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Abstract
Identifying unknown differential equations from a given set of discrete time dependent data is
a challenging problem.A small amount of noise canmake the recovery unstable. Nonlinearity
and varying coefficients add complexity to the problem.We assume that the governing partial
differential equation (PDE) is a linear combination of few differential terms in a prescribed
dictionary, and the objective of this paper is to find the correct coefficients. We propose a new
direction based on the fundamental convergence principle of numerical PDE schemes. We
utilize Lasso for efficiency, and a performance guarantee is established based on an incoher-
ence property. The main contribution is to validate and correct the results by time evolution
error (TEE). A new algorithm, called identifying differential equations with numerical time
evolution (IDENT), is explored for data with non-periodic boundary conditions, noisy data
and PDEs with varying coefficients. Based on the recovery theory of Lasso, we propose a
new definition of Noise-to-Signal ratio, which better represents the level of noise in the case
of PDE identification. The effects of data generations and downsampling are systematically
analyzed and tested. For noisy data, we propose an order preserving denoising method called
least-squares moving average (LSMA), to preprocess the given data. For the identification of
PDEs with varying coefficients, we propose to add Base Element Expansion (BEE) to aid the
computation. Various numerical experiments from basic tests to noisy data, downsampling
effects and varying coefficients are presented.
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1 Introduction

Physical laws are often presented by the means of differential equations. The original discov-
eries of differential equations associated with real-world physical processes typically require
a good understanding of the physical laws, and supportive evidence from empirical observa-
tions. We consider an inverse problem of this—from the experimental data, how to directly
recognize the underlying PDE.We combine tools frommachine learning and numerical PDEs
to explore the given data and automatically identify the underlying dynamics.

Let {uni |i = 1, . . . , N1 and n = 1, . . . , N2} be the given discrete time dependent data,
where the index i and n represent the spatial and time discrete domain, respectively. Our
objective is to find the differential equation, i.e., an operator F :

ut = F(x, u, ux , uxx ) such that u(xi , tn) ≈ uni .

Recently there have been a number of important works on learning dynamical systems
or differential equations. Two pioneering works can be found in [3,29], where symbolic
regression was used to recover the underlying physical systems from experimental data. In
[6], Brunton et al. considered the discovery of nonlinear dynamical systems with sparsity-
promoting techniques. The underlying dynamical systems are assumed to be governed by
a small number of active terms in a prescribed dictionary, and sparse regression is used to
identify these active terms. Various extensions of this sparse regression approach can be
found in [13,16,20,25]. In [26], Schaeffer considered the problem of learning PDEs using the
spectral method, and focused on the benefit of using L1 minimization for sparse coefficient
recovery. Highly corrupted and undersampled data are considered in [28,31] for the recovery
of dynamical systems. In [28], Schaeffer et al. developed a random sampling theory for the
selection dynamical systems from undersampled data. These nice series of works focused
on the benefit and power of using L1 minimization to resolve dynamical systems or PDEs
with certain sparse pattern [27]. A Bayesian approach was considered in [35] where Zhang
et al. used dimensional analysis and sparse Bayesian regression to recover the underlying
dynamical systems. Another related problem is to infer the interaction function in a system
of agents from the trajectory data. In [4,18], nonparametric regression was used to predict
the interaction function and a theoretical guarantee was established.

There are approaches using deep learning techniques. In [17], Long et al. proposed a
PDE-Net to learn differential operators by learning convolution kernels. In [24], Raissi et
al. used neural networks to learn and predict the solution of the equation without finding its
explicit form. In [23], neural networks were further used to learn certain parameters in the
PDEs from the given data. In [21], Residual Neural Networks (ResNet) are used as building
blocks for equation approximation. In [14], neural networks are used to solve the wave
equation based inverse scattering problems by providing maps between the scatterers and
the scattered field (and vice versa). Related works showing the advantages of deep learning
include [14,19,21,22].

In this paper, we propose a new algorithm based on the convergence principle of numerical
PDE schemes. We assume that the governing PDE is a linear combination of few differential
terms in a prescribed dictionary, and the objective is to find the correct set of coefficients. We
use finite difference methods, such as the 5-point ENO scheme, to approximate the spatial
derivatives in the dictionary. While we utilize L1 minimization to aid the efficiency of the
approach, the main idea is to validate and correct the results by Time Evolution Error (TEE).
This approach, we call Identifying Differential Equations with Numerical Time evolution
(IDENT) is explored for data with non-periodic boundary conditions, noisy data and PDEs
with varying coefficients for nonlinear PDE identification. For noisy data,we propose an order
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preserving denoising method called Least Square Moving Average (LSMA) to effectively
denoise the given data. To tackle varying coefficients, we expand the number of coefficients
in terms of finite element bases. This procedure called Base Element Expansion (BEE), again
uses the fundamental idea of convergence in finite element approximation. From a theoretical
perspective, we establish a performance guarantee based on an incoherence property, and
define a new noise-to-signal ratio for the PDE identification problem. Contributions of this
paper include:

1. establishing a new direction of using numerical PDE techniques for PDE identification,
2. proposing a flexible approach which can handle different boundary conditions, are robust

against noise, and can identify nonlinear PDEs with varying coefficients,
3. establishing a recovery theory of Lasso, which leads to a new definition of the noise-to-

signal ratio for PDE identification,
4. systematically analyzing the effects of noise and downsampling, and proposing a new

denoising method called Least Square Moving Average (LSMA).

This paper is organized as follows: Themain algorithm is presented in Sect. 2. Specifically,
the set-up of the problem is presented in Sect. 2.2; details of the IDENT algorithm are in
Sect. 2.3; a recovery theory for Lasso and the new noise-to-signal ratio are given in Sect. 2.4;
and the first set of numerical experiments are in Sect. 2.5. The aspects of denoising and
downsampling effects are presented in Sect. 3. In Sect. 3, the LSMA denoising method is
introduced in Sect. 3.1; numerical experiments for noisy data are given in Sect. 3.2, and
downsampling effects are considered in Sect. 3.3. The identification of PDEs with varying
coefficients are presented in Sect. 4. In Sect. 4, we consider nonlinear PDEs with varying
coefficients and introduce BEE motivated by finite element approximation. A concluding
remark is given in Sect. 5 and some details are in the “Appendix”.

2 Identifying Differential Equations with Numerical Time Evolution
(IDENT)

2.1 Notations

Weuse bold letter to denote vectors, such as a,b. The support of a vector x is the set of indices
at which the corresponding entry is nonzero: supp(x) := { j : x j �= 0}. We use AT and A∗ to
denote the transpose and the conjugate transpose of the matrix A. We use x → ε+ to denote
x > ε and x → ε. Let f = { f (xi , tn)|i = 1, . . . , N1, n = 1, . . . , N2} ∈ R

N1N2 be samples
of a function f : D×[0,∞) → Rwith spatial spacingΔx and time spacingΔt . The integers
N1 and N2 are the total number of spatial and time discretization respectively. We assume
PDEs are simulated on the grid with time spacing δt and spatial spacing δx , while data are
sampled on the grid with time spacing Δt and spatial spacing Δx . The vector L p norm of f
is ‖f‖p = (

∑N1
i=1

∑N2
n=1 | f (xi , tn)|p)1/p . Denote ‖f‖ = ‖f‖2. The function L p norm of f is

‖f‖L p = (
∑N1

i=1

∑N2
n=1 | f (xi , tn)|pΔxΔt)1/p . Notice that ‖f‖L p = ‖fΔx1/pΔt1/p‖p .

2.2 The Set-Up of the Problem

We consider parametric PDEs where F(x, u, ux , uxx ) is a linear combination of monomials
such as 1, u, u2, ux , u2x , uux , uxx , u

2
xx , uuxx , uxuxx with coefficients a = {a j }10j=1:

ut = a1 + a2u + a3u
2 + a4ux + a5u

2
x + a6uux + a7uxx + a8u

2
xx + a9uuxx + a10uxuxx .
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(1)

We refer to each monomial as a feature, and let N3 be the number of features, i.e.,
N3 = 10 in (1). The right hand side can be viewed as a second-order Taylor expansion of
F(u, ux , uxx ). It can easily be generalized to higher-order Taylor expansions, and operators
F(u, ux , uxx , uxxx , ∂4x u, . . .) depending on higher order derivatives. This model contains
a rich class of differential equations, e.g., the heat equation, transport equation, Burgers’
equation, KdV equation, Fisher’s equation that models gene propagation.

