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Abstract
We consider a standard Adaptive weak Galerkin (AWG) finite element method for second
order elliptic problems. We prove that the sum of the energy error and the scaled error
estimator of AWGmethod, between two consecutive adaptive loops, is a contraction. At last,
we present some numerical experiments to support the theoretical results.
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1 Introduction

In this paper, we consider the convergence of Adaptive weak Galerkin finite element methods
(AWG) for the following model second order elliptic problems:

− ∇ · (A∇u) = f in �, (1)

u = 0 on ∂�, (2)

where � is a bounded polygonal or polyhedral domain in R
d(d = 2, 3) and is partitioned

into non-overlapping subdomains �i , 1 ≤ i ≤ m. Here, we need to assume that an initial
partition T0 of �, which is consistent with the partition �̄ = ∏m

i=1 �i in the sense that each
T0 ∩ �i , 1 ≤ i ≤ m, inherits a partition of �i . For all τ ∈ T0, we consider the case that the

This research was supported in part by supported by the National Natural Science Foundation of China (Nos.
11671159, 12071160), the Guangdong Basic and Applied Basic Research Foundation (No.
2019A1515010724), the Characteristic Innovation Projects of Guangdong colleges and universities, China
(No. 2018KTSCX044) and the General Project topic of Science and Technology in Guangzhou, China (No.
201904010117).

B Liuqiang Zhong
zhong@m.scnu.edu.cn

Yingying Xie
xieyy@m.scnu.edu.cn

1 School of Mathematics Sciences, South China Normal University, Guangzhou 510631, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-020-01387-7&domain=pdf
http://orcid.org/0000-0002-2059-5318


17 Page 2 of 25 Journal of Scientific Computing (2021) 86 :17

coefficient A is a piece-wise constant.We assume that the coefficient A satisfies the following
property: there exist constants α > 0 and β > 0 such that α ≤ A ≤ β.

Weak Galerkin (WG) makes use of discontinuous finite element functions for partial
differential equations in which differential operators are approximated by weak forms as
distributions.WGmethodswere first used to solve second order elliptic problem for simplicial
grids in [27] and later for regular polytopal meshes in [21]. Then, WG methods in mixed
form have been applied to solve the second order elliptic problem for arbitrary shapes of
polygons (or polyhedra) in 2D (or 3D) in [28]. WG methods were subsequently applied
to other problems, such as second order elliptic interface problems [17], the Helmholtz
equation [7,19,23], the biharmonic equation [18,22,26], Darcy equation [12] and so on. WG
methods are closely related to themixed finite elementmethods and hybridized discontinuous
Galerkin(DG) methods. However, when the coefficients are general variable functions, the
WG methods are different from these methods.

Computation with adaptive grid refinement has proved to be a useful and efficient tool
in scientific computing over the last several decades. We consider the following standard
adaptive procedure:

SOLVE → ESTIMATE → MARK → REFINE. (3)

The precise definition of the algorithm can be found in Sect. 3. For elliptic and Maxwell
problems, the theory of convergence and computational complexity in the form of (3) have
been great developments in the past few decades, such as [1,3,8,15,33,34] etc. We also refer
to [24] for an introduction to the theory of adaptive finite element methods.

For adaptive WG methods, there are only few research results for a posterior error esti-
mates. For second order elliptic problems, a residual type a posteriori error estimator is first
presented and analyzed in [6]; a posteriori error estimator is considered for a modified WG
method of second order elliptic problems in [31]; a residual type error estimator is proposed
which provides global upper and lower bounds of the WG method for second order elliptic
problems in a discrete H1-norm in [29]; recently, a simple posteriori error estimator which
can be applied to general meshes such as hybrid, polytopal and those with hanging nodes is
introduced for the WG method for second order elliptic problems in [11]; a posteriori error
estimate of weakGalerkin (WG) finite elementmethods for the second order elliptic interface
problems is presented in [16]; A residual-based a posteriori error estimator is discussed for
the Stokes problem in [32]. However, to our best knowledge, there exists no work in the
literature which studies the convergence of adaptive WG methods.

Our work is motivated by the convergence analysis of adaptive mixed finite element
methods(AMFEM) in [5,9]. In both approaches, the authors study AMFEM for second order
elliptic problems with constant coefficient. In this paper, we will present the convergence of
the AWGmethod for second order elliptic problems whose coefficient is piece-wise constant.
Because the weak gradient is defined in polynomial space and the finite element spaces are
different from the classical finite element spaces, the proof of the quasi-orthogonality in [5,9]
cannot be used directly. The data oscillation and the error indicator are estimated separately
in [5,9]. However, in WGmethods, the data oscillation is one part of the corresponding error
indicator and we have to estimate the data oscillation and the corresponding error indicator
together. We also notice that the corresponding error estimates of WG methods are more
complicated than ones for mixed element methods.

In this paper, we shall follow the state-of-the-art convergence theory [9] to prove the
convergence of adaptiveWGmethodswithout extramarking for the data oscillation.We stress
that the extension of the convergence theory to adaptive WGmethods is not straightforward,
since the data oscillation and the error indicator in [9] are estimated, separately, but in WG
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methods, the data oscillation is one part of the corresponding error indicator and we have to
estimate the data oscillation and the corresponding error indicator together. We also notice
that the convergence technique used for hybridized DG or mixed methods cannot be applied
directly to the WG methods, since the corresponding error estimates of WG methods are
more complicated than ones for mixed element methods. Especially, we need to establish the
corresponding quasi-orthogonality.

We summarize our main result in the following theorem.

Theorem 1 Given a parameter θ ∈ (0, 1) and initial mesh T0. Let u be the solution of (1)–(2),
{Tk, uk, η(uk, Tk)}k≥0 be a sequence of meshes, finite element solutions and error estimates
produced by the AWG method. Then there exist constants ρ ∈ (0, 1), σ1 > 0, σ2 > 0 and ε

depending only on the shape regularity ofT0, the polynomial order l, coefficient A, parameters
θ and μ0, such that if

0 < ε < min

(
σ1(1 − ξ)

C1
, 1

)

,

then

(1 − ε)‖A1/2(∇u − ∇wuk+1)‖2Tk+1
+ σ1η

2(uk+1, Tk+1) + σ2osc
2( f , Tk+1)

≤ ρ
(
(1 − ε)‖A1/2(∇u − ∇wuk)‖2Tk

+ σ1η
2(uk, Tk) + σ2osc

2( f , Tk)
)
,

where the constants C1 and ξ are given by Lemmas 7 and 12 , respectively.

As a consequence, the AWG method will converges in finite steps for a give tolerance.
Here is some notation used throughout the paper. The following shorthand notation will

be used to avoid the repeated constants, following [33], x � y means x ≤ Cy, where C
are generic positive constants independent of the variables that appear in the inequalities
and especially the mesh parameters. The notation Ci , with subscript, denotes specific and
important constants.

The rest of the article is organized as follows. In Sect. 2, we describe the definitions of
weak gradient and discrete weak gradient, the weak Galerkin finite element spaces and the
corresponding bilinear form a(·, ·). In Sect. 3, we present the adaptive algorithm and discuss
each procedure of (3) in detail. We prove the convergence of the proposed adaptive algorithm
in Sect. 4 and report some numerical results in support of theoretical ones in Sect. 5.

2 Prelimimaries and Notations

In this section, we recall the definitions of weak gradient and discrete weak gradient, the
weak Galerkin finite element spaces and the corresponding bilinear form a(·, ·).

First, we present some notations. For any domain D ⊂ R
d , d = 2, 3, we use standard

definitions for the Sobolev spaces Hs(D) and their associated norms ‖ · ‖s,D for s ≥ 0. Note
that the space L2(D) is H0(D), we denote its norm by ‖·‖D .When D = �, we shall simplify
the notation as ‖ · ‖. More specially, we define H(div, D) = {q : q ∈ (L2(D))d ,∇ · q ∈
L2(D)}, d = 2, 3.

2.1 Weak Gradient and DiscreteWeak Gradient

Let K be any polygonal domain with boundary ∂K . Following [27], a weak function on the

region K refers to a function v = {v0, vb} such that v0 ∈ L2(K ) and vb ∈ H
1
2 (∂K ). The
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first component v0 can be understood as the value of v in K , and the second component vb
represents v on the boundary of K . Note that vb may not necessarily be related to the trace
of v0 on ∂K even if the trace is well-defined. Denote by W (K ) the space of weak functions
on K

W (K ) := {v = {v0, vb} : v0 ∈ L2(K ), vb ∈ H
1
2 (∂K )}. (4)

According to [27], we define the weak gradient as follows.

Definition 1 (Weak Gradient) The weak gradient of v = {v0, vb} ∈ W (K ) is defined as a
linear functional ∇wv in the dual space of H(div, K ) satisfying the following equation

(∇wv, q)K := −(v0,∇ · q)K + 〈vb, q · n〉∂K ∀q ∈ H(div, K ), (5)

where n is the unit outward normal direction to ∂K , (v0,∇ · q)K = ∫
K v0(∇ · q)dx is the

action of v0 on∇·q, and 〈vb, q ·n〉∂K = ∫
∂K vb(q ·n)ds is the action of q ·n on vb ∈ H

1
2 (∂K ).

