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Abstract

We consider a standard Adaptive weak Galerkin (AWG) finite element method for second
order elliptic problems. We prove that the sum of the energy error and the scaled error
estimator of AWG method, between two consecutive adaptive loops, is a contraction. At last,
we present some numerical experiments to support the theoretical results.
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1 Introduction

In this paper, we consider the convergence of Adaptive weak Galerkin finite element methods
(AWG) for the following model second order elliptic problems:

—V.-(AVu) = f inQ, D

u=0 ondf, 2)

where Q is a bounded polygonal or polyhedral domain in R?(d = 2, 3) and is partitioned
into non-overlapping subdomains €2;, 1 < i < m. Here, we need to assume that an initial

partition 7y of €2, which is consistent with the partition Q = [T/Z, €; in the sense that each
To N 2;, 1 <i < m, inherits a partition of €2;. For all T € 7, we consider the case that the
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coefficient A is a piece-wise constant. We assume that the coefficient A satisfies the following
property: there exist constants « > O and 8 > O such thata < A < B.

Weak Galerkin (WG) makes use of discontinuous finite element functions for partial
differential equations in which differential operators are approximated by weak forms as
distributions. WG methods were first used to solve second order elliptic problem for simplicial
grids in [27] and later for regular polytopal meshes in [21]. Then, WG methods in mixed
form have been applied to solve the second order elliptic problem for arbitrary shapes of
polygons (or polyhedra) in 2D (or 3D) in [28]. WG methods were subsequently applied
to other problems, such as second order elliptic interface problems [17], the Helmholtz
equation [7,19,23], the biharmonic equation [18,22,26], Darcy equation [12] and so on. WG
methods are closely related to the mixed finite element methods and hybridized discontinuous
Galerkin(DG) methods. However, when the coefficients are general variable functions, the
WG methods are different from these methods.

Computation with adaptive grid refinement has proved to be a useful and efficient tool
in scientific computing over the last several decades. We consider the following standard
adaptive procedure:

SOLVE — ESTIMATE — MARK — REFINE. 3)

The precise definition of the algorithm can be found in Sect. 3. For elliptic and Maxwell
problems, the theory of convergence and computational complexity in the form of (3) have
been great developments in the past few decades, such as [1,3,8,15,33,34] etc. We also refer
to [24] for an introduction to the theory of adaptive finite element methods.

For adaptive WG methods, there are only few research results for a posterior error esti-
mates. For second order elliptic problems, a residual type a posteriori error estimator is first
presented and analyzed in [6]; a posteriori error estimator is considered for a modified WG
method of second order elliptic problems in [31]; a residual type error estimator is proposed
which provides global upper and lower bounds of the WG method for second order elliptic
problems in a discrete H'-norm in [29]; recently, a simple posteriori error estimator which
can be applied to general meshes such as hybrid, polytopal and those with hanging nodes is
introduced for the WG method for second order elliptic problems in [11]; a posteriori error
estimate of weak Galerkin (WG) finite element methods for the second order elliptic interface
problems is presented in [16]; A residual-based a posteriori error estimator is discussed for
the Stokes problem in [32]. However, to our best knowledge, there exists no work in the
literature which studies the convergence of adaptive WG methods.

Our work is motivated by the convergence analysis of adaptive mixed finite element
methods(AMFEM) in [5,9]. In both approaches, the authors study AMFEM for second order
elliptic problems with constant coefficient. In this paper, we will present the convergence of
the AWG method for second order elliptic problems whose coefficient is piece-wise constant.
Because the weak gradient is defined in polynomial space and the finite element spaces are
different from the classical finite element spaces, the proof of the quasi-orthogonality in [5,9]
cannot be used directly. The data oscillation and the error indicator are estimated separately
in [5,9]. However, in WG methods, the data oscillation is one part of the corresponding error
indicator and we have to estimate the data oscillation and the corresponding error indicator
together. We also notice that the corresponding error estimates of WG methods are more
complicated than ones for mixed element methods.

In this paper, we shall follow the state-of-the-art convergence theory [9] to prove the
convergence of adaptive WG methods without extra marking for the data oscillation. We stress
that the extension of the convergence theory to adaptive WG methods is not straightforward,
since the data oscillation and the error indicator in [9] are estimated, separately, but in WG
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methods, the data oscillation is one part of the corresponding error indicator and we have to
estimate the data oscillation and the corresponding error indicator together. We also notice
that the convergence technique used for hybridized DG or mixed methods cannot be applied
directly to the WG methods, since the corresponding error estimates of WG methods are
more complicated than ones for mixed element methods. Especially, we need to establish the
corresponding quasi-orthogonality.

We summarize our main result in the following theorem.

Theorem 1 Given a parameter 6 € (0, 1) and initial mesh 1y. Let u be the solution of (1)—(2),
{Tk, uk, n(ur, Tx) =0 be a sequence of meshes, finite element solutions and error estimates
produced by the AWG method. Then there exist constants p € (0,1),01 > 0,02 > 0 and €
depending only on the shape regularity of 1y, the polynomial order 1, coefficient A, parameters

0 and o, such that if
1—
0<e<min<u,l>,
Cy
then

(A=A (Vu = Vyurs DI, + 010 rst, Tip1) + 02056 (f, Tigr)
< p((1 = OIA2(Vu = Vo)l + o0 (ux, ) + 02056 (£, ) )

where the constants C1 and & are given by Lemmas 7 and 12 , respectively.

As a consequence, the AWG method will converges in finite steps for a give tolerance.

Here is some notation used throughout the paper. The following shorthand notation will
be used to avoid the repeated constants, following [33], x < y means x < Cy, where C
are generic positive constants independent of the variables that appear in the inequalities
and especially the mesh parameters. The notation C;, with subscript, denotes specific and
important constants.

The rest of the article is organized as follows. In Sect. 2, we describe the definitions of
weak gradient and discrete weak gradient, the weak Galerkin finite element spaces and the
corresponding bilinear form a (-, -). In Sect. 3, we present the adaptive algorithm and discuss
each procedure of (3) in detail. We prove the convergence of the proposed adaptive algorithm
in Sect. 4 and report some numerical results in support of theoretical ones in Sect. 5.

2 Prelimimaries and Notations

In this section, we recall the definitions of weak gradient and discrete weak gradient, the
weak Galerkin finite element spaces and the corresponding bilinear form a(, -).

First, we present some notations. For any domain D C R, d = 2,3, we use standard
definitions for the Sobolev spaces H® (D) and their associated norms || - ||s, p for s > 0. Note
that the space L*(D) is H(D), we denote its norm by || lp. When D = 2, we shall simplify
the notation as || - ||. More specially, we define H(div, D) = {q : q € (L3(D))4, V - q €
L3(D)},d =2, 3.