Evaluating (1) at discrete time and space (xi , tn), i = 1, . . . , N1, n = 1, . . . , N2 yields
the discrete linear system

Fa = b,

where

b = {ut (xi , tn)|i = 1, . . . , N1, n = 1, . . . , N2} ∈ R
N1N2 ,

and F is a N1N2 × N3 feature matrix in the form of

F =

⎛

⎜
⎜
⎜
⎜
⎝

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

1 u(xi , tn) u2(xi , tn) ux (xi , tn) u2x (xi , tn) uux (xi , tn) uxx (xi , tn) u2xx (xi , tn) uuxx (xi , tn) ux uxx (xi , tn)
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

⎞

⎟
⎟
⎟
⎟
⎠

.

(2)

We use F[ j] to denote the j th column associated with the j th feature evaluated at (xi , tn),
i = 1, . . . , N1, n = 1, . . . , N2

The objective of PDE identification is to recover the unknown coefficient vector a ∈ R
N3

from the given data. Real world physical processes are often presented with a few number
of features in the right hand side of (1), so it is reasonable to assume that the coefficients are
sparse.

For differential equations with varying coefficients, we consider PDEs of the form

ut = a1(x) + a2(x)u + a3(x)u
2 + a4(x)ux + a5(x)u

2
x + a6(x)uux

+a7(x)uxx + a8(x)u
2
xx + a9(x)uuxx + a10(x)uxuxx (3)

where each a j (x) is a function on the spatial domain of the PDE. We expand the coefficients
in terms of finite element bases {φl}Ll=1 such that

a j (x) ≈
L∑

l=1

a j,lφl(x) for j = 1, . . . , N3, (4)

where L is the number of finite element bases used to approximate a j (x). Let y1 < y2 <

· · · < yL be a partition of the spatial domain. We use a typical finite element basis function,
e.g., φl(x) is continuous, and linear within each subinterval (yi , yi+1), and φl(yi ) = δli = 1
if i = l; 0 otherwise. If the a j (x)’s are Lipchitz functions, and finite element bases are defined
on a grid with spacing O(1/L). The approximation error of the a j (x)’s satisfies

‖a j −
L∑

l=1

a j,lφl‖L p ≤ O(1/L), p ∈ (0,∞). (5)
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In the case of varying coefficients, the feature matrix F is of size N1N2 × N3L ,

F =

⎛

⎜
⎜
⎜
⎜
⎝

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

φ1(xi ) . . . φL (xi ) u(xi , tn)φ1(xi ) . . . u(xi , tn)φL (xi ) . . . ux uxx (xi , tn)φ1(xi ) . . . ux uxx (xi , tn)φL (xi )
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

⎞

⎟
⎟
⎟
⎟
⎠

,

(6)

and the vector to be identified is

a = (
a1,1, . . . , a1,L |a2,1, . . . , a2,L | . . . |aN3,1, . . . , aN3,L

)T ∈ RN3L .

The feature matrix F has a block structure. We use F[ j, l] to denote the column of F
associated with the j th feature and the lth basis. To be clear, F[ j] is the j th column of (2),
and F[ j, l] is the ( j −1)L+ lth column of (6). Evaluating (3) at (xi , tn), i = 1, . . . , N1, n =
1, . . . , N2 yields the discrete linear system

Fa = b + η,

where η = {η(xi , tn)|i = 1, . . . , N1, n = 1, . . . , N2} ∈ R
N1N2 represents the approximation

error of the a j (x)’s by finite element bases such that

η(xi , tn) =
(

L∑

l=1

a1,lφl(xi ) − a1(xi )

)

+ · · · +
(

L∑

l=1

a10,lφl(xi ) − a10(xi )

)

uxuxx (xi , tn).

In the case that u, ux , uxx are uniformly bounded,

‖η‖L p ≤ O(1/L), p ∈ (0,∞),

and η = 0 when all coefficients are constants.

2.3 The Proposed Algorithm: IDENT

In this paper, we assume that only the discrete data {uni |i = 1, . . . , N1 and n = 1, . . . , N2}
and the boundary conditions are given. If data are perfectly generated and there is nomeasure-
ment noise, uni = u(xi , tn) for every i and n, and we outline the proposed IDENT algorithm
in this section assuming the given data do not have noise.

The first step of IDENT is to construct the empirical version of the feature matrix F and
the vectorb containing time derivatives from the given data. The derivatives are approximated
by finite difference methods which gives flexibility in dealing with different types of PDEs
and boundary conditions (e.g. non-periodic). We approximate the time derivative ut by a
first-order backward difference scheme:

ut (x j , tk) ≈ ût (x j , tn) := u(x j , tn) − u(x j , tn−1)

Δt
,

which yields the error

ût (x j , tn) = ut (x j , tn) + O(Δt).

Let b̂ be the empirical version of b constructed from data:

b̂ = {ût (xi , tn) : i = 1, . . . , N1, n = 1, . . . , N2} ∈ R
N1N2 .
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We approximate the spatial derivative ux through the five-point ENO method proposed
by Harten et al. [11]. Let ûx (x j , tn) and ûxx (x j , tn) be approximations of ux (x j , tn) and
uxx (x j , tn) by the five-point ENO method which yields the error:

ûx (x j , tn) = ux (x j , tn) + O(Δx4), ûxx (x j , tn) = uxx (x j , tn) + O(Δx3).

Putting the ûx (x j , tn)’s and ûxx (x j , tn)’s to the feature matrix F in (6) gives rise to
the empirical feature matrix, denoted by F̂ . For example, the second column of F̂ is
given by {uni |i = 1, . . . , N1 and n = 1, . . . , N2} as an approximation of {u(xi , tn)|i =
1, . . . , N1 and n = 1, . . . , N2} as follows

(u11, u
1
2, . . . , u

1
N1

, u21, . . . , u
2
N1

, . . . , uN2
1 , . . . , uN2

N1
)T ∈ RN1N2 .

These empirical quantities give rise to the linear system

F̂a = b̂ + e, e = b − b̂ + (F̂ − F)a + η, (7)

where the terms b − b̂, (F̂ − F)a and η arise from errors in approximating time and spatial
derivatives, and the finite element expansion of varying coefficients, respectively. The total
error e satisfies

‖e‖L2 ≤ ε such that ε = O(Δt + Δx3 + 1/L). (8)

The second step is to find possible candidates for the non-zero coefficients of a. We
utilize L1-regularized minimization, also known as Lasso [30] or group Lasso [34], solved
by Alternating Direction Method of Multipliers [2,5] to get a sparse or block-sparse vector.
We minimize the following energy:

âG-Lasso(λ) = argminz

⎧
⎪⎨

⎪⎩

1

2
‖̂b − F̂∞z‖22 + λ

N3∑

j=1

(
L∑

l=1

|z j,l |2
) 1

2

⎫
⎪⎬

⎪⎭
, (9)

where λ is a balancing parameter between the first fitting term and the second regularization
term. The matrix F̂∞ is obtained from F̂ with each column divided by the maximum magni-
tude of the column, namely, F̂∞[ j, l] = F̂[ j, l]/‖F̂[ j, l]‖∞. We use Lasso for the constant
coefficient case where L = 1, and group Lasso for the varying coefficient case L > 1. A set
of possible active features is selected by thresholding the normalized coefficient magnitudes:

Λ̂τ :=
{

j : ‖F̂[ j]‖L1

∥
∥
∥
∥
∥

L∑

l=1

âG-Lasso(λ) j,l

‖F̂[ j, l]‖∞
φl

∥
∥
∥
∥
∥
L1

≥ τ

}

. (10)

with a fixed thresholding parameter τ ≥ 0.
The final step is to identify the correct support using the Time Evolution Error (TEE).

