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Abstract
In this paper, motivated by the works of Kohsaka and Takahashi (SIAM J Optim 19:824–
835, 2008) and Aoyama et al. (J Nonlinear Convex Anal 10:131–147, 2009) on the class of
mappings of firmly nonexpansive type, we explore some properties of firmly nonexpansive-
likemappings [ormappings of type (P)] in p-uniformly convex and uniformly smoothBanach
spaces. We then study the split common fixed point problems for mappings of type (P)
and Bregman weak relatively nonexpansive mappings in p-uniformly convex and uniformly
smoothBanach spaces.Wepropose an inertial-type shrinking projection algorithm for solving
the two-set split commonfixed point problems and prove a strong convergence theorem.Also,
we apply our result to the split monotone inclusion problems and illustrate the behaviour of
our algorithm with several numerical examples s. The implementation of the algorithm does
not require a prior knowledge of the operator norm. Our results complement many recent
results in the literature in this direction. To the best of our knowledge, it seems to be the first
to use the inertial technique to solve the split common fixed point problems outside Hilbert
spaces.
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1 Introduction

Let X be a nonempty set and T : X → X be a mapping. A point x ∈ X is called a fixed point
of T if T x = x . We shall denote the set of fixed points of T by F(T ). The identity mapping
on X is denoted by I .

Let E1 and E2 be real Banach spaces and A : E1 → E2 be a bounded linear operator
with the adjoint operator A∗. Let C and Q be nonempty closed convex subsets of E1 and E2,
respectively. The Split Feasibility Problem (in short, SFP) can be formulated as:

find x ∈ C such that Ax ∈ Q. (1.1)

The SFP was first introduced by Censor and Elfving [13] in the framework of Hilbert spaces
for modeling inverse problems which arise from phase retrievals and medical image recon-
struction. The SFP has applications in signal processing, radiation therapy, data denoising
and data compression (see [4,10,12,14,19,22,50] for details).

A generalization of the SFP (1.1) is the Split Common Fixed Point Problem (in short,
SCFPP). Let Ti : E1 → E1, i = 1, 2, ..., n and U j : E2 → E2, j = 1, 2, ..., m be nonlinear
mappings such that F(Ti ) and F(U j ) are nonempty. The SCFPP is formulated as:

find x ∈ ∩m
i=1F(Ti ) such that Ax ∈ ∩n

j=1F(U j ). (1.2)

In particular, for m = n = 1, then SCFPP (1.2) becomes the two-set SCFPP, which is
formulated as:

find x ∈ F(T ) such that Ax ∈ F(U ). (1.3)

The two-set SCFPP (1.3) was first studied by Censor and Segal [15] in the framework of
Hilbert spaces for the case where T and U are nonexpansive mappings. They proposed the
following algorithm: {

x0 ∈ C,

xn+1 = T [xn − γ A∗(I − U )Axn],
where γ ∈ (0, 2

λ
) with λ being the spectral radius of the operator A∗ A, and under some

suitable conditions proved a weak convergence theorem. In 2011, Moudafi [32] also stud-
ied the SCFPP for quasi-nonexpansive mappings in infinite-dimensional Hilbert spaces. By
modifying the Mann’s iteration, Moudafi [32] proposed the following algorithm (1.4) for
solving the two-set SCFPP and obtained a weak convergence theorem:

⎧⎨
⎩

x0 ∈ C,

yn = xn − γβ A∗(I − U )Axn,

xn+1 = (1 − αn)yn + αn T yn,

(1.4)

where I − T and I − U are demiclosed at zero, γ ∈ (0, 1
λβ

) for β ∈ (0, 1) and λ being the
spectral radius of the operator A∗ A.

Recently, some authors have studied the SCFPP (1.3) for a pair of mappings of different
classes in Banach spaces. In 2015, Tang. et al. [53] studied the SCFPP (1.3) for an asymptotic
nonexpansive mapping and a τ -quasi-strict pseudocontractive mapping in the setting of two
Banach spaces. They proved weak and strong convergence theorems.

Let E be a smooth, strictly convex and reflexive Banach space. Let H be a Hilbert space
and C be a nonempty closed convex subset of H . Let B be a maximal monotone operator
of H into 2H such that dom(B) ⊂ C . Let A : H → E be a bounded linear operator
such that A �= 0, {Ti }∞i=1 : C → H be an infinite family of ki -demimetric and demiclosed
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mappings and U be a firmly nonexpansive-like mapping on E . In 2018, Y. Song [43] studied
the generalized split feasibility problem of the form:

find x ∈ ∩∞
i=1F(Ti ) ∩ B−1(0) ∩ A−1F(U ). (1.5)

It is noted that if B = 0, then (1.5) becomes the SCFPP (1.3). They proposed an Halpern type
iterative algorithm for solving the problem (1.5) and proved a strong convergence theorem.

Also very recently, Takahashi [52] studied the SCFPP for generalized demimetric map-
pings in two Banach spaces. They used the hybrid method and shrinking projection method
to find a solution to the problem and proved strong convergence theorems.

We note that the algorithms proposed for the SCFPP in [43,52,53] require a prior estimate
of the norm of the bounded linear operator. This in practice is not always easy to compute.
For more on SCFPP and related optimization problem, see [23–25,27,35,41,47,48,51,54] and
the references therein.

In fixed point theory, it is more desirable to work with an algorithm that has a high rate
of convergence. A way of achieving this is by incorporating inertial term in the algorithm.
This idea was proposed originally by Polyak [37]. It can be seen as a discrete version
of a second-order time dynamical system used to speed up convergence rate of the smooth
convexminimization problem. Themain idea of thesemethods is tomake use of two previous
iterates to update the next iterate, which results in speeding up the algorithm’s convergence.
Recently, authors have shown considerable interest in studying inertial type algorithms, see
for example [26,28,42,54] and the references therein.

Motivated by the above works, in this paper we study the two-set SCFPP for mappings of
type (P) and Bregman weak relatively nonexpansive mappings in p- uniformly convex and
uniformly smooth Banach spaces.We propose an inertial-type shrinking projection algorithm
with the step size independent on the prior estimate of the norm of the bounded linear operator
and prove strong convergence theorem. Our result seems to be the first to consider an inertial-
type algorithm for SCFPP in Banach spaces.

This paper is organized as follows. In Sect. 2, we give some useful definitions, notations
and lemmas, which are needed for the analysis of our algorithm. In Sect. 3, the algorithm
and its strong convergence theorem are presented. In Sect. 4, we apply our main result to
the split monotone inclusion problem. In Sect. 5, we give numerical examples to illustrate
the behaviour of our algorithm. We conclude in Sect. 6.

2 Preliminaries

In this section, we give some definitions and results which will be needed in proving our
main result in the next section.

