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Abstract
Robust discretizationmethods for (nearly-incompressible) linear elasticity are free of volume-
locking and gradient-robust.While volume-locking is awell-known problem that can be dealt
with in many different discretization approaches, the concept of gradient-robustness for lin-
ear elasticity is new: it assures that dominant gradient fields in the momentum balance do not
lead to spurious displacements.We discuss both aspects and propose novel Hybrid Discontin-
uous Galerkin (HDG) methods for linear elasticity. The starting point for these methods is a
divergence-conforming discretization. As a consequence of its well-behaved Stokes limit the
method is gradient-robust and free of volume-locking. To improve computational efficiency,
we additionally consider discretizations with relaxed divergence-conformity and a modifica-
tion which re-enables gradient-robustness, yielding a robust and quasi-optimal discretization
also in the sense of HDG superconvergence.
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1 Introduction

In this contribution, we discuss and investigate the impact of dominant gradient forces
in nearly-incompressible, linear elasticity. Moreover, we restrict our considerations to an
isotropic model problem. Thus, we assume that � ⊂ R

d , d = 2, 3 denotes a bounded,
polyhedral Lipschitz domain and we consider the following vector-valued PDE in the dis-
placement formulation

− div (2μ∇su) − ∇ (λ div u) = f in �, (1a)

u = 0 on ∂�, (1b)

where u denotes the displacement, ∇su = (∇u + ∇T u)/2 denotes the symmetric gradient
operator, μ > 0, λ ≥ 0 denote the (constant) Lamé parameters, and f denotes an external
force. We focus on the case, where it holds simultaneously:

(1) the Poisson ratio 0 < ν := λ
2(λ+μ)

< 1
2 fulfills ν ≈ 1

2 , i.e, the Lamé parameters are
related by λ � μ, and the material is nearly incompressible;

(2) the exterior volume force is a gradient field, i.e., there exists some potential ψ with
f = ∇ψ .

Evidently, this discussion is especially relevant, if there does not exist any a-priori information
that a load vector f is actually a gradient field, i.e., if its Helmholtz–Hodge decomposition
is not known a-priori, which can be algorithmically exploited [34], or if f only contains
a dominant gradient field part in the sense of the Helmholtz–Hodge decomposition, see
[47,60].

The special role of gradient-forces in nearly-incompressible linear elasticity can be derived
from the observation that in the limit λ → ∞, the displacement u = u(λ) fulfills formally
an incompressible Stokes problem − div (2μ∇su∞) + ∇ p∞ = f , div u∞ = 0, where p∞
denotes a formal pressure, acting as a Lagrangian parameter for the divergence constraint.
Thus, in the incompressible limit it holds for the fully clamped situation (1)

f = ∇ψ ⇒ lim
λ→∞ u(λ) = 0, (2)

which compares well to (incompressible) hydrostatics in fluid dynamics.
Gradient-robustness: The concept of gradient-robustness is based on the observation (2):

an accurate discretization for the linear elasticity problem (1) will be called gradient-robust,
if a scheme for the system (1) delivers in the limit λ → ∞ on every fixed mesh the dis-
crete displacement uh = 0, if it holds f = ∇ψ . Actually, a gradient-robust discretization
for the linear elasticity problem (1) is asymptotic preserving (AP) in the sense of [45]. A
related concept of gradient-robustness has been introduced first for hydrostatic situations in
compressible flows [2].

Indeed, we will show in this contribution:

(i) dominant and complicated gradient fields are a possible source of spurious displace-
ments in isotropic, nearly-incompressible linear elasticity, if schemes are only free of
volume-locking, but are not gradient-robust;

(ii) H(div)-conforming finite element spaces can be exploited to construct efficient gra-
dient-robust numerical schemes for gradient forces ∇ψ ∈ L2 on rather arbitrary
unstructured grids;

(iii) the approximation spaces do not need to be H(div)-conforming, only certain test func-
tions need to be H(div)-conforming in the discretization of the load term f , in order to

123



Journal of Scientific Computing (2021) 86 :39 Page 3 of 30 39

enforce the L2 orthogonality of arbitrary gradient fields against discretely divergence-
free vector fields. This gives more flexibility to construct gradient-robust schemes that
are computationally efficient;

(iv) gradient-robustness is especially needed in non-trivial multi-physics problems.

Wewant to emphasize that it has not remained hidden for the elasticity community that inf-
sup stable schemes, which are free of volume-locking, are not sufficient for accurate schemes
in nearly-incompressible elasticity. For example, in the abstract of the articleApproximationof
incompressible large deformation elastic problems: some unresolved issues [12] the authors
write:

[…] it is shown that within the framework of displacement/pressure mixed elements,
even schemes that are inf-sup stable for linear elasticity may exhibit problems when
used in the finite deformation regime. The roots of such troubles are identified, but a
general strategy to cure them is still missing […]

As the root of the problem, the authors identify in the conclusion the need for an exact
fulfillment of the incompressibility constraint in the linearized problems, which is a statement
that has been already made earlier by the previous works [10,11]. A closer look to the two-
dimensional, incompressible and nonlinear benchmarks presented in [12, Tables 1 and 8]
reveals that H1-conforming Pk elements [70,74] with k = 2, 3, 4 in a Galerkin displacement
formulation perform best in the detection of a certain stability range, where stability around
the trivial displacement u = 0 under a parameter-dependent gradient forcing is investigated—
which is similar to (2). Finally, the authors of [12] warn the readers about problems with
ill-conditioning of high-order Pk elements, and recommend future research onNURBSbased
approaches, Discontinuous Galerkin and nonconforming methods, in order to find accurate
and efficient alternatives.

In order to enable the construction of novel competitive schemes for some unresolved or
maybe not fully-understood issues, the novel notion of gradient-robustness aims at changing
the focus from the incompressibility of the displacements u, i.e, the trial functions, to the
incompressibility in certain test functions. The concept of gradient-robustness makes clear
that the very same scheme may behave very well, when confronted with divergence-free
forces, but may fail when confronted with forces of gradient-type—thus obscuring the origin
of numerical errors.

And indeed, the classical Pk displacement elements, which delivered the most accurate
results in [12], are closely related to the classical Scott–Vogelius elements for the incom-
pressible Stokes problem [7,71,76], which have been demonstrated in recent years to be
advantageous for incompressible fluid dynamics, whenever the momentum balance is domi-
nated by strong and complicated gradient fields [1,33,47,59,69]. In incompressible CFD, such
schemes have been called pressure-robust [60], since strong gradient fields in the momentum
balance lead to strong pressure gradients likewise, but pressure-robustness is just a special
case of gradient-robustness, and implies that for rather arbitrary gradient forcings f = ∇ψ ,
the hydrostatic solution uh = 0 is preserved.

Besides inf-sup stability, the algorithmic key of these schemes is that they exploit a certain
H(div)-conformity, in order to be robust against strong gradient forces ∇ψ ∈ L2. Partially
in parallel, rather recently H(div)-conformity has also been exploited for the construction of
well-balanced schemes in hyperbolic conservation laws [2,24,63], where gradient fields are
also an important trouble maker in nearly hydrostatic or nearly geostrophic force balances
for PDEs like the shallow water, the compressible Euler or the compressible Navier–Stokes
equations [19,24,36,37,63,64].

123



39 Page 4 of 30 Journal of Scientific Computing (2021) 86 :39

As an application of the concept of gradient-robustness in elasticity problems, we will
construct efficient HDG schemes for (1), which fully exploit the robustness of H(div)-
conformity without being H(div)-conforming due to lowering the approximation order of
the face variables and thus being computationally cheaper. The idea is inspired from a
quite recent observation for the incompressible Stokes problem [26,29,50–52,54–58]. For
the incompressible Stokes problem a modified discretization of the exterior forcing via

∫
�

f · vh dx →
∫

�

f · �vh dx (3)

is able to re-establish the L2 orthogonality against arbitrary gradient fields f = ∇ψ ∈ L2.
Here, � is a (locally defined) operator that maps into a discrete H(div)-conforming space.
It needs to have some approximation properties, and has to preserve the discrete divergence
of vh , i.e., it has to fulfill div(�vh) = divh vh in a certain sense. In the case f = ∇ψ this
leads to

divh vh =0 ⇒
∫

�

∇ψ · �vh dx = −
∫

�

ψ div(�vh) dx = −
∫

�

ψ divh vh dx = 0. (4)

According to [47], this reestablished L2 orthogonality of gradient fields against discretely
divergence-free vector fields can be interpreted as a scheme that—on unstructured grids—
fulfills for arbitrary L2 gradient fields the vector calculus identity ∇h × ∇ψ = 0. Here,
∇h ×• denotes some implicitly defined discrete curl operator, whereas for standard schemes
it only holds ∇h × ∇ψ = O(hk) [47].