2.1 Weak Gradient and Discrete Weak Gradient

Let K be any polygonal domain with boundary d K . Following [27], a weak function on the
region K refers to a function v = {vg, vp} such that vy € L*(K) and vp € H% (0K). The
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first component vg can be understood as the value of v in K, and the second component vy,
represents v on the boundary of K. Note that v, may not necessarily be related to the trace
of vg on dK even if the trace is well-defined. Denote by W (K) the space of weak functions
on K

W(K) == {v = {vg, vp} : vg eL2(K),v;7 € H%(BK)}. “4)
According to [27], we define the weak gradient as follows.

Definition 1 (Weak Gradient) The weak gradient of v = {vg, vp} € W(K) is defined as a
linear functional V,,v in the dual space of H(div, K) satisfying the following equation

(Vuwv, @)k = —(o, V- @)k + (vp,q -n)yx  Yq € H(div, K), )

where n is the unit outward normal direction to 0K, (vo, V - @) = f x Vo(V - q)dx is the
actionof vgpon V-q,and (vp, g-n)yx = faK vp(q-n)ds istheactionof g-nonv, € H% (0K).

In WG methods, we also need discrete analogues of the weak gradient. We consider a
shape-regular partition 7 = U{t} for the domain 2. For each integer / > 0, let P;(7) be the
set of polynomials on t with degree no more than / and Pi(t) be the set of homogeneous
polynomials of order [ in the variable x = (x, ..., xa)T. Let G;(7) be either (P;(1))? or
RT;(7) = (P(0)4 + 131 (7)x. For the weak function space W (t), we discretize it by W; ;(t)
given as follows

Wi () == {v ={vo, vp} : vo € Pi(1), vp € Pj(0D)}.

Definition 2 (Discrete weak gradient) The discrete weak gradient of v = {vo, vy} € W; (1)
denoted by V,,; v is defined as the unique polynomial V,,; v € G;(r) satisfying the
following equation

Vw0, @) i =—o, V- -q)r +{(vp,q-n)y:, Vg €Gi(7). (6)

Note that if v € H!(7) and Vv € G;(7), then Vuw.i,v = V.

Different weak Galerkin finite element methods can be derived by choosing W; ;(t) and
G (7) with various combinations of the indices i, j and ! (see [20,27]). This paper shall
mainly consider two pairs W; ;(t) — RT;(t) and W j41(7) — (Pl+1(1'))d, for integers [ > 0
defined on simplices 7.

In next subsection, the weak Galerkin finite element spaces and the corresponding bilinear
form a(-, -) will be presented.

2.2 Weak Galerkin Finite Element Method

Let 7}, be a shape-regular partition of the domain €2 into a set of elements . We use the
notation &, to denote the set of all edges or faces in 75, and EY = &, \ 9K denote the set of
all interior edges or faces. For a d-dimensional simplex S, we write hg = |S]| 1/d to denote
the size of the element S where |S| is the d-dimensional Lebesgue measure of S.

Denote by W; () —G;(7) alocal weak Galerkin element that can be either W; ;(t) —RT;(7)
or Wi +1(t) — (P41 (‘L’))d‘ Associated with 7;, and a local element W;(t) — G;(t), we define
global weak Galerkin finite element spaces,

Vi := {v = {vo, vp} : {vo, vp}l- € Wi(0)},
V}? ={v:veV,,vy=0 on dQ}.
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We would like to emphasize that any function v = {vp, vp} € V}? has a single value vp on
each edge e € &,. We can also note that v = {vg, vp} € V,? is a reasonable approximation of
a function in H(} (€2) (see Sect. 3 in [6]).

Now, we can define the discrete weak gradient operator V,, ; on the weak finite element
space V},, which is computed element-wise by using (6); i.e., for any t, we have V,, 1 (v|;) €
Gy (7) and

V)l := Vy 1 (vlr) Yv e V.

Here and afterwards, for simplicity of notation, we shall drop the subscript / in the notation
V.1 for the discrete weak gradient when no confusion arises.
For any w, v € W;(tr) — G(t), we present the bilinear form as follows

a(w,v) = (AVyw, Vyv)7, i= Y (AVyw, Vyv)s.

€T,
The WG methods for solving for (1)~(2): find uj, = {u}, u'} € V2, such that
a(up, vp) = (f, o), Yo, = {vl, vl} e V2. @)
The well-posedness of variational problem (7) can be found in [27].
Remark 1 Optimal order error estimates, which are between weak Galerkin finite element

solutions and the exact solution in both the discrete H! and L2 norms, were also presented
in [27].

3 Adaptive Weak Galerkin Finite Element Methods

In this section, we present the standard adaptive algorithm (see Sect. 5 in [6]) and discuss
each step in the algorithm in detail.

[uy, T7] = AWG(7y, f,tol, 0)
AWG compute an approximation u ; by adaptive finite element methods.
Input: 7 initial triangulation; f data; tol stopping criteria; @ € (0, 1) marking parameter.
Output: 7; a triangulation; u; WG finite element approximation on 7.
n=1k=0;
while 1 > tol

SOLVE: equation (7) on 7 to get the solution uy;

ESTIMATE: the error by n = n(ug, 7z);

MARK: aset My C 7; with minimum number such that

> (ug, My) > 0% (ug, To);

REFINE: elements in M, and necessary elements to a conforming trian-
gulation 7Ty 1;
k=k+1
end
uy =ug; Ty =Tx;

The goal of this paper is to prove that the algorithm AWG will terminate in finite steps
for a given tolerance. In the following subsections, we shall discuss each step in detail.
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3.1 Procedure SOLVE

Given a function f € L*(Q) and a shape regular mesh 7%, let uj be the exact WG solution of
(7). In this step, we suppose that the finite dimensional problems (7) will be solved efficiently
and accurately.

3.2 Procedure ESTIMATE

The crucial ingredient of the AWG is the control of the error by the estimator, namely the
so-called reliability. Here, we will use a similar residual-type a posteriori error estimator in
[6]. Given a mesh 7}, assume two elements 71 and 7 sharing a common edge or face e and
denote n; and n; the unit normal vectors on e exterior to 7; and 3. In R, the unit tangential
vectors ¢ and ¢, will obtained by rotating n; and n, 90 degrees counterclockwise, then
denote y; 5 (v) = v - ¢; the tangential trace in 7; of a vector function v. In R3, the tangential
trace for v in 7; iS y; 9, (v) = v x n; fori = 1,2. Then the normal jump across e is
defined as [w - n], = wly7, - B + W]y, - B2 and the tangential jump across e is defined as
[v:(w)]e = ¥1,97, (W) + V1,97, (w). For Vv, € V), we define

[AVyvy - nle, if e € &)
0, otherwise,

[ (Vwvn)le, if e € &)
2y,(Vyvp),  otherwise.