(i) From the candidate coefficient index set Λ̂τ , consider every subset Ω ⊆ Λ̂τ . For each
Ω = { j1, j2, . . . , jk}, find the coefficients â = (0, 0, â j1 , 0, . . . , â jk , . . .) by a least-square fit
such that âΩ = F̂†

Ω b̂ and â
Ω� = 0. (ii) Using these coefficients, we construct the differential

equation and numerically time evolve

ut = F â,

starting from the given initial data, for each Ω . It is crucial to use a smaller time step
Δ̃t � Δt , where Δt is the time spacing of the given data. TEE follows the principle of
numerical convergence that the numerical solution will converge to the true PDE as the time
step goes to zero. We use the first-order Euler scheme for time evolution with time step
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Algorithm 1 Identifying Differential Equations with Numerical Time evolution (IDENT)
Input: The discrete data {uni |i = 1, . . . , N1 and n = 1, . . . , N2}.
[Step 1] Construct the empirical feature matrix F̂ and the empirical vector b̂ using ENO schemes.
[Step 2] Find a set of possible active features by the L1 minimization (9) followed by thresholding.
[Step 3] Pick the coefficient vector â, with the minimum Time Evolution Error (TEE).
Output: The identified coefficients â where âΛ̂ = F̂†

Λ̂
b̂.

Δ̃t = O(Δxr ) where r is the highest order of the spatial derivatives in the PDE associated
with â. When the candidate PDE contains high-order spatial derivatives, this is necessary
to stabilize the explicit scheme used for the TEE evolution. (iii) Finally, calculate the time
evolution error for each â:

TEE(̂a) :=
N1∑

i=1

N2∑

n=1

|ūni − uni |ΔxΔt,

where ūni is the numerically time evolved solution at (xi , tn) of the PDE with the coefficient
â. We pick the subset Ω and the corresponding coefficients â, which give the smallest TEE,
and denote the recovered support as Λ̂. This is the output of the algorithm, which is the
identified PDE. Algorithm 1 summarizes this procedure.

We note that it is possible to skip the L1 minimization step, and use TEE to recover the
support of coefficients by considering all possible combinations from the beginning, however,
the computational cost is very high. The L1 minimization helps to reduce the number of
combinatorial trials, and make IDENT more computationally efficient. On the other hand,
while L1 minimization is effective in finding a sparse vector, L1 alone is often not enough:
(i) Zero coefficients in the true PDE may become non-zero in the minimizer of L1. (ii) If
active terms are chosen by a thresholding, results are sensitive to the choice of thresholding
parameter, e.g., τ in (10). (iii) The balancing parameter λ can affect the results. (iv) If some
columns of the empirical feature matrix F̂ are highly correlated, Lasso is known to have a
larger support than the ground truth [9]. TEE refines the results from Lasso, and relaxes the
dependence on the parameters.

There are two fundamental ideas behind TEE:

1. For nonlinear PDEs, it is impossible to isolate each term separately to identify each
coefficient. Any realization of PDE must be understood as a set of terms.

2. If the underlying dynamics are identified by the true PDE, any refinement in the discretiza-
tion of the time domain should not deviate from the given data. This is the fundamental
principle of consistency, convergence and stability of a numerical scheme, and the reason
for choosing a smaller time step Δ̃t � Δt .

Therefore, the main effect of TEE is to evolve the numerical error from the wrongly identified
differential terms. This method can be applied to linear or nonlinear PDEs. The effectiveness
of TEE can be demonstrated with an example. Assume that the solution u is smooth and
decays sufficiently fast at infinity, and consider the following linear equation with constant
coefficients:

∂u

∂t
= a0u + a1

∂u

∂x
+ · · · + am

∂mu

∂xm
.

After taking the Fourier transform for the equation and solving the ODE, one can obtain the
transformed solution:

û(ξ, t) = û(ξ, 0)ea0t ea1iξ t e−a2ξ2t · · · eam (iξ)mt ,
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where i = √−1 and ξ is the variable in the Fourier domain. If a term with an even-order
derivative, such as a2 ∂2u

∂x2
, is mistakenly included in the PDE, it will make every frequency

mode grow or decrease exponentially in time; if a term with an odd-order derivative, such
as a1 ∂u

∂x , is mistakenly included in the solution, it will introduce a wrong-speed oscillation
of the solution. In either case, the deviation from the correct solution grows fast in time,
providing an efficient way to distinguish the wrong terms. Our numerical experiments show
that TEE is an effective tool to correctly identify the coefficients. Our first set of experiments
are presented in Sect. 2.5.

2.4 Recovery Theory of Lasso, and NewNoise-to-Signal Ratio (NSR)

In this subsection, we establish a performance guarantee of Lasso for the identification of
PDEswith constant coefficients. In the Step 2 of IDENT, Lasso is applied as L1 regularization
in (9). We consider the incoherence property proposed in [8], and follow the ideas in [10,32,
33] to establish a recovery theory. While the details of the proof is presented in Appendix 1,
here we state the result which leads to a new definition of noise-to-signal ratio.

For PDEs with constant coefficients, we set L = 1 in (4), and consider the standard Lasso:

âLasso(λ) = argminz

{
1

2
‖̂b − F̂∞z‖22 + λ‖z‖1

}

. (Lasso)

If all columns of F̂ are uncorrelated, a can be robustly recovered by Lasso. Let F̂ =
[F̂[1] F̂[2] . . . F̂[N3]] where F̂[ j] stands for the j th column of F̂ in (2). To measure
the correlation between the j th and the lth column of F̂ , we use the pairwise coherence

μ j,l(F̂) = |〈F̂[ j], F̂[l]〉|
‖F̂[ j]‖2‖F̂[l]‖2

and the mutual coherence of F̂ as in [8]:

μ(F̂) = max
j �=l

μ j,l(F̂) = max
j �=l

|〈F̂[ j], F̂[l]〉|
‖F̂[ j]‖2‖F̂[l]‖2

.

Since normalization does not affect the coherence, we have μ j,l(F̂∞) = μ j,l(F̂) and
μ(F̂∞) = μ(F̂). The smaller μ(F̂), the less correlated are the columns of F̂ , and μ(F̂) = 0
if and only if the columns are orthogonal. Lasso will recover the correct coefficients if μ(F̂)

is sufficiently small.

Theorem 1 Let μ = μ(F̂), wmax = max j ‖F̂[ j]‖∞‖F̂[ j]‖−1
L2 and wmin = min j

‖F̂[ j]‖∞‖F̂[ j]‖−1
L2 . Suppose the support of a contains no more than s indices, μ(s −1) < 1

and
μs

1 − μ(s − 1)
<

wmin

wmax
.

Let

λ = [1 − (s − 1)μ]
wmin[1 − μ(s − 1)] − wmaxμs

· ε+

ΔxΔt
. (11)

Then

1) the support of âLasso(λ) is contained in the support of a;
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2) the distance between âLasso(λ) and a satisfies

max
j

‖F̂[ j]‖L2

∣
∣‖F̂[ j]‖−1∞ âLasso(λ) j − a j

∣
∣ ≤ wmax + ε/

√
ΔtΔx

wmin[1 − μ(s − 1)] − wmaxμs
ε; (12)

3) if

min
j : a j �=0

‖F̂[ j]‖L2 |a j | >
wmax + ε/

√
ΔtΔx

wmin[1 − μ(s − 1)] − wmaxμs
ε, (13)

then the support of âLasso(λ) is exactly the same as the support of a.

Theorem 1 shows that Lasso will give rise to the correct support when the empirical
feature matrix F̂ is incoherent, i.e.μ(F̂) � 1, and all underlying coefficients are sufficiently
large compared to noise. When the empirical feature matrix is coherent, i.e., some columns
of F̂ are correlated, it has been observed that âLasso(λ) are usually supported on supp(a)
and the indices that are highly correlated with supp(a) [9]. We select possible features by
thresholding in (10) which is equivalent to Λ̂τ := {

j : ‖F̂[ j]‖L1‖F̂[ j]‖−1∞ |̂aLasso(λ) j | ≥ τ
}

in the case of constant coefficients. After this, TEE is an effective tool in complement of
Lasso to distinguish the correct features from the wrong ones. The details of Theorem 1 can
be found in Appendix 1.

This analysis also gives rise to a new noise-to-signal ratio:

Noise-to-Signal Ratio (NSR) := ‖F̂a − b̂‖L2

min j : a j �=0 ‖F̂[ j]‖L2 |a j |
. (14)

The definition is derived from (13), showing that the signal level is contributed by the
minimum of the product of the coefficient and the column norm in the feature matrix -
min j : a j �=0 ‖F̂[ j]‖L2 |a j |. This term represents the dynamics resulted from the feature. It is
important to consider the multiplication rather than the magnitude of the coefficient only. We
also use this new definition of NSR to measure the level of noise in the following sections,
which gives a more consistent representation.