Last but not least, we will present numerical examples in 2D and 3D for a problem
in thermo-elasticity, where gradient-robustness against strong gradients fields in L2 leads
to much more accurate schemes for nearly incompressible materials. We conjecture that
nearly incompressible elasticity behaves somewhat similar to incompressible CFD: the more
difficult a problem is (in CFD: multi physics, high Reynolds numbers [33,47]) the more
important gradient-robustness will be for numerical accuracy. Finally, we remark that the
schemes proposed in this contribution will probably not be sufficient to solve the numerical
issues reported in [12]. We conjecture that for solving them, gradient-robustness against
arbitrary gradient fields in H−1 is necessary—which is true for the classical high order Pk

displacement method. However, very recent developments by Zanotti, Verfürth and Kreuzer
[49,73] have proved that the approach in (3) can be extended to the construction of novel
schemes that are gradient-robust even against rather arbitrary gradient fields in H−1.

The rest of the paper is organized as follows: In Sect. 2, we introduce the concepts of
volume-locking and gradient-robustness by considering very basic discretization ideas for
(1). Thereafter, in Sect. 3 we give an overview on existing discretizations for linear elas-
ticity in the literature with respect to these properties. Then, in Sect. 4 we present and
analyze a divergence-conforming HDG scheme, in particular, we prove that the scheme is
both volume-locking-free and gradient-robust. In Sect. 5 we consider and analyze two (com-
putationally more efficient) modified HDG schemes. Both have the same stiffness matrix,
but the discretization of the load term differs. The scheme with a standard discretization of
the load term is not gradient-robust, while a modified load term according to (3) leads to
gradient-robustness. The numerical Sect. 6 shows the importance of gradient-robustness for
multi-physics problem from thermo-elasticity and also demonstrates the practical efficiency
of using (relaxed) HDG schemes. We conclude in Sect. 7.
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2 Motivation: Volume-Locking and Gradient-Robustness

In this section we briefly repeat the concept of volume-locking and introduce the concept of
gradient-robustness. To illustrate these we consider very basic discretization ideas for (1) in
this section and give a definition of volume-locking and gradient-robustness, cf. [32] for a
more extensive discussion. Only later, in the subsequent sections we turn our attention to our
proposed discretization, a (relaxed) H(div)-conforming HDG method and analyse it, with
a focus on these properties. Due to the prominent role of the divergence operator in nearly
incompressible elasticity, we introduce the following space:

V 0 := {u ∈ H1
0(�) : div u = 0}. (5)

2.1 A Basic Method

Let us start with a very basic method. Let Th = {T } be a conforming simplicial triangulation
of �. We use a standard H1-conforming piecewise polynomial finite element space for the
displacement u in (1):

Pk
h,0 := [Pk

h,0]d with Pk
h :=

∏
T∈Th

P
k(T ) ∩ H1(�), and Pk

h,0 := Pk
h ∩ H1

0 (�)

where P
k(T ) is the space of polynomials up to degree k. The numerical scheme is: Find

uh ∈ Pk
h,0 s.t. for all vh ∈ Pk

h,0 there holds

a(uh, vh) :=
∫

�

2μ∇s(uh) :∇s(vh)dx +
∫

�

λ div(uh) div(vh)dx =
∫

�

f · vhdx (M1)

We choose a simple numerical example to investigate the performance of the method.

Example 1 We consider the domain (0, 1)2 and a uniform triangulation into right triangles.
For the right hand side we choose the divergence-free r.h.s.

f = 2μπ2(sin(πx) sin(π y), cos(πx) cos(π y))

and Dirichlet boundary conditions such that the unique solution is

u = (sin(πx) sin(π y), cos(πx) cos(π y)).

For successively refined meshes with smallest edge length h = 2−(L+2), fixed polynomial
degree k = 1 and levels L = 0, .., 6 we compute the error u − uh in the L2 norm and the
H1 semi-norm for different values of λ. The absolute errors are displayed in Fig. 1. Let

Fig. 1 Discretization errors for the method (M1), k = 1, under mesh refinement (x-axis: refinement level L)
and different values of λ for Example 1
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us emphasize that the solution u is independent of λ. However, we observe that this is not
true for uh . For instance, for λ = 105 convergence can not yet be observed on the chosen
meshes. Overall, we observe an error behavior of the formO(λ ·h) for the H1 semi-norm and
O(λ · h2) for the L2 norm. From the discretization (M1) we directly see that with increasing
λ we enforce that div u tends to zero (pointwise). For piecewise linear functions, however,
the only divergence-free function that can be represented is the constant function. This leads
to the observed effect which is known as volume-locking:

Definition 1 Volume-locking means that the discrete subspace of discretely divergence-free

vector fields V 0
h :=

{
vh ∈ Pk

h,0 : divh vh = 0
}
, does not have optimal approximation prop-

erties versus smooth, divergence-free functions v ∈ V 0 ∩ Hk+1(�)

inf
vh∈V 0

h

‖∇v − ∇vh‖� � C inf
vh∈Pk

h,0

‖∇v − ∇vh‖� ≤ Chk |v|k+1. (6a)

In the sense of Definition 1 the discretization (M1) with k = 1 is obviously not free of
volume-locking.

2.2 AVolume-Locking-Free Discretization ThroughMixed Formulation

To get rid of the locking-effect one often reformulates the grad-div term in (1) by rewriting
the problem in mixed form as

− div (2μ∇su) + ∇ p = f in �, div u + λ−1 p = 0 in �. (7)

With the intention to avoid volume-locking we now consider a discretization that is known to
be stable in the Stokes limit λ → ∞. Here, we take the well-known Taylor-Hood velocity-
pressure pair: Find (uh, ph) ∈ Pk

h,0 × Pk−1
h , s.t.

∫
�

2μ∇s(uh) : ∇s(vh) dx −
∫

�

div(vh)ph dx =
∫

�

f ·v dx ∀ vh ∈ Pk
h,0,∫

�

div(uh)qh dx +
∫

�

λ−1 phqh dx = 0 ∀ qh ∈ Pk−1
h .

(M2)

It is well-known that for every LBB-stable Stokes discretization the mixed formulation
of linear elasticity guarantees that the discretization is free of volume-locking in the sense
of Definition 1, cf. [16, Chapter VI.3]. Indeed, we numerically observe that, cf. [32], the
discretization errors of the method (M2) for Example 1 are essentially independent of λ and
optimally convergent.

2.3 Gradient-Robustness

In the previous subsection we considered a divergence-free force field. As a result of the
Helmholtz decomposition we can decompose every L2 force field into a divergence-free
and an irrotational part. In this section we now consider the case where the force field
is irrotational, i.e. a gradient of an H1 function. This will lead us to gradient-robustness.
Assume that there is φ ∈ H1(�) so that f = ∇φ. With λ → ∞ we have p → φ + c, c ∈ R

and u → 0 , i.e. in the Stokes limit gradients in the force field are solely balanced by the
pressure and have no impact on the displacement. In the next subsection, this reasoning will
be made more precise considering the limit λ → ∞.
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2.4 A Definition of Gradient-Robustness

First, we introduce the orthogonal complement of the weakly-differential divergence-free
vector fields (5) with respect to the inner-product a(·, ·) defined in (M1):

V⊥ := {u ∈ H1
0(�) : a(u, v) = 0,∀v ∈ V 0}. (8)

Then, the solution of the linear elasticity equation can be decomposed as

u = u0 + u⊥, u0 ∈ V 0, u⊥ ∈ V⊥, (9)

where u0 satisfies

a(u0, v0) = a(u, v0) = ( f , v0), ∀v0 ∈ V 0. (10)

The following lemma characterizes a robustness property of exact solutions to linear
elasticity problems.

Theorem 1 (Gradient-robustness of nearly incompressible materials) If the right hand side
f ∈ H−1(�) in (1a) is a gradient field, i.e. f = ∇φ, φ ∈ L2(�), then it holds for the
solution u = u0 + u⊥ (under homogeneous Dirichlet boundary conditions)

u0 = 0, ‖u⊥‖H1 = O(λ−1), i.e., for λ → ∞ one gets u = u⊥ → 0.

Proof Taking v0 = u0 in (10), we get

a(u0, u0) = ( f , u0) = (∇φ, u0) = (−φ, div(u0)) = 0.

Hence, u0 = 0. On the other hand we obtain

(2μ∇s(u⊥),∇s(u⊥))+(λ div u⊥, div u⊥)= f (u⊥)=−(φ, div u⊥)≤‖φ‖L2‖u⊥‖H1 .

FromKorn’s inequality ‖u⊥‖2
H1 ≤ C(2∇s(u⊥),∇s(u⊥)), and an estimate on the H1 normof

functions in V⊥, β‖u⊥‖H1 ≤ ‖ div u⊥‖L2 , where C is the constant for the Korn’s inequality
and β is the inf-sup constant of a corresponding Stokes problem, cf. [46, Corollary 3.47],

we hence have

(
μ

C
+ λ

β
)‖u⊥‖H1(�) ≤ ‖φ‖L2(�).

��
This characterization does not automatically carry over to discretization schemes.