Let E be a real Banach space with the norm ‖ · ‖, C be a nonempty closed convex subset
of E and E∗ be the dual with the norm ‖ · ‖∗. We shall denote the value of the functional
x∗ ∈ E∗ at x ∈ E by 〈x∗, x〉. For a sequence {xn} of E and x ∈ E , we denote the strong
convergence of {xn} and weak convergence of {xn} to x by xn → x and xn⇀x , respectively.
The normalized duality mapping J : E → 2E∗

is defined by

J x = {x∗ ∈ E∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2∗}, (2.1)

for all x ∈ E . Let U := {x ∈ E : ‖x‖ = 1}. E is said to be smooth if the limit

lim
t→0

‖x + t y‖ − ‖x‖
t

(2.2)

123



12 Page 4 of 30 Journal of Scientific Computing (2021) 86 :12

exists for all x, y ∈ U . E is said to be strictly convex if ‖x + y‖ < 2 whenever x, y ∈ E and
x �= y. Let 1 < q ≤ 2 ≤ p < ∞ with 1

p + 1
q = 1. The modulus of convexity of E is the

function δE : (0, 2] → [0, 1] defined by

δE (ε) := inf

{
1 −

∥∥∥∥ x + y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

}
.

E is said to be uniformly convex if δE (ε) > 0 and p-uniformly convex if there exists a
constant C p > 0 such that δE (ε) ≥ C pε

p , for any ε ∈ (0, 2]. The L p space is 2-uniformly
convex for 1 < p ≤ 2 and p-uniformly convex for p ≥ 2. It is known that every uniformly
convex Banach space is strictly convex and reflexive.

The modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined by

ρE (τ ) := sup

{‖x + τ y‖ + ‖x − τ y‖
2

− 1 : ‖x‖ = ‖y‖ = 1

}
.

E is called uniformly smooth if limτ→0+ ρE (τ )
τ

= 0 and q-uniformly smooth if there exists
Cq > 0 such that ρE (τ ) ≤ Cqτ q . Every uniformly smooth Banach space is smooth and
reflexive. The generalized duality mapping J E

p : E → 2E∗
is defined by

J E
p (x) = {u∗ ∈ E∗ : 〈u∗, x〉 = ‖x‖p, ‖u∗‖∗ = ‖x‖p−1}. (2.3)

If p = 2, (2.3) becomes the normalized duality mapping (2.1). It is known that J E
p (x) =

‖x‖p−2 J (x) for all x ∈ X , x �= 0. It is also known that E is uniformly smooth if and only if
J E

p is norm-to-norm uniformly continuous on bounded subsets of E and E is smooth if and

only if J E
p is single valued. Moreover, E is p-uniformly convex (smooth) if and only if E∗

is q-uniformly smooth (convex). If E is p-uniformly convex and uniformly smooth, then the
duality mapping J E

p is norm-to-norm uniformly continuous on bounded subsets of E (see
[17,30,56]). Examples of generalized duality mapping are given below:

Example 2.1 [1] Let E := �p(R) and x = (x1, x2, x3, . . .) ∈ �p (1 < p < ∞). Then the
generalized duality mapping J E

p is given by

J E
p (x) = (|x1|p−1sgn(x1), |x2|p−1sgn(x2), . . .).

Example 2.2 [1] Let E := L p([α, β]) (1 < p < ∞), where α, β ∈ R and let f ∈ E . Then
the generalized duality mapping J E

p is given by

J E
p ( f )(t) = | f (t)|p−1sgn( f (t)).

Xu and Roach [56] proved the following inequality for q-uniformly smooth Banach spaces.

Lemma 2.3 Let x, y ∈ E. If E is a q-uniformly smooth Banach space, then there exists a
Cq > 0 such that

‖x − y‖q ≤ ‖x‖q − q〈J E∗
q (x), y〉 + Cq‖y‖q .

Definition 2.4 A function f : E → R ∪ {+∞} is said to be

(1) proper if its effective domain D( f ) = {x ∈ E : f (x) < +∞} is nonempty,
(2) convex if f (λx + (1−λ)y) ≤ λ f (x)+ (1−λ) f (y) for every λ ∈ (0, 1), x, y ∈ D( f ),

(3) lower semicontinuous at x0 ∈ D( f ) if f (x0) ≤ lim infx→x0 f (x).
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Let x ∈ int dom f . For any y ∈ E , the right-hand derivative of f at x denoted by f 0(x, y)

is defined by

f 0(x, y) := lim
t→0+

f (x + t y) − f (x)

t
. (2.4)

If the limit as t → 0 in (2.4) exists for any y, then the function f is said to be Gâteaux
differentiable at x (see, for instance [36], Definition 1.3, p. 3). In this case the gradient of
f at x is the function ∇ f (x) which is defined by 〈∇ f (x), y〉 = f 0(x, y) for any y ∈ E .
The function f is said to be Gâteaux differentiable if it is Gâteaux differentiable for any
x ∈ int dom f (see also, [9]).

Let f : E → R ∪ {+∞} be a proper, convex and lower semicontinuous function and
x ∈ int dom f . The subdifferential of f at x is the convex set defined by

∂ f (x) = {x∗ ∈ E∗ : f (y) ≥ 〈x∗, y − x〉 + f (x) ∀ y ∈ E}.
If ∂ f (x) �= ∅, then f is said to be subdifferentiable at x .

Given a Gâteaux differentiable function f , the bifunction 
 f : E × E → [0,+∞) given
as


 f (x, y) := f (x) − f (y) − 〈∇ f (y), x − y〉, ∀ x, y ∈ E (2.5)

is called the Bregman distance with respect to f , (see [49]). In particular, let f (x) = 1
p ‖x‖p .

In this case the duality mapping J E
p is the derivative of f . The Bregman distance 
p :

E × E → [0,+∞) is defined by


p(x, y) := ‖x‖p

p
− ‖y‖p

p
− 〈J E

p (y), x − y〉

= ‖x‖p

p
+ ‖y‖p

q
− 〈J E

p (y), x〉. (2.6)

Note that 
p(x, y) ≥ 0 and 
p(x, y) = 0 if and only if x = y (see e.g. [7]). In general, the
Bregman distance is not symmetric and is not a metric. However, it possesses some distance-
like properties. From (2.6) one can show that the following equality called three-point identity
is satisfied:


p(x, y) + 
p(y, z) − 
p(x, z) = 〈J E
p (z) − J E

p (y), x − y〉 ∀ x, y, z ∈ E . (2.7)

In particular,


p(x, y) + 
p(y, x) = 〈J E
p (x) − J E

p (y), x − y〉 ∀ x, y ∈ E .

For p-uniformly convex space, themetric andBregman distance satisfy the following relation
[40]:

τ‖x − y‖p ≤ 
p(x, y) ≤ 〈J E
p (x) − J E

p (y), x − y〉, (2.8)

where τ > 0 is some fixed number. If f (x) = ‖x‖2, the Bregman distance is the Lyapunov
functional φ : E × E → [0,+∞) defined by

φ(x, y) := ‖x‖2 − 2〈J y, x〉 + ‖y‖2. (2.9)

The metric projection
PC x := argmin

y∈C
‖x − y‖, x ∈ E,

123



12 Page 6 of 30 Journal of Scientific Computing (2021) 86 :12

is the unique minimizer of the norm distance (see [20]). It can be characterized by the
following variational inequality:

〈J E
p (x − PC x), z − PC x〉 ≤ 0,∀z ∈ C .

