when τ = 2h) and always larger than the condition number of ICN
scheme CondICN . A complicated algebraic multigrid preconditioner such as the auxiliary-
space Maxwell solver [14,20,31] may be needed to efficiently invert the leapfrog coefficient
matrix. We like to remark that our simulation implemented in MATLAB is carried out on
a 2009 LENOVO V3000 laptop with a processor of 2.40 GHz Intel Core i7, 4 GB RAM
and Ghost Windows7 Sp1 64 system. In our implementation, we just used the direct solver
provided in MATLAB.

Example 2 In this example, we consider a popular model showing the backward wave propa-
gation phenomenon inmetamaterials originally introduced by Ziolkowski [38] and simulated
by various numerical methods (e.g., [23,33]). In this example, a rectangularmetamaterial slab
is chosen to be [0.024, 0.044]m × [0.002, 0.062]m, which is embedded in a vacuum with
dimension [0, 0.07]m × [0, 0.064]m. The vacuum is surrounded by a PML with thickness
dd = 20h, where h denotes the mesh size. Similar to Example 1, we solve the corresponding
2D version of the PMLmodel (4.1)–(4.6) and Drude model (3.1)–(3.4). The 2D Cohn-Monk
PML model can be written as follows:

∂Kz

∂t
= Hz, (5.6)

ε0
∂E∗

∂t
− ∇ × Hz = 0, (5.7)

μ0
∂H∗

z

∂t
+ ∇ × E = 0, (5.8)

∂E
∂t

+ C2dE = ∂E∗

∂t
+ G2dE∗, (5.9)

∂Hz

∂t
+ C1d Hz + D1d Kz = ∂H∗

z

∂t
, (5.10)

where we denote

C2d = diag(σy, σx ), G2d = diag(σx , σy), C1d = σx + σy, D1d = σxσy .

We choose the damping functions σx and σy as fourth-order polynomial functions, more
specifically,

σx (x) =

⎧
⎪⎨
⎪⎩

σmax
( x−0.07

dd

)4
, if x ≥ 0.07,

σmax
( x
dd

)4
, if x ≤ 0.0,

0, elsewhere,

where σmax = − log(err) · 5 · 0.07 · cv/(2 · dd) with err = 10−7. The function σy has the
same form but varies with respect to the y variable.

The source wave is imposed as Hz field and is excited at the line segment x = 0.004m
with y ranging from y = 0.025m to y = 0.035m. The source wave varies in space as
e−(y−0.03)2/(50h)2 and in time same as [38] (see also [21, p.927]).

The mesh size h = 2 · 10−4 and various time step sizes τ = β · 10−13 with β = 1, 2, 4, 8
(to demonstrate the unconditional stability of our scheme) are used for our simulation. The
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Table 7 Comparison of the CPU times used (in seconds) by the CN, improved CN and leapfrog schemes

h 1/10 1/20 1/40 1/80 1/160 1/320

τ = 2h TCN 0.1600 0.3540 1.3360 8.7650 66.6880 539.8580

TICN 0.1499 0.3229 1.1400 6.6860 48.6160 396.1230

TLF 0.1330 0.2860 0.9850 5.6500 40.4810 324.5200

CondCN 14.6387 18.9130 22.6479 25.0116 26.3950 27.1477

CondICN 5.1678 4.8781 4.7758 4.7442 4.7353 4.7239

CondLF 21.7325 28.2283 30.8966 36.8215 38.8200 39.9060

TCN /TLF 1.2030 1.2738 1.3563 1.5513 1.6474 1.6483

TICN /TLF 1.1271 1.1290 1.1574 1.1834 1.2009 1.2206

τ = h TCN 0.2749 0.6810 2.6139 17.2550 133.1330 11117.1510

TICN 0.2590 0.5980 2.1729 13.4370 95.3800 815.0560

TLF 0.2360 0.5300 1.8540 10.7000 77.6510 669.3220

CondCN 11.7204 13.7324 15.0462 15.8097 16.2234 16.4391

CondICN 4.7688 4.7430 4.7351 4.7329 4.7323 4.7321

CondLF 8.2178 9.4868 10.3220 10.8094 11.0740 11.2120

TCN /TLF 1.1653 1.2849 1.4099 1.6126 1.7145 1.6691

TICN /TLF 1.0974 1.1283 1.1720 1.2558 1.2283 1.2177

τ = h/2 TCN 0.5270 1.3750 5.4380 34.9550 268.2680 2199.4970

TICN 0.4800 1.1630 4.2540 26.5660 191.9250 1607.3200

TLF 0.4380 1.0120 3.5810 21.4810 156.9800 1348.6910

CondCN 8.9353 10.0840 10.6114 10.8969 11.0456 11.1216

CondICN 4.7348 4.7328 4.7323 4.7321 4.7321 4.7321

CondLF 5.7806 5.8882 5.9509 5.9848 6.0025 6.0116

TCN /TLF 1.2032 1.3587 1.5186 1.6273 1.7089 1.6308

TICN /TLF 1.0959 1.1492 1.1879 1.2367 1.2226 1.1918

contour plots of the magnetic field Hz at various times are presented in Figs. 1 and 2 with
β = 1, 8, respectively. The figures clearly show that the wave propagates backwards in the
metamaterial slab and demonstrate the refocusing property of metamaterials. Of course the
image quality becomes worse as the time step size increases.

Example 3 The setup of this model is basically same as Example 2, and the only differ-
ence is that the rectangular metamaterial slab is replaced by a triangular slab with vertices
(0.024, 0.002), (0.054, 0.002), and (0.024, 0.062). In this case, a hybrid grid shown as Fig. 3
is used for this example, where triangular mesh is used in the metamaterial slab and its
neighboring elements, rectangular mesh is used in the vacuum region and PML region. Some
snapshots of Hz with τ = 1 · 10−13 and τ = 8 · 10−13 are presented in Figs. 4 and 5,
respectively. The results clearly show that the propagating wave bends toward the same side
after crossing the interface between the metamaterial and the vacuum by obeying the Snell’s
Law. Also the image quality becomes worse as the time step size increases, but the wave still
propagates correctly and obeys the Snell’s Law.
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Fig. 1 Plots of Hz obtained with τ = 1 · 10−13 at 1000, 2000, 3000, 4000, and 5000 time steps

Fig. 2 Plots of Hz obtained with τ = 8 · 10−13 at 125, 250, 375, 500, and 625 time steps

6 Conclusion

In this paper, we first propose a new idea for constructing unconditionally stable leapfrog
schemes for solving the time-dependentMaxwell’s equations with the finite element method.
The unconditional stability and second-order in time error estimate of the proposed leapfrog
scheme are proved. We then extend the idea to construct an unconditionally stable leapfrog
finite element scheme for theDrudemetamaterialMaxwell’s equations. Similar unconditional
stability and error estimate as the standard Maxwell’s equations are established for this
complicated metamaterial Maxwell’s equations. Finally, we extend the similar idea to solve
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Fig. 3 The hybrid grid used for the triangular metamaterial slab simulation

Fig. 4 Example 3. Plots of Hz obtained with τ = 1 · 10−13 at 1000, 2000, 3000, 4000, and 5000 time steps

for the Cohen-Monk PML model. Numerical results are presented to support our theoretical
analysis with interesting backward wave propagation simulations. The idea of constructing
unconditionally stable leapfrog schemes with finite element methods is very interesting, and
we will further extend this to more complicatedMaxwell’s equations in the future.Maxwell’s
equations in the future.
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Fig. 5 Example 3. Plots of Hz obtained with τ = 8 · 10−13 at 125, 250, 375, 500, and 625 time steps
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