Definition 2 Wedenote a space discretization for the linear elasticity problem (1) as gradient-
robust, if it holds in the limit λ → ∞ on every fixed grid

‖uh‖1,h = O(λ−1),

where ‖ • ‖1,h denotes an appropriate discrete H1 norm.

We demonstrate the consequences for the linear elasticity problem in the following, where
the load term f is a gradient field.

Example 2 We take f = ∇φ with φ = x6 + y6 and (homogeneous) Dirichlet boundary
conditions so that it holds u → 0 in the asymptotic limit λ → ∞.

123



39 Page 8 of 30 Journal of Scientific Computing (2021) 86 :39

Fig. 2 Norm of discrete solution for methods in (M1) (left) and (M2) (right), k = 2, under mesh refinement
(x-axis: refinement level L) and different values of λ for Example 2

We now compare (M1) and (M2) on a couple of fixed grids and we investigate the norms of
the solutions uh with respect to λ → ∞. The results for Example 2, are shown in Fig. 2.
While (M1) behaves well as ‖∇uh‖L2 goes to zero with λ−1 essentially independent of h,
for the method in (M2) we observe an upper bound for ‖∇uh‖L2 that depends on the mesh.

As a conclusion of the numerical examples, let us summarize that both basic methods that
we considered here, the discretization (M1) with k = 1 and the Taylor-Hood based method
in (M2) are not satisfactory. While (M1) with k = 1 seems to be gradient-robust it is not free
of volumetric locking, the behavior of the Taylor-Hood based method in (M2) has the exact
opposite properties.

3 Literature

There exists a variety of discretization methods for nearly-incompressible linear elasticity.
In this section we give a—non-exhaustive—overview on existing methods and classify them
with respect to the structure properties volume-locking and gradient-robustness:

(i) Historically, among the first methods for nearly incompressible linear elasticity, are
the pure displacement-based conforming finite element methods (M1). They are all
gradient-robust against gradient fields in H−1, because they are connected to the
divergence-free (and thus pressure-robust) H1-conforming mixed Scott–Vogelius ele-
ment for the incompressible Stokes problem. However, the low-order versions of these
methods are prone to volume-locking, on general shape-regular meshes. In order to be
robust against volume-locking, one has to choose a local polynomial degree of k ≥ 4
in 2D [71,74]. In 3D, it is partially proven and conjectured to be k ≥ 6 in 3D [78]. In
the late 70ies and early 80ies such high polynomial degrees seemed to be unfeasible
due to conditioning problems with the appropriate stiffness matrices, and researchers
were looking for alternatives. However, nowadays certain families of shape-regular
meshes are known that allow to decrease the polynomial order without running into the
problem of volume-locking [65]. Shape-regular meshes with barycentric refinements
(Alfeld splits) allow to use k = 2 in 2D [7] and k = 3 in 3D [76]. Shape-regular
meshes of Powell–Sabin type even allow for k = 1 in 2D [77] and k = 2 in 3D [79].
Nonconforming methods like [28] are typically designed to be free of volume-locking,
but are not gradient-robust.

(ii) Even in the 70ies, various techniques have been introduced in the literature to avoid
volume-locking, in order to be able to use low-order methods. This includes, for exam-
ple, the technique of reduced and selective integration [44,80] and mixed methods
like (M2), which have shown to be equivalent, later [61]. The idea of these meth-
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ods is to relax the strong penalization of the term λ(div uh, div vh) by something
lighter λ(divh uh, divh vh) conceptually replacing divergence-free H(div)-conforming
displacements by discretely divergence-free displacements and leading to a larger space
V 0

h , see Definition 1. But all these methods have a drawback: though free of volume-
locking, they are not gradient-robust, since they relax the orthogonality of gradient
fields and divergence-free fields in the L2 scalar product, likewise. This can be iden-
tified by the appearance of the possibly large term λ div u in the right hand side of
a-priori error estimates for the displacements. Sometimes authors hide this lack of
gradient-robustness of their schemes in replacing the right hand side dependency on
λ div u by a dependency on f , cf. also Remark 4 below.
Only quite recently, this issue has been observed and the origin of numerical inaccu-
racies has been traced back to the discretization of the load term ( f , vh). This insight
allowed to build schemes, which repair the L2 orthogonality of gradient fields (in L2)
and discretely divergence-free displacements, as we propose in this contribution. A
more sophisticated and more involved approach even allows to reestablish gradient-
robustness against gradient fields in H−1 [49,73].

(iii) Start from the 90ies, Discontinuous Galerkin methods were introduced that are free of
volume-locking. Some of them are only L2-conforming [40], some of them are even
H(div)-conforming [43,48]. H(div)-conforming schemes lead naturally to gradient-
robustness against gradient fields in L2, while schemes that are only L2 conforming
are not gradient-robust, in general, e.g. [18,41]. However, also L2-conforming schemes
can be gradient-robust versus L2 gradient fields if they converge (sufficiently fast) to an
H(div)-conforming scheme in the incompressible limit λ → ∞, cf. [3]. For example
in [40,75], this is achieved through the penalization of normal discontinuities which
are scaled proportional to λ.

(iv) Further, various (stress-based) mixed methods have been introduced, which are free of
volume-locking. Most of these methods are not gradient-robust [4–6,8,9,22,35,38,66].
More recent discretization strategies deliver similar results: the virtual element meth-
ods [14] and the hybrid high-order methods [25] are free of volume locking, but are
not gradient-robust. The isogeometric analysis [13] is locking-free and gradient-robust
by construction, since a stream function formulation for the incompressible mate-
rial is used. This is similar to discretizations for the incompressible Navier–Stokes
equations that directly discretize the vorticity equation. The decisive property for
gradient-robustness ∇ × ∇ψ = 0 is fulfilled here by construction. On the other hand,
the isogeometricmethod [27] is not gradient-robust, since it uses a reduced and selective
integration technique.

(v) Concerning hybridizable discontinuous Galerkin (HDG) methods, the schemes [20,23,
72] are free of volume locking, but are not gradient-robust.

(vi) Last but not least, we mention the approach [34], which could be adapted from its
original application for the incompressible Stokes problem to linear elasticity. It is
applicable to any computational method for the linear elasticity problem, which is con-
nected to an inf-sup stable mixed method for the incompressible Stokes problem. The
approach allows to reduce the numerical error induced by a lack of gradient-robustness
at the cost of solving an elliptic problem, which actually delivers a discrete Helmholtz–
Hodge decomposition. Then, the approachwill replace the standard discretization of the
load vector ( f , vh) by something more sophisticated, which is dependent on the given
mixed method under consideration. Effectively, one will end up with something similar
to our suggestion (3)—at the cost of solving an elliptic problem, which we can avoid
completely. Summing up, we observe that there exist several locking-free methods in
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the literature that are already gradient-robust. However, even among the most recently
presented schemes—which are typically superior to the older schemes in view of com-
putational efficiency—there are several schemes that lack gradient-robustness. In the
subsequent two sections we introduce additional discretizations schemes which are on
the one hand volume-locking-free and gradient-robust while exploiting the power of
modern HDG schemes with respect to computational efficiency.

4 H(div)-Conforming HDGDiscretization and Analysis

In this and the subsequent section we consider a special class of discretizations for linear
elasticity: H(div)-conforming HDG discretizations where we also keep track of the volume-
locking and gradient-robustness property of the method. In Subsects. 4.1– 4.3 we introduce
preliminaries, notation and the numerical method and analyse it with respect to quasi-optimal
error estimates and volume-locking in Subsect. 4.4. The proof of gradient-robustness is
carried out in Subsect. 4.5. Numerical results for the simple example of Sect. 2 support these
theoretical findings in Subsect. 4.6. In the subsequent section, Sect. 5, we consider a (more
efficient) modified scheme which is volume-locking-free, but is gradient-robust only after a
simple modification.

4.1 Preliminaries

Let Fh = {F} be the collection of facets (edges in 2D, faces in 3D) in Th . We distinguish
functions with support only on facets indicated by a subscript F and those with support
also on the volume elements which is indicated by a subscript T . Compositions of both
types are used for the HDG discretization of the displacement and indicated by underlining,
u = (uT , uF ). On each simplex T , we denote the tangential component of a vector vT on a
facet F by (vT )t = vT − (vT · n)n, where n is the unit normal vector on F . Furthermore,
we denote the compound exact solution as u := (u, ut ), and introduce the composite space
of sufficiently smooth functions

U(h) := (H2(�) ∩ H1
0(�)) × H1

0(Fh). (11)

We denote the Hs-norm on � as ‖ · ‖s , and when s = 0, we simply denote ‖ · ‖ as the
L2-norm on �.

4.2 Finite Elements

We consider an HDGmethod which approximates the displacement on the mesh Th using an
H(div)-conforming space and the tangential component of the displacement on the mesh
skeleton Fh with a DG facet space given as follows:

Vh := {vT ∈
∏
T∈Th

[Pk(T )]d : [[vT · n]]F = 0 ∀F ∈ Fh} ⊂ H0(div,�), (12a)

Mh := {vF ∈
∏
F∈Fh

Mk(F) : vF · n = 0 ∀F ∈ Fh, vF = 0 ∀F ⊂ ∂�}, (12b)
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where [[·]]F is the usual jump operator, Pk the space of polynomials up to degree k, and

Mk(F) :=
{ [P0(F)]3 ⊕ x × [P0(F)]3 if k = 1 and d = 3,

[Pk−1(F)]d else.