In WG methods, we also need discrete analogues of the weak gradient. We consider a
shape-regular partition T = ∪{τ } for the domain �. For each integer l ≥ 0, let Pl(τ ) be the
set of polynomials on τ with degree no more than l and P̂l(τ ) be the set of homogeneous
polynomials of order l in the variable x = (x1, . . . , xd)T . Let Gl(τ ) be either (Pl(τ ))d or
RTl(τ ) = (Pl(τ ))d + P̂l(τ )x. For the weak function spaceW (τ ), we discretize it byWi, j (τ )

given as follows

Wi, j (τ ) := {
v = {v0, vb} : v0 ∈ Pi (τ ), vb ∈ Pj (∂τ)

}
.

Definition 2 (Discrete weak gradient) The discrete weak gradient of v = {v0, vb} ∈ Wi, j (τ )

denoted by ∇w,l,τ v is defined as the unique polynomial ∇w,l,τ v ∈ Gl(τ ) satisfying the
following equation

(∇w,l,τ v, q)τ := −(v0,∇ · q)τ + 〈vb, q · n〉∂τ , ∀q ∈ Gl(τ ). (6)

Note that if v ∈ H1(τ ) and ∇v ∈ Gl(τ ), then ∇w,l,τ v = ∇v.
Different weak Galerkin finite element methods can be derived by choosing Wi, j (τ ) and

Gl(τ ) with various combinations of the indices i, j and l (see [20,27]). This paper shall
mainly consider two pairs Wl,l(τ ) − RTl(τ ) and Wl,l+1(τ ) − (Pl+1(τ ))d , for integers l ≥ 0
defined on simplices τ .

In next subsection, the weak Galerkin finite element spaces and the corresponding bilinear
form a(·, ·) will be presented.

2.2 Weak Galerkin Finite Element Method

Let Th be a shape-regular partition of the domain � into a set of elements τ . We use the
notation Eh to denote the set of all edges or faces in Th and E0

h = Eh \ ∂� denote the set of
all interior edges or faces. For a d-dimensional simplex S, we write hS = |S|1/d to denote
the size of the element S where |S| is the d-dimensional Lebesgue measure of S.

Denote byWl(τ )−Gl(τ ) a localweakGalerkin element that can be eitherWl,l(τ )−RTl(τ )

orWl,l+1(τ )− (Pl+1(τ ))d . Associated with Th and a local elementWl(τ )−Gl(τ ), we define
global weak Galerkin finite element spaces,

Vh := {v = {v0, vb} : {v0, vb}|τ ∈ Wl(τ )} ,

V 0
h := {v : v ∈ Vh, vb = 0 on ∂�} .
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We would like to emphasize that any function v = {v0, vb} ∈ V 0
h has a single value vb on

each edge e ∈ Eh . We can also note that v = {v0, vb} ∈ V 0
h is a reasonable approximation of

a function in H1
0 (�) (see Sect. 3 in [6]).

Now, we can define the discrete weak gradient operator ∇w,l on the weak finite element
space Vh , which is computed element-wise by using (6); i.e., for any τ , we have∇w,l,τ (v|τ ) ∈
Gl(τ ) and

(∇w,lv)|τ := ∇w,l,τ (v|τ ) ∀v ∈ Vh .

Here and afterwards, for simplicity of notation, we shall drop the subscript l in the notation
∇w,l for the discrete weak gradient when no confusion arises.

For any w, v ∈ Wl(τ ) − Gl(τ ), we present the bilinear form as follows

a(w, v) = (A∇ww,∇wv)Th :=
∑

τ∈Th

(A∇ww,∇wv)τ .

The WG methods for solving for (1)–(2): find uh = {uh0, uhb} ∈ V 0
h , such that

a(uh, vh) = ( f , vh0 ), ∀vh = {vh0 , vhb } ∈ V 0
h . (7)

The well-posedness of variational problem (7) can be found in [27].

Remark 1 Optimal order error estimates, which are between weak Galerkin finite element
solutions and the exact solution in both the discrete H1 and L2 norms, were also presented
in [27].

3 AdaptiveWeak Galerkin Finite Element Methods

In this section, we present the standard adaptive algorithm (see Sect. 5 in [6]) and discuss
each step in the algorithm in detail.

[uJ , TJ ] = AWG(T0, f , tol, θ)

AWG compute an approximation uJ by adaptive finite element methods.
Input: T0 initial triangulation; f data; tol stopping criteria; θ ∈ (0, 1)marking parameter.
Output: TJ a triangulation; uJ WG finite element approximation on TJ .
η = 1; k = 0;
while η ≥ tol

SOLVE: equation (7) on Tk to get the solution uk ;
ESTIMATE: the error by η = η(uk, Tk);
MARK: a set Mk ⊂ Tk with minimum number such that

η2(uk,Mk) ≥ θη2(uk, Tk);
REFINE: elements in Mk and necessary elements to a conforming trian-

gulation Tk+1;
k = k + 1

end
uJ = uk; TJ = Tk ;

The goal of this paper is to prove that the algorithm AWG will terminate in finite steps
for a given tolerance. In the following subsections, we shall discuss each step in detail.
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3.1 Procedure SOLVE

Given a function f ∈ L2(�) and a shape regular mesh Tk , let uk be the exact WG solution of
(7). In this step, we suppose that the finite dimensional problems (7) will be solved efficiently
and accurately.

3.2 Procedure ESTIMATE

The crucial ingredient of the AWG is the control of the error by the estimator, namely the
so-called reliability. Here, we will use a similar residual-type a posteriori error estimator in
[6]. Given a mesh Th , assume two elements τ1 and τ2 sharing a common edge or face e and
denote n1 and n2 the unit normal vectors on e exterior to τ1 and τ2. In R

2, the unit tangential
vectors t1 and t2 will obtained by rotating n1 and n2 90 degrees counterclockwise, then
denote γt,∂τi (v) = v · t i the tangential trace in τi of a vector function v. In R

3, the tangential
trace for v in τi is γt,∂τi (v) = v × ni for i = 1, 2. Then the normal jump across e is
defined as [w · n]e = w|∂τ1 · n1 + w|∂τ2 · n2 and the tangential jump across e is defined as
[γt (w)]e = γt,∂τ1(w) + γt,∂τ2(w). For ∀vh ∈ Vh , we define

Je(A∇wvh) =
{ [A∇wvh · n]e, if e ∈ E0

h
0, otherwise,

Je(γt (∇wvh)) =
{ [γt (∇wvh)]e, if e ∈ E0

h
2γt (∇wvh), otherwise.

For e ∈ E0
h , denote by ωe = τ1 ∪ τ2 the macro-element associated with e, where τ1 and

τ2 are two elements in Th sharing e as a common edge/face. Similarly, we define ωx = {τ ′ ∈
Th, x ∈ τ ′} for a vertex x , and ωτ = {τ ′ ∈ Th, τ ′ ∩ τ �= ∅} for an element τ ∈ Th . For
the piece-wise constant A, we use |A| to denote its absolute value. We use the notations
Aτ = A|τ , |Amax

e | = maxτ∈we |Aτ |, and |Amin
e | = minτ∈we |Aτ |.

Let fh be the L2 projection of f to the discontinuous Galerkin space

Sh = {w ∈ L2(�) : w|τ ∈ Pl(τ ),∀τ ∈ Th}. (8)

Then, for vh ∈ Vh and τ ∈ Th , we define

η2c (vh, τ ) = h2τ |Aτ |−1‖ fh + ∇ · (A∇wvh)‖2τ + 1

2

∑

e∈∂τ

hτ |Amax
e |−1

∫

e
J2e(A∇wvh), (9)

η2m(vh, τ ) = h2τ |Aτ | · ‖∇ × ∇wvh‖2τ + 1

2

∑

e∈∂τ

hτ |Amin
e |

∫

e
J2e(γt (∇wvh)), (10)

osc2( f , τ ) = h2τ |Aτ |−1‖ f − fh‖2τ , (11)

and element-wise error estimator

η2(vh, τ ) = osc2( f , τ ) + η2c (vh, τ ) + η2m(vh, τ ), (12)

Remark 2 Note that ηc(vh, τ ) is an analogy of the error estimator for the conforming finite
element and ηm(vh, τ ) is an analogy of the error estimator for the mixed finite element. The
osc( f , τ ) is an analogy of the data oscillation for conforming finite elements.
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Remark 3 There is a slight difference between the error estimator given in (12) and one
introduced in [6]. For the mesh size in the jump terms, we use hτ instead of he. Although hτ

and he are comparable, the use of hτ is crucial for the reduction of the error estimator, as we
can see from the proof of Lemma 10.

For any subset Wh ⊂ Th and vh ∈ Vh , we define

η2(vh,Wh) =
∑

τ∈Wh

η2(vh, τ ), osc2( f ,Wh) =
∑

τ∈Wh

osc2( f , τ ).

