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Abstract

In this paper we propose and analyze an unconditionally stable leapfrog method for Maxwell’s
equations that removes the time step constraint for stability, which makes the proposed
scheme more efficient in computation and easier in algorithm implementation compared to
the same order Crank—Nicolson scheme. We also prove the unconditional stability and the
optimal error estimate of the proposed scheme. To show the generality of our technique,
we further develop similar unconditionally stable leapfrog schemes for other complicated
Maxwell’s equations. Numerical results are presented to justify our theoretical analysis and
demonstrate the practical applications in simulating wave propagation in metamaterials.

Keywords Maxwell’s equations - Unconditionally stable - Leapfrog scheme - Finite
element method - Perfectly matched layer - Metamaterials
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1 Introduction

The FDTD method and the finite element method (FEM) are arguably the two most popular
numerical methods for solving Maxwell’s equations. Due to the advantage of FEM in dealing
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with complex geometry problems, there exist many excellent works on FEMs for solving
Maxwell’s equations in free space (e.g., [2,6,8,10,12,13,17,29]) and in complex media (cf.
[3,5,7,9,24,32,33,35,37] and references therein). A comprehensive review [34] of FDTD and
FEMs on Maxwell’s equations in complex media contains more than 300 papers. Here we
propose an unconditionally stable leapfrog scheme by combining the advantage of finite
element method in dealing with complex geometry problems with the nice unconditional
stability for the leapfrog scheme. Our newly proposed scheme not only inherits the simple
implementation property of the traditional leapfrog scheme for the 3D Maxwell’s equations,
but also is unconditionally stable. Compared to the classical Crank—Nicolson scheme for
Maxwell’s equations [22,25,26], this scheme is much more efficient in computation and
enjoys the same convergence rate.

The rest of the paper is organized as follows. In Sect. 2, we first provide the details on how
to construct an unconditionally stable leapfrog scheme for the standard Maxwell’s equations.
Then we prove an energy conservation identity for this leapfrog scheme, which immediately
yields the unconditional stability. Furthermore, we prove the optimal error estimate for this
scheme. In Sect. 3, we extend the similar idea to develop an unconditionally stable leapfrog
scheme to solve the more complicated Drude metamaterial Maxwell’s equations. The uncon-
ditional stability and optimal error estimate are proved for the proposed scheme. For practical
applications, we further extend the same idea to construct a leapfrog scheme for a perfectly
matched layer (PML) model developed by Cohen and Monk [11]. In Sect. 5, we present
some numerical results to confirm our theoretical analysis and further apply our scheme to
simulate some interesting wave propagation phenomena which happen in metamaterials. We
conclude the paper in Sect. 6.

2 The Unconditionally Stable Leapfrog Scheme for Maxwell’s Equations
In this section, first we demonstrate how to develop an unconditionally stable leapfrog scheme

for the standard Maxwell’s equations, then we present the stability analysis and error estimate
for the proposed scheme.

2.1 Construction of the Semi-Discrete Scheme

Consider the time-dependent Maxwell’s equations in a linear, lossy, and non-dispersive
medium with electric conductivity ¢ in domain :

OE

€ =V xH-0E inQx(©.7), 2.0
oH ,

mog ==V xE inQx(0.7), 22)

where T is the final simulation time, €y and o are the vacuum permittivity and permeabil-
ity, respectively, and E(x, t) and H (x, t) are the electric and magnetic fields, respectively.
Furthermore, the conductivity is assumed to be spatially dependent and bounded above by
positive constant oy, i.€., 0(x) € [0, 0,4, ]. To make the problem complete, we assume
that the model (2.1)—(2.2) satisfies the perfect electric conductor (PEC) boundary condition:

nxE=0, on 0%, 2.3)
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where # is the unit outward normal vector on the boundary 9€2. Here we consider a bounded
and simply connected Lipschitz polyhedral domain  C R3.
To develop our unconditionally stable leapfrog scheme, we divide the time interval [0, T']

into N; uniform subintervals, i.e., we have discrete times 7y = kt fork = 0,1,---, Ny,
where the time step size T = Nl,

First, we consider a two step scheme for (2.1)—(2.2):
Step 1: backward

E" = eE" + % (v x H' — aE"+%) , (2.4)
woH™ 2 = poH" — %v x E"3, (2.5)
Step 2: forward
oE"™! = E" + % (v x H'™% — aE"+%) , (2.6)
woH™ ' = poH™ 5 — %v x E"3 2.7

Note that Step 1 is a backward leapfrog scheme, and Step 2 is a forward leapfrog scheme.
Now we will develop an unconditionally stable leapfrog scheme for (2.1)-(2.2) by using
(2.4)-(2.7).

Substituting H' 3 of (2.5) into (2.4), we have

oE"™ = eoE" + % [v < (H" — %M(;lv x '3y — aE”+%]
T 1 'L'2 1 1
= coB" + 3 (V x H" — aE"+7) — VX g VX ETY. 28
Substituting H'™3 of (2.7) into (2.6) and reducing all n’s by 1, we have
coE" = gE""7 + % [v x (H" + %Mg‘v x E"7) — aE"*%]
1 T 1 T2 1 1
= cB" 2+ (v x H" — aE"—f) + VX gV XETE.29)

Adding (2.8) and (2.9) together, and adding (2.5) and (2.7) together, respectively, we
obtain

1 1 E"+% —i—E"_%
€FE"1 =¢E" 2 41|V xH" — o————
fz 1 1 1
- ?V x (g 'V x (E""2 —E""2)), (2.10)
woH™ " = poH" — TV x E"3 @.11)
arl L
sing the average operator and central difference operator in time: u" = M, and
U h d 1 diffi "=t
n 1 n—l
Sou = Y22 e can rewrite (2.10)~(2.11) as follows:
—n .[2
€. E"+0E +4—Vx(Vx81E”):VxH”, (2.12)
1o
o8, H'™2 = —V x E'*1. 2.13)
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It is interesting to note that (2.12) is a small perturbation of a discretization of (2.1) at
time level n.

2.2 The Fully Discrete Finite Element Scheme

First, let us introduce some common Hilbert spaces to be used in the rest paper [22,27]:
H(div, Q) = {u e (L*(2))*; V -u e (L*(2))*},
H(curl; Q) = {u € (L>(Q))> : V x u € (L*(Q))*},
Hy(curl; Q) = {u € H(curl; Q) :nxu =0, on a2},
H'(curl; Q) = {u € (H(Q))* : V xu e (H'(Q)), Vs>0,

where H* (curl; Q) is equipped with norm |[u|| g5 (curi: ) = (||u||? + ||V x u||32)%, where
I - IIs denotes the standard Sobolev space H* norm over 2. When s = 0, we simply denote
H(curl; Q) := HOcurl; ) and || - ||o for the LZ(£2) norm.