Note that functions in Mh are defined only on the mesh skeleton and have normal component
zero.

To further simplify notation, we denote the composite space as

Uh := Vh × Mh .

4.3 The Numerical Scheme

We introduce the L2 projection onto Mk(F) as �M :

�M : L2(F) → Mk(F),

∫
F
(�M f )v ds =

∫
F
f v ds ∀v ∈ Mk(F).

Then, for all u, v ∈ Uh , we introduce the bilinear and linear forms

ah(u, v) := aμ
h (u, v) + aλ

h (u, v) (13a)

aμ
h (u, v) :=

∑
T∈Th

∫
T
2μ∇s(uT ) : ∇s(vT ) dx

−
∫

∂T
2μ∇s(uT )n · [[vt ]] ds −

∫
∂T

2μ∇s(vT )n · [[ut ]] ds

+
∫

∂T
μ

α

h
�M [[ut ]] · �M [[vt ]] ds, (13b)

aλ
h (u, v) :=

∑
T∈Th

∫
T

λ div(uT ) div(vT ) dx, (13c)

f (v) :=
∑
T∈Th

∫
T
f · vT dx. (13d)

where [[ut ]] = (uT )t − uF is the (tangential) jump between element interior and facet
unknowns, and α = α0k2 with α0 a sufficiently large positive constant.

The numerical scheme then reads: Find uh ∈ Uh such that

ah(uh, vh) = f (vh), ∀vh ∈ Uh . (S1)

4.4 Error Estimates

We write

A � B

to indicate that there exists a constantC , independent of themesh size h, the Lamé parameters
μ and λ, and the numerical solution, such that A ≤ CB.

Denote the space of rigid motions

RM(T ) = {a + B x : a ∈ R
d , B ∈ Sd},
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where Sd is the space of anti-symmetric d × d matrices. We observe that the tangential trace
on a facet F of any function in RM(T ) is a constant in 2D, and lies in the space M1(F) in
3D. Hence, there holds

vt |F ∈ Mk(F), ∀v ∈ RM(T ). (14)

The above property is the key to prove coercivity of the bilinear form (13a).
We use the following projection �RM from H1(T ) onto RM(T ) [17]:∫

T
�RMu dx =

∫
T
u dx,

∫
T
curl (�RMu) dx =

∫
T
curl u dx,

where curl u is the anti-symmetric part of the gradient of u. Following [17] this projection
operator has the approximation properties

||∇(u − �RMu)||T � ||∇s(u)||T , (15a)

||u − �RMu||T � hT ||∇(u − �RMu)||T . (15b)

Denoting the following (semi)norms

‖v‖μ,h := μ
1
2 ‖v‖1,h, ‖v‖μ,∗,h := μ

1
2 ‖v‖1,∗,h, ‖v‖μ,∗∗,h := μ

1
2 ‖v‖1,∗∗,h,

‖v‖1,h :=
⎛
⎝ ∑

T∈Th

2‖∇svT ‖2T + 2

h
‖�M [[vt ]]‖2∂T

⎞
⎠

1/2

, (16a)

‖v‖1,∗,h :=
(
‖v‖21,h +

∑
T∈Th

2h‖∇s(vT )n‖2∂T
)1/2

, (16b)

‖v‖1,∗∗,h :=
(
‖v‖21,∗,h +

∑
T∈Th

2

h
‖[[vt ]]‖2∂T

)1/2
. (16c)

To derive optimal L2 error estimates, we shall assume the following full H2-regularity

μ‖φ‖2 + λ‖ div φ‖1 � ‖θ‖ (17)

for the dual problem with any source term θ ∈ [L2(�)]d :
− div (2μ∇sφ) − ∇ (λ divφ) = θ in �, (18a)

φ = 0 on ∂�. (18b)

The estimate (17) holds on convex polygons [18].
We have the following estimates.

Theorem 2 Assume k ≥ 1 and the regularity u ∈ Hk+1(�). Let uh ∈ Uh be the numeri-
cal solution to the scheme (S1). Then, for sufficiently large stabilization parameter α0, the
following estimates hold

‖u − uh‖μ,h � μ1/2hk‖u‖k+1, (19a)

‖ div(u − uT )‖ � (μ/λ)1/2hk‖u‖k+1 + hk‖ div u‖k . (19b)

Moreover, under the regularity assumption (17), the following estimate holds

‖u − uT ‖ � hk+1‖u‖k+1. (19c)
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Remark 1 (Volume-locking-free estimates) From the energy estimates (19a), we get that
∑
T∈Th

‖∇s(u − uh,T )‖2T + 1

h
‖�M [[(u − uh)

t ]]‖2∂T � h2k‖u‖2k+1,

with the hidden constant independent of the Lamé constants λ and μ. This observation also
holds for the L2-norm estimate (19c). Hence, the estimates are free of volume-locking when
λ → ∞.

Proof We proceed in the following five steps.
Step 1 (Coercivity): Observing the definition (13a) for the bilinear form aμ

h (·, ·), and
applying theCauchy-Schwarz inequality combinedwith trace-inverse inequalities,we obtain,
cf. [31, Lemma 2], for sufficiently large α,

‖vh‖2μ,h � aμ
h (vh, vh) ∀vh ∈ Uh . (20)

Step 2 (Norm equivalence): By property (14), we have �M (�RMvT )t = (�RMvT )t .
Hence, for any interior facet F ∈ Fh\∂� and any function v ∈ U(h) + Uh , we have

‖[[vt ]]‖F ≤ ‖�M [[vt ]]‖F + ‖vtT − �MvtT ‖F
≤ ‖�M [[vt ]]‖F + ‖(vT − �RMvT )t − �M (vT − �RMvT )t‖F
� ‖�M [[vt ]]‖F + ‖vT − �RMvT ‖F .

Using the trace theorem and approximation properties (15) of the projector �RM , we get

‖vT − �RMvT ‖2F �
∑

T∈T (F)

(h|vT − �RMvT |21,T + h−1‖vT − �RMvT ‖2T )

� h ‖∇svT ‖2T (F),

where T (F) is the set of the two simplices meeting F . Hence,

‖[[vt ]]‖F ≤ ‖�M [[vt ]]‖F + h1/2 ‖∇svT ‖T (F) ∀v ∈ U(h) + Uh . (21)

Recall the norms defined in (16), this directly implies

‖v‖μ,∗∗,h � ‖v‖μ,∗,h ∀v ∈ U(h) + Uh . (22a)

On the other hand, by trace and inverse inequalities, we have, cf. [31, Lemma 1],

‖vh‖μ,∗,h � ‖vh‖μ,h ∀vh ∈ Uh . (22b)

Step 3 (Boundedness): Applying the Cauchy-Schwarz inequality on the bilinear form
ah(·, ·), we obtain using the estimate (21)

aμ
h (v,w) ≤ ‖v‖μ,∗∗,h‖w‖μ,∗∗,h � ‖v‖μ,∗,h‖w‖μ,∗,h ∀v,w ∈ U(h) + Uh . (23)

Step 4 (Galerkin orthogonality, BDM interpolation): Galerkin orthogonality yieldsah(u,

vh) = f (vh) for all vh ∈ Uh . Hence, ah(u − uh, vh) = 0. We estimate the error by first
applying a triangle inequality to split

‖u − uh‖μ,h ≤ ‖vh − u‖μ,h + ‖uh − vh‖μ,h,

where we choose vh = (�V u,�Mu) where �V is the classical BDM interpolator, [15,
Proposition 2.3.2]. We note that the interpolation operator �V has, as a consequence of its
commuting diagram property, that∫

�

div(�V u − u)qh dx =
∫

�

(�Q div u − div u)qh dx = 0 ∀ qh ∈ Qh,

123



39 Page 14 of 30 Journal of Scientific Computing (2021) 86 :39

where �Q is the L2 projection into Qh = ∏
T∈Th

P
k−1(T ) = div Vh . Hence,

‖uh − vh‖2μ,h + λ‖ div(uT − vT )‖2
� aμ

h (uh − vh, uh − vh) + λ‖ div(uT − vT )‖2
= ah(uh − vh, uh − vh) = ah(u − vh, uh − vh)

= aμ
h (u − vh, uh − vh) + aλ

h (u − vh, uh − vh)︸ ︷︷ ︸
=0

� ‖u − vh‖μ,∗,h‖uh − vh‖μ,∗,h � ‖u − vh‖μ,∗,h‖uh − vh‖μ,h .