3.3 Procedure MARK

In the selection of elements, we rely on the Dörfler marking [8]. Given a mesh Tk , a set
of indicators {η2(uk, τk)}τk∈Tk , and a marking parameter θ ∈ (0, 1), we suppose that the
procedureMARK outputs a subset of marked elementsMk ⊂ Tk with minimal cardinality,
such that

η2(uk,Mk) ≥ θη2(uk, Tk). (13)

3.4 Procedure REFINE

Starting from an initial triangulation T0, we denote by

L(T0) = {T : T is conforming and refined from T0}, (14)

and T1 ≤ T2 if T2 is a refinement of T1.
For anyTk ∈ L(T0) and a subsetMk ⊂ Tk ofmarked elements, we suppose thatProcedure

REFINE outputs a conforming triangulation Tk+1 ∈ L(T0), i.e.,

Tk+1 = REFINE(Tk,Mk).

To generate Tk+1, we first subdivide the marked elements inMk to get new triangulation T ′
k .

In general, T ′
k might have hanging nodes; therefore, we have to refine additional elements in

Tk\Mk to obtain a conforming triangulation Tk+1. Throughout this paper, we shall impose
the local refinement L(T0) is shape regular.

4 Convergence of the AWGMethod

In this section, we begin with a quasi-orthogonality result. Then, we recall the upper bound of
the a posteriori error estimator (see [6]). Moreover, we present the reduction of osc2( f , Th)
and η21(vh, Th) = ∑

τ∈Th
(η2c (vh, τ ) + η2m(vh, τ )), respectively. At last, we prove that the

sum of the energy error and the error estimator, between two consecutive adaptive loops, is a
contraction and the adaptive algorithm will terminate in finite steps within a given tolerance.

4.1 Quasi-Orthogonality

The standard convergence of adaptive Galerkin method is based on the orthogonality or
quasi-orthogonality of the error in different finite element spaces. Especially, for the case of
the mixed methods, we refer to [5,9]. However, the quasi-orthogonality of WG methods are
more complicated than ones for mixed element methods.
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First, for τ ∈ Th , we denote the L2 projection onto Wl(τ ) by Qτ · = {Qτ
0 ·, Qτ

b ·} and L2

projection onto Gl(τ ) by Qτ . Next Lemma presents the conservation property of the WG
approximation.

Lemma 1 Let u be the solution of (1)–(2) and uh = {uh0, uhb} ∈ V 0
h be the solution of (7).

Then we have A∇wuh ∈ H(div,�) and

− ∇ · (A∇wuh) = fh, (15)

where fh is the L2 projection of f to the space Sh.

Proof The proof of the Lemma 1 is similar as Lemma 3.3 in [6]. Notice that the coefficient
A is piece-wise constant.

Let v = {0, vb} in (6),

a(uh, v) = (A∇wuh,∇wv)

=
∑

τ∈Th

(A∇wuh,∇wv)τ

=
∑

τ∈Th

(−(v0,∇ · (A∇wuh))τ + 〈vb, (A∇wuh) · n)〉∂τ

=
∑

τ∈Th

〈vb, (A∇wuh) · n〉∂τ

=
∑

e∈E0
h

〈vb, Je((A∇wuh) · n)〉e,

using (7) leads to

a(uh, v) = ( f , v0) = ( f , 0) = 0,

we have
∑

e∈Eo
h

〈vb, Je((A∇wuh) · n)〉e = 0.

Choose vb|e = Je((A∇wuh) · n), we have

Je((A∇wuh) · n) = 0,

such that (A∇wuh) ·n is continuous across every edge/face. Therefore, A∇wuh ∈ H(div,�).
When v = {v0, 0}, we get

a(uh, v) =
∑

τ∈Th

(−(v0,∇ · (A∇wuh))τ + 〈vb, (A∇wuh) · n)〉∂τ

= −
∑

τ∈Th

(v0,∇ · (A∇wuh))τ

= ( f , v0) = ( fh, v0),

which implies

−∇ · (A∇wuh) = fh .

��
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For two nested triangulations Th, Th∗ ∈ L(T0) with Th ≤ Th∗ , in order to prove the quasi-
orthogonality ofWGmethods, we also introduce an intermediate solution ũh∗ = {ũh∗

0 , ũh∗
b } ∈

V 0
h∗ satisfying the following equation,

(A∇wũh∗ ,∇wvh∗)Th∗ = ( fh, v
h∗
0 ) ∀vh∗ = {vh∗

0 , v
h∗
b } ∈ V 0

h∗ . (16)

The following lemma presents the property of the intermediate solution ũh∗ .

Lemma 2 Given an f ∈ L2(�) and two nested triangulations Th, Th∗ ∈ L(T0) with Th ≤
Th∗ , let u be the solution of (1)–(2), uh = {uh0, uhb} ∈ V 0

h and uh∗ = {uh∗
0 , uh∗

b } ∈ V 0
h∗ be the

corresponding WG solutions of (7), ũh∗ = {ũh∗
0 , ũh∗

b } ∈ V 0
h∗ be the solution of (16). Then

∑

τ∗∈Th∗

(∇u − ∇w,τ∗uh∗ , A(∇w,τ∗ ũh∗ − ∇w,τuh))τ∗ = 0, (17)

where τ ∈ Th, τ∗ ∈ Th∗ and τ∗ ⊆ τ .

Proof The main idea follows from [5].
For all τ∗ ∈ Th∗ , let Qτ∗ · = {Qτ∗

0 ·, Qτ∗
b ·} and the Qτ∗ be the L2 projection to Wl(τ∗) and

Gl(τ∗), respectively. Comparing the right-hand sides of (7) and (16), then using the similar
proof of Lemma 1 and note that projection from Vh to Vh is the identity operator, we obtain
A∇w ũh∗ ∈ H(div,�) and

− ∇ · (A∇w,τ∗ ũh∗) = fh . (18)

For all τ∗ ∈ Th∗ , we have ∇w,τ∗(Qτ∗v) = Qτ∗∇v,∀v ∈ H1(τ∗).
Then Lemma 1 implies A∇wuh ∈ H(div,�), both u ∈ H1

0 (�) and uh∗ = {uh∗
0 , uh∗

b } ∈
V 0
h∗ implies that Qτ∗

b u, uh∗
b severally have a single value on each edge e ∈ E0∗ , Q

τ∗
b u|∂� =

uh∗
b |∂� = 0, (15) and (18), we have

∑

τ∗∈Th∗

(∇u − ∇w,τ∗uh∗ , A(∇w,τ∗ ũh∗ − ∇w,τuh)
)
τ∗

=
∑

τ∗∈Th∗

(
Qτ∗(∇u − ∇w,τ∗uh∗), A(∇w,τ∗ ũh∗ − ∇w,τuh)

)
τ∗

=
∑

τ∗∈Th∗

(
Qτ∗∇u − ∇w,τ∗uh∗ , A(∇w,τ∗ ũh∗ − ∇w,τuh)

)
τ∗

=
∑

τ∗∈Th∗

(∇w,τ∗(Qτ∗u − uh∗), A∇w,τ∗ ũh∗
)
τ∗

−
∑

τ∗∈Th∗

(∇w,τ∗(Qτ∗u − uh∗), A∇w,τuh
)
τ∗

= −
∑

τ∗∈Th∗

(
Qτ∗

0 u − uh∗
0 ,∇ · (A∇w,τ∗ ũh∗)

)

τ∗

+
∑

τ∗∈Th∗

〈Qτ∗
b u − uh∗

b , (A∇w,τ∗ ũh∗) · n〉∂τ∗

+
∑

τ∗∈Th∗

(
Qτ∗

0 u − uh∗
0 ,∇ · (A∇w,τuh)

)

τ∗
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−
∑

τ∗∈Th∗

〈Qτ∗
b u − uh∗

b , (A∇w,τuh) · n〉∂τ∗

=
∑

τ∗∈Th∗

(Qτ∗
0 u − uh∗

0 , fh − fh)τ∗ = 0. (19)

��
The following lemma reveals the relationship between ũh∗

0 − uh∗
0 and ∇w ũh∗ − ∇wuh∗ .

Lemma 3 Let uh∗ = {uh∗
0 , uh∗

b } ∈ V 0
h∗ and ũh∗ = {ũh∗

0 , ũh∗
b } ∈ V 0

h∗ be the WG solutions

of (7) and (16), respectively. Assume that problem (1)–(2) has the H1+s regularity with
s ∈ (0, 1]. Then, we have

‖ũh∗
0 − uh∗

0 ‖Th∗ � hsτ∗‖∇w ũh∗ − ∇wuh∗‖Th∗ , (20)

where the constant only depends on the shape regularity of Th∗ and coefficient A.