To design our finite element method, we partition the domain €2 by a family of regular
cubic (or tetrahedral) elements 7j,. We denote /g for the diameter of element K € T}, and set
the mesh size h = maxkcr, h k. Depending on the regularity of the solution, a proper order
Raviart — Thomas — Nédélec (RTN) mixed finite element spaces can be chosen [27,30].
For a cubic mesh, the RTN spaces are: For any [ > 1,

Vi ={W, € Hdiv; Q) : Wy | € Qri—11—1 X Qi—100-1 X Qi-11-11, YK € Ty},

Uy = {®) € H(curl; Q) : @4, € Q110 x Qui-11 x Quii—1.VK € Ty},
where Q; ;1 denote the spaces of polynomials whose degrees are less than or equal to 7, j
and k in variables x, y and z, respectively. The RTN spaces on the tetrahedral mesh can be

defined accordingly [27,30]. To accommodate the PEC boundary condition, we introduce
the subspace

U)={®,cU,:nx®, =0 on Q).

From (2.12)—(2.13), we can develop the following leapfrog FEM scheme: Given proper
1 1
initial approximations E; , H}, for any n € [1, N, — 1], find EZJrZ e U)and H™' €V,
such that

2
(code B i) + (0B} W) + 4r— (V x 8EL. V x W)
1o

— (H},V x ¥;) =0, V¥, cUY, (2.14)
1 1
<;L0<STHZ+2, <1>h> + (v < E, "2, <1>h> =0, Vé,eV, (2.15)

Note that the scheme (2.14)—(2.15) can be implemented easily by first solving (2.14) for

1
EZ+7, then solving (2.15) for H ZH. In next subsection, we will prove that this scheme
is unconditionally stable and has the same convergence rate O(z?) in time as the classical
implicit Crank—Nicolson (CN) scheme: Given proper initial approximations E0 . H 2, for any
n € [0, N; — 1], find Ej ™' € U) and H} ™' € V), such that

1 el S §
<eoa,EZ+2, \I:h> + (O’EZ+2, \Ilh) - (HZ*Z, V x \Ilh) =0, V¥, e U9 (2.16)
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1 L
(WSTHZ*Z, <1>h> + (v <E, 2, <1>h) =0, Vé,eV,. 2.17)

Remark 2.1 To clarify the differences between our scheme (2.14)—(2.15) and some other
CN schemes [25,26] and leapfrog schemes [15,16,36], we introduce mass matrix Mg, mass
matrix M, , stiff matrix Mg, convection matrix M, and mass matrix My, whose elements
are given as following:

(ME)ij = €o(¥j, Vi), (My)ij = (0. ¥i), (Mg)ij = pg ' (V x ¥,V x ), (2.18)
Mc)ij = (¢, V x i), (Mpy)ij = no(@j, di), (2.19)
where ¥/; and ¢; are the elementary basis functions of Uj and V.

‘With those matrices introduced, it is not difficult to see that our scheme (2.14)—(2.15) can
be written as:

T e ”+% n T t? ”7%
Mg+ S Mo+ —Ms | E}' = tMcHj + (Mg — SMy + - Ms ) By *L (2.20)
1 1
MuH™ = MyH} — tMLE, 2, or HIt' = H} — My, MLE}, ", 2.21)

1
where Mg denotes the transpose of M, and for simplicity we still use EZ+2 and HZ‘H to
represent the unknown variables at each time step.

Similarly, we can rewrite the corresponding CN scheme (2.16)—(2.17) as:

(M + Mo ) B = ZMcH) ! = (Mg = M) B+ SMcH;,  (222)
MyH!™ + %MZEZH — MuH! — %Mg n (2.23)

The straight forward way to implement the CN scheme is to invert a big symmetric

Mg+ M, —IM
T

SEML iy e

much more memory and computational time than our scheme (2.20) -(2.21). To reduce the

computational cost, we can first solve H ZH from (2.23):

matrix|: ¢ ] at each time step (taking a minus sign of (2.23)), which takes

+1 T o1 Tygn+l T 1,,T
HM =H} — — M 'MLE — M, MLE}

2 2
—H - %M;IIMZ E 4 ED, (2.24)

then substitute H Z‘H of (2.24) into (2.22) to obtain:
T r? —1 3T \ gpn+1 n
ME+5M0+ZMC‘MH Mg | E," =tMcH,

2
T T
+ (ME - Mo~ ?MCM;ME> " (2.25)

Comparing (2.20) with (2.25), we see clearly that they are different in both the signs and
coefficient matrices. Hence our scheme (2.14)—(2.15) is not equivalent to the classical CN
scheme (2.16)—(2.17).

As for computational cost, implementating the CN scheme by solving that big symmetric
matrix of course takes more time and memory than inverting a submatrix as in (2.20). Even
the improved CN implementation like (2.25) and (2.24) costs more than (2.21) and (2.20), by
noting that (2.20) and (2.25) are almost the same, but (2.24) has one more extra matrix-vector
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multiplication than (2.21). Of course, we can save the extra matrix-vector multiplication if
we do EZH + Ej, but this costs one extra memory space for storing Ej.

Furthermore, our scheme (2.14)—(2.15) is also different from another leapfrog scheme
proposed by Verwer [36] and studied by Hochbruck et al. [15,16]. The leapfrog method (3.7)
of [16] (same as (5.13) of [15]) is given as (by dropping the source term j;'):

T T
HI ECEEZ“ = Hj, — S CrE), (2.26)
2 2

- %CHHzH + (1 - %c;,cg) EM = %CHHZ + (1 - %cgcg) El, (227

where Cg, Cy, C, C§; are some matrices defined in [16]. Left-Multiplying (2.26) by 5Cp
and adding the result to (2.27), we have

2 2

T
c;,cg) EMY = cCyHD + (1 — SCCe — %

2

72 T
<I+ZCHCE_Z C;ICZ") Z
(2.28)
Comparing (2.20) with (2.28), we see clearly that these two leapfrog schemes have at least
different signs of coefficient matrices on the left and right hand sides even if we reduce Mg

to the identity matrix / and assume o = 0.

2.3 Stability Analysis and Error Estimate

Denote C, = \/ﬁ

prove the following energy identity, which implies the unconditional stability of the scheme
(2.14)—(2.15).