This implies

‖u − uh‖μ,h + λ1/2‖ div(uT − vT )‖ � ‖u − vh‖μ,∗,h � μ1/2hk‖u‖k+1, (24)

where the last estimate follows from usual Bramble–Hilbert-type arguments, cf. [54, Propo-
sition 2.3.8] for a proof in an almost identical setting. The estimate (19a) follows directly
from (24), and the estimate (19b) follows from (24) and the triangle inequality:

‖ div(u − uT )‖ ≤ ‖ div(uT − vT )‖ + ‖ div(u − vT )‖︸ ︷︷ ︸
=‖(I−�Q ) div u‖

� (μ/λ)1/2hk‖u‖k+1 + hk‖ div u‖k .
Step 5 (Duality): Let φ be the solution to the dual problem (18) with θ = u − uT and

φ = (φ,φt ) ∈ U(h). By symmetry of the bilinear form ah(·, ·) and consistency of the
numerical scheme (S1), we have with φ

h
= (�Vφ,�Mφ) ∈ Uh

‖u − uT ‖2� = ah(φ, u − uh) = ah(φ − φ
h
, u − uh)

= aμ
h (φ − φ

h
, u − uh) + aλ

h (φ − φ
h
, u − uh)

= aμ
h (φ − φ

h
, u − uh) + λ

∑
T∈Th

∫
T
div(φ − �Vφ) div(u − �V u)︸ ︷︷ ︸

=(I−�Q ) divφ (I−�Q ) div u

dx

� ‖φ − φ
h
‖μ,∗,h‖uh − u‖μ,∗,h + λ‖(I − �Q) divφ‖ · ‖(I − �Q) div u‖

� μhk+1‖φ‖2‖u‖k+1 + λhk+1‖ divφ‖1‖ div u‖k
� hk+1‖u − uT ‖�‖u‖k+1,

In the last step we invoked the regularity assumption (17). This completes the proof of (19c).
��

4.5 Gradient-Robustness

In this subsection we want to show that the H(div)-conforming HDG method in (S1) is
gradient-robust. In this section a splitting into a discretely divergence-free subspace and an
orthogonal complement is crucial. To proceed, it seems more natural to work with a DG-
equivalent reformulation of the HDG scheme (S1) by eliminating the facet unknowns (for
analysis purposes only). In Remark 2 below we explain how this translates to the HDG
setting.
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We introduce the lifting Lh : Vh + H2
0(�) → Mh where Lh(wT ) is the unique function

in Mh such that

ah((wT ,Lh(wT ), (0, vF )) = 0, ∀vF ∈ Mh .

For the case of a uniform mesh size h, an explicit formula can easily derived yielding

Lh(wT ) = {{�MwT }}∗ − h

2α
[[∇swT · n]]∗,

where {{·}}∗ and [[·]]∗ are the usual DG average and jump operators. Then, the solution uh =
(uT , uF ) ∈ Uh to the scheme (S1) satisfies uF = Lh(uT ), with uT ∈ Vh being the unique
function such that

âh(uT , vT ) = f̂ (vT ) ∀vT ∈ Vh, (S1-DG)

where âh(·, ·) and f̂ are defined on Vh as follows:

âh(vT ,wT ) := ah ((vT ,Lh(vT )), (wT , 0)) , f̂ (wT ) := f ((wT , 0)), vT ,wT ∈ Vh .

Analogously (with slight abuse of notation) we define a norm on Vh with

‖uT ‖1,h := ‖(uT ,Lh(uT ))‖1,h .
Introducing the spaces

V 0
h := {vT ∈ Vh : div vT = 0, ∀T ∈ Th}, (25a)

and

V⊥
h := {vT ∈ Vh : âh(vT ,wT ) = 0, ∀wT ∈ Vh}, (25b)

we then split the solution uT ∈ Vh to the scheme (S1-DG) as uT = u0T + u⊥
T where

u0T , u⊥
T ∈ Vh are the unique solutions to the following equations:

âh(u0T , v0T ) = f̂ (v0T ) ∀ v0T ∈ V 0
h , (26a)

âh(u⊥
T , v⊥

T ) = f̂ (v⊥
T ) ∀ v⊥

T ∈ V⊥
h . (26b)

We are now ready to state the following gradient-robustness property of the schemes (S1-DG)
and(S1) analogously to the continuous case in Theorem 1.

Theorem 3 (Gradient-robustness of (S1-DG)) The scheme (S1-DG) (and hence scheme (S1))
is gradient-robust, i.e. for f = ∇φ, φ ∈ H1(�), the solution uT = u0T + u⊥

T ∈ Vh satisfies

u0T = 0, ‖u⊥
T ‖1,h = O(λ−1).

In particular, for λ → ∞ one gets uT → 0.

To prove Theorem 3, we shall first recall the following inf-sup stability result.

Lemma 1 (inf-sup stability)
The following properties hold:
There holds the discrete LBB condition:

sup
uT ∈Vh

(div uT , qh) ≥ β‖qh‖‖uT ‖1,h for all qh ∈ Qh . (27a)

for β independent of μ, h, k. Moreover, for all qh ∈ Qh there exists a unique u⊥
T ∈ V⊥

h ,
s.t.

div(u⊥
T ) = qh and ‖u⊥

T ‖1,h ≤ β−1‖qh‖. (27b)
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Fig. 3 Discretization error for Example 1 (left) and norm of discrete error for Example 2 (right) for the method
(S1), k = 2, under mesh refinement (x-axis: refinement level L) and different values of λ for Example 2

Proof For (27a) we refer to [53] where (27b) is a direct consequence of (27a) as it implies the
existence of an isomorphism between V⊥

h and Qh related to (div(·), ·), cf. e.g. [46, Lemma
3.58]. ��
We now prove Theorem 3.

Proof of Theorem 3 For the proof it is crucial to first establish a result as in (4). With f̂ (·) =
(∇φ, ·)�

there holds after partial integration

f̂ (v0T ) = −
∑
T∈Th

(φ, div v0T )T +
∑
F∈Fh

(φ, [[v0T · n]]F ) = 0 ∀ v0T ∈ V 0
h . (28)

From the decomposition in (26) we hence have u0T = 0. Taking v⊥
T := u⊥

T in (26b) we get

μ‖u⊥
T ‖21,h + λ‖ div(u⊥

T )‖2 � âh(u⊥
T , u⊥

T ) = f̂ (u⊥
T ) � ‖φ‖1‖u⊥

T ‖1,h .
Since Lemma 1 implies that

‖u⊥
T ‖1,h ≤ β−1‖ div(u⊥

T )‖,
we finally obtain

‖u⊥
T ‖1,h � 1

μ + λ
‖φ‖1 λ→∞−→ 0.

��
Remark 2 The splitting into a divergence-free subspace and its ah-orthogonal complement
can also be done for Uh . Let us relate the splitting of Vh to a corresponding splitting of Uh .
First, there holds U0

h = V 0
h × Mh and U⊥

h = {(vT , vF ) ∈ Uh | vT ∈ V⊥
h , vF = Lh(vT )}.

Second, the solution uh of (S1) then has the splitting uh = u0h + u⊥
h with

u0h = (u0T ,Lh(u0T )) ∈ U0
h and u⊥

h = (u⊥
T ,Lh(u⊥

T )) ∈ U⊥
h and for f = ∇φ, φ ∈ H1(�)

there holds u0h = 0 and ‖u⊥
h ‖1,h = O(λ−1).

4.6 Numerical Results

The numerical results for the two examples in Sect. 2 for the scheme (S1) are given in Fig. 3
and are consistent with the results in Theorem 2 and Theorem 3.
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5 Relaxed H(div)−Conforming HDGDiscretization

The results in Theorem 2 provide optimal error estimates for the method (S1). However, for
the approximation of the displacement with a polynomial degree k it requires unknowns of
degree k for the normal component of the displacement on every facet of the mesh. In view
of the superconvergence property of other HDG methods [20,67], where only unknowns
of polynomial degree k − 1 on the facets are required to obtain an accurate polynomial
approximation of order k (possibly after a local post-processing) this is sub-optimal. Here
we follow [50] to slightly relax the H(div)-conformity so that only unknowns of polynomial
degree k − 1 are involved for normal-continuity. This allows for optimality of the method
also in the sense of superconvergent HDG methods. The resulting method is still volume-
locking-free. We assume the polynomial degree k ≥ 2 in the following discussion.

5.1 The Relaxed H(div)-Conforming HDG Scheme

We introduce the modified vector space

V−
h := {vT ∈

∏
T∈Th

[Pk(T )]d : �k−1
F [[vT · n]]F = 0, ∀F ∈ Fh}, (29)

where �k−1
F : L2(F) → Pk−1(F) is the L2(F)-projection:∫

F
(�k−1

F w)v ds =
∫
F

w v ds, ∀v ∈ Pk−1(F). (30)

Details of the construction of the finite element space V−
h can be found in [50, Sect. 3].