2.5 First Set of IDENT Experiments

We present the first set of numerical experiments to illustrate the effects of IDENT. Here
data are sampled from exact or simulated solutions of PDEs with constant coefficients.
For boundary conditions, we use zero Dirichlet boundary conditions throughout the paper.
Modification to periodic or other boundary conditions is trivial, and numerical schemes with
periodic boundary conditions can achieve a higher accuracy, for the cases without noise. We
observe that the Lasso results are not very sensitive to the choice of λ using TEE, and we set
λ = 500 in all experiments.

The first experiment is on the Burgers’ equation with Dirichlet boundary conditions:

ut +
(
u2

2

)

x
= 0, x ∈ [0, 1]

u(x, 0) = sin 4πx and u(0, t) = u(1, t) = 0. (15)

The given data are sampled from the true analytic solution, shown in Fig. 1a, with
Δx = 1/56 and Δt = 0.004, for t ∈ [0, 0.05]. Figure 1b displays the coherence pattern
of the empirical feature matrix: the absolute values of F̂∗

unit F̂unit where F̂unit is obtained
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(a) (b) (c)

Fig. 1 Experimentwith theBurgers’ equation (15).aThegiven data are sampled from the true analytic solution.
b The coherence pattern of F̂ . c Normalized coefficient magnitudes from Lasso. Two possible features are
identified, which are u and uux

from F̂ with column normalized to unit L2 norm. This pattern shows the correlation
between any pair of the columns in F̂ . (c) shows the normalized coefficient magnitudes
{‖F̂[ j]‖L1‖F̂[ j]‖−1∞ |̂aLasso(λ) j |} after L1 minimization. The magnitudes of u and uux are
not negligible, so they are picked as a possible set of active features in Λ̂τ . Then, TEE is
computed for all subsets Ω ⊆ Λ̂τ , i.e., ut = au, ut = buux and ut = cu + duux where the
coefficients a, b, c, d are calculated by least-squares:

The red line with only uux term has the smallest TEE, and therefore is identified as the
result of IDENT. Since the true PDE is ut = −uux , the computed result shows a small
coefficient error.

The second experiment is on the Burgers’ equation with a diffusion term:

ut +
(
u2

2

)

x
= 0.1uxx , x ∈ [0, 1]

u(x, 0) = sin 4πx and u(0, t) = u(1, t) = 0. (16)

The given data are simulated with a first-order explicit method where δx = 1/256 and
δt = (δx)2 for t ∈ [0, 0.1]. Data are downsampled from the numerical simulation by a factor
of 4 such that Δx = 4δx and Δt = 4δt . (We explore the effects of downsampling in more
detail in Sect. 3.)

Figure 2a shows the given data, (b) displays the coherence pattern of F̂ , and (c) shows
the normalized coefficient magnitudes {‖F̂[ j]‖L1‖F̂[ j]‖−1∞ |̂aLasso(λ) j |}. In this case, the
coherence pattern in (b) shows that u and uxuxx are highly correlated with uxx and uux ,
respectively, and therefore all four terms u, uux , uxx , uxuxx are identified as meaningful
ones by Lasso in (c). Considering TEE for each subset refines these results:

The red line is the result of IDENT, while the blue line is the ground truth. The TEE
of [uux uxx uxuxx ] is the smallest, which is comparable with the TEE of the true equation
with [uux uxx ]. One wrongly identified term in red, uxuxx , has a coefficient magnitude of

123



Journal of Scientific Computing (2021) 87 :1 Page 11 of 27 1

(a) (b) (c)

Fig. 2 Experiment with Burgers’ equation with a diffusion term (16). a The given data are numerically
simulated and downsampled. b shows that u and uxuxx are highly correlated with uxx and uux , respectively.
From (c), four terms u, uux , uxx and uxuxx are selected for TEE

−1.35 × 10−5 which is negligible. The level of error in the identification is also related
to the total error to be explored in (17). Without TEE, if all four terms are used from L1

minimization, an additional wrong term u is identified with the coefficient −0.11. This is
comparable to other terms with coefficients like -1 or 0.1, and cannot be ignored.

Theorem 1 proves that the identified coefficients from Lasso will converge to the ground
truth asΔt → 0 andΔx → 0 (see Eq. (8) and (12)), when there is no noise and the empirical
feature matrix has a small coherence. Figure 3 shows the recovered coefficients from Lasso
versusΔt andΔx for the Burgers’ equation (15) andBurgers’ equationwith diffusion (16). In
Fig. 3a, data are sampled from the analytic solution of the Burgers’ equation (15)with spacing
Δx = 2k for k = −12,−11, . . . ,−5 respectively and Δt = Δx for t ∈ [0, 0.05]. Figure 3a
shows the result from Lasso, namely, {‖F̂[ j]‖−1∞ âLasso(λ) j }, versus log2 Δx . Notice that the
coefficient of uux converges to −1 and all other coefficients converge to 0 as Δt and Δx
decrease. For Fig. 3b, data are sampled from the numerical simulation of theBurgers’ equation
with diffusion in (16), where the PDE is solved by a first-order method with δx = 2−10

and δt = (δx)2 for t ∈ [0, 0.1]. Data are sampled with Δx = 2−10, 2−9, 2−8, 2−7, 2−6

respectively, and Δt = (Δx)2 for t ∈ [0, 0.1]. Figure 3b shows the recovered coefficients
from Lasso versus log2 Δx . Here the coefficients of uux and uxx converge to −1 and 0.1
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(a) (b)

Fig. 3 Identified coefficients from Lasso (Step 2 only) versus log2 Δx . In (a), as Δt and Δx decrease (from
right to left), the coefficient of uux correctly converges to 1, and all other terms correctly converge to 0. In
(b), as Δt and Δx decrease (from right to left), while the coefficients of uxx and uux correctly converge to
0.1 and −1 respectively, one wrong term u does not converge to 0, due to the error from data generations

respectively, and all other coefficients except the one of u, converge to 0, as Δt and Δx
decrease. The coefficient of u does not converge to 0 because data are generated by a first
order numerical scheme with the error O[δt + (δx)2], i.e., the error for Lasso ‖e‖L2 does
not decay to 0 as Δt and Δx decrease. We further discuss this aspect of data generations in
Sect. 3.

3 Noisy Data, Downsampling and IDENT

As noticed above, identification results depend on the accuracy of the given data. In this
section, we explore the effects of inaccuracy in data generations, noise and downsampling.
We derive an error formula to incorporate the errors arising from these three aspects, which
provides a theoretical guidance of the difficulty of identification.

The given data {̃uni } may contain noise, such that

ũni = uni + ξni ,

where the noise ξni arises from inaccuracy in data generations and/or the measurement error.
Consider a r th order PDE with the highest-order spatial derivative ∂rx u. Suppose data are
numerically simulated by a qth-order method with time step δt and spatial spacing δx , and
the measurement error is independently drawn from the normal distribution with mean 0 and
variance σ 2. Then

ξni = O(δt + δxq + σ).

We use the five-point ENO method to approximate the spatial derivatives in the empirical
feature matrix F̂ in Sect. 2. In general, one could interpolate the data with a pth-order
polynomial and use the derivatives of the polynomial to approximate ux and uxx , etc. In this
case, the error for the kth-order spatial derivative ∂kx u is O(Δx p+1−k).

The error for Lasso given by (7) is e = b − b̂ + (F̂ − F)a + η, where b − b̂ is from the
approximation of ut , (F̂−F)a is from the approximation of the spatial derivatives of u, and η

arrises from the finite element basis expansion for the varying coefficients. If u, ux , uxx , . . .

123



Journal of Scientific Computing (2021) 87 :1 Page 13 of 27 1

are bounded, these terms satisfy

‖(F̂ − F)a‖∞ ≤ O

(

Δx p+1−r + δt + δxq + σ

Δxr

)

and

‖b − b̂‖∞ ≤ O

(

Δt + δt + δxq + σ

Δt

)

,

and ‖η‖∞ = O (1/L) so that

‖e‖L2 ≤ ε, with ε = O

⎛

⎜
⎜
⎜
⎝

Δt + Δx p+1−r + δt + δxq

Δt
+ δt + δxq

Δxr︸ ︷︷ ︸
errors from data generations

+ σ

Δt
+ σ

Δxr︸ ︷︷ ︸
measurement noise

+ 1

L

⎞

⎟
⎟
⎟
⎠

. (17)

This error formula suggests the followings:

Sensitivity to measurement noise: Finite differences are sensitive to measurement
noise since Gaussian noise with mean 0 and vari-
ance σ 2 results in O(σ/Δt + σ/Δxr ) in the
error formula. Higher-order PDEs are more sensi-
tive to measurement noise than lower-order PDEs.
Denoising the given data is helpful to Lasso in
general.