Je(AVyvp) = {

Je (vt (Vyup)) = {

Fore € 5,?, denote by w, = 71 U 12 the macro-element associated with e, where 71 and
77 are two elements in 7, sharing e as a common edge/face. Similarly, we define w, = {t’ €
Tn,x € t'} for a vertex x, and w; = {t’ € Tj,t' Nt # @} for an element T € 7;,. For
the piece-wise constant A, we use |A| to denote its absolute value. We use the notations
Ar = Alg, |A7™| = max;ey, |Ac|, and [AZ"™"] = min ey, |Ac].

Let f;, be the L? projection of f to the discontinuous Galerkin space

Sp={we L*Q): wl; € P(x),VT € Ty} 8)

Then, for v, € V), and T € 7j,, we define

1
M wn ) = HIAL S+ V- (Ao 7+ 5 3 hel AT /JZ(Avwvh), ©)
e

ecat

1 .
MO ©) = e[ Ac| 1V X Vuuillz + 5 3 hrIAZ“mI/Jf(yz(vah)), (10)
ecdt ¢
osc?(f,7) = h2|A |7 f = full2, (11)
and element-wise error estimator
1 n, T) = 0s¢>(f, T) 4+ 1 (W, T) + 02, (0, T), (12)

Remark 2 Note that n.(vp, T) is an analogy of the error estimator for the conforming finite
element and n,, (v, ) is an analogy of the error estimator for the mixed finite element. The
osc(f, t) is an analogy of the data oscillation for conforming finite elements.
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Remark 3 There is a slight difference between the error estimator given in (12) and one
introduced in [6]. For the mesh size in the jump terms, we use /. instead of /.. Although 7
and h, are comparable, the use of /. is crucial for the reduction of the error estimator, as we
can see from the proof of Lemma 10.

For any subset W), C 7, and v;, € Vj, we define

N> Wi) = Y 0 (o, 1), os(f, W) = D osc(f, T).

TeW), TeW),

3.3 Procedure MARK

In the selection of elements, we rely on the Dorfler marking [8]. Given a mesh 7, a set
of indicators {nz(uk, Tk )} eTi» and a marking parameter 6 € (0, 1), we suppose that the
procedure MARK outputs a subset of marked elements Mj C 7; with minimal cardinality,
such that

1% (ug, M) = 00> (ug, To). (13)

3.4 Procedure REFINE

Starting from an initial triangulation 7y, we denote by
L(79) = {7 : T is conforming and refined from 7}, (14)

and 77 < 7 if 7> is a refinement of 7;.
Forany 7; € 1L(7p) and a subset M, C 7 of marked elements, we suppose that Procedure
REFINE outputs a conforming triangulation 71 € L(7p), i.e.,

Tis1 = REFINE(Tt, My).

To generate Tj 1, we first subdivide the marked elements in Mj, to get new triangulation 7.
In general, 7, might have hanging nodes; therefore, we have to refine additional elements in
Ti \ M to obtain a conforming triangulation 74 1. Throughout this paper, we shall impose
the local refinement IL(7p) is shape regular.

4 Convergence of the AWG Method

In this section, we begin with a quasi-orthogonality result. Then, we recall the upper bound of
the a posteriori error estimator (see [6]). Moreover, we present the reduction of osc( £, Tn)
and n%(vh, Tp) = ZTET,, (nf(vh, T) + ni (vp, 7)), respectively. At last, we prove that the
sum of the energy error and the error estimator, between two consecutive adaptive loops, is a
contraction and the adaptive algorithm will terminate in finite steps within a given tolerance.

4.1 Quasi-Orthogonality

The standard convergence of adaptive Galerkin method is based on the orthogonality or
quasi-orthogonality of the error in different finite element spaces. Especially, for the case of
the mixed methods, we refer to [5,9]. However, the quasi-orthogonality of WG methods are
more complicated than ones for mixed element methods.
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First, for T € 7;,, we denote the L? projection onto W;(t) by Q- = {Q5-, Qp-} and L?
projection onto G;(7) by Q.. Next Lemma presents the conservation property of the WG
approximation.

Lemma 1 Let u be the solution of (1)—(2) and uj, = {ug, uﬁ} S V;? be the solution of (7).
Then we have AV, uy, € H(div, 2) and

— V- (AVyup) = fr, 15)

where fy is the L? projection of f to the space Sp.

Proof The proof of the Lemma 1 is similar as Lemma 3.3 in [6]. Notice that the coefficient
A is piece-wise constant.
Let v = {0, vp} in (6),
aup, v) = (AVyup, Viyv)
= D (AVuun, V)

€T,

=Y (=0, V- (AVutun))e + (v, (AViup) - 1)) e

€Ty

= Z (vp, (AVyup) -M)ye

€Ty

= Z (vb, Je((Aunh) . n)>87

eEE,?
using (7) leads to
a(up,v) = (f,v0) = (f,0)=0,

we have

> p Je(AVyup) - W), = 0.
ce?
Choose vp|e = J((AVyup) - n), we have
J((AVyup) -m) =0,
such that (AV,up) -n is continuous across every edge/face. Therefore, AV, u;, € H(div, 2).

When v = {vg, 0}, we get

a(up,v) = Y (—@o, V- (AVyttn))r + (v, (AVyits) - m))ae

€Ty

— > (@0, V- (AVyup))e

teTy

(f,vo) = (fu, vo),

which implies

=V - (AVyup) = fi.
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For two nested triangulations 7j,, 7, € L(7p) with 7, < T}, in order to prove the quasi-

* "’h*

orthogonality of WG methods, we also introduce an intermediate solution itj,, = {uo Sy} €
Vho* satisfying the following equation,

- ha hs
(Akuh*» vah*)’ﬁ,* = (fn, Vo ) Vvh* {Uo > Uy } e Vh (16)
The following lemma presents the property of the intermediate solution iy, .

Lemma2 Givenan f € L2(SZ) and two nested triangulations T, ’2},* € ]L(’ZE)) with T, <
Th,, let u be the solution of (1)—(2), up = {ug, uﬁ} € V}? and up, = {uo ,ub*} € Vh be the

~* "‘h*

corresponding WG solutions of (7), up, = {iiy*, ,"} € Vh be the solution of (16). Then

D (Vi = Vi rtng, AV g,iin, — Vo ctth))z, =0, (17)

7 €T),

where v € Ty, T € Tp, and T, C 7.

Proof The main idea follows from [5].

For all 7, € 7, let Qr,- = {Qg", Q;} and the Q, be the L? projection to W;(t) and
G (t,), respectively. Comparing the right-hand sides of (7) and (16), then using the similar
proof of Lemma 1 and note that projection from V), to V}, is the identity operator, we obtain
AVyiy, € H(div, ©2) and

=V (AVy,in,) = fp. (18)

For all 7. € 7, we have Vy, -, (Q-,v) = Q. Vv, Vv € H'(z,).