Moreover, the metric projection is nonexpansive, i.e. ‖PC x − PC y‖ ≤ ‖x − y‖,∀x, y ∈ C .
Similar to the metric projection, the Bregman projection defined by

�C (x) := argminy∈C
p(y, x), x ∈ E, (2.10)

is the unique minimizer of the Bregman distance (see [39]). It can also be characterized by
the variational inequality:

〈J E
p (x) − J E

p (�C x), z − �C x〉 ≤ 0, ∀z ∈ C,

from which one can derive that


p(y,�C x) + 
p(�C x, x) ≤ 
p(y, x), ∀y ∈ C . (2.11)

If E is a real Hilbert space, then �C = PC , see [2,21] for details. Associated with the
Bregman distance is the functional Vp : E × E∗ → [0,+∞) defined by

Vp(x, x̄) := 1

p
‖x‖p − 〈x̄, x〉 + 1

q
‖x̄‖q , x ∈ E, x̄ ∈ E∗.

Clearly, Vp(x, x̄) ≥ 0 and the following properties are satisfied:

Vp(x, x̄) = 
p(x, J E∗
q (x̄)), ∀x ∈ E, x̄ ∈ E∗, (2.12)

and
Vp(x, x̄) + 〈ȳ, J E∗

q (x̄) − x〉 ≤ Vp(x, x̄ + ȳ), ∀x ∈ E, x̄, ȳ ∈ E∗. (2.13)

Also, Vp is convex in the second variable. Thus for all z ∈ E ,


p

(
z, J E∗

q

(
N∑

i=1

ti J E
p xi

))
≤

N∑
i

ti
p(z, xi ),

where {xi } ⊂ E and {ti } ⊂ (0, 1) with
∑N

i=1 ti = 1.
A point x∗ ∈ C is called an asymptotic fixed point of T if C contains a sequence {xn} which
converges weakly to x∗ such that limn→∞ ‖xn − T xn‖ = 0. We denote the set of asymptotic
fixed points of T by F̂(T ). A point x∗ ∈ C is called a strong asymptotic fixed point of T if C
contains a sequence {xn}which converges strongly to x∗ such that limn→∞ ‖xn −T xn‖ = 0.
We denote the set of strong asymptotic fixed points of T by F̃(T ). It follows from the
definitions that F(T ) ⊂ F̃(T ) ⊂ F̂(T ).

Definition 2.5 A mapping T from C to C is said to be

(1) Bregman quasi-nonexpansive if F(T ) �= ∅ and


p(x∗, T y) ≤ 
p(x∗, y), ∀y ∈ C, x∗ ∈ F(T ),

(2) Bregman weak relatively nonexpansive if F̃(T ) �= ∅, F̃(T ) = F(T ) and


p(x∗, T y) ≤ 
p(x∗, y), ∀y ∈ C, x∗ ∈ F(T ),

(3) Bregman relatively nonexpansive if F(T ) �= ∅, F̂(T ) = F(T ) and


p(x∗, T y) ≤ 
p(x∗, y), ∀y ∈ C, x∗ ∈ F(T ).
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It is known that for a Bregman quasi-nonexpansive mapping T : C → C , the fixed point set
F(T ) is closed and convex (see [38]). From the definitions, it is clearly seen that the class
of Bregman quasi-nonexpansive contains the class of Bregman weak relatively nonexpan-
sive and the class of Bregman weak relatively nonexpansive contains the class of Bregman
relatively nonexpansive. The next examples illustrate these inclusions.

Example 2.6 (See [16]) Let E = �2(R), where �2(R) := {σ = (σ1, σ2, . . . , σn, . . .), σi ∈
R : ∑∞

i=1 |σi |2 < ∞}, ‖σ‖ = (
∑∞

i=1 |σi |) 1
2 ∀ σ ∈ E and let f (x) = 1

2‖x‖2 for all x ∈ E .
Let {xn} ⊂ E be a sequence defined by x0 = (1, 0, 0, 0, . . .), x1 = (1, 1, 0, 0, . . .), x2 =
(1, 0, 1, 0, . . .), . . . , xn = (σn,1, σn,2, σn,3 . . .), . . . , where

σn,k =
{
1 if k = 1, n + 1,
0 if otherwise, ∀ n ≥ 0,

n ∈ N. Define the mapping T : E → E by

T x =
{ n

n+1 x if x = xn,

−x if x �= xn .

It can be shown that T is a Bregman quasi-nonexpansive, precisely Bregman weak relatively
nonexpansive mapping but not a Bregman relatively nonexpansive mapping (see also [34]).

The next example is a Bregman quasi-nonexpansive mapping which is neither Bregman
weak relatively nonexpansive nor Bregman relatively nonexpansive.

Example 2.7 [34,44] Let E be a smooth Banach space, let k be an even number in N and let
f : E → R be defined by f (x) = 1

k ‖x‖k , x ∈ E . Let x0 �= 0 be an element of E . Define
the mapping T : E → E by

T x =
{

( 12 + 1
2n+1 )x0 if x = ( 12 + 1

2n )x0,
−x if x �= ( 12 + 1

2n )x0,

for all n ≥ 0. It can be verified that T is a Bregman quasi-nonexpansive mapping which is
neither Bregman weak relatively nonexpansive nor Bregman relatively nonexpansive.

One of themost important class of nonlinearmappings inHilbert space is the class of firmly
nonexpansive mappings. It includes all metric projections onto a closed convex set and all
resolvents of a monotone operator. Kohsaka and Takahashi [29] proposed the class of firmly
nonexpansive type mappings, which contains the firmly nonexpansive mappings in Hilbert
spaces and resolvents of maximal monotone operators in Banach spaces. It is classified into
three types; namely, type (P), type (Q) and type (R). In this study, we consider the class of
firmly nonexpansive-like mappings (or mappings of type (P)).

Definition 2.8 (See [6]) Let E be a smooth Banach space and C a nonempty subset of E . A
mapping U : C → E is said to be a mapping of type (P) if

〈J (x − U x) − J (y − U y), U x − U y〉 ≥ 0, ∀ x, y ∈ C . (2.14)

From the definition, it is easy to see that if E is a Hilbert space, thenU is firmly nonexpansive-
like of type (P) if and only if it is firmly nonexpansive, i.e. ‖U x − U y‖2 ≤ 〈U x − U y, x −
y〉, ∀ x, y ∈ C . We recall the following result.

Lemma 2.9 (See [5]) Let E be a smooth Banach space, C a nonempty subset of E and
U : C → E a firmly nonexpansive-like mapping (mapping of type (P)). Then the following
hold.
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(1) If C is closed and convex, then so is F(U ).
(2) F̂(U ) = F(U ).

Henceforth, we refer to a firmly nonexpansive-like mapping as mapping of type (P). In this
study,we consider E as p-uniformly convex and uniformly smooth. Consequently,wemodify
Definition 2.8 to accommodate the generalized duality mapping (2.3). Here and hereafter, E
is a p-uniformly convex and uniformly smooth Banach space.