~ 3 - 108m /s for the wave propagation speed in vacuum. First, we

Theorem 2.1 For the solution of (2.14)—(2.15) and any m € [1, N; — 1], we have

+1 tC €0 +1 " —
coll By 25+ IVioHy ! + Y2V < BTG 2w ) e B I

n=1

1 TCy. /€0 1
= el E] I} + Il/ioH), + ”Z*FVXE; 13 . (2.29)

1 _1
Proof Let W), = t(E, > +E) *)in(2.14)and let @, = t(H "' + H") in (2.15), respec-
tively, we have

(L2 I3 = 1B, 1) + 2ello 2B I3 + ;;)(nv XES -V < B
—7 (HZ, v x (g +EZ_%)) =0, (2.30)
po(IH Y2 = |HT12) + (HZ“ +H!,V x EZ+%> =0. (2.31)
Adding (2.30) and (2.31) together, and using the identity
T [— < "V x (E;f% +EZ’%)> + (v x E’,j*%,H’,;*‘ +Hz>]

1 _1
_. [(v . Eg+2,Hg+l) . (v <E! 2,HZ>] , 232)
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we have
+1 +1
«llE), 2||%+uo||Hz“||%+r<vXEZ Z,Hz“)
b9 B R 4 200 PE R
- X T||O
40 h 0 h1l0
n_% 2 ni2 n—% n T2 n_% b
=eolE, “llg+ mollHyllg+ |V XE, *, Hy +%|IV><E,£ 5. (2.33)

Using the notation C,, = \/ﬁ, we can rewrite (2.33) as

+l ‘[C 60 +l —
eollE;, 2113+ Ilv/moH ! +“T*Fv x E, 213+ 22l P ELII3

-1 1Cyi/€0 -1
= collE), 213 + Ilv/ioH] + ”T‘Fv x E, 3. (2.34)
Summing up (2.34) fromn = 1 to any m < N; — 1, we complete the proof. O

1
By the definition of function spaces U;, and V;,, we have V x E Z+2 € Vj,. Hence, from
(2.15), we have

41
VIROHT —Hp) = —tCyJeV X E)

which leads to

n+1
»—H n+%

tCy . /€0 +1 H —
/MOHZ+1 4 UTV X EZ 2 _ /MOH;’H-I + /ﬁo% — /MOHh .
(2.35)

Substituting (2.35) into (2.34), and summing up the result fromn = 1 toany m < N; —1,
we obtain another energy identity.

Corollary 2.1 For the solution of (2.14)—(2.15) and any m € [1, N; — 1], we have

m+%

m
L - 1 1
llE, 215+ mollHy, 215 +2t Y _llo'*E, 5 = €l EZ IIg + mol H 5. (2.36)

n=1

To prove the error estimate, we need the following estimates (cf., Lemma 3.16 and Lemma
3.19 of [22]).

Lemma 2.1 Foranyu € H%(0, T; L)), denoting u(t,) as u", we have

) | Mn+l —ut 1 1
() N18.u" 2| = ||f||% == / llus (1) 1I3dt, (2.37)
t"
. o1 1 In+1 T3 In+1
i) @t - L / udilg < = / e (1) 121, (2.38)
T In 4 I
1 thtl 3 Ing1
(iii) fu"t? — = / u()dr|? < % / gy (1) 2dir. (2.39)
T In In
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To make our error analysis easy to follow, we use the script letters to describe the corre-
sponding errors. For example, we define the errors between the exact solutions (E, H) of

1
.1)—(2.2) and the finite element solutions s (o) 14)—(2. :
(2.1)~(2.2) and the finite el lutions (E, 2, HI'*') of (2.14)~(2.15)

1 1

£ =B, )~ B, * =E,, 1) — TLE"™ + (IE""1 — ;%)

n+%
=B,y 1) — TLE(,, ) + €, 7

7-L"+1 = H(tn+1) _H;lz-H =H(t,y1) — Pth+]
+ (PhH’l‘f’] _ HZ+1) = H(I,H_]) _ Pth+1 + H;ll+l,

where we denote E"+? — E(thr%) and H'' = H(t,41), TI.LE € U} for the Nédélec
interpolation (i.e., H (curl; K)) of E, and P,H € V, for the L3(Q) projection of H, i.e.,

(PhH—H,¥,) =0, V¥, eV, (2.40)
Moreover, we have the following interpolation and projection error estimates:

IE — TEllo + |V x (E = TIE)|lo < CH|E gieurt.p. ¥ E € H (curl, 2),1> 1,
(2.41)
|H — P,H|o < Ch'|H|;, VH e (H ()% 1>1. (2.42)

To prove the error estimate, for simplicity we assume that the scheme (2.14)—(2.15) uses
the following initial conditions:

E,% (x) = .E? (x) = M.E(x, 1), H)(x)=P,H'(x) = P,H(x,11).  (2.43)

m+l
Lemma 2.2 For the errors ’H’;f“ and €, " *, we have: For any m > 1,

Il /roH !+ TC”zi‘ﬁv x .sf%ng
— ol 4 (TC”Z*@Y 1P, (V x (ILE"+% — Em+%)) 12
Fe LV x (LE™E — Em ), (2.44)
Proof From the error definitions of ’HZ’H and £:+%, we first note that
VoM 4 L”Zﬁv S

_ (mpmml n L”zﬁv x nCEm+%>
- (me+1 + L"Zﬁv x EZ”%)

=P (x/lTOH’"+1 + ;CUZ\/‘%V x Emt3

C ——ma L
+tUTﬁV x (T, E™+ — E’”%)) — VioH, ", (2:43)
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where in the last step we used the identity (2.35), and the identity Pj (V x (IT.E™* 7 )) =

V x ([T, E™*7) due to the fact that V x (T, E"*2) € V.
Note that we can rewrite (2.11) as

JIoH™ ! = JigH™ — tCyJegV x E"* 2. (2.46)
Taking the projection P, of (2.46), we have

Py (mH'"“ + IC“T*@V x E"H%) — P, (mﬁm+%) . (2.47)
Substituting (2.47) into (2.45), and using the error definition of ’Hﬁ“ , we obtain
I/moHy ™+ + tc”zﬁv <€) 3
- ||mﬁ;"+% + Py (zch\/av x (T E™*2 — Em+%)> 12

2
41 tCy /€0 1 1
= ol 213 + (7“2 ) I P, (v x (ILE"+% — Em+z)) 12

m+2

2/, TT@PN x (I.E™+3 — E"T1))
C 2
_ ,u0||7-tm+2 12 + (%) || P (V % (M E"+? — E’"+%)) 2

1
+T(H) TV x (E™F T — B, (2.48)

where we used the property of projection operator P, in the last step. This concludes our
proof. O

With the above preparations, we finally can prove the following optimal estimate for the
scheme (2.14)—(2.15).

Theorem 2.2 Suppose that the solutions (E, H) of (2.1)—(2.2) satisfy the following regularity
assumptions:

E e L2, T; (H (curl, 2))%), 8,E, V x 3,E € L*(0, T; (H'(curl, Q))%),
V xd:H, 3,E, VxE, VxVx§&EeL*0,T:(L*Q)>),

1
then the numerical solutions (E’,;lJr2 , HZH'I) of the scheme (2.14)—(2.15) have the optimal
error estimate:

1
1 ol 1 2
max {eonE'"*%—EZ’”H%MOH(H’”*Z—HZ’*Z)H%} <CTE2+h), (249

1<m<N;,—1

where | > 1 is the order of basis function of space U2 and V},, and the positive constant
C = C(eg, to, E, H) is independent of T, h and T.