Then Lemma 1 implies AV,,u, € H(div, 2), both u € HO1 (2) and up, = {uo , uz*} €
V,?* implies that Qz*u, ug* severally have a single value on each edge e € 8*, 0y pulag =
uz*lasz =0, (15) and (18), we have

D (Vu = Vit AV ziin, = Vo)),

T*EITII*
= > (Qu(Vu =V qun,), AV itn, = Vi cun))
7 €Tp,,
= Z (Qr*vu = Vg uth,, A(Vy g iip, — Vw,ruh))t*
T*Eﬁz*
= D (Ve (Quu— ), AVy i),
7 €Tpy,
= > (Vo (Quu— i), AVy cup),
77*5771*
Ty hy ~
= - Z (Q() — Uy, V- (Avw,r*uh*))
€T, T
+ Y (QFu—uy, (AV g,iin,) - 1o,
€T,
+ > (Qu—ug. V- (avy, Tu;,))
€T, o
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— Z Qbu—uh ,(Avu)fuh) n)a‘t*

€T,

= Y (QFu—ug, fi— fa)r. =0. (19)

T 6771

O
The following lemma reveals the relationship between ﬁg* — ug* and Vyip, — Vyup,.

Lemma3 Let u;, = {ug*,uz*} IS V,?* and iy, = {ﬁg ,~h*} € V0 be the WG solutions
of (7) and (16), respectively. Assume that problem (1)—(2) has the H!ts regularity with
s € (0, 1]. Then, we have

e T -
lig™ — ug ||Th* S hi* Vwitn, — Vyun, ||Th* , (20)
where the constant only depends on the shape regularity of Tj,, and coefficient A.

Proof Here, we adapt the technique from [27].
Let w € H'(Q) solve the following auxiliary problem

—V - (AVw) = i —upr inQ, o)
w=0 ondQ.
Then the assumption of H'** regularity implies that w € H'™*() such that
he  ha
lwlh+s S llig" — up*llz, - (22)

We choose the projection I introduced in [2] satisfying the following two properties

D (=V-g.v0): =Y (g, Vyv), Vg € H(div, Q), Vv = {vo, v} € Vi, (23)

ey ey

IR (AVU) = AV, (Qe)|| S WY lullis  Yu € HF(Q),5 > 0. (24)
Formulas (23) and (24) can be found in the Lemmas 7.2 and 7.3 of [27], respectively.

Using the variational problem of (21) with the test function ﬁg* — ug*, (23) and (24), we
have

‘“’h* h* ’“’h* *
lig™ —ug™ |7, = D (=V - (AVw), dig" — ug")e,

€T,

= Y (I, (AVw), Vyiin, — Vulip, s,

T €Ty,

= (Ma, (AVw) — AVy(Qn.w). Vuiln, = Vultn,)

S by lwlhas I Vwitn, — Voun, 7, , (25)

where the constant only depends on the shape regularity of 7;, and coefficient A. We also
used the following equality in the last equal

~ Ny
(AVy (Qp,w), Vplin, — Vyup )z, = (fn — fn,, Qy*w)z, =0
Substituting (22) into (25), we arrive at
e Dy . -
liy" — ug* 7, S h3 Vwin, — Voun,llz,

which completes the proof. O
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Now we define Ry, 7, as the set of refined elements from 7j, to 7, and Rz, 7, as

the set of new elements refined from Ry, . 7, . Obviously, 7y \R7,—7,, = Th\R7,->7,
are unchanged elements.

Lemma4 For 7y, Ty, € L(7p) with T, < Ty, then we have

=0, Vr,¢€ %*\RT;,»T;,*’
<If = fulle,, You € Ry, -

I fr, — fullz, {

Proof Notice that the functions fj, and fy, are the L? projections of f to the spaces Sj, and
Sh,» respectively. Then for any ©. € 7, \R7, -7, , we easily get || fn, — fnllz, = 0. For any
T € R7,>7, - since (f — fu,, vn, )z, = 0, Vop, € V. In particular, let

o — Sn—fn,, ont.e R1,—1,

* 0, otherwise.

Then
(f = Sher S = fr )z, = 0. (26)
According to (26) and Cauchy—Schwarz inequality, we get
I fi, = fillZ, = (fne = Fr fro = fi)r,

= (fn. = f> fn. — fu)e. +(F = oo Jr, — fi)r,

=(f = fn: Jno — Ji)oo =W — Sulle S — Siullz,
Canceling one | f, — fallx,, we will get || fn, — fullr, < If — fallz,- o

In the rest of this subsection, we will prove the following discrete result, and use it to
derive the quasi-orthogonality.

Lemma5 Given an f € L3() and two triangulations Ty, Ty, € L(Tp) with T, < Tj,,
let u be the solution of (1)-(2), uj, = {ug, uﬁ} IS Vh0 and uy, = {ug*, uz*} € V}?* be the

corresponding WG solutions of (7), i, = {ﬁg*, ﬁﬁ*} € V,?* be the solution of the variational
problem (16). Then there exists a constant Co which depends only on the shape regularity of
Th,, satisfying

142 (Vyiin, = Vwun)lz, < /Coose(f. Ry,1,)-
Proof Applying (7) and (16), then for any v;,, = {vg*, vZ*} € V,?*, we have

(A(Vwiin, — Vaun,), Von )7, = (i = fia, vh5). 27)

Noting that 7, \R7,—7,, = 7n\R7,-7;, are unchanged elements, choosing v, = itp, —
up, € V,?* in (27) and using the property of L? projection, Hélder inequality, (20), Cauchy—
Schwarz inequality, we arrive at

IAY2(Vwiin, — V),

= (fi = fodiy —ul)g, = Y (fu— foiy — b,

Tx ERZ1_>771*

~h h
< Y = falle, - llig* — ugtl,

‘E*€727'h‘>7'h*
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SO U= fulle - he I Vuiin, — Vaun, |,
T*ER’]’h_)’]’h*

_1 1/2 ~
SO AT = falle, e IAYA (Vi — Viun)ll-,
1:*E,R"Th_yfh*
1/2 1/2
2 —1 2 1/2 ~ 2
S D DAY e e > IAYA(Vyiin, — Vaun)II2,
wERT T, wERT, T,
1/2 12
2 -1 2 1/2 ~ 2
U D2 rhartig - a? > A (Vyiin, — Vun)I2,
TERThﬁTh* 4 €7p,

Sose(f. Ry —1,) - 1A (Vwiin, = Vour ), .

where the constants only depends on the shape regularity of 7j,,. At last, canceling one
|AY2(Vyiin, — Vun,) |7, , then there exist a constant Co, such that

A2 (Vyiin, — Vup)ll7, < +/Coose(f. R7,-1;,)-

Now, we use Lemmas 2 and 5 to derive a quasi-orthogonality result.