Definition 2.10 Let E be a p-uniformly convex and uniformly smooth Banach space and C
a nonempty subset of E . A mapping U : C → E is said to be of type (P) if

〈J E
p (x − U x) − J E

p (y − U y), U x − U y〉 ≥ 0, ∀ x, y ∈ C . (2.15)

Example 2.11 Let E be a p-uniformly convex and uniformly smooth Banach space and C a
nonempty closed convex subset of E . Then the metric projection PC is a mapping of type
(P).

Example 2.12 Let E := L p([α, β]) (2 ≤ p < ∞), where α, β ∈ R and let f ∈ E . The
mapping U : E → E defined by U ( f (x)) = 1

2 f (x) is of type (P). To see this, let f , g ∈ E ,
we obtain from (2.8) that

〈J E
p ( f (x) − U ( f (x))) − J E

p (g(x) − U (g(x))), f (x) − g(x)〉
= 〈J E

p (
1

2
f (x)) − J E

p (
1

2
g(x)), f (x) − g(x)〉

≥ τ

2p−1 ‖ f (x) − g(x)‖p ≥ 0. (2.16)

The following lemmas will be needed in the next section.

Lemma 2.13 [34] Let E be a smooth and uniformly convex real Banach space. Let {xn} and
{yn} be bounded sequences in E. Then limn→∞ 
p(xn, yn) = 0 if and only if limn→∞ ‖xn −
yn‖ = 0.

Lemma 2.14 [56] Let q ≥ 1 and r > 0 be two fixed real numbers. Then, a Banach space
E is uniformly convex if and only if there exists a continuous, strictly increasing and convex
function g : R+ → R

+, g(0) = 0 such that for all x, y ∈ Br and 0 ≤ λ ≤ 1,

‖λx + (1 − λ)y‖q ≤ λ‖x‖q + (1 − λ)‖y‖q − Wq(λ)g(‖x − y‖),
where Wq(λ) := λq(1 − λ) + λ(1 − λ)q and Br := {x ∈ E : ‖x‖ ≤ r}.

3 Main Results

In this section, we present our inertial-type algorithm and prove the strong convergence of
the sequence generated to a solution of the SCFPP for mapping of type (P) and Bregman
weak relatively nonexpansivemapping in p-uniformly convex and uniformly smooth Banach
spaces. We assume 1 < q ≤ 2 ≤ p < ∞ with 1

p + 1
q = 1.

Let E1, E2 be p-uniformly convex and uniformly smooth Banach spaces with duals
E∗
1 , E∗

2 , respectively. Let C = C1 be nonempty closed and convex subset of E1. Let
T : E1 → E1 be a Bregman weak relatively nonexpansive mapping and U : E2 → E2

be a mapping of type (P). Let A : E1 → E2 be a bounded linear operator. We consider the
following SCFPP:

find x ∈ F(T ) such that Ax ∈ F(U ). (3.1)
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We shall denote the solution set of the SCFPP (3.1) by � and assume that � �= ∅. We first
prove the following lemma.

Lemma 3.1 Let E be a p-uniformly convex and uniformly smooth Banach space, C a
nonempty closed convex subset of E, and U : C → E a mapping of type (P). Then the
following hold:

(1) y ∈ F(U ) if and only if 〈J E
p (x − U x), U x − y〉 ≥ 0, for every x ∈ C;

(2) F(U ) is closed and convex;
(3) F̃(U ) = F(U ).

Proof (1) Let y ∈ F(U ). Then it follows from (2.15) that 〈J E
p (x − U x), U x − y〉 ≥ 0, for

every x ∈ C . Conversely, suppose 〈J E
p (x − U x), U x − y〉 ≥ 0, for every x ∈ C . Then in

particular
〈J E

p (y − U y), U y − y〉 ≥ 0.

The last inequality implies that ‖y − U y‖p ≤ 0. Hence y = U y.
(2) Let {xn} ⊂ F(U ) be a sequence such that xn → x as n → ∞. Then

〈J E
p (x − U x), U x − xn〉 → 〈J E

p (x − U x), U x − x〉 ≥ 0 as n → ∞.

Therefore, ‖x − U x‖p ≤ 0. Hence x ∈ F(U ). Which shows that F(U ) is closed.
Let x∗, y∗ ∈ F(U ). Then for all λ ∈ (0, 1), λx∗ + (1−λ)y∗ ∈ C . Letw = λx∗ + (1−λ)y∗.
We want to show that w ∈ F(U ). Since x∗, y∗ ∈ F(U ), we have that

λ〈J E
p (x − U x), U x − x∗〉 ≥ 0 (3.2)

and
(1 − λ)〈J E

p (x − U x), U x − y∗〉 ≥ 0. (3.3)

From (3.2) and (3.3), we get that 〈J E
p (x − U x), U x − w〉 ≥ 0. Hence w ∈ F(U ) and so

F(U ) is convex.
(3) It is clear that F(U ) ⊂ F̂(U ). Let x ∈ F̂(U ). Then there exists a sequence {xn} ⊂ C
which converges weakly to x such that ‖U xn − xn‖ → 0 as n → ∞. Since U is a mapping
of type (P), from (2.15) we obtain

〈J E
p (x − U x) − J E

p (xn − U xn), U x − U xn〉 ≥ 0.

Taking limit as n → ∞ in the last inequality gives

〈J E
p (x − U x), U x − x〉 ≥ 0,

which implies that ‖x − U x‖p ≤ 0. Hence x ∈ F(U ). We then obtain that F(U ) = F̂(U ).
Since F(U ) ⊂ F̃(U ) ⊂ F̂(U ), we conclude that F(U ) = F̃(U ) = F̂(U ).

In what follows, we present our inertial-type algorithm.

Algorithm 3.2 Let E1, E2 be p-uniformly convex and uniformly smooth Banach spaces with
duals E∗

1 , E∗
2 , respectively. Let C = C1 be nonempty closed and convex subset of E1. Let

T : E1 → E1 be a Bregman weak relatively nonexpansive mapping and U : E2 → E2

be a mapping of type (P). Let A : E1 → E2 be a bounded linear operator with its adjoint
A∗ : E∗

2 → E∗
1 . Select x0, x1 ∈ E1, let {θn} be a real sequence such that −θ ≤ θn ≤ θ for

some θ > 0 and {αn} ⊂ (0, 1) be a real sequence satisfying lim infn→∞ αn > 0. Assuming
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that the (n−1)th and nth-iterates have been constructed, thenwe calculate the (n+1)th-iterate
xn+1 ∈ E1 via the formula

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = PC J
E∗
1

q [J E1
p xn + θn(J E1

p xn − J E1
p xn−1)],

vn = J
E∗
1

q [J E1
p wn − μn A∗ J E2

p (I − U )Awn],
yn = J

E∗
1

q [αn J E1
p vn + (1 − αn)J E1

p T (vn)],
Cn+1 = {z ∈ Cn : 
p(z, yn) ≤ 
p(z, wn)},
xn+1 = �Cn+1x0,∀n ≥ 1.