Proof Integrating (2.1) form ¢, _ 1 tor, 1 and integrating (2.2) form ¢, to #,+1, then mul-

tiplying the respective results by %<I>h € U2 and %\Ilh € Vj,, and integrating over 2, we
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have

l t}’l l
(€08-E", ¥}) + f/ "2 E(s)ds, oW,
T Jt

1
n—y

1 (sl
- / "2 H(s)ds,V x ¥, | =0, V¥, € UY, (2.50)
T )i,
n—z

1 In41
(MOSIH”JF%, <1>,1) + (f/ V x E(s)ds, <1>h) —0, V®,eV,
T tn

Subtracting (2.50)—(2.51) from (2.14)—(2.15), respectively, we obtain

(2.51)

2
(code &7 Wi) + (Eh o) — (4. V x W) + 4T— (5:(V x £1),V x Wy)

n+1
2 E(s)ds, oW,
1

"=z

— 1 (sl
= (€08 (TI.E" — E"), W) + | I.E" — ;/
t

1 n l
+ / "2 H(s)ds — P,H",V x ¥,
T J:

2

+r—(5 (VXHCE)VX\II;,)

v, € UY,
4o h

(2.52)
and

1 1
(M081H2+25 d’h) + (V X 8Z+2 , ‘I’h)

= (hodc(PAH"™3 — H'3), @)

1 Ing1
+ (v x (TILE"+? — ff E(s)ds), <1>h> . Ve, eV, (2.53)
T Ji,

Choosing Wy, = 7(€17 7 4£177) = 2087 in(2.52)and @), = 7 (K2 4] = 2081
in (2.53), adding the results together, and using the projection property of P, we obtain

n+t tCy /€0 n+i -
(60|I5h 213+ /o, T + “—*ﬁv x &, 2||3> + 2702813

Cy
—<€o||5 213+ IViroH) + fv g, 2||0)

— —] l tn 1 —_—
=27 (GOSI(HCE" —EM), SZ) +2t | ILE" — f/ " E(s)ds, o€
T Js |

2

1 [hed - : =
42t 7/ 2 H(s)ds — H",V x €} | +21 (——58.(V x [LE"), V x |
T Jr 4o

n—z

1 In+1 | 5
+ 2t <V X (I'ICE'H'% — 7/ E(s)ds), %Z+2> = Z Errg. (2.54)
T Ju, _
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Using the arithmetic and geometric means (AGM) inequality:
(a,b) < 8||a||0 —I— ||b||0, Vs > 0, (2.55)

Lemma 2.1, and the interpolation estimate (2.41), we have

— 1
Err < 1€ (251 €5 + EHMHCE” - E")||3)

41 _1 1
<76 | 8 (neZ 115+ 1€, 2||%)+m

t
T 10, (TLE" — E")|2ds

1
n-z

n+ 1 .
€y | 81 (||sh 21+, 2”0>+25 70h2’||a,E||icu,,ds . (2.56)

IA

L 2

Similarly, under the assumption that ¢ < 0,,,, We can obtain

p— —] R — 1 tn 1 —1
Erry=2t |TLE'-E"+E" - —/ 2 E(s)ds, o€,
T J: 1

n—s

IA

] —] — — 1 thrl
TOmax | 2821113 + ITE" —E" |3+ IE" - = / 2 E(s)ds||}
ro1

25,
"2
+ _1
smmax[ (ns" 13+ 1) 2||3)
1 21 2 T3 I)H»% 2
+T§2 Ch ”E”LOO(O,T;HI(CLH’Z,Q))+Z/; ] ||8IIE||0dS . (257)

n—

Using integration by parts, the PEC boundary condition (2.3) and inequality (2.55), we
have

|
Err3 <t 233|I5hllo+ IIVX */ +2H( )ds —H" | Il
T

t

L 7
+1 -1 T3 tn+]
<1 |8 <||5Z 22+ 11E, 2||3> + @/, 2V x 8, HIl3ds | . (2.58)
1

L 2
Again, using integration by parts, Lemma 2.1 and inequality (2.55), we have

2 —
Erry =21 (4—8,(V x V x (II.E" — E" + E™)), £h)
o

= s ” ” ! i
T2 g + ——
4lienllo 2847 4 o

tn 1
/ "2 (IV x V x &(I.E —E)|§ + IV x V x &E|) ds
o1

n—x

2
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+ -3 i
<t |: (||£n 2||()+||5Z 2||%>+m

tn+l
/ PCh (IV X QE|] g + IV x V x QE|[§)ds | . (2.59)
t

1
n—»

Finally, by the inequality (2.55), we have
1 1 1 1 In+1 —n+
Errs =2t <v x (MI.E"T2 —E""2) + V x (E""7 — f/ E(s)ds), H, 2)
T tn
1
<785 ||%”+2 15+ 5= (17 x (LB — B+ 23
5

n+5 1 et 2
+IV x (E""2 — ; E(s)ds|g
2

n

"+ 2 o[ 2
=T 85”’7‘{ ”0 + 6 h ”E”Loo(o T, HI(C,”I Q) + — 4 ] ”V X 8I‘I‘E||()ds .
(2.60)

Substituting the estimates of Erry into (2.54), summing up the result from n = 1 to any
m € [1, N;], then choosing

d1
&0 = , 03 =684 = €001, 85 = podi,

Omax

and using the initial assumptions (2.43) and the facts mt < T , we can obtain

+ C +1
collE), 2||0+|Wo%z”l++fv £ 2013

m
<857 (eo||£Z 2|12+ wollH, ||§> t5 (Thzl + r“) .6l
n=1

Using Lemma 2.2 in (2.61), inequality (2.55) and interpolation estimate (2.41), we have

+l — +l n + C
coll€; 115 + wol 2||3§881r2(eo||8 211§ + ol 2||0)+g(rh21+r4)

n=1
—m+ L
+ T, TV x (TLE™: — E™HY))

m
L1 ) C
<oty (eonsZ 13 + ol 2||3> +y ()

n=1

—m ch
+7 (81M0||%h ”0 + — 8 ”Em+ ”Hl(curl Q))

1<n

1 _n+l C
<95 T max (GOIIEZ 2|2 4 ol 2 ||(%> 5 (Th2l +74), (2.62)

where in the last step we first took the maximum over all n € [1, N; — 1] for the right hand
side (RHS) term, and used the fact that mt < T.

Now taking the maximum over m for the left hand side (LHS) terms, then choosing 4;
small enough (e.g., 61 < ﬁ) so that the RHS terms can be bounded by the corresponding
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LHS terms, we obtain

1 L
max (eongfﬂ 12+ poll#;, 2 ||%;> = cr? (i +7%). (2.63)

1<m<N,—1

Finally, using the triangle inequality, the estimates (2.41) and (2.42), we completes the
proof. m}

3 Extension to the Drude Metamaterial Model

In this section, we show how to use the similar idea as last section to develop an uncondi-
tionally leapfrog scheme for solving the Drude metamaterial model.