Downsampling of data: In applications, the given data are downsampled
such that Δt = Ctδt and Δx = Cxδx where
Ct and Cx are the downsampling factors in time
and space. Downsampling could help to reduce the
error depending on the balances among the terms
in (17).

We further explore these effects below.We propose an order preserving denoising method
in Sect. 3.1, experiment IDENT with noisy data in Sect. 3.2, and discuss the downsampling
of data in Sect. 3.3.

3.1 An Order Preserving DenoisingMethod: Least-Squares Moving Average

Our error formula in (17) shows that a small amount of noise can quickly increase the
complexity of the recovery, especially for higher-order PDEs. Denoising is helpful in general.
We propose an order preserving method which keeps the order of the approximation to the
underlying function, while smooths out possible noise.

Let the data {di } be given on a one-dimensional uniform grid {xi } and define its five-point
moving average as d̃i = 1

5

∑
l=0,±1,±2 di+l for all i . At each grid point xi , we determine a

quadratic polynomial p(x) = a0 + a1(x − xi ) + a2(x − xi )2 fitting the local data, which
preserves the order of smoothness, up to the degree of polynomial. There are a few possible
choices for denoising, such as (i) Least-Squares Fitting (LS): find a0, a1 and a2 to minimize
the functional F(a0, a1, a2) = ∑

some j near i (p(x j ) − d j )
2; (ii) Moving-Average Fitting

(MA): find a0, a1 and a2, such that the local average of the fitted polynomial matches with
the local average of the data, 1/5

∑
l=0,±1,±2 p(x j+l) = d̃ j , for j = i, i ± 1 (or another set

of 3 grid points near {xi }). The polynomial generated by LSmay not represent the underlying
true dynamics.Moving average fitting is better in keeping the underlying dynamics, however,
the matrix may be ill-conditioned when a linear system is solved to determine a0, a1, a2.
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We propose to use (iii) Least-Squares Moving Average (LSMA): find a0, a1 and a2 to
minimize the functional

G(a0, a1, a2) =
∑

j=i,i±1,i±2

⎧
⎨

⎩

⎡

⎣1

5

∑

l=0,±1,±2

p(x j+l)

⎤

⎦− d̃ j

⎫
⎬

⎭

2

.

The condition number of this linear system tends to be better in comparison with MA,
because j is chosen from a larger set of indices. This LSMA denoising method preserves the
approximation order of data and can easily be incorporated into numerical PDE techniques.
MA fitting and LSMA are similar to the non-oscillatory polynomial reconstruction from
cell averages which is a key step in high-resolution shock capturing schemes, see e.g. [1,
11,12]. The quadratic polynomials computed by the methods above are locally third-order
approximation to the underlying function. We prove that, if the given data are sampled from
a third-order approximation to a smooth function, then LSMA will keep the same order of
the approximation. This theorem can be easily generalized to any higher order, we kept to
3rd order to be consistent with our experiments in this paper.

Theorem 2 If data are given as a 3rd order approximation to a smooth function, with or
without additive noise, then denosing the data (to obtain a piecewise quadratic function) with
the Least-Squares Moving Average (LSMA) method will keep the same order of accuracy to
the function.

Proof Let f (x) be the smooth function. The proof can be done by comparing the quadratic
function to that of the Taylor expansion of f (x) at a grid point xi0 , see e.g., [15]. Let
p(x) = a0+a1(x−xi0)+a2(x−xi0)

2 be the quadratic function to be determined near xi0 . The
least-squares method solves the linear system AT (Ac−b) = 0 for the coefficient vector c =
[a0, a1, a2]T , where A is a 5×3matrixwhose rows can bewritten as [1, 1

5

∑
j=0,±1,±2(xi+ j−

xi0),
1
5

∑
j=0,±1,±2(xi+ j − xi0)

2], for i = i0 − 2, . . . , i0 + 2, and b = [d̃i0−2, . . . , d̃i0+2]T .

According to the assumption we have

d̃i = f (xi0) + f ′(xi0)
1

5

∑

j=0,±1,±2

(xi+ j − xi0)

+1

2
f ′′(xi0)

1

5

∑

j=0,±1,±2

(xi+ j − xi0)
2 + O(Δx3),

for any grid point xi near xi0 , i.e., |xi − xi0 | = O(Δx). Let s = [ f (xi0), f ′(xi0), 1
2 f ′′(xi0)]T .

We have

AT (Ac − b) = HBT {BH(c − s) + O(Δx3)},
where H is the 3 × 3 diagonal matrix diag{1,Δx,Δx2}, and

B = AH−1 =

⎡

⎢
⎢
⎢
⎣

...

1 1
5

∑
j=0,±1,±2

xi0+ j−xi0
Δx

1
5

∑
j=0,±1,±2

(xi0+ j−xi0 )2

Δx2
...

⎤

⎥
⎥
⎥
⎦

.

Therefore H(c − s) = (BT B)−1BT · O(Δx3). Note that B is independent of Δx , we have
|p(x) − f (x)| = O(Δx3) for all x such that |x − xi0 | = O(Δx). ��
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(a) (b) (c)

Fig. 4 Burgers’ equation in (15) with 8% Gaussian noise. (a) Given noisy data, (b) Coherence pattern of the
feature matrix. (c) The normalized coefficient magnitudes from Lasso. This fails to identify the correct term
uux

3.2 IDENT Experiments for Noisy Data

We next present numerical experiments with noisy data. We say P percent Gaussian noise is
added to the noise-free data {uni : i = 1, . . . , N1 and n = 1, . . . , N2}, if the observed data are
{̃uni } where ũni = uni + ξni and ξni ∼ N (0, σ 2) with σ = P

100

√∑N1
i=1

∑N2
n=1 |uni |2/

√
N1N2.

Our first experiment is on the Burgers’ equation in (15) with 8% Gaussian noise. Data
are sampled from the analytic solution with Δx = 1/56 and Δt = 0.004 for t ∈ [0, 0.05],
and then 8% Gaussian noise is added. For comparison, we do not denoise the given data,
but directly applied IDENT. Figure 4a shows the noisy given data, (b) shows the coherence
pattern, and (c) shows the normalized coefficient magnitudes from Lasso. The NSR for Lasso
defined in (14) is 3.04. Lasso fails to include the correct set of terms, thus TEE identifies the
wrong equation ut = −0.59u2 as a solution.

For the same data, Fig. 5 and the table below show the results when LSMA denois-
ing is applied. After denoising, and the given data is noticeably smoother when Fig. 5a is
compared with Fig. 4a. The Lasso result shows great improvement in Fig. 5c. With the cor-
rect terms included in the Step 2 of Lasso, TEE determines the PDE with correct feature:
ut = −0.92uux .
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(a) (b) (c)

Fig. 5 Burgers’ equation in (15) with 8% Gaussian noise as in Fig. 4. a The data after the LSMA denoising.
b Coherence pattern of F̂ . c The normalized coefficient magnitudes from Lasso identifies 1, u and uux which
include the correct term uux

(a) (b)

Fig. 6 Burgers’ equation (15) with increasing noise levels. a The average ratio between the identified wrong
coefficients and all identified coefficients over 100 trails. b The recovered coefficient of uux by IDENT.
Denoising the given data with LSMA significantly improves the result. The table shows the new NSR (14)
corresponding to the noise level given in percentage

In the next set of experiments, we explore different levels of noise for denosing+IDENT.
In Fig. 6, we experiment on the Burgers’ equation (15) with its analytic solution sampled
in the same way as above, while the noise level increases from 0 to 30%. For each noise
level, we (i) first generate data with 100 sets of random noises, (ii) denoise by LS and
LSMA for a comparison respectively, then (iii) run IDENT. The parameter τ is chosen as
10% of the largest coefficient magnitude. Figure 6a represents how likely wrong results are
found. It is computed by the average ratio between the wrong coefficients and all computed
coefficients:

∑
j∈Λ̂\Λ |̂a j |/‖̂a‖1, where Λ and Λ̂ are the exact support and the identified

support, respectively. Each bar plot represents the standard deviation of the results among
100 trials. The green curves denoised by LSMA show themost stable results even as the noise
level increases. Figure 6b shows the recovered coefficient of uux , where the true value is
−1. Notice that the LSMA+IDENT (green points) results are closer to −1, while others find
wrong coefficients more often. In general, denoising the given data with LSMA improves
the result significantly.
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(a) (b) (c)

Fig. 7 Burgers’ equation with diffusion in (16) with varying noise levels. a The average ratio between the
identified wrong coefficients and all identified coefficients over 100 trails. b, c the computed coefficients of
uux and uxx respectively by IDENT.While the noise level in percentage seems small, the newNSR represents
the severeness of noise for PDE with high order derivatives

Figure 7 shows the Burgers’ equation with diffusion in (16) with varying noise levels.
The given data are sampled in the same way as in Fig. 2, the noise level increases from 0 to
0.12%. (a) shows the average ratio between the wrong coefficients and the total coefficients.
(b) and (c) show the recovered coefficients of uux and uxx , respectively. Again using LSMA
shows better performance.