(3.4)

Assume for small ε > 0, the step size μn is chosen such that

μ
q−1
n ∈

(
0,

q‖Awn − U Awn‖p

Cq‖A∗ J E2
p (I − U )Awn‖q∗

)
, n ∈ �, (3.5)

where the index set � := {n ∈ N : Awn − U Awn �= 0}, otherwise μn = μ, where μ is any
non-negative real number.
We first prove the following lemmas which will be used to prove the convergence of Algo-
rithm 3.2.

Lemma 3.3 The sequence {μn} defined by (3.5) is well-defined.

Proof Let x∗ ∈ �, then x∗ = T x∗ and Ax∗ = U Ax∗. Thus,

‖Awn − U Awn‖p

= 〈J E2
p (I − U )Awn, Awn − U Awn〉

= 〈J E2
p (I − U )Awn, Awn − Ax∗ + U Ax∗ − U Awn〉

= 〈J E2
p (I − U )Awn, Awn − Ax∗〉 + 〈J E2

p (I − U )Awn, U Ax∗ − U Awn〉
= 〈A∗ J E2

p (I − U )Awn, wn − x∗〉 + 〈J E2
p (I − U )Awn, U Ax∗ − U Awn〉

≤ ‖wn − x∗‖‖A∗ J E2
p (I − U )Awn‖∗ + ‖U Ax∗ − U Awn‖‖J E2

p (I − U )Awn‖∗
= ‖wn − x∗‖‖A∗ J E2

p (I − U )Awn‖∗ + ‖U Ax∗ − U Awn‖‖(I − U )Awn‖p−1.

Consequently, for n ∈ �, that is ‖(I −U )Awn‖ > 0, we obtain that ‖wn − x∗‖‖A∗ J E2
p (I −

U )Awn‖∗ > 0 and ‖U Ax∗−U Awn‖‖(I −U )Awn‖p−1 > 0. Since ‖U Ax∗−U Awn‖‖(I −
U )Awn‖p−1 > 0, we have that ‖A∗ J E2

p (I − U )Awn‖∗ �= 0. This implies that μn is well-
defined.

Lemma 3.4 For every n ≥ 1, � ⊂ Cn and xn+1 defined by Algorithm 3.2 is well-defined.

Proof By our construction, C1 = C is closed and convex. Suppose Ck is closed and convex
for some k ∈ N. Then

Ck+1 = {z ∈ Ck : 
p(z, yk) ≤ 
p(z, wk)}
=

{
z ∈ Ck : ‖z‖p

p
+ ‖yk‖p

q
− 〈J E1

p yk, z〉 ≤ ‖z‖p

p
+ ‖wk‖p

q
− 〈J E1

p wk, z〉
}

= {z ∈ Ck : ‖yk‖p − ‖wk‖p ≤ q〈J E1
p yk − J E1

p wk, z〉},
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from which it follows that Ck+1 is closed. Let z1, z2 ∈ Ck+1 and λ1, λ2 ∈ (0, 1) such that
λ1 + λ2 = 1, then we have that

‖yk‖p − ‖wk‖p ≤ q〈J E1
p yk − J E1

p wk, z1〉 (3.6)

and
‖yk‖p − ‖wk‖p ≤ q〈J E1

p yk − J E1
p wk, z2〉. (3.7)

From (3.6) and (3.7) we then have that

‖yk‖p − ‖wk‖p ≤ q〈J E1
p yk − J E1

p wk, λ1z1 + λ2z2〉. (3.8)

By convexity, λ1z1+λ2z2 ∈ Ck . Therefore from (3.8), we conclude that λ1z1+λ2z2 ∈ Ck+1

and hence Ck+1 is convex. Thus, we have that Cn is convex for all n ∈ N.
Furthermore, since� �= ∅ by assumption, it implies thatCn+1 �= ∅. To show that� ⊂ Cn ,

∀n ≥ 1. Let x∗ ∈ �. Then x∗ ∈ F(T ) and Ax∗ ∈ F(U ), and therefore by construction i.e.
(3.4), � ⊂ C1. Suppose x∗ ∈ � ⊂ Cn , then


p(x∗, yn) = 
p(x∗, (1 − αn)J E1
p vn + αn J E1

p T (vn))

≤ (1 − αn)
p(x∗, vn) + αn
p(x∗, T (vn))

≤ 
p(x∗, vn). (3.9)

Also using (2.10), Lemma 2.3 and definition of Bregman distance, we get


p(x∗, vn) = 
p(x∗, J
E∗
1

q (J E1
p wn − μn A∗ J E2

p (I − U )Awn))

= ‖x∗‖p

p
− 〈J E1

p wn − μn A∗ J E2
p (I − U )AWn, x∗〉

+‖J E1
p wn − μn A∗ J E2

p (I − U )Awn‖q∗
q

≤ ‖x∗‖p

p
− 〈J E1

p wn − μn A∗ J E2
p (I − U )AWn, x∗〉 + ‖J E1

p wn‖q∗
q

−μn〈J E2
p (I − U )Awn, Awn〉 + Cq

q
μ

q
n‖A∗ J E2

p (I − U )Awn‖q∗

= ‖x∗‖p

p
− 〈J E1

p wn, x∗〉 + ‖J E1
p wn‖q∗

q
− μn〈J E2

p (I − U )Awn, Awn − Ax∗〉

+Cq

q
μ

q
n‖A∗ J E2

p (I − U )Awn‖q∗

= Vp(x∗, J E1
p wn) − μn〈J E2

p (I − U )Awn, Awn − Ax∗〉
+Cq

q
μ

q
n‖A∗ J E2

p (I − U )Axn‖q∗

= 
p(x∗, wn) − μn〈J E2
p (I − U )Awn, Awn

−Ax∗〉 + Cq

q
μ

q
n‖A∗ J E2

p (I − U )Awn‖q∗ . (3.10)
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We know from Lemma 3.1 that 〈J E2
p (I − U )Awn, U Awn − Ax∗〉 ≥ 0. Therefore,

〈J E2
p (I − U )Awn, Awn − Ax∗〉 = 〈J E2

p (I − U )Awn, Awn − U Awn + U Awn − Ax∗〉
= ‖Awn − U Awn‖p + 〈J E2

p (I − U )Awn, U Awn − Ax∗〉
≥ ‖Awn − U Awn‖p. (3.11)

Substituting (3.11) in (3.10) will yield


p(x∗, vn) ≤ 
p(x∗, wn) − μn‖Awn − U Awn‖p + Cq

q
μ

q
n‖A∗ J E2

p (I − U )Awn‖q∗

≤ 
p(x∗, wn) − μn

(
‖Awn − U Awn‖p − Cq

q
μ

q−1
n ‖A∗ J E2

p (I − U )Awn‖q∗
)

(3.12)

≤ 
p(x∗, wn), (3.13)

where (3.13) follows from the condition on the step size (3.5). Hence from (3.9) and (3.13),
we obtain that 
p(x∗, yn) ≤ 
p(x∗, wn), which shows that � ⊂ Cn+1, ∀ n ∈ N.