Lemma 6 Givenan f € L3(Q) and two triangulations Ty, Tp,, € L(7p) defined in (14) with

Th < Tp,, let u be the solution of (1)—~(2), up = {ug, uZ} S Vh0 and up, = {ug*, uZ*} € V/?*

be the corresponding WG solutions of (7). Then for any € € (0, 1), we have

(A=A (Vu =V qun )N, < 1A (Vi = Vo cun) |3,
— A2 (Vo un, = Vo eI, + %osez(f, RT~7,)-
(28)
where the constant Cy is given in Lemma 5, T € Tj, . € Ty, and 1, C 7.
Proof First, making use of Lemma 2, Cauchy—Schwarz inequality and Lemma 5, we obtain
(AYV2(Vu — Vo run,)s AV (Vo cun — Vo o un )7,
= (A(Vu — Vy run,), Vi cith — waf*ﬁh*)q;*
+(AY2(Vu = Vi qup,), AV (Vy i, = Vi run, )T,
= (A2(Vu = Vy rup), AV (Vo o iin, — Voo, un )T,
< 1AV = Vu,cun )7, 1A (Vu e iin, = Vo, cun)l7;,

< VColl AV (Vu = Vo c.un) |7, 05¢(f, RT,>7;,)- (29)
1
For any € > 0, using the inequality 2ab < ea® + —b? and (29), we have
€

IAY2(Vu = Vo cun) |17,
= A2 (Vi = Vo qun )T, + 1AV (Vo cun, — Vo cun) 17,
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—2(AV2(Vu = Vi), AV (Ve ttn, = Vo cun)) 7,
> |AYV2(Vu = Vo un )7, + 1A (Vo coun, = Vo cun) 17,

=2/|A"2(Vu = Vi un) 7, v/ Coose(f, Rz, 73,
> (1= OIAYA(Vu = Vo run )7, + 1A (Vo cotn, = Voo cun) 17,

Co
—?Oscz(f,RTh_)Th*).

This completes the proof. O

4.2 Residual Type Error Estimate: Upper Bound

In this subsection, we will recall the upper bound, which is important to prove the convergence
of the adaptive WG methods.

Lemma7 (Theorem 4.4 in [6]) Let u be the solution of (1)~(2) and u, = {ult, ull} € V2 be
the solution of (7). Then, there exists a positive constant C1 depending on the shape regularity
of T, and coefficient A, such that

1AY2(Vu = Vw7, < CinGun, T). (30)

Remark 4 Although the error estimator in the above inequality is different from one intro-
duced in [6], they can control each other. We can see from the Remark 3.

4.3 Contraction of the Error Estimator

In this subsection, we shall introduce the contraction of the error estimator. In order to prove
that, we will divide the error estimator n(vy, 7)) into two parts osc?( f,7y) and nf(vh, )
and present separately the reduction of the two parts.

First, we prove the the reduction of oscillation oscz( £, Tn).

Lemma8 ForT;, T, € L(To) with Ty, < Tp,, let » := 1 — p € (0, 1), where pu := 2714 ¢
(0, 1). We have

osc®(f. Tn,) < osc*(f, T) — rosc*(f, Rz, —T;,)- (€29)
Proof For all 7, € R, , applying with (26), we arrive at

If = ful2 = (f = fuor f = fu)e,
=(f = fnr [ — fi)u
<If = fulelf = full,,

which implies

If = fulle, = I = fulle.- (32)

For all T € Ry, 17, , we suppose that 7 is bisected into t} 12 € T, then hfl =) =
*

T,

1 1
|21 = hly = S| = Sh{(d =2.3) together with (11) and (32), yields

@ Springer



17 Page 14 of 25 Journal of Scientific Computing (2021) 86:17

osc?(f, ‘L'*l) +osc?(f, Tf)
= W2 AQ TS = fiy + B2l AT — fi 22
< BLIAQITS = il + 051 AT = ful %
=272 RANTN S = fuly + 27 AT = Sl
=220 AT = Sl
< whZ| A = fill?
= pose®(f, 1), (33)

Using the fact that 7, \Rz,—7,, = 7n\R7,—7,, in conjunction with (33) and (11), we
arrive at

osc*(f, Tn,)
= S RIALTI = B+ DD hLIALTS = Sl

T \R7, 75, R 7,7y,
2 —1 2 2
s Y RATI - Sl e Y os(f,0)
€T \R7, -7, te€R7, 75,
2 —1 2 2
= Y RIATI -l e Y o (fiT)
T€T\RT, T, TeRT, T,
2 2 2
= ZOSC f, o) — Z osc“(f, 1)+ Z osc*(f, 1)
€Ty T€RT, T, TR, T,
2 2
< ose”(f, Tn) — rose”(f, Ry—15,)-
We complete the proof. O

Now we are in a position to present the reduction of the second part. We first present the
difference between nf(vh*, Tp,) and n%(vh, Th,)-

Lemma9 For Ty, T, € L(To) with Ty < Th,, let vy = {f}, v} € V2, v, = (0", v} €

Vh,. Then for any ¢ > 0, there exists constant o1 depending on the shape regularity of Ty,
the polynomial order 1, coefficient A and parameter ¢, such that

0t Wn,o Th,) < (14 i (n, T,)
i 2 A2y _v 2
+01 pmosc”(f, R’Y},—VT;,*) =+l ( w, Ty Vhy w,rvh)”'z'h* .
(34)
Proof For each t, € 7;,, we will consider the four terms in n%(vh*, Ty,) one by one.

a) We first deal with the element terms R (vy,, fn,) := fo,+V-(AVyvp,) and Ra(vy,) =
V x Vyvp,. For Ry (vn,, fr,), using the triangle inequality, we have

he | A, |T2IR 0,y fin) Iz,
= he | Ac 72N fr + V- (AVpr) e,
= he | Ae |7 210 + V- (AV o) + o, — fo + V- AV 2,08, — Vi c0) |z,
< he|Ae, |72 IR (un, f) e,
+he | AT 2N, — fi + V- AV 0n, — Voo i, (35)
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Applying triangle inequality, chain rule and inverse inequality, we obtain
he | A V2N iy — o+ V- AV o, 0h, — Vi con) |z,
S he A 72N fn, — fille, + he IV - AV g, 08, — Vi con) |z,
SheAe 72N fn, = fulle, + 1AV 2,0, — Ve 0) |z,
SheAe 72N fr, = fulle, + 1AM (Vi 0n, — Vi c0m) 1, - (36)

Substituting (36) into (35) and making use of Lemma 4, for any 7, € 7j, \R7,—T,» We
have

e | A )72 IR (Vny s f2) e,
S he A |72 IR Wiy )z, + IAY2 (Vi 200, — Vi cvn) Iz, 37)

and for any 7, € Rz,—1,, We have

he, | Ag, | ™ IR (0, fu) I,
S he | A 7R iy fid)lles + e | A )TN F = fille,
+IAY2(Vy 1 vn, — Vi 2o, - (38)