3.1 Construction of the Leapfrog Scheme

We consider the Drude metamaterial model given as follows [22]:

F _Gem—J 3.1)
c¢c— =V xH—], .
051

OH
MO@ =-VxE _K, (3.2)

19 r

J ~J=E, (3.3)

2
pe

1 3K+ |
How?,, 3 pows,,

600)1216 ot €Qw

K=H, 34

where wp, and w,,, are the electric and magnetic plasma frequencies respectively, I, and
I';, are the electric and magnetic damping frequencies respectively, E (x, t) and H (x, t) are
the electric and magnetic fields respectively, and J (x, ¢) and K (x, t) are the induced electric
and magnetic currents respectively. To make the problem well-posed, we simply assume that
the model (3.1)—(3.4) satisfies the PEC boundary condition (2.3) and the initial conditions:

E(x,0)=Eo(x), H(x,0)=Hyx), Jx0) =Jox), K(x,0 =Kox), (3.5)

where Eq, Ho, Jo and K¢ are some given functions.
To derive our unconditionally stable leapfrog scheme, we first consider the following two
step scheme for (3.1)-(3.4):

Step 1:
OB = @B+ % (Vx B - g, (3.6)
woH"% = poH" + % (—v x B _Kn> ’ ©.7)
gty — g 4 % (—FeJ”*’% + eoa)?,eE”J’%) , (3.8)
K" — K" % (—FmK” v Mowf,mm) , (3.9)

Step 2:
QB = cE™S 1 % (v « H'™h _Jn+%), (3.10)
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oH™ = poH™ 3 % (_v x E"1 —K”“) , 3.11)
= nth % <_p€Jn+% +€0w§egn+%>, (3.12)
K =K' 4 % (—FmK"+l + Mowf,mH"H) : (3.13)

Reducing all n’s of (3.10) by 1 and adding the result with (3.6), we have

Hn+% _,’_Hn—% Jn+% +Jn—%

coE"? = E""7 + 1V X : 7 . . (3.14)
Reducing (3.11)’s n by 1, then subtracting the result from (3.7), we have
1 1 T2
wo(H" 2 + H"™2) =2;L0H”—7V x 8; E". (3.15)
Then substituting (3.15) into (3.14), we obtain
—n 1:2
€ E"=VxH"—] —TVXVX(SfE”. (3.16)
1o

Adding (3.7) and (3.11) together, we have

1

oS, H'™™2 = —v x B2 _ "2, (3.17)
Reducing all n’s of (3.12) by 1 and adding the result with (3.8), we obtain
8:J" = -T.J" + e} E". (3.18)
Finally, adding (3.9) and (3.13) together, we have
gl |
5. K" = 1, K7 + pow?, H' 2. (3.19)
Based on (3.16)—(3.19), we propose the following leapfrog scheme for @a3. 1) (3.4): Given
proper initial approximations E ; , Jh JH} K}, foranyn > 1, find E"Jr 2 J"+ 2euy, Hlerl
K"+1 € V}, such that
€0 (8:E},, W) = (H,, V x W) — (.72 ‘I’h>
2
~ T (VX 8.ELV x¥;), V¥, cUY, (3.20)

1 1 —n+ 1
10 <8,HZ+2, @h) =— (V < Ep 2, <1>,1> - <KZ+2,<I>h) . Ve, eV, (321

1 re -n 5 —_n ~ 0
—— (8 W)+ —5 (J,,, \Ilh) - (Eh, \Ilh), v, € U, (3.22)
Goa)pe an)pe
1 n+% = | —11-4—% I~ —11-4—% I~ I~
—— 4K, *, Py +— K, . ®,|)=|\H, ~, 9|, V&, € V.
HO®, HO®,
(3.23)
The scheme (3.20)—(3.23) can be implemented as follows:
Step 1: Regrouping (3.22), we obtain
n+% 2 — ‘L'Fe nfé €Qw pg n+2 %
= —(E, E . 3.24
5= +2+F< +E) ) (3.24)
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1
Then substituting (3.24) into (3.20), and we can solve the resulting equation for EZ+2

1
Step 2: Update JZ+2 by using (3.24).
Step 3: Rewritting (3.23), we have

2—1ly T,uowf;m

H™ +H) 3.25
2410, " 2+rr( +H)). (3.25)

Kn+l

Substituting (3.25) into (3.21), and we can solve the resulting equation for H ZH.
Step 4: Finally, update KZ+1 by using (3.25).

3.2 The Stability Analysis and Error Estimate

Below we will establish the stability analysis and error estimate analysis.

Theorem 3.1 For the solution (E,, i H"+1 Jh-‘_2 K"H) of (3.1)—(3.4), we have: For any
me[l, N, —1],

m+1 tCy /€0 ma-L
cllE, I3+ I/moHp ! + ”Tv xE, 2|3

1 41
o, I, 215+

+12
I, ™15
0w?,,

— Z T3l + 5 Z IR

penl pmnl

— clE ||o+||~ﬁHh+ ”fv B2

+— ||J o+ —— 11K} 15 (3.26)
0w [2” o ez, ol

Proof LetW;, = 7(E, nt +E 2)1n(3 20), ®;, = r(H"H—i-H )in (3.21), ¥, = ‘L’(Jh
7 2) in (3.22), ®), = t(K"Jrl + K) in (3.23), respectively, we have
ntg o n=3 .2 e n+t 0 n—%2
e(lE, “lo—IE, “lp) + TMO(HV xE, “lg—IIV<E, “ly
1 _1 S
—r( "V x (B, +E] 2)>+2r (7. B3) =0, (3.27)

ST SRR |
po(IHE 3 = 1HD13) + (H”“ +H!,V x E"+2> +27 (KZ+2,HZ+2> =0,

(3.28)
n+2 nf% 2 Fe 1,2 —n —=n
— (W = I 2R + 20— T3 — 20 (B3 73 ) =0, (3.29)
0 pe 6pre
||3—||KZ||3)+2r ||Kn+2||0—2t Hn+2 K’”r2 —0. (3.30)
o eowpm

Adding the above four equations together and using (2.32), we have
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n+loo +1 n+y 0
€llE), 2||o+||«/M0H" + no o

n+ 1
—— I, N+ ——— 1K
e M

Op pm

+2t 1T 13 + 2t —2%—|IK,
€0 2 ho uowpm

_1 _1
= &llE, 2||%+ |W0Hz+7”¢?ov xE, I3

I ol 1 5
I, 1o+ —5—IIK} G- (3.31)
w%}e h 0 L0 %nn hllo

AIT

Summing up (3.31) fromn = 1to any m € [1, N, — 1], we complete the proof. O

Remark 3.1 Using the similar technique as Sect. 2, we can only obtain

71Cv2ﬁv X EZ+2

T fz—k%
2o

Hence, for the Drude model, we cannot get any simpler stability result like Corrollary 2.1.

TLOH;[H_I + / Hn+ 2

Theorem 3.2 For the solution (E,, +3 JH Jn+2 K1) of scheme (3.1)~(3.4) with the
following initial conditions:

E}(x) = M.E(x, . Ji @) = MJ G, ) Hj@) = LH(x. 0). K},x) = K (x. 7),

we have the optimal error estimate: For any m € [1, Ny — 1],

1 mtk 1Cy. /€0 1 m+4
max (eonEm*z—Eh PG+ o H™ T = H T + 2V s (B - BTG

1<m<N;—1
1

1 2
+1 1
A At ——— k" - K’,;’“%) <T@ + 1), (3.32)
eoa)pe Mprm

+

where | > 1 is the order of basis function of space U 2 and V', and the positive constant
C = C(eg, o, E, H) is independent of t,h and T.