Lemma 3.5 The sequences {xn}, {yn}, {vn} and {wn} are bounded.

Proof We know from Algorithm 3.2 that xn = �Cn x0 and Cn+1 ⊆ Cn , ∀ n ≥ 1. Then from
(2.10), we have that 
p(xn, x0) ≤ 
p(xn+1, x0). This shows that {
p(xn, x0)} is nonde-
creasing. Also, since � ⊂ Cn+1 it implies that 
p(xn, x0) ≤ 
p(xn+1, x0) ≤ 
p(x∗, x0),
∀ x∗ ∈ �. Therefore from (2.8), we conclude that {xn} is bounded. Since {xn} is bounded, it
follows from the construction that {yn}, {vn} and {wn} are bounded.
Lemma 3.6 Let the sequences {xn}, {yn}, {vn} and {wn} be as defined in Algorithm 3.2.
Assuming that for small ε > 0,

μn ∈
(

ε,

(
q‖Awn − U Awn‖p

Cq‖A∗ J E2
p (I − U )Awn‖q∗

− ε

) 1
q−1

)
, n ∈ �. (3.14)

Then

(i) limn→∞ ‖xn+1 − xn‖ = 0;
(ii) limn→∞ ‖wn − xn‖ = 0;
(iii) limn→∞ ‖vn − T vn‖ = 0;
(iv) limn→∞ ‖xn − vn‖ = 0;
(v) limn→∞ ‖A∗ J E2

p (I − U )Awn‖∗ = 0 and limn→∞ ‖(I − U )Awn‖ = 0.

Proof From the proof of Lemma 3.5 we have that {
p(xn, x0)} is a nondecreasing bounded
sequence in R. Hence limn→∞ 
p(xn, x0) exists. Using (2.11),


p(xn+1,�Cn x0) + 
p(�Cn x0, x0) ≤ 
p(xn+1, x0). (3.15)

Therefore

p(xn+1, xn) ≤ 
p(xn+1, x0) − 
p(xn, x0) → 0. (3.16)

Applying Lemma 2.13, we obtain that

lim
n→∞ ‖xn+1 − xn‖ = 0. (3.17)

This establishes (i).
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Let tn = J
E∗
1

q [J E1
p xn + θn(J E1

p xn − J E1
p xn−1)]. It then follows that

J E1
p tn − J E1

p xn = θn(J E1
p xn − J E1

p xn−1).

Then by the uniform continuity of J E1
p on bounded subsets of E1, we obtain that

‖J E1
p tn − J E1

p xn‖∗ = ‖θn(J E1
p xn − J E1

p xn−1)‖∗
≤ θ‖J E1

p xn − J E1
p xn−1‖∗ → 0 as n → ∞. (3.18)

By the uniform continuity of J
E∗
1

q on bounded subsets of E∗
1 and (3.17), we obtain that

limn→∞ ‖tn − xn‖ = 0. Therefore,

lim
n→∞ ‖wn − xn‖ = lim

n→∞ ‖PC tn − xn‖ ≤ lim
n→∞ ‖tn − xn‖ = 0. (3.19)

This establishes (ii). Combining (i) and (ii) will give limn→∞ ‖xn+1 − wn‖ = 0.
Furthermore, since xn+1 ∈ Cn+1, it follows from our construction that


p(xn+1, yn) ≤ 
p(xn+1, wn) → 0 as n → ∞.

Therefore by Lemma 2.13, we get that limn→∞ ‖xn+1 − yn‖ = 0. This together with (3.17)
yields

lim
n→∞ ‖xn − yn‖ = 0. (3.20)

From (3.19) and (3.20), we obtain that

lim
n→∞ ‖yn − wn‖ = 0. (3.21)

Let x∗ ∈ F(T ). Then


p(x∗, yn) = 
p(x∗, J
E∗
1

q [(1 − αn)J E1
p vn + αn J E1

p T vn])
= Vp(x∗, (1 − αn)J E1

p vn + αn J E1
p T vn)

= ‖x∗‖p

p
− 〈(1 − αn)J E1

p vn + αn J E1
p T vn, x∗〉

+ 1

q
‖(1 − αn)J E1

p vn + αn J E1
p T vn‖q∗

≤ ‖x∗‖p

p
− 〈(1 − αn)J E1

p vn, x∗〉 − αn〈J E1
p T vn, x∗〉 + (1 − αn)

q
‖vn‖p

+αn

q
‖T vn‖p − Wq(αn)

q
g(‖J E1

p vn − J E1
p T vn‖∗) (3.22)

= (1 − αn)
p(x∗, vn) + αn
p(x∗, T vn) − Wq(αn)

q
g(‖J E1

p vn − J E1
p T vn‖∗)

= 
p(x∗, vn) − Wq(αn)

q
g(‖J E1

p vn − J E1
p T vn‖∗)

≤ 
p(x∗, wn) − Wq(αn)

q
g(‖J E1

p vn − J E1
p T vn‖∗), (3.23)
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where (3.22) and (3.23) follow from Lemma 2.14 and (3.13), respectively. Then from (3.23),
we have that

Wq(αn)

q
g(‖J E1

p vn − J E1
p T vn‖∗) ≤ 
p(x∗, wn) − 
p(x∗, yn)

= 〈J E1
p yn − J E1

p wn, x∗ − wn〉 − 
p(yn, wn)

≤ 〈J E1
p yn − J E1

p wn, x∗ − wn〉
= ‖x∗ − wn‖‖J E1

p yn − J E1
p wn‖∗. (3.24)

Since J
E∗
1

q is norm-to-norm uniformly continuous on bounded subsets of E∗
1 , taking the limit

of (3.24) as n → ∞ gives Wq (αn)

q g(‖J E1
p vn − J E1

p T vn‖∗) → 0. Thus we obtain that

g(‖J E1
p vn − J E1

p T vn‖∗) → 0 as n → ∞.