For R;(vp,), a similar method for proving (37), we get
he|Ac |2 Ra(op) |,

< e | A, Y2V X Vi cvnllz, + he | A V21V X (Vi o, 08, — Vi con) I,
S he | A IR (i) I, + 1A (Vo 2,08, — Vo, 08 1, - (39)

b) Now, we consider the jump terms J., (AVy, vy, ) and Je, (y; (Vyvp,)). Foreache, € 8,?* ,
we assume that e, = ) N2 with 7}, 72 € 75, . Let n and n2 be the unit normal vectors on
e, exterior to 7, and 72, respectively. Applying the triangle inequality, we obtain

R AT 7123, (A, o) e,
< R AT 712 5, (AVy con) e,
FhY2 AP 23, (A 2,0, = Vicvn) e, (40)
Using the definition of J,, (A(Vy, v — Vi, 7, Vp,)) and trace inequality, we have
R AR 712, (A, 0n, = Vi o) e
< W2 A T2 ATy 2 vn, — Vicon) g - ke,
P LAR TV AV, vh, — Vi V)2 - B2 e,
S hPINAVw e 0, = Vet le, + b2 1AV 0,0, = Vi, o) |2l
SNAY2 (Vi 2, V0, = Vo) [l 102 @1)
Substituting (41) into (40), we get
R AT =123, (AVyun,) e,
< hY2) AP 7V2 ) T (AVy 2op) e,
1AV (Vo 2,08, = Vel U2 (42)
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Similar to the proof of (42), we obtain
R AT 213, (Ve vm) e,

< B2 IAT 213, 4 (Vi con) e,
+h2IAT 2T, (v (Vi e, Vh, = Vaocvn)) e,

S AL e, 0 (Ve e, + 121 (V. 08, = Vool e,
AR (Vi 2,08, = Vi zo)l 2 e,

< Y2 AD 23, (v (Ve vn) e
1AV (Vo 2,08, = Vel U2 (43)

For each e, € &,, N 02, we assume that e, C 97, with 7, € 7, . By the definition of
Je, (AVyvp,), we have J,, (AVy,vp,) = 0. Next, a similar method for proving (43), we get

R AR 2T, (v (Vo) e,
< W2 AT 2 T, (Vo) e,
+h2 A2 X, (v (Va e, v, — Vacvn) e,
SRY2IAT 25 (v (Vi cvi)lle, + 1A (Vo 2,00, — Vi con) e, (44)
From (33), we also arrive at
Yo he AT PUf = falle, < posc(f, R —,)- (45)
T*ERTh‘)Th*

Squaring both sides of (37), (38), (39), (42), (43), (44), applying Young’s inequality
2ab < Caz + ;—‘bz fora,b > 0,¢ > 0, summing all elements 7, € 7, and edges/faces
ex € &, observing the shape regularity of the mesh 7j, and using (45), we arrive at

01 @, Th.)
<A+ OmEn T+ G0+ X halAg 721 = fill,

“eRT, 5T,
FIAYVA (Vo vh, — Vw,fvh)ll%h*)
< (L4 O)ni(wn. Tn,)
+Co(1+ £ (ose? (f, Ry, ) + 1A (Vs vn, = Varcon) 13-

The constant C, depends on the shape regularity of 7j,, coefficient A and the polynomial
order . At last, let 1 /o1 = Ca(1 4+ ¢~"), we get the desired inequality (34). O

Next, we prove the contraction of the error estimator if the solution does not change.

Lemma 10 Let 7, be a shape regular triangulation which is refined from a shape regular
triangulation Tj,. Let uy, € V}, be the discrete solution of (7). Then

3 un, Tn,) < 03 un, Tn) — A0 (un, R7,—1;,)-

Proof We shall divide the proof into two steps. In the first step, we prove the element-wise
contraction if one element is divided into at least two parts, and in the second step, we prove
the global version.
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Step 1. Suppose T € Ry, 7, is bisected into t! € 7, and t? € 7,,. We shall prove
that

nun, T 4 02, ©2) < undun, 1), (46)

where n € (0, 1) is given in Lemma 8.
In fact, similar to the proof of (33), we can obtain that the two element-wise terms are
reduced, namely,

B2 A IR s fi) 12+ B2l A2~ IR s )12
< uh?| ARy, )12, @7
and

W2 |Ag |- IR 17y + h Az ] - | Reui)llFy < whPlAc] - [Ro@n)l7. (48)
On the jump residual associated with edges/faces, we note that after T € 7}, is bisected, in
t} € 75, and t2 € 7j,, there are three types of faces.

1. For the new edge/face e, created by the bisection, which is inside the element 7, the
function V,,up| is a polynomial and its coefficients are continuous. Therefore [AV,,up, -
nle, and [y; (Vyup)le, are zero.

2. For the edges/faces divided from t, the jump values are invariant. But the mesh size is

changed.
Foreache € 81(1), where e = 71 N1y with 71, 1) € 7. Let r}i,i € 7Ty, and Tf,i € Ty, be the
children of 7; (i = 1, 2), define ei = rfk' N rj; 5> then we have e = ei U ei. For the first
jump term, applying Lemma 1, we obtain Je§: (AVyup) = 0,i = 1, 2. For the second
jump term,

1 ; 1 ;
S AGT T W e (Ve + She | AR" - 132 (0 (Ve ) I,

el e
1/d |AZ}in 1 i 2
=27V e | AR T (Ve cu)) |2
|A2mn| 2 * ¥
n;in 1
427V G J AT T (v (Vg cu) 1
|A[en1n| 2 * ey
1 .
< e Shel AT I1Fe e (Vwun)) 12, (49)
|Amin|
in the last step, we use the fact G -
| Amin|

For each e € &, N 3, where e = 97 with T € 7;,. Let 7} € 75, and t? € 7j, be the
children of 7, define ¢!, € e N ti(i = 1,2), then e = el U 2. For the first jump term,
using the definition of J,(AV,u;), we obtain Jei (AVyup) =0,i = 1, 2. For the second
jump term, using a similar method to prove (49), we have

1 ; 1 ;
A AT W et 0 (Ve 12y + S he | AR 132 (0 (Vo) 122

1 .
<u- EhrlAanl NI (V) 12 (50)
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3. For the edges/faces unchanged or inherited from 7, also the jump values are invariant but
the mesh size is decreased by 2-ld g — 2, 3. The crucial observation is that we use the
mesh size /i, in the jump residual.

Hence, using (47), (48), (49), (50) and the fact u = 2-1/¢, d = 2, 3, we get the inequality
(46).
Step 2. Notice that 7}1*\727;1%7;1* = E\Rq—hﬁq—h* , together with (46), we get
i, Tn,) = 03 un, R—1.,) + 03 iy To, \RT,>73,,)

= ni(un, Rz,—>7,.) + 03 n, T)\R7,-7,,,)

IA

i i, Ry,—1,) + 0t (un, Ta) — ni(un, R1,-1,)

IA

Nt G, Tp) = 2t un, R7,—1,,)-
O
The following lemma summarizes the contraction of n%(-, -) by using Lemmas 9 and 10.