For both Figs. 6 and 7, we present the new NSR defined in (14). This clearly presents
that noise affects different PDEs in different ways. The Burgers’ equation (15) only have
first order derivatives, while the Burgers’ equation with diffusion in (16) has a second order
derivative. This seemingly small differencemakes a big impact on theNSR and identification.
While in Fig. 6, the noise level is experimented up to 30%, its corresponding new NSR varies
only from 0 to less than 3.5. In Fig. 7, the noise level only varies from 0 to 0.12 in percentage,
however, this corresponds to new NSR varying form 0 to above 12. The level of the new
NSR characterizes the difficulty of identification using IDENT (Step 2, Lasso), since having
a higher-order term affects the Lasso negatively, especially in the presents of noise.

3.3 Downsampling Effects and IDENT

In applications, data are often collected on a coarse grid to save the expenses of sensors. We
explore the effect of downsampling in data collections in this section. Consider a r th order
PDE. Simulating its solution with a qth order method on a fine grid with time step δt and
spatial spacing δx gives rise to the error O(δt + δxq). Suppose data are downsampled by a
factor of Ct in time and Cx in space, such that data are sampled with spacing Δt = Ctδt and
Δx = Cxδx . Our error formula in (17) is crucially dependent on the downsampling factors
Ct and Cx . Each term is affected by downsampling differently.

– The term Δt + Δx p+1−r arises from the approximation of time and spatial derivatives.
It increases as the downsampling factors Ct and Cx increase.

– The term δt+δxq
Δt + δt+δxq

Δxr arises from the error in data generations. It decreases as the
downsampling factors Ct and Cx increase.

– The term σ
Δt + σ

Δxr arises from the measurement noise. It decreases as the downsampling
factors Ct and Cx increase.

Therefore, downsampling may positively affect the identification depending on the balance
among these three terms.
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(a) (b)

Fig. 8 Burgers’ equation in (15) with various downsampling factors. a, b show the average ratio between
the identified wrong coefficients and all identified coefficients in 100 trails versus log2(downsampling factor)
in the presence of 5% (left) and 10% (right) noise respectively. Increasing the downsampling factors can
positively affects the result until the downsampling factors become too large

As a numerical example, we consider the Burgers’ equation in (15) with different down-
sampling factors. The analytic solution is evaluated on the grid with spacing δx = 1/1024
and δt = 0.001 for t ∈ [0, 0.05]. After evaluating the analytic solution, we generate 100 sets
of random noises then downsample the noisy data with spacing Δx = Cxδx and Δt = Ctδt
where Cx = Ct = 1, 2, 22, 23, 24, and 25 respectively. We run IDENT on the given down-
sampled noisy data, denoised by LS and LSMA respectively. Figure 8 displays the ratio
of wrong coefficients by IDENT versus log2 Cx in the presence of 5% or 10% Gaussian
noise. We observe that increasing downsampling rates can positively affect the result until
the downsampling rates become too large. LSMA also gives the best performance.

4 Varying Coefficients and Base Element Expansion

In this section, we consider PDEs with varying coefficients, e.g., a j (x) varying in space. As
illustrated in (4),we can easily generalize the IDENTset-up toPDEswith varying coefficients,
by expanding the coefficients in terms of finite element bases and solving group Lasso for
L > 1. Due to the increasing number of coefficients, the complexity of the problem increases
as L increases. In order to design a stable algorithm, we propose to let L grow before TEE
is applied.

We refer to this extra procedure asBaseElement Expansion (BEE). From the given discrete
data {uni |i = 1, . . . , N1 and n = 1, . . . , N2}, we first compute numerical approximations of
ut , ux , uxx , etc, then apply BEE to gradually increase L until the recovered coefficients
become stable. For each fixed L , we form the feature matrix F̂ according to (6), and solve
group Lasso with the balancing parameter λ to obtain âG-Lasso(λ). We record the normalized
block magnitudes from group Lasso, as L increases:

BEE procedure :=
{

‖F̂[ j]‖L1

∥
∥
∥
∥
∥

L∑

l=1

âG-Lasso(λ) j,l

‖F̂[ j, l]‖∞
φl

∥
∥
∥
∥
∥
L1

}

j=1,...,N3

versus L.
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Burgers’ equation with a varying diffusion coefficient (18) where data are downsampled by a factor 4.
a The given data. b BEE as L increases from 1 to 30. c An example of the magnitudes of coefficients from
Group Lasso when L = 20. d TEE versus L , for all subsets of coefficients of {uux uxx }. eRecovered diffusion
coefficient ĉ(x) = ∑L

l=1 â7,lφl (x) when L = 20 (blue), compared with the true diffusion coefficient c(x)
(red). f The error ‖c(x) − ĉ(x)‖L1 as L increases from 1 to 30

Themain idea of BEE is based on the convergence of the finite element approximation (5) - as
more basis functions are used, the more accurate the approximation is. In the BEE procedure,
the normalized block magnitudes reach a plateau as L increases, i.e., candidate features can
be selected by a thresholding according to (10) when L is sufficiently large. With this added
BEE procedure, IDENT continues to the Step 3 of TEE to refine the selection.

In the following, we present various numerical experiments for PDEs with varying coef-
ficients using IDENT with BEE. For the first set of experiments, in Figs. 9, 10 and 11, we
assume only one coefficient is known a priori to vary in x . For the second set of experiments,
in Fig. 12,we assume two coefficients are known a priori to vary in x , and the final experiment,
in Fig. 13 assumes all coefficients are free to vary without any a priori information.

The first experiment is on the Burgers’ equation with a varying diffusion coefficient:

ut +
(
u2

2

)

x
= c(x)uxx , where c(x) = 0.05 + 0.2 sin πx

x ∈ [0, 1], u(x, 0) = sin(4πx) + 0.5 sin(8πx) and u(0, t) = u(1, t) = 0. (18)

The given data, shown in Fig. 9a, is numerically simulated by a first-order method with
spacing δx = 1/256 and δt = (δx)2/2 for t ∈ [0, 0.05]. Data are downsampled by a factor
of 4 in time and space. There is no measurement noise. Our objective is to identify the correct
features uux and uxx and recover the coefficients −1 and the varying coefficient c(x). After
we expand the diffusion coefficient with L finite element bases, the vectors to be identified
can be written as a = [a1 . . . a6 a7,1 . . . a7,L a8 . . . a10]T where c(x) ≈ ∑L

�=1 a7,lφl(x).
Figure 9b presents BEE as L increases from 1 to 30. This graph clearly shows that BEE

stabilizes when L ≥ 5. (c) is an example of the group Lasso result, the normalized block
magnitudes, when L = 20. The magnitudes of uux and uxx are significantly larger than the
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(a) (b) (c)

Fig. 10 Equation(18), where data are downsampled by a factor of 4 and 0.2% measurement noise is added.
No denoising is applied. a BEE as L increases from 1 to 30. b TEE versus L , for all subsets of four terms
selected in (a). The correct support [uux uxx ] is identified with the lowest TEE when L ≥ 7. c Recovered
diffusion coefficient ĉ(x) when L = 20 (blue), compared with the true diffusion coefficient c(x) (red)

others, so they are picked for TEE in Step 3. Figure 9d presents TEE for all different L: TEE of
uux , uxx and [uux uxx ] in log10 scale, respectively. The correct set, [uux uxx ], is identified as
the recovered feature set with the smallest TEE. The coefficient [̂a6 â7,1 . . . â7,L ] is computed
by least squares, and (e) displays the recovered diffusion coefficient ĉ(x) = ∑L

l=1 â7,lφl(x)
when L = 20, compared with the true equation c(x) = 0.05 + 0.2 sin πx given in (18).
Figure 9f shows the error ‖c(x) − ĉ(x)‖L1 as L increases from 1 to 30. The error decreases
as L increases, yet does not converge to 0 due to the errors arising from data generations and
finite-difference approximations of ut , ux and uxx .