Proof Before we start the error estimate analysis, we denote the script letters £'+1 and H",
T ”%, IC" for the errors as defined in last section.

Integrating (3.1) from 7, _ 1tof, 1, multiplying the result by %\It » € UY, integrating over
2, then subtracting (3.20), we have

L[l
(e08:E", W) — ;/ " Hds — H},V x ¥,
t

1
n—x

1 (sl - 2
+ f/Mst—JZ,\IIh — L (5:(V x E), V x W) =0,
T e 4pL

which leads to the first error equation
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2
(codc &) Wi) = (37, V x W3) + (T} w3 ) + ﬁ (5:(V x £1),V x Wy)
0

1 [hed
= (€08 (TI.E" — E"), Wj) + ;f "2 Hds — P,H",V x W,
t

1

1177
1 tn+% —n 'Cz —n 0
—|= Jds —1.J" W, +—(5r(VxncE ),Vx\llh), V¥, € U9,
T Jt 1 4“0
"3
(3.33)
here and in the rest of this section, we denote E"t: = E (4 1 ) for simplicity. Similar

notations J”+% = J(thr%) ,H" = H(t,), K" = K(t,) are adopted also.

Similarly, integrating (3.2) form ¢, to f,4, multiplying the resultant by %<I>h € Vy,
integrating over €2, then subtracting (3.21), we obtain the second error equation

1 1 _ gl
(uoamZ“, <I>h> - (v x &, 2, <1>h> + (rcz*z, <I>h>
1 1 1 In+1 1
= (/,L()ST(P},H}H_? — H""7), <I>h> + (v X (7/ Eds — I'[CE"+7> , <1>h>
T J,

1 In4+1 .
+ (7/ Kds — P,K ", <I>h) . Y@, eV, (3.34)
T Ji,

Integrating (3.3) form 7, _ 1 tor, L multiplying the resultant by %\AI;;, € U9, and integrat-
ing over €2, then subtracting (3.22), we obtain the third error equation

s+ (L7 e —(E”\T:)
0. i 0 e Wh Y

pe pe

€0w?

| G ~ r - 1 i) ~
= > 7/ "2 O (IeJ —Jds, ¥y, | + S Y O - ;/ 2 yds |, ¥,
t t

€owy,, T 0
pe ,% pe ”7%
1 tn+% —_n ~ ~ 0
+ | - Eds —TI.E , ¥, |, Y¥, € U,,. (3.35)
TJr

Similarly, integrating (3.4) form ¢, to #,1, multiplying the resultant by %5;1 € Vy, and
integrating over €2, then subtracting (3.23), we obtain the fourth error equation

1 n+d ~ r —n+l ~ —ntl o~
(Mz(stlch z,q)h)-i-( n12 K, A _<7.l‘h 27‘I’h)

0@Wpe HO@pm
1 1 In+1 ~ r —p+ L 1 Int1 ~
= 5 7/ 3 (PLK —K)ds, ®), | + ’”2 (PhK"+2 _ ,/ de),dn,
Howpm T Jiy HO®pm TJt
1 [+ —ntrl o~ ~
+ (* Hds — PbH 2, (Ph) , V&, € Vy. (3.36)
T tn

Note that the error equations (3.33)—(3.36) have exactly the same form as the finite element
scheme (3.20)—(3.23), except those extra terms added to the right hand sides of (3.33)—(3.36)
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due to the time and spatial discretization. Moreover, by the interpolation error estimates of
I1. and Py , these extra terms have the local truncation errors (9(1:2 + il ), where [ > 1 is
the order of basis function of space Ug and Vj,. Hence, by following the same techniques
developed for proving the discrete stability given in Theorem 3.1 and the error estimate given
in Theorem 2.2, we conclude the proof. O

4 Extension to the Cohen-Monk PML Model

To simulate a practical wave propagation problem, we usually use a PML model to reduce
the unbounded domain simulation problem to a bounded domain simulation. There are many
studies on the mathematical analysis of PML models for Maxwell’s equations (cf. [1,2,4] and
references therein), here we consider the Cohen-Monk PML model, which was originally
developed in 1999 by Cohen and Monk [11] by using the stretched coordinates approach. In
2014, we [19] proved the existence, uniqueness, and stability of this PML model. To develop
a leapfrog scheme, we introduce two auxiliary variables J and K based on the governing
equations (1)-(4) of [19] and rewrite the governing equations of the Cohen-Monk PML model
as follows:

aJ

o =E (4.1)

oK

won (4.2)
oE*

€0 o —VxH=0, 4.3)

*

Mo o1 +VxXxE=0, 4.4)

oE oE* N

§+CmE+DJ= m + GE", 4.5)

oH oH* N

o + CnH + DK = o + GH™, (4.6)

where €p and ¢ are the vacuum permittivity and permeability, respectively, E(x, ) and
H (x, t) are the electric and magnetic fields, respectively, and E*(x, t) and H*(x, t) are the
auxiliary electric and magnetic fields, respectively. Moreover, C,,, D and G are 3 x 3 diagonal
matrices given by

Cy =diag(oy+0;, 0x+0;, 0x+0y), D = diag(oyo,, 0,0;, 0x0y), G = diag(oy, 0y, 0;),
4.7
where oy, 0, and o, are nonnegative functions and represent the dampings along the x, y,
and z directions, respectively.
First, we consider the following two step scheme for (4.1)—(4.6):

Step 1:
eI %EH%, (4.8)
K™ =K'+ %H", (4.9)
QOB = B + 2V x H', (4.10)

@ Springer



Journal of Scientific Computing (2021) 86:35 Page 190f33 35

DoH™S — poH" — %v « B (4.11)
BV =B (B B g (GE™+i — Bt —pp+t), @12
H Y —H (H*n+% _ H*n) + % (GH*" — C,,H" — DK"), (4.13)

Step 2:

gt — gty %En%’ 4.14)
K" — gt 4 %Hn+l, (4.15)
E™H! = B %v x H'™1, (4.16)
LwoH ! = g A — %V x E"1, (4.17)

B — EE 4 (E*’“rl - E*”+%) + % (GE*"+% — CnE™ — DJ”+%) . (418)
H'™ = BE 4 (B - B ) 4 2 (GH™ - G, ™ — DK™ (419)
: L@

Then using (4.8)—(4.19), we can construct our leapfrog scheme for (4.1)—(4.6). Reducing
all n’s of (4.14) by 1, and adding the resultant with (4.8), we can obtain the scheme for J:

JE =g g % (E'“r% +E"—%) ,or 8, J" =E". (4.20)
Adding (4.9) and (4.15) together, we obtain the scheme for K:

n+%

K — K"+ % (H'' +H"), or 8, K""2 =H “.21)
Reducing all n’s of (4.16) by 1, and adding the resultant with (4.10), we have
E" 1 = B 1 + %v x (H"+% +H"—%) . (4.22)
Reducing all n’s of (4.19) by 1, and subtracting the result from (4.13), we have
H}’H»% +H}’l7% H*n+% _ ZH*I‘[ H*nf%
———————— =H"+ + . (4.23)
2 2
Substituting (4.23) into (4.22) we have
| | H*n-&-% _ 2H*n _’_H*n—%
€E*" 1 = E*" "2 + 1tV x H" + 1V X ) (4.24)

2

Substituting H snth of (4.11) into (4.24), reducing all n’s of (4.17) by 1 and substituting
H *n—3 of the resultant into (4.24), we can obtain the scheme for E*:

2
T

€6 E"" =V xH" — —V xV x §; E". (4.25)
4o

Adding (4.11) and (4.17) together, we obtain the scheme for H*:

poH*™ = uoH™" — v x B3, ie., pos H"1 = —V x E'3. (426)
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Reducing all n’s of (4.18) by 1, and adding the resultant with (4.12), we can obtain the
scheme for E:

8;E"=8,E" +GE" —C,E"' - DJ". 4.27)
Adding (4.13) and (4.19) together, we can obtain the scheme for H:

*n+2

[ | L
S H"™ =5, H": + GH™ 2 —c,,H'"? — pK""2. (4.28)

From (4.20), (4.21), (4.25), (4.26), (4.27), (4.28) and using the finite element spaces
U0 and V;, we can construct the following leapfrog scheme for (4.1)—(4. 6) given initial

approx1mat10nsEh,Eh ,Jh,Hh,HZ ,Kh,for anyn > 1, find E, e E*'hL2 JnJr2 e U9,
HY L H K € V), such that
(507, %)) = (Ez,wh), v, € U9, (4.29)
1
5K <1>h> <HZ+2, <1>h>, Vo, € V), (4.30)

2
(c08:E}", Wy) = (H}, V x Wj) — 4r— (Vx8ELV xW,), V¥,eclU) (@431
1o

~ 1 o ~
(Moa H*"+2 <1>h) <v < E, 2, <1>h> . VB, eV, (4.32)
(6:E}, 1) + (CuFy, ®1) + (DT, )

= (5B W) + (GE,". ¥)) . V¥, e U}, (4.33)

I —at+l < ~
(STHZ+2,¢;1>+(CMHZ*2,¢;,> DK} <I>h>

-~

- (5,H*"+2 <1>,,> (GH mth <1>,,> V&, € V). (4.34)
The scheme (4.29)—(4.34) can be implemented as follows:
1 1
Step 1: Obtain J Z+2 from (4.29) and EZ”TZ from (4.31), respectively, then substitute

them into (4.33), which can be solved for EZJri

Step 2: Solve for J from (4.29), H"* from (4.32), and E™" " from (4.31), respec-
tively. Note that these three solvers can be done in parallel.

Step 3: Obtain K ZH from (4.30), then substitute the result into (4.34), which can be
solved for H ™.

Step 4: Update K/ ' by using (4.30).

5 Numerical Results
In this section, we present some numerical results to demonstrate the performance of our
proposed leapfrog scheme. Since our 3D theoretical analysis holds true for the corresponding

2D models, all our numerical tests are carried out for 2D models. More specifically, we focus
on solving the 2D T E,; model with unknowns E = [E,, Ey]T and H = H_. For simplicity,
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we only employ the lowest order Raviart-Thomas-Nédélec mixed finite element spaces on
rectangular elements [22]:

Vi = {¥n € L*(Q) : Y| x = Q0.0.VK € Ty},
Uy, = {¢n € H(curl; Q) : ¢n| = Qo1 x Q1.0 VK € Tp},
and on triangular elements [22]:
Vi = {¥n € L*(Q) : Y|, = constant, VK € T},
Uy = {¢n € H(curl; Q) : ¢n|, = span{a; VA — 1;Vi;i},VK € Tp},
where Q; ; denotes the set of polynomials of degrees of i and j in x and y variables, and A;

are the barycentric coordinate functions.

Example 1 The first example is used to justify the convergence rate of our scheme with
an exact solution. The T E, governing equations of (2.1)—(2.2) with added source terms
g =lgx, gy]T and f = f, are given as follows:

oE

GOE—VXHZ—i-O’E:g, 5.1

0H,

ILOW—VXEme (5.2)
where V x E = azi«" — aaEy;‘ andV x H, = [331;:7 — aaljz ]T. Moreover, the exact solution and
corresponding source terms are given as:

E, e ' cos(x) sin(my)
E = = ot s

Ey —e sin(mx) cos(ry) (5.3)
H, =e¢ " cos(mx)cos(wy), g =0E, f,=—-3me "'cos(mx)cos(my).

We choose 0 = 3w, ¢g = o = 1, mesh size h varying from 1/10 to 1/160 for the
physical domain = [0, 1]?, and solve this model problem by the scheme (2.14)—~(2.15) till
T = 1 with various time step sizes satisfying % =21, % The obtained errors at 7 = 1 and
convergence rates are presented in Tables 1, 2 and 3. The results clearly show that our scheme
is indeed unconditionally stable and convergences as O(h? + 72) in both Lo and L, norms
(approximated by the numerical solution at element centers). The superconvergence O (h%)
in the discrete Ly norm for the lowest-order rectangular edge element has been proved in our
early work [18].

To compare the numerical performance of our proposed scheme to the classical Crank—
Nicolson (CN) scheme, we also solve this example by the CN scheme given as: Given initial
approximations EV , H 2 find EZ“ e Y, HZJrl €V, for any n > 0 such that

1 el P §
(08 Ey 2 W) + (0] 2, W) — (H) 2,V x ;) = ("3, W), V¥, € UY,
5.4

(od:H), 2, @)+ (VX E, >, &) =(fi >, @), V& eV, (5.5

The obtained errors at 7 = 1 and convergence rates are presented in Tables 4, 5 and 6,
which clearly shows Oh? + 72) in both Lo and the discrete L, norms. The CPU times
used by the CN scheme (denoted as Tcy ), the improved CN scheme (2.24)—(2.25) (denoted
as Trcn) and our scheme (denoted as 77 r) are compared in Table 7. The ratios Tcn /T F
and Tjcny/TLF show that the CN and ICN schemes take more CPU time than our scheme.
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We observed that the condition number of the system matrix for our scheme (denoted as
Cond r in Table 7) deteriorates as the time step increments becomes larger as observed in

[28]. Though the overall total simulation time decreases as the Courant number C = %

1
VEOLO

the solution error as pointed in [28] for general unconditionally stable finite element time-
domain schemes. Note that Cond| r is smaller than the condition number of CN scheme
Condcy (except the case when T = 2h) and always larger than the condition number of ICN
scheme Condjcn. A complicated algebraic multigrid preconditioner such as the auxiliary-
space Maxwell solver [14,20,31] may be needed to efficiently invert the leapfrog coefficient
matrix. We like to remark that our simulation implemented in MATLAB is carried out on
a 2009 LENOVO V3000 laptop with a processor of 2.40 GHz Intel Core i7, 4 GB RAM
and Ghost Windows7 Spl 64 system. In our implementation, we just used the direct solver
provided in MATLAB.