Lemma 11 For any ¢ > O, there exists constant o1 depending on the shape regularity of
Ti+1, the polynomial order 1, coefficient A and parameter ¢, such that

07 iert, o) < (L) (77 ues Te) = Ani (e, R734,))
+Gil(uosc2<f, Rz 7)) + 142 (Va s = Va1, ).
(G
where T € Ty, Tk+1 € Tk41 and Tr4+1 C Tk
Proof Let 7, = Ty and 7, = 7i+1 in Lemmas 9 and 10, we get the desired result (51). O

At the end of this section, we present the contraction of the error estimator by using
Lemmas 8 and 11 .

Lemma 12 There exists & € (0, 1) depending only on the shape regularity of Ty, the
parameters 0, A and ¢ given in the marking strategy (13), Lemmas 8 and 9, respectively.
There holds

n
i1, Tor) < En°(ug, o) — Cose®(f, To) + (m + a) 05 (f s RTy—70,,)

i AI/Z \v/ \V4 2
+O‘1 I ( w, T Uk+1 — w,rkuk)”jj(JrIa

where |, o1 are defined in Lemmas 8 and 9, respectively; ty € Ty, Tk+1 € Tx+1 and txy1 S
Tk.

Proof Making use of the definition of the error estimator n2(~, -), Lemma 11 and let 7;, =
T, Th, = Tr+1 in Lemma 8, we have

02 (ursts Tig1)
= 3 (upr1, Terr) + 052 (f, Tis1)
< (14 ¢) (0 uk, Te) — Anf(ur, Ryi—70,)) + 08¢ (f, Te)

1
o (105 Ry ) + 1A Vit = Vool )
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—Aoscz(f, RTi—Tis1)
= (1+0) (" (ue. T) = Mn* (i R—73,,))
—¢ (0sc®(f. T) — ros(f . Ry 741))

1
+U—1(uosc2<f, RT>Tin) + 1A (Vo g ks — vw,fkuk)n%kﬂ)
= (1 + &) (n*(ur, Tt) — A (uk, R—>73,,)) — Cose*(f, Tx)

m
+ (;‘A + ;1) 052 (fs Reozis)

1Az v 2 52
+01 l ( w, Tt Yk+1 w,rkuk)”'Z}H- (52)

Applying the marking strategy (13) and choosing ¢ small enough such that £ := (1 +
¢£)(1 —6x) € (0, 1), in conjunction with (52), we obtain

I
1 (upits Teer) < En°Qug, o) — Cosc®(f, To) + (cx + a) 0sc*(f, Ry 7.1

i A1/2 \v4 \V4 2
+01 Il ( w, T Uk+1 — w,rkuk)”']j(H,

which completes the proof. O

4.4 Convergence of the AWG

In this subsection, we prove the algorithm AWG will terminate in finite steps within a given
tolerance. First of all, we shall prove the contraction of summation of the energy error and
the scaled error indicator.

Theorem 2 Given a marking parameter 6 € (0, 1) and initial mesh 1. Let u be the solution
of ()—(2), {Tk, uk, n(uk, Tx) }k=0 be a sequence of meshes, finite element solutions and error
estimates produced by the AWG. Then there exist constants p € (0,1),01 > 0,00 > 0
depending only on the shape regularity of 1y, the polynomial order 1, coefficient A, parameters

0, wo and €, such that if
1 —
0<e <min<u,l>,
Cy

then
172 2 2 2
A=A (Vu = Vyur D7, + 010" g1, Trev1) + 0205¢”(f Tet 1)
< p((1 = 1AV = Yyl + o1 (ux, T + 0205 (£, ) )
where the constants C and & are given by Lemmas T and 12, respectively.

Remark 5 Notice that the data oscillation osc?( £, -) is one part of the error indicator %, ).
If we want to get rid of the term azoscz( f,-), we have to add an extra marking for the data
oscillation, see [5].

Proof By adding o1 7% (x4 1, Tr+1) to both sides of (28), then applying Lemma 12, we have

(= A2 (Vu = Vo D)5, + o1 i1, Tevn)
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< A2 (Vu = Vypu) 17, = 1A (Vi ikt = Voo gt 75,

Co
+?OSC(f, Ry>Ti) + o1 (urs1, Tet1)

< A2 (Vu = Vyu) 13, = 1A (Vu ket = Vgl

Co
+?oscz(f, RzioTiny) + 01En (ug, To) — o1¢0sc?(f, Tp)

+(Eho1 4+ 1005 (f, Ry 7y) + 1A (Vo gyt — Vw17,
< 1AY2(Vu = Vyuo) 3, + o1En* (. o)

C
+ (?‘) +¢hot + u) 0s¢?(f, Rr—7i,,) — 018052 (f, Th), (53)

for any constant € € (0, 1). Suppose o2 > 0, which will be determined later. By adding
020502(f, Ti+1) in the both sides of (53) and let 7, = T, 7, = 7Ti+1 in Lemma 8, we
obtain

(= NA>(Vu = Vyurs DI, + 017 rgt, Tig1) + 02056 (f, Tig1)
< [A"2(Vu = Vyup) |1, + 01E0° (ur. o) + (02 — 010)0sc*(f . Tr)

Co
+ (? +u— (o — {01)?»> osc*(f, RTi—Tipn)- (54)
The above inequality (54) along with a sufficiently large o, satisfying

% +u— (02— goA <0, (55)
and some p; € (0, 1) to be determined later implies
(= A2 (Vu = Vo )5, + 017 i1, Tegr) + 0205 (f, Teyr)
< A2 (Vu = Vyuo) 13, + o160 (ur. 7o) + (02 — 010)0s¢(f  Ti)
< p1(1 = A2 (Vu = Vyup) |15 + (1 = p1(1 — ) | A2 (Vu — Vyup) |2
o160 (ur, To) + (02 — 010)0sc>(f, Tp). (56)
The upper bound (30) together with (56), yields
(=AY (Vu = Vyurs D17, + o1n° wesr, Tip1) + 02056 (f, Ti1)
= 11 = O AY2(Vu = Vyu)lly, + (€1 = Crpr(1 = ) + 018 )0 (ue, To)
+(02 — 010)0s¢* (f . Ta), (57)
according to
prog =C; — Cip1(1 —€) + 01,

choose

_ Ci+oaié

~ Ci+o1—Cie’
o1(1-§)

the requirement 0 < € < min (Ci’ 1) with & € (0, 1) leads to p; € (0, 1). By (55),
1

P1

02 — 01§

we obtain 0o — 01¢ > 0. Then let po = ,we get pp € (0,1) and
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(= ONA>(Vu = Vyury DI, + 017 rgr, Tip1) + 02056 (f, Tigr)
< o1 = )AVA(Vu = Vyu) |7, + proin® (k. Ti) + (02 — 018)0s¢* (f . Tr)
< p1(1 = ONAYA(Vu = Vyup) |5 + pro1in* (e, o) + p2020s¢(f, To).