Functions in V−
h are only “almost normal-continuous”, but can be normal-discontinuous in

the highest orders.
Denoting the compound finite element space

U−
h := V−

h × Mh,

then the relaxed H(div)-conforming HDG scheme reads: Find uh ∈ U−
h such that

ah(uh, vh) = f (vh), ∀vh ∈ U−
h . (S2)

Remark 3 Notice that the globally coupled degrees of freedom for the above relaxed H(div)-
conforming scheme are polynomials of degree k−1 per facet for both tangential and normal
component of the displacement, while that for the original H(div)-conforming scheme (S1)
are polynomials of degree k − 1 per facet for the tangential component of the displacement,
and polynomials of degree k per facet for the normal component. This relaxation reduces
the globally coupled degrees of freedom which improves the sparsity pattern of the linear
systems, cf. Table 1 below for the effect on a numerical example.

5.2 Error Estimates

The error analysis of the relaxed scheme (S2) follows closely from that for the original
scheme (S1) in Theorem 2.

Due to the violation of H(div)-conformity of V−
h , we have a consistency term to take care

of.
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Lemma 2 Let u ∈ H2(�)∩H1
0(�) be the solution to the equations (1) and define the splitting

f = f μ+ f λ with f μ = − div (2μ∇su) and f λ = −∇ (λ div u) and f (·) = f μ(·)+ f λ(·)
correspondingly.Denote u := (u, ut ) ∈ U(h). There holds for all v = (vT , vF ) ∈ U−

h +U(h)

aμ
h (u, v) = f μ(v) + Eμ

c (u, v), (31a)

aλ
h (u, v) = f λ(v) + Eλ

c (u, v), (31b)

ah(u, v) = f (v) + Ec(u, v), (31c)

with

Eμ
c (u, v) =

∑
T∈Th

∫
∂T

(2μ(∇s(u)n) · n) (id−�k−1
F )(vT · n), (31d)

Eλ
c (u, v) =

∑
T∈Th

∫
∂T

(λ div u) (id−�k−1
F )(vT · n), (31e)

Ec(u, v) = Eμ
c (u, v) + Eλ

c (u, v). (31f)

Moreover, for u ∈ H�(�), � ≥ 2 and 1 ≤ m ≤ min(k, � − 1) we have

Eμ
c (u, v) � hmμ1/2‖u‖m+1‖v‖μ,h, Eλ

c (u, v) � hm
λ

μ1/2 ‖ div u‖m‖v‖μ,h . (32a)

Ec(u, v) � hm
(

μ1/2‖u‖m+1 + λ

μ1/2 ‖ div u‖m
)

‖v‖μ,h . (32b)

Proof By continuity of u and integration by parts, we get

aμ
h (u, v) − f μ(v) =

∑
T∈Th

∫
∂T

2μ∇s(u)n · (vT − vtT ) ds

=
∑
T∈Th

∫
∂T

2μ(∇s(u)n · n(vT · n) ds

=
∑
T∈Th

∫
∂T

(2μ(∇s(u)n) · n)(id−�k−1
F )(vT · n) ds

= Eμ
c (u, v),

where the third equality follows from the fact that �k−1
F [[v · n]]F = 0 for all v ∈ V−

h .
Analogously we obtain aλ

h (u, v) − f λ(v) = Eλ
c (u, v).

Applying the Cauchy-Schwarz inequality and properties of the L2-projection, we have

Eμ
c (u, v) =

∫
∂T

(id−�k−1
F ) (2μ(∇s(u)n) · n) (id−�k−1

F )(vT · n)

≤
(
2μ‖(id−�k−1

F )∇s(u)‖∂T

)
‖(id−�k−1

F )(vT · n)‖∂T

� hm−1/2μ‖∇s(u)‖Hm (T )‖(id−�k−1
F )(vT · n)‖∂T

� hmμ‖u‖Hm+1(T )‖(id−�RM)vT ‖∂T � hmμ‖u‖Hm+1(T )‖∇svT ‖T ,
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where the last inequality follows from the trace theorem and the approximation properties
(15). Similarly,

Eλ
c (u, v) =

∫
∂T

(id−�k−1
F )λ div u(id−�k−1

F )(vT · n)

≤ λ‖(id−�k−1
F ) div u‖∂T ‖(id−�k−1

F )(vT · n)‖∂T

� hmλ‖ div u‖Hm (T )‖∇svT ‖T .

Summing over all elements concludes the proof. ��
We have the following error estimates, the proof of which we only sketch with a focus on

the modification needed from the proof for Theorem 2.

Theorem 4 Assume k ≥ 2 and the regularity u ∈ Hk+1(�). Let uh ∈ U−
h be the numeri-

cal solution to the scheme (S2). Then, for sufficiently large stabilization parameter α0, the
following estimate holds

‖u − uh‖μ,h � hk(μ1/2‖u‖k+1 + λ

μ1/2 ‖ div u‖k), (33a)

‖ div(u − uT )‖ � (μ/λ)1/2hk‖u‖k+1 +
(

λ1/2

μ1/2 + 1

)
hk‖ div u‖k . (33b)

Moreover, under the regularity assumption (17), the following estimate holds

‖u − uT ‖ � hk+1
(

‖u‖k+1 + (
λ

μ
+ 1)‖ div u‖k

)
. (33c)

Remark 4 (Volume-locking-free estimates) For convex polygonal domain �, it is proven
[18] that

μ‖u‖2 + λ‖ div u‖1 � ‖ f ‖.
If we have the regularity shift, for k ≥ 2,

μ‖u‖k+1 + λ‖ div u‖k � ‖ f ‖k,
the above estimates are free of volume-locking when λ → +∞.

Proof To prove the energy estimates (33a) and (33b), we still take vh = (�V u,�Mu) ∈
Uh ⊂ U−

h as in the proof of Theorem 2. By coercivity,

‖uh − vh‖2μ,h + λ‖ div(uT − vT )‖2
� aμ

h (uh − vh, uh − vh) + λ‖ div(uT − vT )‖2
= ah(uh − vh, uh − vh) = ah(u − vh, uh − vh) − Ec(u, uh − vh)

= aμ
h (u − vh, uh − vh) − Ec(u, uh − vh)

�
(

‖u − vh‖μ,∗,h + μ1/2hk‖u‖k+1 + λ

μ1/2 h
k‖ div u‖k

)
‖uh − vh‖μ,h

This implies

‖u − uh‖μ,h + λ1/2‖ div(uT − vT )‖ � hk
(

μ1/2‖u‖k+1 + λ

μ1/2 ‖ div u‖k
)

.

Then, the estimates (33a) and (33b) follow from (24) and the triangle inequality.
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Fig. 4 Discretizaton error for Example 1 (left) and norm of discrete error for Example 2 (right) for the method
(S2), k = 2, under mesh refinement (x-axis: refinement level L) and different values of λ for Example 2

To prove the L2-estimate, let φ be the solution to the dual problem (18) with θ = u− uT
and φ = (φ,φt ) ∈ U(h). By symmetry of the bilinear form ah(·, ·) and Lemma 2, we have,
with φ

h
= (�Vφ,�Mφ) ∈ Uh

‖u − uT ‖2� = ah(φ, u − uh) − Ec(φ, u − uh)

= ah(φ − φ
h
, u − uh) − Ec(φ, u − uh) + Ec(u,φ

h
)︸ ︷︷ ︸

=0

� h(μ‖φ‖2 + λ‖ divφ‖1)(μ−1/2‖u − uh‖μ,∗,h + ‖(I − �Q) div u‖)
� hk+1‖u − uT ‖�

(
‖u‖k+1 + (

λ

μ
+ 1)‖ div u‖k

)
.

In the last step we invoked the regularity assumption (17). This completes the proof of (33c).
��

5.3 Numerical Results for the Scheme (S2)

The numerical results for the two examples in Sect. 2 for the scheme (S2) are given in
Fig. 4. We observe from Fig. 4 (left) that the errors for the scheme (S2) are independent of
λ for Example 1, which are similar to those for the scheme (S1). This is consistent with the
volume-locking-free estimates in Theorem 4. However, the norm of the discrete solution for
the scheme (S2) for Example 2 shows an upper bound depending on h which indicates that
it is not gradient-robust. In the next subsection, we slightly modify the scheme (S2) to make
it gradient-robust.

5.4 Gradient-Robust Relaxed H(div)-Conforming HDG Scheme

Note that Theorem 3 does not directly translate to the relaxed H(div)-conforming case only
because (28), the counterpart to (4), does not hold as the facet normal jumps do not vanish.
In this section we introduce the following modification of (S2) in the treatment of the right
hand side that re-enables gradient-robustness: Find uh ∈ U−

h such that

ah(uh, vh) = f ((�V vT , 0)), ∀vh ∈ U−
h . (S3)

Here,�V is a generalization of the BDM interpolator, [15, Proposition 2.3.2], which can deal
with only element-wise smooth functions by averaging, cf. the Appendix for a definition.

Remark 5 Let us note that the BDM interpolator is not mandatory here. In [50] and [51]
several conditions on a suitable reconstruction operator are formulated. A much simpler
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version of the BDM interpolation operator is suggested that exploits the knowledge on the
pre-image V −

h and a proper basis for the relaxed H(div)-conforming finite element space.
The reconstruction operation can then be realized by a simple averaging of a few unknowns
which makes it computationally very cheap. In the numerical examples below we make use
of this operator.