(the velocity u =

= 1 in our test) becomes larger, a large Courant number increases

Example 2 1n this example, we consider a popular model showing the backward wave propa-
gation phenomenon in metamaterials originally introduced by Ziolkowski [38] and simulated
by various numerical methods (e.g., [23,33]). In this example, a rectangular metamaterial slab
is chosen to be [0.024, 0.044]m x [0.002, 0.062]m, which is embedded in a vacuum with
dimension [0, 0.07]m x [0, 0.064]m. The vacuum is surrounded by a PML with thickness
dd = 20h, where h denotes the mesh size. Similar to Example 1, we solve the corresponding
2D version of the PML model (4.1)-(4.6) and Drude model (3.1)—(3.4). The 2D Cohn-Monk
PML model can be written as follows:

K,
e 5.6
o1 z (5.6
oE*
€0 -V x H, =0, (5.7
H*
Ho=gt +V XE =0, (5.8)
O =" | G, B (5.9)
a7 2dLE = 91 2dLE .
o H. o H

=+ CigH; + DiyK; =

(5.10)

ot at '

where we denote
Coy =diag(oy,0x), Gag =diag(oy,0y), Cig =0y + 0y, Dig = 0,0y.

We choose the damping functions o, and o as fourth-order polynomial functions, more
specifically,

Omax (320 i x> 0,07,
o) = o (25)°,if x 0.0,
0, elsewhere,

where o0y,4, = —log(err) -5-0.07 - ¢, /(2 - dd) with err = 10~7. The function oy has the
same form but varies with respect to the y variable.

The source wave is imposed as H; field and is excited at the line segment x = 0.004m
with y ranging from y = 0.025m to y = 0.035m. The source wave varies in space as

¢~ (r=003/(50? 414 in time same as [38] (see also [21, p.927]).
The mesh size & = 2 - 10~# and various time step sizest = f8 - 10~ 13 with B=1,2,4,8

(to demonstrate the unconditional stability of our scheme) are used for our simulation. The
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Table 7 Comparison of the CPU times used (in seconds) by the CN, improved CN and leapfrog schemes

h 1/10 1720 1/40 1/80 1/160 17320
T=2h Ten 0.1600 0.3540 1.3360 8.7650 66.6880 539.8580
Tien 0.1499 0.3229 1.1400 6.6860  48.6160 396.1230
Tor 0.1330 0.2860  0.9850 56500  40.4810 324.5200
Condcy 14.6387 189130  22.6479  25.0116 26.3950 27.1477
Condjen 5.1678 4.8781 4.7758 47442 47353 4.7239
Condy p 217325 28.2283  30.8966  36.8215 38.8200 39.9060
Ten/TLr 1.2030 1.2738 1.3563 1.5513 1.6474 1.6483
Tien/TLF 1.1271 1.1290 1.1574 1.1834 1.2009 1.2206
T=h Ten 0.2749 0.6810 26139 17.2550  133.1330  11117.1510
Tren 0.2590 0.5980 21729 13.4370 95.3800 815.0560
Tir 0.2360 0.5300 1.8540  10.7000 77.6510 669.3220
Condcy 117204 137324 15.0462  15.8097 16.2234 16.4391
Condicy 4.7688 47430 4.7351 47329 47323 47321
Condy p 8.2178 9.4868  10.3220  10.8094 11.0740 11.2120
Ten/TLr 1.1653 1.2849 1.4099 1.6126 1.7145 1.6691
Tren/TLr 1.0974 1.1283 1.1720 1.2558 1.2283 1.2177
t=h/2  Tey 0.5270 1.3750 54380  34.9550  268.2680  2199.4970
Tien 0.4800 1.1630 42540 265660  191.9250  1607.3200
TLF 0.4380 1.0120 3.5810 214810  156.9800  1348.6910
Condcy 89353  10.0840  10.6114  10.8969 11.0456 11.1216
Condicn 4.7348 4.7328 4.7323 4.7321 4.7321 4.7321
Condy 5.7806 5.8882 5.9509 5.9848 6.0025 6.0116
Ten/Tor 1.2032 1.3587 1.5186 1.6273 1.7089 1.6308
Tien/TLF 1.0959 1.1492 1.1879 1.2367 1.2226 1.1918

contour plots of the magnetic field H, at various times are presented in Figs. 1 and 2 with
B =1, 8, respectively. The figures clearly show that the wave propagates backwards in the
metamaterial slab and demonstrate the refocusing property of metamaterials. Of course the
image quality becomes worse as the time step size increases.

Example 3 The setup of this model is basically same as Example 2, and the only differ-
ence is that the rectangular metamaterial slab is replaced by a triangular slab with vertices
(0.024, 0.002), (0.054, 0.002), and (0.024, 0.062). In this case, a hybrid grid shown as Fig. 3
is used for this example, where triangular mesh is used in the metamaterial slab and its
neighboring elements, rectangular mesh is used in the vacuum region and PML region. Some
snapshots of H, with t = 110713 and ¢ = 8 - 10™!3 are presented in Figs. 4 and 5,
respectively. The results clearly show that the propagating wave bends toward the same side
after crossing the interface between the metamaterial and the vacuum by obeying the Snell’s
Law. Also the image quality becomes worse as the time step size increases, but the wave still
propagates correctly and obeys the Snell’s Law.
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Fig. 1 Plots of H, obtained withz =1 - 10713 at 1000, 2000, 3000, 4000, and 5000 time steps
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Fig.2 Plots of H; obtained with 7 = 8§ - 10~13 at 125, 250, 375, 500, and 625 time steps

6 Conclusion

In this paper, we first propose a new idea for constructing unconditionally stable leapfrog
schemes for solving the time-dependent Maxwell’s equations with the finite element method.
The unconditional stability and second-order in time error estimate of the proposed leapfrog
scheme are proved. We then extend the idea to construct an unconditionally stable leapfrog
finite element scheme for the Drude metamaterial Maxwell’s equations. Similar unconditional
stability and error estimate as the standard Maxwell’s equations are established for this
complicated metamaterial Maxwell’s equations. Finally, we extend the similar idea to solve
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Fig.3 The hybrid grid used for the triangular metamaterial slab simulation
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Fig.4 Example 3. Plots of H; obtained with7 =1 - 10713 at 1000, 2000, 3000, 4000, and 5000 time steps

for the Cohen-Monk PML model. Numerical results are presented to support our theoretical
analysis with interesting backward wave propagation simulations. The idea of constructing
unconditionally stable leapfrog schemes with finite element methods is very interesting, and
we will further extend this to more complicated Maxwell’s equations in the future.Maxwell’s
equations in the future.
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Fig.5 Example 3. Plots of H; obtained with 7 = 8 - 10~ 13 at 125, 250, 375, 500, and 625 time steps
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