For the same equation, 0.2% noise is added to the next experiments presented in Fig. 10
and 11. Figure 10 presents the result without any denoising. (a) shows BEE as L increases
from 1 to 30, where the magnitudes of u, uux , uxx , uxuxx are not negligible for L ≥ 20.
These terms are picked for TEE, and Fig. 10b shows TEE versus L . The correct support
[uux uxx ] is identified with the lowest TEE when L ≥ 7. The computed diffusion coefficient
ĉ(x) is compared to the true one in (c), which has the error ‖c(x) − ĉ(x)‖L1 ≈ 0.019. Even
for the data with noise, IDENT+BEEwithout any denoising gives a good identification of the
general form of the PDE. However, the varying coefficient approximation can be improved
if LSMA denoising applied to the data as discussed in Sect. 3.

Figure 11 presents the same experiment with LSMA denoising. In (a), BEE picks
u, uux , uxx for TEE. Notice that the coefficient of uxuxx almost vanishes after denoising
compared to Fig. 10. (b) shows TEE versus L , where the correct support [uux uxx ] gives the
lowest TEE, when L ≥ 19. The recovered diffusion coefficient when L = 20 is shown in (c),
which yields the error ‖c(x) − ĉ(x)‖L1 ≈ 0.008. In comparison with the results in Fig. 10
without denoising, LSMA reduces the error of the recovered diffusion coefficient from 0.019
to 0.008.

In Fig. 12, we experiment on the following PDF with two varying coefficients:

ut = b(x)ux + c(x)uxx , where b(x) = −2x and c(x) = 0.05 + 0.2 sin πx,

x ∈ [0, 1], u(x, 0) = sin(4πx) + 0.5 sin(8πx) and u(0, t) = u(1, t) = 0. (19)

The given data are simulated by a first-order method with spacing δx = 1/256 and
δt = (δx)2/2 for t ∈ [0, 0.05]. The vectors to be identified are a = [a1 . . . a3 a4,1 . . .

a4,L a5 a6 a7,1 . . . a7,L a8 . . . a10]T where b(x) ≈ ∑L
�=1 a4,lφl(x) and c(x) ≈

∑L
�=1 a7,lφl(x). Figure 12a shows the numerical solution of (19). In (b) the given data

are downsampled by a factor of 4 in time and space, and in (c) data not downsampled. BEE
and TEE successfully identifies the correct features. Figure 12b plots both the recovered
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(a) (b) (c)

Fig. 11 The same experiment as Fig. 10, but IDENT+BEE is applied with LSMA denoising. a BEE as L
increases from 1 to 30. b TEE versus L , for all subset of coefficients identified in (a). The correct support
[uux uxx ] is identified since it gives rise to the lowest TEEwhen L ≥ 19. c The recovered diffusion coefficient
when L = 20, compared with the true diffusion coefficient (red), which shows a clear improvement compared
to Fig. 10c

(a) (b) (c)

Fig. 12 Equation (19) with varying convection and diffusion coefficients. a The numerical solution of (19). b
With data downsampled by a factor of 4 in time and space, the recovered coefficient b̂(x) of ux is not accurate
near x = 1. The downsampling rate is too high near x = 1 so that details of the solution are lost. c The same
experiment without any downsampling, and the recovered coefficients b̂(x) and ĉ(x) are more accurate than
(b)

coefficients b̂(x), ĉ(x) and the true coefficients b(x) and c(x) when data are downsampled.
Notice that the coefficient b̂(x) of ux is not accurate when x is close to 1. The result is
improved in (c) where data are not downsampled. No downsampling helps to keep details of
the solution around x = 1 and reduces the finite-difference approximation errors.

Our final experiment is on Eq. (18), but all coefficients are allowed to vary in x . The
numerical solution is simulated in the same way as Fig. 9 and the given data are down-
sampled by a factor of 4 in time and space. After all coefficients are expanded in terms
of L finite element bases, the vectors to be identified is a = {ak,l}k=1,...,10, l=1,...,L where
−1 = b(x) ≈ ∑L

l=1 a4,lφ(x) and c(x) ≈ ∑L
�=1 a7,lφl(x). Figure 13a shows BEE, (b)

shows group Lasso result, and (c) shows TEE. TEE identifies the correct support [ux uxx ]
since it yields the smallest error. The coefficients [̂a6,1 . . . â6,L â7,1 . . . â7,L ] is computed
by least squares. Figure 13d displays the computed coefficients b̂(x) = ∑L

l=1 â6,lφl(x)
and ĉ(x) = ∑L

l=1 â7,lφl(x) when L = 20, and (e) shows the coefficient recovery errors
‖ − 1 − b̂(x)‖L1 and ‖c(x) − ĉ(x)‖L1 as L increases from 1 to 30. IDENT with BEE suc-
cessfully identifies the correct terms even when all coefficients are free to vary in space. The
accuracy of the recovered coefficients has room for improvement if data are simulated and
sampled on a finer grid.
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(a)

(c) (d) (e)

(b)

Fig. 13 Equation (18) where we are a priori given that all coefficients are free to vary with respect to x . Data
are downsampled by a factor of 4 in time and space

5 Concluding Remarks

We proposed a new method to identify PDEs from a given set of time dependent data, with
numerical PDE techniques and the fundamental convergence principle of numerical PDE
schemes. Assuming that the PDE contains few active terms in a prescribed dictionary, we
use finite differences, such as the ENO scheme, to form an empirical approximation of the
dictionary, and utilize L1 minimization to efficiently select a candidate set. Time Evolution
Error (TEE) was proposed as an effective tool to pick the correct set of terms.

Starting from the first set of basic experiments, we considered noisy data, downsampling
effects and PDEswith varying coefficients. A recovery theory of Lasso for PDE identification
was established, where a new noise-to-signal ratio (14) was proposed to measure the noise
level more accurately in the setting of PDE identification. We derived an error formula in
(17) and analyzed the effects of noise and downsampling. A new order preserving denoising
method called LSMA was proposed in Sect. 3.1 to aid the identification with noisy data.
IDENT can be applied to PDEs with varying coefficients and a BEE procedure helps to
stabilize the results and reduce the computational cost.

In this set-up of the problem, we consider a specific set of discretization in (1), but our
proposed method is general. TEE uses the principle of numerical convergence, and it will
work for any consistent and stable set of discretization as effectively as the current one.
Typically denoising of data introduces biases to the learning process; yet, it also greatly
reduces the variances and helps to identify the correct set of coefficients. The final result
is a balance between the biases and the variances. Also, TEE overcomes the biases, since
TEE finds the PDE whose evolution best matches the given data. The biases introduced from
denoising do not have time dependency, and TEE helps to reduce the biases from denoising.

A recovery theory of Lasso for PDE recovery was established in Theorem 1 in terms of an
incoherence condition. In the compressive sensing community, the matrices that are proved
to satisfy this incoherence condition are mostly random matrices. In the PDE identification
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setting, the feature matrix results from a PDE, and is deterministic. The mutual coherence of
the feature matrix is usually close to 1, which violates the incoherence condition. However,
the coherence pattern does provide a lot of empirical guidance. When some columns of the
feature matrix are highly correlated, the recovered support by Lasso includes the true support
and the indices that are highly correlated with the true support. Therefore, our proposed
Time Evolution Error (TEE) plays a crucial role in ruling out the wrong terms and picking
the correct support. Theorem 1 also gives insight to a correct definition of the Noise-to-Signal
Ratio for PDE identification.

Since our problem set-up only utilizes data from one realization of the PDE with one
initial condition, it is possible that IDENT identifies a different PDE instead of the true one,
when the given data are not sufficient. IDENT will find the PDE, which gives the smallest
TEE. When a small amount of data is given, IDENT can find a simpler PDE which may not
be the true one, but gives the smallest TEE well representing the given data set. IDENT will
not identify any ill-posed PDE, since an ill-posed PDE will blow up the TEE and will not be
chosen by IDENT.