To prove gradient-robustness of the scheme (S3), we consider its equivalent DG formulation
as in Sect. 4.5: Find uT ∈ V −

h such that

âh(uT , vT ) = f̂ (�V vT ), ∀vT ∈ V −
h . (S3-DG)

If we consider a splitting as in (25) with

V −,0
h := {vT ∈ V −

h : div vT = 0, ∀T ∈ Th} (34a)

and

V −,⊥
h := {vT ∈ V −

h : âh(vT ,wT ) = 0,∀wT ∈ V −,0
h }, (34b)

we can again decompose the numerical solution uT ∈ V −
h to the scheme (S3-DG) as uT =

u0T + u⊥
T with u0T ∈ V −,0

h , u⊥
T ∈ V −,⊥

h satisfying

âh(u0T , v0T ) = f̂ (�V v0T ) ∀ v0T ∈ V −,0
h , (35a)

âh(u⊥
T , v⊥

T ) = f̂ (�V v⊥
T ) ∀ v⊥

T ∈ V −,⊥
h . (35b)

Lemma 3 The scheme (S3-DG) (and hence scheme (S3)) is gradient-robust, i.e. for f = ∇φ,
φ ∈ H1(�), the solution uT = u0T + u⊥

T ∈ V −
h has u0T = 0, ‖u⊥

T ‖1,h = O(λ−1).

Proof With the application of �V on the right hand side we can re-establish a result as in
(4).

There holds after partial integration

f̂ (�V v0T ) = −
∑
T∈Th

(φ, div�V v0T )T +
∑
F∈Fh

(φ, [[�V v0T · n]]F ) = 0 ∀ v0T ∈ V −,0
h . (36)

where we used div�V v0T = 0 cf. [50, Lemma 4.8] and [[�V v0T · n]]F = 0. The remainder
of the proof follows from the proof of Theorem 3. ��
Next, we present the improved volume-locking-free error estimates for the scheme (S3). We
need the following improved version of Lemma 2.

Lemma 4 Let u ∈ H2(�)∩H1
0(�) be the solution to the equations (1) and define the splitting

f = f μ+ f λ with f μ = − div (2μ∇su) and f λ = −∇ (λ div u) and f (·) = f μ(·)+ f λ(·)
and f̂ (·) = f̂ μ(·)+ f̂ λ(·) correspondingly. Denote u := (u, ut ) ∈ U(h). There holds for all
v = (vT , vF ) ∈ U−

h

aμ
h (u, v) = f̂ μ(�V vT ) + Ẽμ

c (u, v), (37a)

aλ
h (u, v) = f̂ λ(�V vT ), (37b)

ah(u, v) = f̂ (�V vT ) + Ẽμ
c (u, v), (37c)

with Ẽμ
c (u, v) = Eμ

c (u, v) + f̂ μ(vT − �V vT ). (37d)
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Moreover, for u ∈ H�(�), � ≥ 2 and 1 ≤ m ≤ min(k, � − 1) we have

Ẽμ
c (u, v) � hmμ1/2‖u‖m+1‖v‖μ,h . (38)

Proof From (31a) the result (37a) follows directly. Next, we note that div�V vT = div vT for
vT ∈ V−

h . This, we can see from the following observation. Let q ∈ P
k−1(T ) and T ∈ Th .

Then, we have∫
T
div(�V vT )q dx = −

∫
T

�V vT · ∇q dx +
∫

∂T
�V vT · n q ds

= −
∫
T

vT · ∇q dx +
∫

∂T
vT · n q ds =

∫
T
div(vT )q dx

whereweexploited (41a) and (41b) of theBDM-type interpolation.Asdiv(vT ), div(�V vT ) ∈
P
k−1(T ) we obtain div(vT ) = div(�V vT ) pointwise. Then, (37b) follows from partial inte-

gration:

f̂ λ(�V vT ) =
∑
T∈Th

∫
T

−∇(λ div u)�V vT dx

=
∑
T∈Th

∫
T

λ div u div(�V vT )︸ ︷︷ ︸
=div vT

dx −
∫

∂T
λ div u�V vT · n ds

= aλ
h (u, v) −

∑
F∈Fh\∂�

∫
F

λ div u [[�V vT ]]F︸ ︷︷ ︸
=0

·n ds = aλ
h (u, v).

Next, we note that for T ∈ Th there holds with standard Bramble-Hilbert arguments (vT ∈
H1(T ))

‖(id−�V )vT ‖2T � h‖∇vT ‖T (39)

as constants are in the kernel of id−�V . Let further Pm−2 f be the element-wise L2 pro-
jection into [Pm−2(T )]d , T ∈ Th . Then, we have

( f μ,vT − �V vT ) = ( f μ − Pm−2 f μ, vT − �V vT ) ≤ ‖ f μ − Pm−2 f μ‖‖vT − �V vT ‖
� hm−1‖ f μ‖m−1 h‖vT ‖1,h � hmμ‖u‖m+1 ‖v‖1,h � hmμ

1
2 ‖u‖m+1 ‖v‖μ,h .

Here, we made use of (41b) in the last step. ��
The improved locking-free error estimates for the scheme (S3), compared with the esti-

mates in Theorem 4 for the scheme (S2), is given below.

Theorem 5 Assume k ≥ 2 and the regularity u ∈ Hk+1(�). Let uh ∈ U−
h be the numeri-

cal solution to the scheme (S3). Then, for sufficiently large stabilization parameter α0, the
estimates (19a)–(19c) hold.

Proof Proceeding as in the proof of Theorem 4 (and hence using the equivalent HDG-version
again) with vh = (�V u,�Mu) ∈ Uh ⊂ U−

h and wh := uh − vh ∈ U−
h , we obtain

‖wh‖2μ,h + λ‖ div(wT )‖2
� ah(wh,wh) = ah(u − vh,wh) − Ẽμ

c (u,wh)
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= aμ
h (u − vh, wh) + aλ

h (u − vh, wh)︸ ︷︷ ︸
=0

−Ẽμ
c (u,wh)

�
(
‖u − vh‖μ,∗,h + μ

1
2 hk‖u‖k+1

)
‖wh‖μ,h .

With interpolation estimates for ‖u − vh‖μ,∗,h this implies

‖uh − vh‖μ,h + λ
1
2 ‖ div(uT − vT )‖ � μ

1
2 hk‖u‖k+1.

Then, the estimates (19a) and (19b) follow from triangle inequalities.
For the L2-estimate, let φ be the solution to the dual problem (18) with θ = �V (u− uT )

and φ
h

∈ Uh the corresponding interpolation as before. Noting that Ẽμ
c (·,wh) does not

depend on wF = uF − �Mu, cf. Lemma 2 and Lemma 4, and φ = (φ,φt ) we get for
�v = �(vT , vF ) = (�V vT ,�MvF ), v = (vT , vF ) ∈ U(h)

‖�V (u − uT )‖2� = ah(φ,�(u − uh)) −
=0︷ ︸︸ ︷

Ẽμ
c (φ,�(u − uh))

= ah(φ, u − uh) − ah(φ, (id−�)(u − uh))

= ah(φ − φ
h
, u − uh) − ah(φ, (id−�)(u − uh)) +

=0︷ ︸︸ ︷
Ẽμ
c (u,φ

h
)

= ah(φ − φ
h
, u − uh) − (θ , (id−�V )(u − uT ))︸ ︷︷ ︸

(�V (u−uT ),(id−�V )(u−uT ))=0

� h(μ‖φ‖2 + λ‖ divφ‖1)(μ− 1
2 ‖u − uh‖μ,∗,h + ‖(id−�Q) div uT ‖)

� ‖�V (u − uT )‖� ·
(
h

(
μ

− 1
2 ‖u − uh‖μ,∗,h + ‖(id−�Q) div u‖

))

Dividing by ‖�V (u − uT )‖� and applying the triangle inequality:

‖u − uT ‖� ≤ ‖�V (u − uT )‖� + ‖(id−�V )(u − uT )‖�︸ ︷︷ ︸
�h‖u−uh‖1,h

yields

‖u − uT ‖� � h

(
μ

− 1
2 ‖u − uh‖μ,∗,h + ‖(id−�Q) div u‖

)

and hence the claim. ��

With this result we conclude that method (S3) has quasi-optimal a-priori error bounds and
is both volume-locking-free and gradient-robust.