Proof Here, we adapt the technique from [27].
Let w ∈ H1(�) solve the following auxiliary problem

{−∇ · (A∇w) = ũh∗
0 − uh∗

0 in �,

w = 0 on ∂�.
(21)

Then the assumption of H1+s regularity implies that w ∈ H1+s(�) such that

‖w‖1+s � ‖ũh∗
0 − uh∗

0 ‖Th∗ . (22)

We choose the projection �h introduced in [2] satisfying the following two properties
∑

τ∈Th

(−∇ · q, v0)τ =
∑

τ∈Th

(�hq,∇wv)τ ∀q ∈ H(div,�),∀v = {v0, vb} ∈ Vh, (23)

‖�h(A∇u) − A∇w(Qτu)‖ � hs‖u‖1+s ∀u ∈ H1+s(�), s > 0. (24)

Formulas (23) and (24) can be found in the Lemmas 7.2 and 7.3 of [27], respectively.
Using the variational problem of (21) with the test function ũh∗

0 − uh∗
0 , (23) and (24), we

have

‖ũh∗
0 − uh∗

0 ‖2Th∗ =
∑

τ∗∈Th∗

(−∇ · (A∇w), ũh∗
0 − uh∗

0 )τ∗

=
∑

τ∗∈Th∗

(�h∗(A∇w),∇w ũh∗ − ∇wuh∗)τ∗

= (
�h∗(A∇w) − A∇w(Qh∗w),∇w ũh∗ − ∇wuh∗

)
Th∗

� hsτ∗‖w‖1+s‖∇w ũh∗ − ∇wuh∗‖Th∗ , (25)

where the constant only depends on the shape regularity of Th∗ and coefficient A. We also
used the following equality in the last equal

(A∇w(Qh∗w),∇w ũh∗ − ∇wuh∗)Th∗ = ( fh − fh∗ , Q
h∗
0 w)Th∗ = 0.

Substituting (22) into (25), we arrive at

‖ũh∗
0 − uh∗

0 ‖Th∗ � hsτ∗‖∇w ũh∗ − ∇wuh∗‖Th∗ ,

which completes the proof. ��
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Now we define RTh→Th∗ as the set of refined elements from Th to Th∗ and RTh→Th∗ as
the set of new elements refined from RTh→Th∗ . Obviously, Th∗\RTh→Th∗ = Th\RTh→Th∗
are unchanged elements.

Lemma 4 For Th, Th∗ ∈ L(T0) with Th ≤ Th∗ , then we have

‖ fh∗ − fh‖τ∗

{= 0, ∀τ∗ ∈ Th∗\RTh→Th∗ ,

≤ ‖ f − fh‖τ∗ , ∀τ∗ ∈ RTh→Th∗ .

Proof Notice that the functions fh and fh∗ are the L2 projections of f to the spaces Sh and
Sh∗ , respectively. Then for any τ∗ ∈ Th∗\RTh→Th∗ , we easily get ‖ fh∗ − fh‖τ∗ = 0. For any
τ∗ ∈ RTh→Th∗ , since ( f − fh∗ , vh∗)τ∗ = 0,∀vh∗ ∈ Vh∗ . In particular, let

vh∗ =
{

fh − fh∗ , on τ∗ ∈ RTh→Th∗ ,

0, otherwise.

Then

( f − fh∗ , fh − fh∗)τ∗ = 0. (26)

According to (26) and Cauchy–Schwarz inequality, we get

‖ fh∗ − fh‖2τ∗ = ( fh∗ − fh, fh∗ − fh)τ∗
= ( fh∗ − f , fh∗ − fh)τ∗ + ( f − fh, fh∗ − fh)τ∗
= ( f − fh, fh∗ − fh)τ∗ ≤ ‖ f − fh‖τ∗‖ fh∗ − fh‖τ∗ .

Canceling one ‖ fh∗ − fh‖τ∗ , we will get ‖ fh∗ − fh‖τ∗ ≤ ‖ f − fh‖τ∗ . ��
In the rest of this subsection, we will prove the following discrete result, and use it to

derive the quasi-orthogonality.

Lemma 5 Given an f ∈ L2(�) and two triangulations Th, Th∗ ∈ L(T0) with Th ≤ Th∗ ,
let u be the solution of (1)–(2), uh = {uh0, uhb} ∈ V 0

h and uh∗ = {uh∗
0 , uh∗

b } ∈ V 0
h∗ be the

correspondingWG solutions of (7), ũh∗ = {ũh∗
0 , ũh∗

b } ∈ V 0
h∗ be the solution of the variational

problem (16). Then there exists a constant C0 which depends only on the shape regularity of
Th∗ , satisfying

‖A1/2(∇w ũh∗ − ∇wuh∗)‖Th∗ ≤ √
C0osc( f ,RTh→Th∗ ).

Proof Applying (7) and (16), then for any vh∗ = {vh∗
0 , v

h∗
b } ∈ V 0

h∗ , we have

(A(∇w ũh∗ − ∇wuh∗),∇wvh∗)Th∗ = ( fh − fh∗ , v
h∗
0 ). (27)

Noting that Th∗\RTh→Th∗ = Th\RTh→Th∗ are unchanged elements, choosing vh∗ = ũh∗ −
uh∗ ∈ V 0

h∗ in (27) and using the property of L2 projection, Hölder inequality, (20), Cauchy–
Schwarz inequality, we arrive at

‖A1/2(∇w ũh∗ − ∇wuh∗)‖2Th∗

= ( fh − fh∗ , ũ
h∗
0 − uh∗

0 )Th∗ =
∑

τ∗∈RTh→Th∗

( fh − f , ũh∗
0 − uh∗

0 )τ∗

≤
∑

τ∗∈RTh→Th∗

‖ f − fh‖τ∗ · ‖ũh∗
0 − uh∗

0 ‖τ∗
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�
∑

τ∗∈RTh→Th∗

‖ f − fh‖τ∗ · hτ∗‖∇wũh∗ − ∇wuh∗‖τ∗

�
∑

τ∗∈RTh→Th∗

|A|− 1
2 ‖ f − fh‖τ∗ · hτ∗‖A1/2(∇w ũh∗ − ∇wuh∗)‖τ∗

�

⎛

⎜
⎝

∑

τ∗∈RTh→Th∗

h2τ∗ |A|−1‖ f − fh‖2τ∗

⎞

⎟
⎠

1/2 ⎛

⎜
⎝

∑

τ∗∈RTh→Th∗

‖A1/2(∇w ũh∗ − ∇wuh∗)‖2τ∗

⎞

⎟
⎠

1/2

�

⎛

⎜
⎝

∑

τ∈RTh→Th∗

h2τ |A|−1‖ f − fh‖2τ

⎞

⎟
⎠

1/2 ⎛

⎝
∑

τ∗∈Th∗

‖A1/2(∇w ũh∗ − ∇wuh∗)‖2τ∗

⎞

⎠

1/2

� osc( f ,RTh→Th∗ ) · ‖A1/2(∇w ũh∗ − ∇wuh∗)‖Th∗ ,

where the constants only depends on the shape regularity of Th∗ . At last, canceling one
‖A1/2(∇w ũh∗ − ∇wuh∗)‖Th∗ , then there exist a constant C0, such that

‖A1/2(∇w ũh∗ − ∇wuh∗)‖Th∗ ≤ √
C0osc( f ,RTh→Th∗ ).

��
Now, we use Lemmas 2 and 5 to derive a quasi-orthogonality result.

Lemma 6 Given an f ∈ L2(�) and two triangulations Th, Th∗ ∈ L(T0) defined in (14) with
Th ≤ Th∗ , let u be the solution of (1)–(2), uh = {uh0, uhb} ∈ V 0

h and uh∗ = {uh∗
0 , uh∗

b } ∈ V 0
h∗

be the corresponding WG solutions of (7). Then for any ε ∈ (0, 1), we have

(1 − ε)‖A1/2(∇u − ∇w,τ∗uh∗ )‖2Th∗ ≤ ‖A1/2(∇u − ∇w,τuh)‖2Th

−‖A1/2(∇w,τ∗uh∗ − ∇w,τuh)‖2Th∗ + C0

ε
osc2( f ,RTh→Th∗ ),

(28)

where the constant C0 is given in Lemma 5, τ ∈ Th, τ∗ ∈ Th∗ and τ∗ ⊆ τ .

Proof First, making use of Lemma 2, Cauchy–Schwarz inequality and Lemma 5, we obtain

(A1/2(∇u − ∇w,τ∗uh∗), A
1/2(∇w,τuh − ∇w,τ∗uh∗))Th∗

= (A(∇u − ∇w,τ∗uh∗),∇w,τuh − ∇w,τ∗ ũh∗)Th∗
+(A1/2(∇u − ∇w,τ∗uh∗), A

1/2(∇w,τ∗ ũh∗ − ∇w,τ∗uh∗))Th∗
= (A1/2(∇u − ∇w,τ∗uh∗), A

1/2(∇w,τ∗ ũh∗ − ∇w,τ∗uh∗))Th∗
≤ ‖A1/2(∇u − ∇w,τ∗uh∗)‖Th∗ ‖A1/2(∇w,τ∗ ũh∗ − ∇w,τ∗uh∗)‖Th∗

≤ √
C0‖A1/2(∇u − ∇w,τ∗uh∗)‖Th∗ osc( f ,RTh→Th∗ ). (29)

For any ε > 0, using the inequality 2ab ≤ εa2 + 1

ε
b2 and (29), we have

‖A1/2(∇u − ∇w,τuh)‖2Th

= ‖A1/2(∇u − ∇w,τ∗uh∗)‖2Th∗ + ‖A1/2(∇w,τ∗uh∗ − ∇w,τuh)‖2Th∗
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−2
(
A1/2(∇u − ∇w,τ∗uh∗), A

1/2(∇w,τ∗uh∗ − ∇w,τuh)
)
Th∗

≥ ‖A1/2(∇u − ∇w,τ∗uh∗)‖2Th∗ + ‖A1/2(∇w,τ∗uh∗ − ∇w,τuh)‖2Th∗

−2‖A1/2(∇u − ∇w,τ∗uh∗)‖Th∗
√
C0osc( f ,RTh→Th∗ )

≥ (1 − ε)‖A1/2(∇u − ∇w,τ∗uh∗)‖2Th∗ + ‖A1/2(∇w,τ∗uh∗ − ∇w,τuh)‖2Th∗

−C0

ε
osc2( f ,RTh→Th∗ ).