By the continuity of g, the last limit implies that

‖J E1
p vn − J E1

p T vn‖∗ → 0 as n → ∞. (3.25)

Since J
E∗
1

q is norm-to-norm uniformly continuous on bounded subsets of E∗
1 , (3.25) implies

that
lim

n→∞ ‖vn − T vn‖ = 0. (3.26)

This establishes (iii).
Also, using Lemma (2.13), (3.26) implies that limn→∞ 
p(vn, T vn) = 0. Therefore,


p(vn, yn) = 
p(vn, J
E∗
1

q [(1 − αn)J E1
p vn + αn J E1

p T vn])
≤ (1 − αn)
p(vn, vn) + αn
p(vn, T vn)

= αn
p(vn, T vn) → 0 as n → ∞. (3.27)

Furthermore by Lemma 2.13, we obtain that

lim
n→∞ ‖vn − yn‖ = 0. (3.28)

Consequently, from (3.20) and (3.28), we obtain that

lim
n→∞ ‖xn − vn‖ = 0, (3.29)

which establishes (iv), and from (3.21) and (3.28), we obtain that

lim
n→∞ ‖vn − wn‖ = 0. (3.30)

Also from (3.12), we have that

μn

(
‖Awn − U Awn‖p − Cq

q
μ

q−1
n

∥∥∥A∗ J E2
p (I − U )Awn

∥∥∥q

∗

)

≤ 
p(x∗, wn) − 
p(x∗, vn)

= 〈J E1
p vn − J E1

p wn, x∗ − wn〉 − 
p(vn, wn)

≤ 〈J E1
p vn − J E1

p wn, x∗ − wn〉
= ‖x∗ − wn‖‖J E1

p vn − J E1
p wn‖∗. (3.31)
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Passing to the limit as n → ∞ in (3.31) and using (3.30), we obtain that

lim
n→∞(‖Awn − U Awn‖p − Cq

q
μ

q−1
n ‖A∗ J E2

p (I − U )Awn‖q∗) = 0. (3.32)

Note that by the choice of our step size, it holds that

μ
q−1
n <

q‖Awn − U Awn‖p

Cq‖A∗ J E2
p (I − U )Awn‖q∗

− ε. (3.33)

Simplifying (3.33) further gives

εCq

q
‖A∗ J E2

p (I − U )Awn‖q∗ < (‖Awn − U Awn‖p − Cq

q
μ

q−1
n ‖A∗ J E2

p (I − U )Awn‖q∗).

(3.34)
By passing to the limit as n → ∞ in (3.34) and using (3.32), we obtain that

lim
n→∞ ‖A∗ J E2

p (I − U )Awn‖q∗ = 0, (3.35)

and consequently,

lim
n→∞ ‖A∗ J E2

p (I − U )Awn‖∗ = 0 and lim
n→∞ ‖(I − U )Awn‖ = 0. (3.36)

This establishes (v).

Theorem 3.7 The sequence {xn} generated by Algorithm 3.2 converges strongly to u ∈ �,
where u = ��x0.

Proof Since {
p(xn, x0)} is nondecreasing and bounded in R, it implies that there exists
l ∈ R such that 
p(xn, x0) → l as n → ∞. Using (2.11), we get that for every m, n ∈ N,


p(xm, xn) = 
p(xm,�Cn x0)

≤ 
p(xm, x0) − 
p(xn, x0) → 0.

Therefore from Lemma 2.13, we have that ‖xm − xn‖ → 0 as m, n → ∞. This shows that
{xn} is a Cauchy sequence in C . Since C is a closed convex subset of a Banach space, it
implies that there exists u ∈ C such that xn → u as n → ∞. It then follows from Lemma 3.6
that wn → u and vn → u as n → ∞. By the linearity of A, we have that Awn → Au as
n → ∞. We have shown in Lemma 3.6 that ‖vn − T vn‖ → 0 as n → ∞, this together
with the fact that T is Bregman weak relatively nonexpansive implies that u ∈ F(T ). We
have also shown in Lemma 3.6 that ‖(I − U )Awn‖ → 0 as n → ∞, which implies that
Au ∈ F̃(U ). Then from Lemma 3.1(iii), we obtain that Au ∈ F(U ). It then implies that
u ∈ �.

Lastly, we prove that u = ��x0. Suppose there exists v ∈ � such that v = ��x0. Then


p(v, x0) ≤ 
p(u, x0). (3.37)
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Since � ∈ Cn for all n ≥ 1, we have that 
p(xn, x0) ≤ 
p(v, x0). Now by the lower
semicontinuity of the norm, we have that


p(u, x0) = ‖u‖p

p
+ ‖x0‖p

q
− 〈J E1

p x0, u〉

≤ lim inf
n→∞

(‖xn‖p

p
+ ‖x0‖p

q
− 〈J E1

p x0, xn〉
)

= lim inf
n→∞ 
p(xn, x0)

≤ lim sup
n→∞


p(xn, x0)

≤ 
p(v, x0). (3.38)

Then from (3.37) and (3.38), we have that


p(v, x0) ≤ 
p(u, x0) ≤ 
p(v, x0). (3.39)

(3.39) implies that u = v. Hence u = ��x0.

We next present some consequences of our main results. Firstly, if θn = 0, we obtain the
following non-inertial shrinking projection algorithm.

Corollary 3.8 Let E1, E2 be p-uniformly convex and uniformly smooth Banach spaces with
duals E∗

1 , E∗
2 , respectively. Let C = C1 be nonempty closed and convex subset of E1. Let

T : E1 → E1 be a Bregman weak relatively nonexpansive mapping and U : E2 → E2

be a mapping of type (P). Let A : E1 → E2 be a bounded linear operator with its adjoint
A∗ : E∗

2 → E∗
1 . Select x0 ∈ E1 and let {αn} ⊂ (0, 1) be a real sequence satisfying

lim infn→∞ αn > 0. Assuming that the nth-iterate xn ∈ E1 has been constructed, then we
calculate the (n + 1)th-iterate xn+1 ∈ E1 via the formula

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wn = PC xn,

vn = J
E∗
1

q [J E1
p wn − μn A∗ J E2

p (I − U )Awn],
yn = J

E∗
1

q [αn J E1
p vn + (1 − αn)J E1

p T (vn)],
Cn+1 = {z ∈ Cn : 
p(z, yn) ≤ 
p(z, wn)},
xn+1 = �Cn+1x0,∀n ≥ 1.

(3.40)

Assume for small ε > 0, the step size μn is chosen such that

μn ∈
(

ε,
( q‖Awn − U Awn‖p

Cq‖A∗ J E2
p (I − U )Awn‖q∗

− ε
) 1

q−1

)
, n ∈ �, (3.41)

where the index set � := {n ∈ N : Awn − U Awn �= 0}, otherwise μn = μ, where μ is any
non-negative real number. Then {xn} converges strongly to u ∈ �, where u = ��x0.

Also, by letting U be the metric projection mapping onto a closed convex subset Q of E2

in Algorithm 3.2, i.e.U = PQ , we obtain the following result as a solution to split feasibility
and fixed point problems.