The idea of selecting a candidate set by Lasso and then refining the results was also
considered in [20], where the authors used a well-known statistical AIC test to find the best
equation, which minimizes certain loss function. IDENT utilizes numerical time evolution,
which focuses on the evolution of PDE and better captures the time dependent dynamics. In
practice, we observed that, for noisy data and/or nonlinear high order PDEs, TEE performs
well.

Our proposed method can be compared to many existing methods in the following way:
First, this method does not require large training data sets and only uses one realization of the
PDE, while a large training set is required in the deep learning approach [14,17,19,21,21–
24]. Second, by using various numerical PDE schemes, (i) our method is flexible with the
boundary conditions, instead of only considering periodic boundary conditions [26]; (ii) it
can handle noisy data—which is considered to be very challenging in this area. Third, this is
the first work to address varying coefficients, which opens upmany newPDEs to be identified.

Appendix A: Recovery Theory of Lasso with aWeighted L1 Norm

In the field of compressive sensing, performance guarantees for the recovery of sparse vectors
from a small number of noisy linear measurements by Lasso have been established when
the sensing matrix satisfies an incoherence property [8] or a restricted isometry property [7].
We establish the incoherence property of Lasso for the case of identifying PDE, where a
weighted L1 norm is used.

Given a sensing matrix Φ ∈ R
n×m and the noisy measurement

b = Φxopt + e

where xopt is s-sparse (‖xopt‖0 = s), the goal is to recover xopt in a robust way. Denote
the support of xopt by Λ and let ΦΛ be the submatrix of Φ whose columns are restricted
on Λ. Suppose Φ = [φ[1] φ[2] . . . φ[m]] where all φ[ j]’s have unit norm. Let the mutual
coherence of Φ be

μ(Φ) = max
j �=l

|φ[ j]Tφ[l]|.
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The principle of Lasso with a weighted L1 norm is to solve

min
x

1

2
‖Φx − b‖22 + γ ‖Wx‖1 (W-Lasso)

where W = diag(w1, w2, . . . , wm), w j �= 0, j = 1, . . . ,m and γ is a balancing parameter.
Let wmax = max j |w j | and wmin = min j |w j |. Lasso successfully recovers the support
of xopt when μ(Φ) is sufficiently small. The following proposition is a generalization of
Theorem 8 in [33] from L1 norm regularization to weighted L1 norm regularization.

Proposition 1 Suppose the support of xopt, denoted by Λ, contains no more than s indices,
μ(s − 1) < 1 and

μs

1 − μ(s − 1)
<

wmin

wmax
.

Let

γ = 1 − μ(s − 1)

wmin[1 − μ(s − 1)] − wmaxμs
‖e‖+

2 , (20)

and x(γ ) be the minimizer of (W-Lasso). Then

1) the support of x(γ ) is contained in Λ;
2) the distance between x(γ ) and xopt satisfies

‖x(γ ) − xopt‖∞ ≤ wmax

wmin[1 − μ(s − 1)] − wmaxμs
‖e‖2; (21)

3) if

xoptmin := min
j∈Λ

|xoptj | >
wmax

wmin[1 − μ(s − 1)] − wmaxμs
‖e‖2,

then supp(x(γ )) = Λ.

Proof Under the condition μ(s − 1) < 1, Λ indexes a linearly independent collection of
columns of Φ. Let x� be the minimizer of (W-Lasso) over all vectors supported on Λ. A
necessary and sufficient condition on such a minimizer is that

xopt − x� = γ (Φ∗
ΛΦΛ)−1g − (Φ∗

ΛΦΛ)−1Φ∗
Λe (22)

where g ∈ ∂‖Wx�‖1, meaning g j = w j sign(x�) whenever x�
j �= 0 and |g j | ≤ w j whenever

x�
j = 0. It follows that ‖g‖∞ ≤ wmax and

‖x� − xopt‖∞ ≤ γ ‖(Φ∗
ΛΦΛ)−1‖∞,∞(wmax + ‖e‖2). (23)

Next we prove x� is also the global minimizer of (W-Lasso) by demonstrating that the
objective function increases when we change any other component of x�. Let

L(x) = 1

2
‖Φx − b‖22 + γ ‖Wx‖1.

Choose an index ω /∈ Λ and let δ be a nonzero scalar. We will develop a condition which
ensures that

L(x� + δeω) − L(x�) > 0

where eω is the ωth standard basis vector. Notice that

L(x� + δeω) − L(x�) = 1

2

[‖Φ(x� + δeω) − b‖22 − ‖Φx� − b‖22
]
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+ γ
(‖W (x� + δeω)‖1 − ‖Wx‖1

)

= 1

2
‖δφ[ω]‖2 + Re〈Φx� − b, δφ[ω]〉 + γ |wωδ|

> Re〈Φx� − b, δφ[ω]〉 + γ |wωδ|
≥ γwmin|δ| − |〈Φx� − Φxopt − e, δφ[ω]〉| since b = Φxopt + e

= γwmin|δ| − |〈ΦΛx�
Λ − ΦΛx

opt
Λ − e, δφ[ω]〉|

≥ γwmin|δ| − |〈ΦΛ(x�
Λ − xoptΛ ), δφ[ω]〉| − |〈e, δφ[ω]〉|

= γwmin|δ| − |〈γΦΛ(Φ∗
ΛΦΛ)−1g, δφ[ω]〉| − |〈e, δφ[ω]〉| thanks to(22)

≥ γwmin|δ| − γ |δ| · |〈ΦΛ(Φ∗
ΛΦΛ)−1g, φ[ω]〉| − |δ|‖e‖2

= γwmin|δ| − γ |δ| · |〈(Φ†
Λ)∗g, φ[ω]〉| − |δ|‖e‖2

= γwmin|δ| − γ |δ| · |〈g, Φ†
Λφ[ω]〉| − |δ|‖e‖2

≥ γwmin|δ| − γ |δ|‖g‖∞‖Φ†
Λφ[ω]‖1 − |δ|‖e‖2

≥ γwmin|δ| − γ |δ|wmax max
ω/∈Λ

‖Φ†
Λφ[ω]‖ − |δ|‖e‖2.

According to [10,32], maxω/∈Λ ‖Φ†
Λφ[ω]‖ <

μs
1−μ(s−1) . A sufficient condition to guarantee

L(x� + δeω) − L(x�) > 0 is

γ

(

wmin − wmax
μs

1 − μ(s − 1)

)

> ‖e‖2,

which gives rise to (20). This establishes that x� is the global minimizer of (W-Lasso). (21)
is resulted from (23) along with ‖(Φ∗

ΛΦΛ)−1‖∞,∞ ≤ [1 − μ(s − 1)]−1. ��
We prove Theorem 1 based on Proposition 1.

Proof of Theorem 1 Suppose F̂unit is obtained from F̂ with the columns normalized to unit
L2 norm and let W ∈ R

N3×N3 be the diagonal matrix with Wj j = ‖F̂[ j]‖∞‖F̂[ j]‖−1
2 . The

Lasso we solve is equivalent to

ŷ = argmin
1

2
‖̂b − F̂unity‖ + λ‖Wy‖1

where z = Wy, yoptj = a j‖F̂[ j]‖2 and e = b̂− F̂unityopt. Then we apply Proposition 1. The
choice of balancing parameters in (20) suggests

λ = 1 − μ(s − 1)

min j
‖F̂[ j]‖∞
‖F̂[ j]‖2 [1 − μ(s − 1)] − max j

‖F̂[ j]‖∞
‖F̂[ j]‖2 μs

‖e‖+
2 ,

which gives rise to (11). The error bound in (21) gives

‖̂y − yopt‖∞ ≤ (max j ‖F̂[ j]‖∞‖F̂[ j]‖−1
2 + ‖e‖2)

min j ‖F̂[ j]‖∞‖F̂[ j]‖−1
2 [1 − μ(s − 1)] − max j ‖F̂[ j]‖∞‖F̂[ j]‖−1

2 μs
‖e‖2

which implies

max
j

‖F̂[ j]‖L2

∣
∣‖F̂[ j]‖−1∞ âLasso(λ) j − a j

∣
∣ ≤ wmax + ε/

√
ΔtΔx

wmin[1 − μ(s − 1)] − wmaxμs
ε,

which yields (12). ��
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