This completes the proof. ��

4.2 Residual Type Error Estimate: Upper Bound

In this subsection,wewill recall the upper bound,which is important to prove the convergence
of the adaptive WG methods.

Lemma 7 (Theorem 4.4 in [6]) Let u be the solution of (1)–(2) and uh = {uh0, uhb} ∈ V 0
h be

the solution of (7). Then, there exists a positive constant C1 depending on the shape regularity
of Th and coefficient A, such that

‖A1/2(∇u − ∇wuh)‖Th ≤ C1η(uh, Th). (30)

Remark 4 Although the error estimator in the above inequality is different from one intro-
duced in [6], they can control each other. We can see from the Remark 3.

4.3 Contraction of the Error Estimator

In this subsection, we shall introduce the contraction of the error estimator. In order to prove
that, we will divide the error estimator η(vh, Th) into two parts osc2( f , Th) and η21(vh, Th)
and present separately the reduction of the two parts.

First, we prove the the reduction of oscillation osc2( f , Th).

Lemma 8 For Th, Th∗ ∈ L(T0) with Th ≤ Th∗ , let λ := 1− μ ∈ (0, 1), where μ := 2−1/d ∈
(0, 1). We have

osc2( f , Th∗) ≤ osc2( f , Th) − λosc2( f ,RTh→Th∗ ). (31)

Proof For all τ∗ ∈ RTh→Th∗ , applying with (26), we arrive at

‖ f − fh∗‖2τ∗ = ( f − fh∗ , f − fh∗)τ∗
= ( f − fh∗ , f − fh)τ∗
≤ ‖ f − fh∗‖τ∗‖ f − fh‖τ∗ ,

which implies

‖ f − fh∗‖τ∗ ≤ ‖ f − fh‖τ∗ . (32)

For all τ ∈ RTh→Th∗ , we suppose that τ is bisected into τ 1∗ , τ 2∗ ∈ Th∗ , then h
d
τ 1∗

= |τ 1∗ | =
|τ 2∗ | = hd

τ 2∗
= 1

2
|τ | = 1

2
hdτ (d = 2, 3) together with (11) and (32), yields
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osc2( f , τ 1∗ ) + osc2( f , τ 2∗ )

= h2
τ 1∗

|Aτ 1∗ |−1‖ f − fh∗‖2τ 1∗ + h2
τ 2∗

|Aτ 2∗ |−1‖ f − fh∗‖2τ 2∗
≤ h2

τ 1∗
|Aτ 1∗ |−1‖ f − fh‖2τ 1∗ + h2

τ 2∗
|Aτ 2∗ |−1‖ f − fh‖2τ 2∗

= 2−2/d · h2τ |Aτ |−1‖ f − fh‖2τ 1∗ + 2−2/d · h2τ |Aτ |−1‖ f − fh‖2τ 2∗
= 2−2/dh2τ |Aτ |−1‖ f − fh‖2τ
< μh2τ |Aτ |−1‖ f − fh‖2τ
= μosc2( f , τ ), (33)

Using the fact that Th∗\RTh→Th∗ = Th\RTh→Th∗ in conjunction with (33) and (11), we
arrive at

osc2( f , Th∗)

=
∑

τ∗∈Th∗ \RTh→Th∗

h2τ∗ |Aτ∗ |−1‖ f − fh∗‖2τ∗ +
∑

τ∗∈RTh→Th∗

h2τ∗ |Aτ∗ |−1‖ f − fh∗‖2τ∗

≤
∑

τ∗∈Th∗ \RTh→Th∗

h2τ∗ |Aτ∗ |−1‖ f − fh∗‖2τ∗ + μ
∑

τ∈RTh→Th∗

osc2( f , τ )

=
∑

τ∈Th\RTh→Th∗

h2τ |Aτ |−1‖ f − fh‖2τ + μ
∑

τ∈RTh→Th∗

osc2( f , τ )

≤
∑

τ∈Th

osc2( f , τ ) −
∑

τ∈RTh→Th∗

osc2( f , τ ) + μ
∑

τ∈RTh→Th∗

osc2( f , τ )

≤ osc2( f , Th) − λosc2( f ,RTh→Th∗ ).

We complete the proof. ��
Now we are in a position to present the reduction of the second part. We first present the

difference between η21(vh∗ , Th∗) and η21(vh, Th∗).

Lemma 9 For Th, Th∗ ∈ L(T0) with Th ≤ Th∗ , let vh = {vh0 , vhb } ∈ V 0
h , vh∗ = {vh∗

0 , v
h∗
b } ∈

Vh∗ . Then for any ζ > 0, there exists constant σ1 depending on the shape regularity of Th∗ ,
the polynomial order l, coefficient A and parameter ζ , such that

η21(vh∗ , Th∗) ≤ (1 + ζ )η21(vh, Th∗)

+ 1

σ1

(
μosc2( f ,RTh→Th∗ ) + ‖A1/2(∇w,τ∗vh∗ − ∇w,τ vh)‖2Th∗

)
.

(34)

Proof For each τ∗ ∈ Th∗ , we will consider the four terms in η21(vh∗ , Th∗) one by one.
a)Wefirst dealwith the element terms R1(vh∗ , fh∗) := fh∗+∇·(A∇wvh∗) and R2(vh∗) :=

∇ × ∇wvh∗ . For R1(vh∗ , fh∗), using the triangle inequality, we have

hτ∗ |Aτ∗ |−1/2‖R1(vh∗ , fh∗)‖τ∗
= hτ∗ |Aτ∗ |−1/2‖ fh∗ + ∇ · (A∇wvh∗)‖τ∗
= hτ∗ |Aτ∗ |−1/2‖( fh + ∇ · (A∇w,τ vh) + fh∗ − fh + ∇ · A(∇w,τ∗vh∗ − ∇w,τ vh)‖τ∗
≤ hτ∗ |Aτ∗ |−1/2‖R1(vh, fh)‖τ∗

+hτ∗ |Aτ∗ |−1/2‖ fh∗ − fh + ∇ · A(∇w,τ∗vh∗ − ∇w,τ vh)‖τ∗ , (35)
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Applying triangle inequality, chain rule and inverse inequality, we obtain

hτ∗ |Aτ∗ |−1/2‖ fh∗ − fh + ∇ · A(∇w,τ∗vh∗ − ∇w,τ vh)‖τ∗
� hτ∗ |Aτ∗ |−1/2‖ fh∗ − fh‖τ∗ + hτ∗‖∇ · A(∇w,τ∗vh∗ − ∇w,τ vh)‖τ∗
� hτ∗ |Aτ∗ |−1/2‖ fh∗ − fh‖τ∗ + ‖A(∇w,τ∗vh∗ − ∇w,τ vh)‖τ∗
� hτ∗ |Aτ∗ |−1/2‖ fh∗ − fh‖τ∗ + ‖A1/2(∇w,τ∗vh∗ − ∇w,τ vh)‖τ∗ . (36)

Substituting (36) into (35) and making use of Lemma 4, for any τ∗ ∈ Th∗\RTh→Th∗ , we
have

hτ∗ |Aτ∗ |−1/2‖R1(vh∗ , fh∗)‖τ∗
� hτ∗ |Aτ∗ |−1/2‖R1(vh, fh)‖τ∗ + ‖A1/2(∇w,τ∗vh∗ − ∇w,τ vh)‖τ∗ , (37)

and for any τ∗ ∈ RTh→Th∗ , we have

hτ∗ |Aτ∗ |−1/2‖R1(vh∗ , fh∗)‖τ∗
� hτ∗ |Aτ∗ |−1/2‖R1(vh, fh)‖τ∗ + hτ∗ |Aτ∗ |−1/2‖ f − fh‖τ∗

+‖A1/2(∇w,τ∗vh∗ − ∇w,τ vh)‖τ∗ . (38)

For R2(vh∗), a similar method for proving (37), we get

hτ∗ |Aτ∗ |1/2‖R2(vh∗)‖τ∗
≤ hτ∗ |Aτ∗ |1/2‖∇ × ∇w,τ vh‖τ∗ + hτ∗ |Aτ∗ |1/2‖∇ × (∇w,τ∗vh∗ − ∇w,τ vh)‖τ∗
� hτ∗ |Aτ∗ |1/2‖R2(vh)‖τ∗ + ‖A1/2(∇w,τ∗vh∗ − ∇w,τ vh)‖τ∗ . (39)

b) Now, we consider the jump terms Je∗(A∇wvh∗) and Je∗(γt (∇wvh∗)). For each e∗ ∈ E0
h∗ ,

we assume that e∗ = τ 1∗ ∩ τ 2∗ with τ 1∗ , τ 2∗ ∈ Th∗ . Let n
1∗ and n2∗ be the unit normal vectors on

e∗ exterior to τ 1∗ and τ 2∗ , respectively. Applying the triangle inequality, we obtain

h1/2τ∗ |Amax
e∗ |−1/2‖Je∗(A∇w,τ∗vh∗)‖e∗

≤ h1/2τ∗ |Amax
e∗ |−1/2‖Je∗(A∇w,τ vh)‖e∗

+h1/2τ∗ |Amax
e∗ |−1/2‖Je∗(A(∇w,τ∗vh∗ − ∇w,τ vh)‖e∗ . (40)