We complete the proof by setting p = max{p1, p2} € (0, 1). O

By recursion, we get the decay of the error plus the estimator.
Corollary 1 Under the hypotheses of Theorem 2, then we have
(1= O AA(Vu = Vyu)llg, + o010 (uk. Te) + 020s¢* (f . Ti) < Cop*,

where the constant €, o1, 02, p are given in Theorem 2, and éo = (1 - e|A2(Vu —
un0)||%b + 01172(140, 7o) + ogoscz(f, T0). Thus the algorithm AWG will terminate in finite
steps.

5 Numerical Experiments

In this section, we test some experiments to show the performance of the adaptive algorithm
AWG. We carry out these numerical experiments by using the MATLAB software package
iFEM [4]. We choose the lowest order WG method and estimate the energy error || A 2wy —
Vwur)ll7, in the following numerical experiments.

Example 1 In this example, we test ‘L-shape’ problem in two dimensions. We choose an
L-shape domain Q = (—1, 1)2/[0, 1)2 and the coefficient A = 1. For the source f = 0, the
exact solution is u = r%/3 sin(%@) in polar coordinates. The left of Fig. 1 shows the initial
mesh 7y, and the right of Fig. 1 shows an adaptively refined mesh with marking parameter
0 = 0.5 after k = 14 iterative steps, which indicates the mesh is locally refined in a small
vicinity of the edge singularity.

Denote #7}, the number of elements and uy, the corresponding weak finite element solution
associated to the mesh 7;. The left of Fig. 2 shows the curves of log #7; — log ||A'/*>(Vu —
Vwur)ll7, for marking parameters 6 = 0.1, 0.3, 0.5 which indicates the convergence and the
quasi-optimality of the adaptive algorithm AWG of the energy error || AY/2(Vu — Vi uy) 7,
namely

IAY2(Vu — Vyu) |7 S G0 ~2.

And the right of Fig. 2 plots the performances of || A'/?(Vu — Vy,ux)||7; and n(ug, Tr) which
shows that the energy error IAY2(Vu — Vyup) l7; can be controlled by the error estimator
n(ug, 7x) and the optimal rates of the energy error and the corresponding error estimators
are approximate.

Example 2 In this example, we employ the Kellogg problem introduced in [10]. We choose
a domain Q = (—1, 1)2 and for f = 0, the exact solution in polar coordinates is u(r, 6) =
rY (@) where

cos((5 —o)y)cos((0 —F +p)y) if0<6=<3,
©) = cos(py) cos((f —m +0)y) ifZ<6<m,
HE = cos(oy) cos(@ — 7 — p)y) ifr <6 <3,

2
cos((5 —p)y)cos((6 —3F —o)y) if 3 <0 <2x,
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Fig.1 The initial mesh 7 (left); An adaptively refined mesh after 14 adaptive iterations with marking param-
eter 6 = 0.5 (right)
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Fig. 2 Quasi optimality of the adaptive algorithm AWG of the error NAY2(Vu — Vwup)ll 7, with different

marking parameters 6(left); the performances of HAI/ 2(Vu = Vwup)ll 7, and n(ug, Ty) for Example 1 with
6 = 0.5 (right)

the coefficient matrix A is piecewise constant: A = 161.44764 I in the first and third quad-
rants and A = I in the second and fourth quadrants and the constants y = 0.1,0 =
—14.92256, p = /4. Indeed, the exact solution u € HY(Q). The left of Fig. 3 shows
the initial mesh 7, and the right of Fig. 3 shows an adaptively refined mesh with marking
parameter 6 = 0.5 after k = 130 iterative steps. We can also see that the mesh is locally
refined in a small vicinity of the edge singularity.

The left of Fig. 4 shows the curves of log#7; — log I1AY2(Vu — Vwui) |7, for Kel-
logg problem with different marking parameters 6 = 0.1, 0.3, 0.5 which also indicates the
convergence and the next quasi-optimality of adaptive algorithm AWG, i.e.

IAY2(Vu — Vyu) ll S #T)~ 2.

And the right of Fig. 4 plots the performances of || A'/?(Vu — Vy,ux)||7; and n(ug, Tr) which
shows that the energy error IAY2(Vu — Vyup) l7; can be controlled by the error estimator
n(ug, 7x) and the optimal rates of the energy error and the corresponding error estimators
are approximate.

Example 3 In this example, we test "L-shape’ problem in three dimensions. We choose an
L-shape domain Q@ = (—1, 1)3/[0, 1) x [0,1) x (—1,1). We get an initial mesh 7y by
partitioning the given domain €2 into four subintervals in x-, y- and z-axes and then dividing
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Fig. 3 The initial mesh 7 (left); an adaptively refined mesh for Kellogg problem with marking parameter
6 = 0.5 after k = 130 adaptive iterations (right)
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Fig.4 Quasi optimality of the adaptive algorithm AWG of the error || A1/2(Vu — Vyyup)||7, with different
marking parameters 6 (left); the performances of ||A1/ 2(Vu — Vwug) ||77c and n(uy, 7;) for Example 2 (right)

Fig. 5 The initial mesh 7 (left); an adaptively refined mesh for L-shape problem in three dimensions with
marking parameter 6 = 0.5 after k = 17 adaptive iterations (right)

every cube into 6 tetrahedrons. We set A = I and the source f = 0 such that the exact
solution in the cylindrical coordinate is u = 73 sin (%9) The left of Fig. 5 shows the initial
mesh 7y, and the right of Fig. 5 shows an adaptively refined mesh with marking parameter
6 = 0.5 after k = 17 iterative steps which also indicates the mesh is locally refined.

The left of Fig. 6 plots the curves of log#7; — log ||A1/2(Vu — Vypur)lz for 6 =
0.1, 0.3, 0.5 which indicates the convergence and the next quasi-optimality of adaptive algo-
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Fig. 6 Quasi optimality of the adaptive algorithm AWG of the error NAY2(Vu — Vwup)ll 7, with different
marking parameters 6 (left); the performances of || Al2 (Vu—=Vyup)lz, and n(ug, 7y ) for Example 3 (right)

rithm AWG of the energy error, i.e.
1A (Vu = Vyup) 7 S @0 ~'7.

And the right of Fig. 6 plots the performances of |AY2(Vu — Vwui)llz and n(uk, 7x) for
Example 3 which shows that the energy error IAY2(Vu — Vyui) |l7; can be controlled by
the error estimator 7 (uy, 7;) and the optimal rates of the energy error and the corresponding
error estimators are approximate.

From above numerical examples, we know that the AWG method introduced in Sect. 3 is
convergent and the numerical examples also indicate next quasi-optimality

IAY2(Vu — Vyu) |7 < @707V, d =2, 3.
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