5.5 Numerical Results for the Scheme (S3)

The numerical results for the two examples in Sect. 2 for the scheme (S3) are given in Fig. 5.
As expected, the results are now essentially similar to those for the scheme (S1), but are
obtained with reduced computational costs.
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Fig. 5 Discretization error for Example 1 (left) and norm of discrete error for Example 2 (right) for the method
(S3), k = 2, under mesh refinement (x-axis: refinement level L) and different values of λ for Example 2

6 Numerical Experiments for Linear-Thermoelastic Solids

At the moment, we are aware of three different multi-physics applications, where gradient
fields f = ∇φ arise naturally: thermo-elasticity [42], poro-elasticity [30,48] and models
for strained InGaAs quantum dots [62, equation (7)]. We remark that even more interesting
examples would be thosemulti-physics situations, where f would be a load vector dependent
on some other physical process, andwhere it would not be clear a-priori, whether it represents
a gradient field, a divergence-free vector field or a linear combination of both of them—in
the sense of the Helmholtz–Hodge decomposition. Such situations are well known from fluid
dynamics,where the nonlinear convection term (u·∇)u = ∇·(u⊗u) represents such a forcing
[47]. Thus, due to structural similarities between fluid dynamics and Maxwell’s equations,
we conjecture to find appropriate applications in elasticity, wherever electromagnetic forces
interact with mechanical forces, i.e., where f is given by the Maxwell stress tensor. But this
is ongoing work.

In the following, we will numerically investigate an application coming from a
multi-physics context, where complicated gradient forces arise. Thus, we consider linear-
thermoelastic solids, where the constitutive equation for the stress tensor reads as

σ = C
{
ε − εth

}
with εth = α(θ − θ0)I,

where C and ε = ε(u) = ∇su denote the elasticity tensor and the linearized strain tensor.
Further,α denotes the thermal expansion coefficient, θ is the temperature field, and θ0 denotes
a constant reference temperature. For isotropic materials, this reduces to

σ el = Cε = 2με + λtr(ε)I

σ th = Cεth = (2μ + 3λ)α(θ − θ0)I

σ = σ el − σ th = 2με + λtr(ε)I − (2μ + 3λ)α(θ − θ0)I

with Lamé coefficients μ, λ, see [42, pp. 528–529]. Thus, we finally obtain a momentum
balance

− div (2μ∇su) − ∇ (λ div u) = −(2μ + 3λ)α div (θ I) = −(2μ + 3λ)α∇θ. (40)

where −(2μ + 3λ)αθ denotes the potential of a gradient force. For complicated and large
temperature profiles θ this gradient force can be arbitrarily complicated.

We consider twoweakly-coupled linear thermoelasticity problems in both two dimensions
(2D) and three dimensions (3D), where the source term in the momentum equation (1a) is
given according to (40) by

f = −(2μ + 3λ)α∇θ.
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Table 1 Measures for the costs of solving linear systems for different methods in 2D and 3D. Polynomial
degree k = 2

Method: (M2) div-DG (S1) (S3) (M2) div-DG (S1) (S3)

2D, h = 0.01L 3D, h = 0.05L

dof 91K 151K 271K 301K 29K 112K 331K 365K

gdof 91K 151K 149K 119K 29K 112K 140K 106K

nze 2.7M 7.4M 3.8M 2.4M 2.6M 17.7M 12.2M 7.1M

f.time 0.36s 1.4s 0.36s 0.26s 1.1s 16.6s 4.3s 2.1s

The computational domain is a square with length L in 2D and a cube with length L in 3D.
We take the length L = 0.1 [m]. The temperature field is obtained as the solution of the
steady-state heat equation:

−∇ · γ∇θ = f ,

where γ = 0.2 [W/(m K)] is the thermal conductivity coefficient, and f = 4 ×
103 exp(−40r2) [W/m3] is the heat source, with r2 = r(x, y)2 = (x −0.5L)2 + (y−0.5L)2

in 2D and r2 = r(x, y, z)2 = (x − 0.5L)2 + (y − 0.5L)2 + (z − 0.5L)2 in 3D. With such a
heat source, the temperate field achieves its maximum value at the center of the domain with
θmax = θ(0.5L, 0.5L) ≈ 14[K] in 2Dand θmax = θ(0.5L, 0.5L, 0.5L) ≈ 10[K] in 3D.For the
other material parameters, we use a nearly incompressible hard rubber material with Young’s
modulus E = 5 × 107[Pa], Poisson ratio ν = 0.4999, and thermal expansion coefficient
α = 8 × 10−5[1/K]. Hence, the Lamé parameters are μ = E

2(1+ν)
≈ 1.667 × 107 [Pa], λ =

Eν
(1−2ν)(1+ν)

≈ 8.332 × 1010 [Pa]. Homogeneous Dirichlet boundary conditions are imposed

for both displacement and temperature. Let us note that θ ∈ H1(�) so that f ∈ L2(�)

The finite element library NGSolve [68] is used for all the simulations. We compare
five volume-locking-free methods, namely, the mixed method (M2), the H(div)-conforming
HDG (div-HDG) scheme (S1), the relaxed H(div)-conforming HDG (r.div-HDG)
scheme (S2), and its gradient-robust modification (S3), and the H(div)-conforming dis-
continuous Galerkin (div-DG) method used in [43,48]. Among these five methods, only the
schemes (S1), (S3) and the div-DG scheme are gradient-robust.

For the three dimensional problem, we only run the simulation on the subdomain � =
(0, 0.5L) × (0, 0.5L) × (0, 0.5L) and impose the symmetry boundary condition on the
top/front/right faces.

We use polynomials of degree k = 2 throughout, and compute the temperature field using
quadratic conforming finite element on the same mesh for all the methods. The following
measures have been taken to compare the methods’ computational effort. We consider the
number of unknowns that appear in the methods (dofs). For the HDG schemes, we apply
static condensation prior to solving the linear systems, i.e.we eliminate all unknowns that have
only element-local couplings. The remaining unknowns are denoted as the globally coupled
degrees of freedom (gdofs). We measure the sparsity pattern of the resulting linear systems
by recording the number of non-zero entries in the matrix (nze). Finally, we use a direct
factorization method to prepare the solution of linear systems and measure the computation
time on a shared-memory machine with 16 cores for the four methods (f.time). Note that
these measurements are identical for the two r.div-HDG schemes (S2) and (S3), hence
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Fig. 6 Displacement magnitude for the 2D problem. Top left: mixed method (M2), top right: div-DG scheme
[43,48]. Bottom left: rdiv-HDG scheme (S2), bottom right: rdiv-HDG scheme (S3) Polynomial degree
k = 2. Mesh size h = 0.1L (200 triangles)

the results for scheme (S2) is omitted. As examples we consider a 100× 100× 2 structured
triangular mesh in 2D (h = 0.01L) and 10 × 10 × 10 × 6 structured tetrahedral mesh
(h = 0.05L). The results are shown in Table 1. From this table we observe the cost of matrix
factorization for the r.div-HDG scheme (S3) in 2D is the cheapest among the fourmethods,
which is about 1.4 times faster than schemes (M2) and (S1), and about 5.4 times faster than
the div-DG scheme. In 3D, the scheme (S3) is about twice slower than the scheme (M2),
twice faster than the scheme (S1), and 8 times faster than the div-DG scheme.

We remark that for large 3D simulations, one quickly runs into memory issues when
direct method are used. The development of efficient iterative methods for the proposed
HDG schemes consists of our ongoing work.

Finally, we plot the displacement magnitude for the four methods (M2), (S2), (S3), and
the div-DG scheme in 2D on a 10× 10× 2 structured triangular mesh in Fig. 6, and in 3D
on a 10×10×10×6 structured tetrahedral mesh in Fig. 7. We remark that the results for the
(gradient-robust) div-HDG scheme (S1) are very similar to those for the (gradient-robust)
r.div-HDG scheme (S3), and thus are omitted for simplicity. In both figures, we clearly
observe that the (non-gradient-robust) mixed method (M2) and r.div-HDG scheme (S2)
fail to produce accurate displacement approximations, however the results for the (gradient-
robust) div-DG scheme and the r.div-HDG scheme (S3) are consistent.
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Fig. 7 Displacement magnitude for the 3D problem. Top left: mixed method (M2), top right: div-DG scheme
[43,48]. Bottom left: rdiv-HDG scheme (S2), bottom right: rdiv-HDG scheme (S3) Polynomial degree
k = 2. Mesh size h = 0.05L (6000 tetrahedra)

7 Conclusion

The concept of gradient-robustness for numerical methods for linear elasticity is introduced
in this paper. The class of divergence-conforming HDG methods are presented and ana-
lyzed as an example of volume-locking-free and gradient-robust finite element methods
for linear elasticity. Two efficient variants of a divergence-conforming HDG scheme with
reduced globally coupled degrees of freedom are also discussed and analyzed. On a linear
thermo-elasticity example we demonstrate the importance of gradient-robustness and the
computational efficiency of the proposed relaxed H(div)-conforming HDG method.

Appendix. The BDM Interpolator for Discontinuous Functions

The BDM interpolator for discontinuous functions is defined element-by-element for vT ∈
H1(T ) through

(�V vT ·n, ϕ)F = ({{vT ·n}}∗, ϕ)F ∀ ϕ∈P
k(F), F ∈∂T , (41a)

(�V vT , ϕ)T = (vT , ϕ)T ∀ ϕ ∈ N k−2(T ), (41b)
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with N k−2 := [Pk−2(T )]d + [Pk−2(T )]d × x and {{·}}∗ the usual DG average operator, cf.
[21,39].
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