Using the definition of Je∗(A(∇w,τ vh − ∇w,τ∗vh∗)) and trace inequality, we have

h1/2τ∗ |Amax
e∗ |−1/2‖Je∗(A(∇w,τ∗vh∗ − ∇w,τ vh))‖e∗

≤ h1/2τ∗ |Amax
e∗ |−1/2‖A(∇w,τ∗vh∗ − ∇w,τ vh)|τ 1∗ · n1∗‖e∗

+h1/2τ∗ |Amax
e∗ |−1/2 · ‖A(∇w,τ∗vh∗ − ∇w,τ vh)|τ 2∗ · n2∗‖e∗

� h1/2τ∗ ‖A(∇w,τ∗vh∗ − ∇w,τ vh)|τ 1∗ ‖e∗ + h1/2τ∗ ‖A(∇w,τ∗vh∗ − ∇w,τ vh)|τ 2∗ ‖e∗
� ‖A1/2(∇w,τ∗vh∗ − ∇w,τ vh)‖τ 1∗ ∪τ 2∗ . (41)

Substituting (41) into (40), we get

h1/2τ∗ |Amax
e∗ |−1/2‖Je∗(A∇wvh∗)‖e∗

≤ h1/2τ∗ |Amax
e∗ |−1/2‖Je∗(A∇w,τ vh)‖e∗

+‖A1/2(∇w,τ∗vh∗ − ∇w,τ vh)‖τ 1∗ ∪τ 2∗ . (42)
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Similar to the proof of (42), we obtain

h1/2τ∗ |Amin
e∗ |1/2‖Je∗(γt (∇w,τ∗vh∗))‖e∗

≤ h1/2τ∗ |Amin
e∗ |1/2‖Je∗(γt (∇w,τ vh))‖e∗

+h1/2τ∗ |Amin
e∗ |1/2‖Je∗(γt (∇w,τ∗vh∗ − ∇w,τ vh))‖e∗

� h1/2τ∗ |Amin
e∗ |1/2‖Je∗(γt (∇w,τ vh))‖e∗ + h1/2τ∗ ‖(∇w,τ∗vh∗ − ∇w,τ vh)|τ 1∗ ‖e∗

+h1/2τ∗ ‖(∇w,τ∗vh∗ − ∇w,τ vh)|τ 2∗ ‖e∗
� h1/2τ∗ |Amin

e∗ |1/2‖Je∗(γt (∇w,τ vh))‖e∗
+‖A1/2(∇w,τ∗vh∗ − ∇w,τ vh)‖τ 1∗ ∪τ 2∗ . (43)

For each e∗ ∈ Eh∗ ∩ ∂�, we assume that e∗ ⊂ ∂τ∗ with τ∗ ∈ Th∗ . By the definition of
Je∗(A∇wvh∗), we have Je∗(A∇wvh∗) = 0. Next, a similar method for proving (43), we get

h1/2τ∗ |Amin
e∗ |1/2‖Je∗(γt (∇wvh∗))‖e∗

≤ h1/2τ∗ |Amin
e∗ |1/2‖Je∗(γt (∇w,τ vh))‖e∗

+h1/2τ∗ |Amin
e∗ |1/2‖Je∗

(
γt (∇w,τ∗vh∗ − ∇w,τ vh)

) ‖e∗
� h1/2τ∗ |Amin

e∗ |1/2‖Je∗(γt (∇w,τ vh))‖e∗ + ‖A1/2(∇w,τ∗vh∗ − ∇w,τ vh)‖τ∗ . (44)

From (33), we also arrive at
∑

τ∗∈RTh→Th∗

hτ∗ |Aτ∗ |−1/2‖ f − fh‖τ∗ ≤ μosc2( f ,RTh→Th∗ ). (45)

Squaring both sides of (37), (38), (39), (42), (43), (44), applying Young’s inequality
2ab ≤ ζa2 + ζ−1b2 for a, b > 0, ζ > 0, summing all elements τ∗ ∈ Th∗ and edges/faces
e∗ ∈ Eh∗ , observing the shape regularity of the mesh Th∗ and using (45), we arrive at

η21(vh∗ , Th∗)

≤ (1 + ζ )η21(vh, Th∗) + C2(1 + ζ−1)
( ∑

τ∗∈RTh→Th∗

hτ∗ |Aτ∗ |−1/2‖ f − fh‖τ∗

+‖A1/2(∇w,τ∗vh∗ − ∇w,τ vh)‖2Th∗

)

≤ (1 + ζ )η21(vh, Th∗)

+C2(1 + ζ−1)
(
μosc2( f ,RTh→Th∗ ) + ‖A1/2(∇w,τ∗vh∗ − ∇w,τ vh)‖2Th∗

)
.

The constant C2 depends on the shape regularity of Th∗ , coefficient A and the polynomial
order l. At last, let 1/σ1 = C2(1 + ζ−1), we get the desired inequality (34). ��

Next, we prove the contraction of the error estimator if the solution does not change.

Lemma 10 Let Th∗ be a shape regular triangulation which is refined from a shape regular
triangulation Th. Let uh ∈ Vh be the discrete solution of (7). Then

η21(uh, Th∗) ≤ η21(uh, Th) − λη21(uh,RTh→Th∗ ).

Proof We shall divide the proof into two steps. In the first step, we prove the element-wise
contraction if one element is divided into at least two parts, and in the second step, we prove
the global version.

123



Journal of Scientific Computing (2021) 86 :17 Page 17 of 25 17

Step 1. Suppose τ ∈ RTh→Th∗ is bisected into τ 1∗ ∈ Th∗ and τ 2∗ ∈ Th∗ . We shall prove
that

η21(uh, τ
1∗ ) + η21(uh, τ

2∗ ) ≤ μη21(uh, τ ), (46)

where μ ∈ (0, 1) is given in Lemma 8.
In fact, similar to the proof of (33), we can obtain that the two element-wise terms are

reduced, namely,

h2
τ 1∗

|Aτ 1∗ |−1‖R1(uh, fh)‖2τ 1∗ + h2
τ 2∗

|Aτ 2∗ |−1‖R1(uh, fh)‖2τ 2∗
≤ μh2τ |A−1

τ | · ‖R1(uh, fh)‖2τ , (47)

and

h2
τ 1∗

|Aτ 1∗ | · ‖R2(uh)‖2τ 1∗ + h2
τ 2∗

|Aτ 2∗ | · ‖R2(uh)‖2τ 2∗ ≤ μh2τ |Aτ | · ‖R2(uh)‖2τ . (48)

On the jump residual associated with edges/faces, we note that after τ ∈ Th is bisected, in
τ 1∗ ∈ Th∗ and τ 2∗ ∈ Th∗ , there are three types of faces.

1. For the new edge/face e∗ created by the bisection, which is inside the element τ , the
function∇wuh |τ is a polynomial and its coefficients are continuous. Therefore [A∇wuh ·
n]e∗ and [γt (∇wuh)]e∗ are zero.

2. For the edges/faces divided from τ , the jump values are invariant. But the mesh size is
changed.
For each e ∈ E0

h , where e = τ1 ∩ τ2 with τ1, τ2 ∈ Th . Let τ 1∗,i ∈ Th∗ and τ 2∗,i ∈ Th∗ be the

children of τi (i = 1, 2), define ei∗ = τ i∗,1 ∩ τ i∗,2, then we have e = e1∗ ∪ e2∗. For the first
jump term, applying Lemma 1, we obtain Jei∗(A∇wuh) = 0, i = 1, 2. For the second
jump term,

1

2
hτ∗ |Amin

e1∗
| · ‖Je1∗(γt (∇w,τuh))‖2e1∗ + 1

2
hτ∗ |Amin

e2∗
| · ‖Je2∗(γt (∇w,τuh))‖2e2∗

= 2−1/d
|Amin

e1∗
|

|Amin
e | · 1

2
hτ |Amin

e | · ‖Je1∗(γt (∇w,τuh))‖2e1∗

+2−1/d
|Amin

e2∗
|

|Amin
e | · 1

2
hτ |Amin

e | · ‖Je2∗(γt (∇w,τuh))‖2e2∗
≤ μ · 1

2
hτ |Amin

e | · ‖Je(γt (∇wuh))‖2e, (49)

in the last step, we use the fact
|Amin

ei∗
|

|Amin
e | = 1.

For each e ∈ Eh ∩ ∂�, where e = ∂τ with τ ∈ Th . Let τ 1∗ ∈ Th∗ and τ 2∗ ∈ Th∗ be the
children of τ , define ei∗ ∈ e ∩ τ i∗(i = 1, 2), then e = e1∗ ∪ e2∗. For the first jump term,
using the definition of Je(A∇wuh), we obtain Jei∗(A∇wuh) = 0, i = 1, 2. For the second
jump term, using a similar method to prove (49), we have

1

2
hτ∗ |Amin

e1∗
| · ‖Je1∗(γt (∇w,τuh))‖2e1∗ + 1

2
hτ∗ |Amin

e2∗
| · ‖Je2∗(γt (∇w,τuh))‖2e2∗

≤ μ · 1
2
hτ |Amin

e | · ‖Je(γt (∇wuh))‖2e . (50)
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3. For the edges/faces unchanged or inherited from τ , also the jump values are invariant but
the mesh size is decreased by 2−1/d , d = 2, 3. The crucial observation is that we use the
mesh size hτ in the jump residual.

Hence, using (47), (48), (49), (50) and the fact μ = 2−1/d , d = 2, 3, we get the inequality
(46).

Step 2. Notice that Th∗\RTh→Th∗ = Th\RTh→Th∗ , together with (46), we get

η21(uh, Th∗) = η21(uh,RTh→Th∗ ) + η21(uh, Th∗\RTh→Th∗ )

= η21(uh,RTh→Th∗ ) + η21(uh, Th\RTh→Th∗ )

≤ μη21(uh,RTh→Th∗ ) + η21(uh, Th) − η21(uh,RTh→Th∗ )

≤ η21(uh, Th) − λη21(uh,RTh→Th∗ ).

��
The following lemma summarizes the contraction of η21(·, ·) by using Lemmas 9 and 10.

Lemma 11 For any ζ > 0, there exists constant σ1 depending on the shape regularity of
Tk+1, the polynomial order l, coefficient A and parameter ζ , such that

η21(uk+1, Tk+1) ≤ (1 + ζ )
(
η21(uk, Tk) − λη21(uk,RTk→Tk+1)

)

+ 1

σ1

(
μosc2( f ,RTk→Tk+1) + ‖A1/2(∇w,τk+1uk+1 − ∇w,τk uk)‖2Tk+1

)
,

(51)

where τk ∈ Tk, τk+1 ∈ Tk+1 and τk+1 ⊆ τk .

Proof Let Th = Tk and Th∗ = Tk+1 in Lemmas 9 and 10, we get the desired result (51). ��
At the end of this section, we present the contraction of the error estimator by using

Lemmas 8 and 11 .

Lemma 12 There exists ξ ∈ (0, 1) depending only on the shape regularity of Tk+1, the
parameters θ , λ and ζ given in the marking strategy (13), Lemmas 8 and 9, respectively.
There holds

η2(uk+1, Tk+1) ≤ ξη2(uk, Tk) − ζosc2( f , Tk) +
(

ζλ + μ

σ1

)

osc2( f ,RTk→Tk+1)

+ 1

σ1
‖A1/2(∇w,τk+1uk+1 − ∇w,τk uk)‖2Tk+1

,

where μ, σ1 are defined in Lemmas 8 and 9, respectively; τk ∈ Tk, τk+1 ∈ Tk+1 and τk+1 ⊆
τk .

Proof Making use of the definition of the error estimator η2(·, ·), Lemma 11 and let Th =
Tk, Th∗ = Tk+1 in Lemma 8, we have

η2(uk+1, Tk+1)

= η21(uk+1, Tk+1) + osc2( f , Tk+1)

≤ (1 + ζ )
(
η21(uk, Tk) − λη21(uk,RTk→Tk+1)

) + osc2( f , Tk)

+ 1

σ1

(
μosc2( f ,RTk→Tk+1) + ‖A1/2(∇w,τk+1uk+1 − ∇w,τk uk)‖2Tk+1

)
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−λosc2( f ,RTk→Tk+1)

= (1 + ζ )
(
η2(uk, Tk) − λη2(uk,RTk→Tk+1)

)

−ζ
(
osc2( f , Tk) − λosc2( f ,RTk→Tk+1)

)

+ 1

σ1

(
μosc2( f ,RTk→Tk+1) + ‖A1/2(∇w,τk+1uk+1 − ∇w,τk uk)‖2Tk+1

)

= (1 + ζ )
(
η2(uk, Tk) − λη2(uk,RTk→Tk+1)

) − ζosc2( f , Tk)

+
(

ζλ + μ

σ1

)

osc2( f ,RTk→Tk+1)

+ 1

σ1
‖A1/2(∇w,τk+1uk+1 − ∇w,τk uk)‖2Tk+1

. (52)

Applying the marking strategy (13) and choosing ζ small enough such that ξ := (1 +
ζ )(1 − θλ) ∈ (0, 1), in conjunction with (52), we obtain

η2(uk+1, Tk+1) ≤ ξη2(uk, Tk) − ζosc2( f , Tk) +
(

ζλ + μ

σ1

)

osc2( f ,RTk→Tk+1)

+ 1

σ1
‖A1/2(∇w,τk+1uk+1 − ∇w,τk uk)‖2Tk+1

,

which completes the proof. ��

4.4 Convergence of the AWG

In this subsection, we prove the algorithm AWG will terminate in finite steps within a given
tolerance. First of all, we shall prove the contraction of summation of the energy error and
the scaled error indicator.

Theorem 2 Given a marking parameter θ ∈ (0, 1) and initial mesh T0. Let u be the solution
of (1)–(2), {Tk, uk, η(uk, Tk)}k≥0 be a sequence of meshes, finite element solutions and error
estimates produced by the AWG. Then there exist constants ρ ∈ (0, 1), σ1 > 0, σ2 > 0
depending only on the shape regularity ofT0, the polynomial order l, coefficient A, parameters
θ , μ0 and ε, such that if

0 < ε < min

(
σ1(1 − ξ)

C1
, 1

)

,

then

(1 − ε)‖A1/2(∇u − ∇wuk+1)‖2Tk+1
+ σ1η

2(uk+1, Tk+1) + σ2osc
2( f , Tk+1)

≤ ρ
(
(1 − ε)‖A1/2(∇u − ∇wuk)‖2Tk

+ σ1η
2(uk, Tk) + σ2osc

2( f , Tk)
)
,

where the constants C1 and ξ are given by Lemmas 7 and 12 , respectively.

Remark 5 Notice that the data oscillation osc2( f , ·) is one part of the error indicator η2(·, ·).
If we want to get rid of the term σ2osc2( f , ·), we have to add an extra marking for the data
oscillation, see [5].

Proof By adding σ1η
2(uk+1, Tk+1) to both sides of (28), then applying Lemma 12 , we have

(1 − ε)‖A1/2(∇u − ∇wuk+1)‖2Tk+1
+ σ1η

2(uk+1, Tk+1)

123



17 Page 20 of 25 Journal of Scientific Computing (2021) 86 :17

≤ ‖A1/2(∇u − ∇wuk)‖2Tk
− ‖A1/2(∇w,τk+1uk+1 − ∇w,τk uk)‖2Tk+1

+C0

ε
osc( f ,RTk→Tk+1) + σ1η

2(uk+1, Tk+1)

≤ ‖A1/2(∇u − ∇wuk)‖2Tk
− ‖A1/2(∇w,τk+1uk+1 − ∇w,τk uk)‖2Tk+1

+C0

ε
osc2( f ,RTk→Tk+1) + σ1ξη2(uk, Tk) − σ1ζosc

2( f , Tk)

+(ζλσ1 + μ)osc2( f ,RTk→Tk+1) + ‖A1/2(∇w,τk+1uk+1 − ∇w,τk uk)‖2Tk+1

≤ ‖A1/2(∇u − ∇wuk)‖2Tk
+ σ1ξη2(uk, Tk)

+
(
C0

ε
+ ζλσ1 + μ

)

osc2( f ,RTk→Tk+1) − σ1ζosc
2( f , Tk), (53)

for any constant ε ∈ (0, 1). Suppose σ2 > 0, which will be determined later. By adding
σ2osc2( f , Tk+1) in the both sides of (53) and let Th = Tk, Th∗ = Tk+1 in Lemma 8, we
obtain

(1 − ε)‖A1/2(∇u − ∇wuk+1)‖2Tk+1
+ σ1η

2(uk+1, Tk+1) + σ2osc
2( f , Tk+1)

≤ ‖A1/2(∇u − ∇wuk)‖2Tk
+ σ1ξη2(uk, Tk) + (σ2 − σ1ζ )osc2( f , Tk)

+
(
C0

ε
+ μ − (σ2 − ζσ1)λ

)

osc2( f ,RTk→Tk+1). (54)

The above inequality (54) along with a sufficiently large σ2 satisfying

C0

ε
+ μ − (σ2 − ζσ1)λ ≤ 0, (55)

and some ρ1 ∈ (0, 1) to be determined later implies

(1 − ε)‖A1/2(∇u − ∇wuk+1)‖2Tk+1
+ σ1η

2(uk+1, Tk+1) + σ2osc
2( f , Tk+1)

≤ ‖A1/2(∇u − ∇wuk)‖2Tk
+ σ1ξη2(uk, Tk) + (σ2 − σ1ζ )osc2( f , Tk)

≤ ρ1(1 − ε)‖A1/2(∇u − ∇wuk)‖2Tk
+ (1 − ρ1(1 − ε)) ‖A1/2(∇u − ∇wuk)‖2

+σ1ξη2(uk, Tk) + (σ2 − σ1ζ )osc2( f , Tk). (56)

The upper bound (30) together with (56), yields

(1 − ε)‖A1/2(∇u − ∇wuk+1)‖2Tk+1
+ σ1η

2(uk+1, Tk+1) + σ2osc
2( f , Tk+1)

≤ ρ1(1 − ε)‖A1/2(∇u − ∇wuk)‖2Tk
+

(
C1 − C1ρ1(1 − ε) + σ1ξ

)
η2(uk, Tk)

+(σ2 − σ1ζ )osc2( f , Tk), (57)

according to

ρ1σ1 = C1 − C1ρ1(1 − ε) + σ1ξ,

choose

ρ1 = C1 + σ1ξ

C1 + σ1 − C1ε
,

the requirement 0 < ε < min

(
σ1(1 − ξ)

C1
, 1

)

with ξ ∈ (0, 1) leads to ρ1 ∈ (0, 1). By (55),

we obtain σ2 − σ1ζ > 0. Then let ρ2 = σ2 − σ1ζ

σ2
, we get ρ2 ∈ (0, 1) and
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(1 − ε)‖A1/2(∇u − ∇wuk+1)‖2Tk+1
+ σ1η

2(uk+1, Tk+1) + σ2osc
2( f , Tk+1)

≤ ρ1(1 − ε)‖A1/2(∇u − ∇wuk)‖2Tk
+ ρ1σ1η

2(uk, Tk) + (σ2 − σ1ζ )osc2( f , Tk)

≤ ρ1(1 − ε)‖A1/2(∇u − ∇wuk)‖2Tk
+ ρ1σ1η

2(uk, Tk) + ρ2σ2osc
2( f , Tk).

We complete the proof by setting ρ = max{ρ1, ρ2} ∈ (0, 1). ��
By recursion, we get the decay of the error plus the estimator.

Corollary 1 Under the hypotheses of Theorem 2, then we have

(1 − ε)‖A1/2(∇u − ∇wuk)‖2Tk
+ σ1η

2(uk, Tk) + σ2osc
2( f , Tk) ≤ Ĉ0ρ

k,

where the constant ε, σ1, σ2, ρ are given in Theorem 2, and Ĉ0 = (1 − ε)‖A1/2(∇u −
∇wu0)‖2T0

+ σ1η
2(u0, T0) + σ2osc2( f , T0). Thus the algorithm AWG will terminate in finite

steps.

5 Numerical Experiments

In this section, we test some experiments to show the performance of the adaptive algorithm
AWG. We carry out these numerical experiments by using the MATLAB software package
iFEM [4].We choose the lowest orderWGmethod and estimate the energy error ‖A1/2(∇u−
∇wuk)‖Tk in the following numerical experiments.

Example 1 In this example, we test ‘L-shape’ problem in two dimensions. We choose an
L-shape domain � = (−1, 1)2/[0, 1)2 and the coefficient A = I. For the source f = 0, the
exact solution is u = r2/3 sin( 23θ) in polar coordinates. The left of Fig. 1 shows the initial
mesh T0, and the right of Fig. 1 shows an adaptively refined mesh with marking parameter
θ = 0.5 after k = 14 iterative steps, which indicates the mesh is locally refined in a small
vicinity of the edge singularity.

Denote #Tk the number of elements and uk the corresponding weak finite element solution
associated to the mesh Tk . The left of Fig. 2 shows the curves of log #Tk − log ‖A1/2(∇u −
∇wuk)‖Tk for marking parameters θ = 0.1, 0.3, 0.5 which indicates the convergence and the
quasi-optimality of the adaptive algorithm AWG of the energy error ‖A1/2(∇u −∇wuk)‖Tk ,
namely

‖A1/2(∇u − ∇wuk)‖Tk � (#Tk)−1/2.

And the right of Fig. 2 plots the performances of ‖A1/2(∇u−∇wuk)‖Tk and η(uk, Tk)which
shows that the energy error ‖A1/2(∇u − ∇wuk)‖Tk can be controlled by the error estimator
η(uk, Tk) and the optimal rates of the energy error and the corresponding error estimators
are approximate.

Example 2 In this example, we employ the Kellogg problem introduced in [10]. We choose
a domain � = (−1, 1)2 and for f = 0, the exact solution in polar coordinates is u(r , θ) =
rγ μ(θ) where

μ(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

cos
((

π
2 − σ

)
γ
)
cos

((
θ − π

2 + ρ
)
γ
)

if 0 ≤ θ ≤ π
2 ,

cos(ργ ) cos((θ − π + σ)γ ) if π
2 ≤ θ ≤ π,

cos(σγ ) cos((θ − π − ρ)γ ) if π ≤ θ ≤ 3π
2 ,

cos
((

π
2 − ρ

)
γ
)
cos

((
θ − 3π

2 − σ
)
γ
)
if 3π

2 ≤ θ ≤ 2π,
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Fig. 1 The initial mesh T0 (left); An adaptively refined mesh after 14 adaptive iterations with marking param-
eter θ = 0.5 (right)

Fig. 2 Quasi optimality of the adaptive algorithm AWG of the error ‖A1/2(∇u − ∇wuk )‖Tk with different

marking parameters θ (left); the performances of ‖A1/2(∇u − ∇wuk )‖Tk and η(uk ,Tk ) for Example 1 with
θ = 0.5 (right)

the coefficient matrix A is piecewise constant: A = 161.44764 I in the first and third quad-
rants and A = I in the second and fourth quadrants and the constants γ = 0.1, σ =
−14.92256, ρ = π/4. Indeed, the exact solution u ∈ H1+γ (�). The left of Fig. 3 shows
the initial mesh T0, and the right of Fig. 3 shows an adaptively refined mesh with marking
parameter θ = 0.5 after k = 130 iterative steps. We can also see that the mesh is locally
refined in a small vicinity of the edge singularity.

The left of Fig. 4 shows the curves of log #Tk − log ‖A1/2(∇u − ∇wuk)‖Tk for Kel-
logg problem with different marking parameters θ = 0.1, 0.3, 0.5 which also indicates the
convergence and the next quasi-optimality of adaptive algorithm AWG, i.e.

‖A1/2(∇u − ∇wuk)‖Tk � (#Tk)−1/2.

And the right of Fig. 4 plots the performances of ‖A1/2(∇u−∇wuk)‖Tk and η(uk, Tk)which
shows that the energy error ‖A1/2(∇u − ∇wuk)‖Tk can be controlled by the error estimator
η(uk, Tk) and the optimal rates of the energy error and the corresponding error estimators
are approximate.

Example 3 In this example, we test ’L-shape’ problem in three dimensions. We choose an
L-shape domain � = (−1, 1)3/[0, 1) × [0, 1) × (−1, 1). We get an initial mesh T0 by
partitioning the given domain � into four subintervals in x-, y- and z-axes and then dividing
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Fig. 3 The initial mesh T0 (left); an adaptively refined mesh for Kellogg problem with marking parameter
θ = 0.5 after k = 130 adaptive iterations (right)

Fig. 4 Quasi optimality of the adaptive algorithm AWG of the error ‖A1/2(∇u − ∇wuk )‖Tk with different

marking parameters θ (left); the performances of ‖A1/2(∇u−∇wuk )‖Tk and η(uk ,Tk ) for Example 2 (right)

Fig. 5 The initial mesh T0 (left); an adaptively refined mesh for L-shape problem in three dimensions with
marking parameter θ = 0.5 after k = 17 adaptive iterations (right)

every cube into 6 tetrahedrons. We set A = I and the source f = 0 such that the exact

solution in the cylindrical coordinate is u = r
2
3 sin

( 2
3θ

)
. The left of Fig. 5 shows the initial

mesh T0, and the right of Fig. 5 shows an adaptively refined mesh with marking parameter
θ = 0.5 after k = 17 iterative steps which also indicates the mesh is locally refined.

The left of Fig. 6 plots the curves of log #Tk − log ‖A1/2(∇u − ∇wuk)‖Tk for θ =
0.1, 0.3, 0.5 which indicates the convergence and the next quasi-optimality of adaptive algo-
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Fig. 6 Quasi optimality of the adaptive algorithm AWG of the error ‖A1/2(∇u − ∇wuk )‖Tk with different

marking parameters θ (left); the performances of ‖A1/2(∇u−∇wuk )‖Tk and η(uk ,Tk ) for Example 3 (right)

rithm AWG of the energy error, i.e.

‖A1/2(∇u − ∇wuk)‖Tk � (#Tk)−1/3.

And the right of Fig. 6 plots the performances of ‖A1/2(∇u − ∇wuk)‖Tk and η(uk, Tk) for
Example 3 which shows that the energy error ‖A1/2(∇u − ∇wuk)‖Tk can be controlled by
the error estimator η(uk, Tk) and the optimal rates of the energy error and the corresponding
error estimators are approximate.

From above numerical examples, we know that the AWG method introduced in Sect. 3 is
convergent and the numerical examples also indicate next quasi-optimality

‖A1/2(∇u − ∇wuk)‖Tk � (#Tk)−1/d , d = 2, 3.

Acknowledgements The authors would like to thank Professor Long Chen, University of California at Irvine,
for providing many constructive suggestions.
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