Corollary 3.9 With reference to the data in Algorithm 3.2, let Q be a nonempty closed convex
subset of E2 and U = PQ. Assuming � := {x ∈ C : x ∈ F(T ), Ax ∈ Q} �= ∅. Then the
sequence {xn} generated by Algorithm 3.2 converges strongly to u ∈ �, where u = ��x0.
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4 Application

4.1 Split Monotone Inclusion Problem

Let E be a smooth, strictly convex and reflexiveBanach spacewith dual E∗. Let B : E → 2E∗

be amultivaluedmapping. The graph of B denoted by gr(B) is defined by gr(B) = {(x, u) ∈
E × E∗ : u ∈ Bx}. B is called a non-trivial operator if gr(B) �= ∅. B is called a monotone
mapping if ∀ (x, u), (y, v) ∈ gr(B), 〈x − y, u −v〉 ≥ 0. B is said to be a maximal monotone
operator if the graph of B is not a proper subset of the graph of any other monotone mapping.
Let T1 : E1 → 2E∗

1 and T2 : E2 → 2E∗
2 be maximal monotone mappings and A : E1 → E2

be bounded linear operator. The Split Monotone Inclusion Problem (in short, SMIP) is to
find

x ∈ E1 such that x ∈ T −1
1 (0) ∩ A−1(T −1

2 (0)). (4.1)

Many authors have studied the SMIP (see [11,31,33,46,55]) and applied it to solve some
real-life problems which include modeling intensity-modulated radiation therapy treatment
planning, sensor networks in computerized tomography anddata compression, see [10,12,13].
Very recently, Bello and Sheu [8] studied the problem in p-uniformly convex and uniformly
smoothBanach spaces. They proposed an algorithmandproved a strong convergence theorem
with the step size not depending on the prior knowledge of the norm of the bounded linear
operator. Our purpose here is to apply our algorithm to solve the SMIP (4.1).

For all r > 0, the mapping Kr := (I + r J
E∗
2

q T2)−1 is called the metric resolvent of T2.

It is easy to see that F(Kr ) = T2−1(0). Also note that if x ∈ ran(I + r J
E∗
2

q T2), then

J E2
p (x − Kr x) ∈ r p−1T2Kr x . Therefore for every x, y ∈ ran(I + r J

E∗
2

q T2), we have that

〈J E2
p (x − Kr x) − J E2

p (y − Kr y), Kr x − Kr y〉 ≥ 0, (4.2)

by the monotonicity of T2. This implies that Kr is a mapping of type (P). Similarly, let
T1 : E1 → 2E1

∗
be a maximal monotone operator. For every r > 0, the Bregman resolvent

associated with T1 is denoted by ResrT1 and is defined by

ResrT1 := (J E1
p + rT1)

−1 ◦ J E1
p : E1 → 2E1 .

It is known that ResrT1 is Bregman weak relatively nonexpansive and F(ResrT1) = T1−1(0)
for each r > 0.
It then implies that our algorithm can be used to solve the SMIP (4.1). We shall denote the
solution set of (4.1) by SM I P(T1, T2). An application of our main result is the following.

Theorem 4.1 Let U = Kr and T = ResrT1 in Algorithm 3.2. Assuming SM I P(T1, T2) �=
∅. Then the sequence {xn} generated by Algorithm 3.2 converges strongly to u ∈
SM I P(T1, T2), where u = �SM I P(T1,T2)x0.

5 Numerical Examples

Wenext give somenumerical examples to validate our results and to illustrate the performance
of our Algorithm 3.2.

Example 5.1 Let E1 = E2 = R and C = C1 = [0, 3]. Let T : E1 → E1 be defined by

T x =
{
0 if x �= 3,
2 if x = 3,

(5.1)
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Table 1 Numerical results for
Example 5.1

Algorithm 3.2 Algorithm (3.40)

Case Ia

CPU time (s) 0.0112 0.0144

No of iter. 38 51

Case Ib

CPU time (s) 0.0130 0.0164

No. of iter. 38 52

Case Ic

CPU time (s) 0.0089 0.0113

No of iter. 39 52

Case Id

CPU time (s) 0.0099 0.0138

No of iter. 37 52

Iteration number (n)
0 10 20 30 40 50 60

E
rr

or

10-8

10-6

10-4
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100
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Fig. 1 Example 5.1: Top left: Case Ia; Top right: Case Ib; Bottom left: Case Ic; Bottom right: Case Id

∀x ∈ E1 and U : E2 → E2 be defined by U x = 1
2 x, ∀x ∈ E2. Then T is weak relatively

nonexpansive and U is firmly nonexpansive. Let A : E1 → E2 be a mapping defined by
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Ax = 2
3 x , ∀x ∈ E1. We choose θn = (−1)n+3

10n and αn = n+1
4n . Then Algorithm 3.2 gives

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wn = PC [xn + (−1)n+3
10n (xn − xn−1)],

vn = [wn − μn( 29wn)],
yn = [ n+1

4n vn + 3n−1
4n T (vn)],

Cn+1 = {z ∈ Cn : |z − yn | ≤ |z − wn |},
xn+1 = PCn+1x0,∀ n ≥ 1,

(5.2)

where the step size μn is chosen such that

μn ∈
(
0,

2|Awn − U Awn|2
|A∗(I − U )Awn |2

)
.

UsingMATLABR2015(a),we compute and compare the numerical outputs ofAlgorithms3.2
and (3.40).We choose different values of x0 and x1 and plot the graphs of errors = |xn+1−xn |
against number of iterations n. The stopping criterion used for the computation is |xn+1 −
xn | < 10−7 and the initial values are given below:

Case Ia: x0 = 2.6; x1 = 1.8;
Case Ib: x0 = 9.4; x1 = 6.0;
Case Ic: x0 = 2.6; x1 = 3.8;
Case Id: x0 = −9.4; x1 = 7.8.

The computational results are shown in Table 1 and Fig. 1.

Example 5.2 Let E1 = E2 = �2(R), where �2(R) := {σ = (σ1, σ2, . . . , σi , . . .), σi ∈ R :∑∞
i=1 |σi |2 < ∞}, ‖σ‖�2 = (

∑∞
i=1 |σi |2) 1

2 , ∀ σ ∈ E1. Let C = C1 := {x ∈ E1 : ||x ||�2 ≤
1}. Let T : E1 → E1 be as defined in Example 2.6 and define U : E2 → E2 by U x = 1

2 x ,
∀x ∈ E2. Then U is a mapping of type (P). Let A : E1 → E2 be a mapping defined by
Ax = 2

3 x . We choose θn = 2n+1
10n and αn = n+1

4n . Then Algorithm 3.2 becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

wn = PC J E1
q [J E1

p xn + 1
2n (J E1

p xn − J E1
p xn−1)],

vn = J E1
q [J E1

p wn − μn
2
3 J E2

p ( 13wn)],
yn = J E1

q [ n+1
4n J E1

p vn + 3n−1
4n J E1

p T (vn)],
Cn+1 = {z ∈ Cn : 
p(z, yn) ≤ 
p(z, wn)},
xn+1 = �Cn+1x0,∀ n ≥ 1,

(5.3)

where the stepsize μn is chosen as defined in (3.5). Using MATLAB R2015(a) and ‖xn+1 −
xn‖�2 < 10−7 as stopping criterion, we compute and compare the numerical outputs of
Algorithms 3.2 and (3.40) using four different starting values as follows:

Case IIa: x0 = (4, 2, 1, . . .); x1 = (25, 5, 1, . . .);
Case IIb: x0 = (−9, 3,−1, . . .); x1 = (10,−1, 0.1, . . .);
Case IIc: x0 = (1, −1

4 , 1
16 , . . .); x1 = ( 1√

3
, 1
3 ,

1√
27

, . . .);

Case IId: x0 = (3, 3
2 ,

3
4 , . . .); x1 = (−5, 1,−0.2, . . .).

We thus plot the graphs of errors against number of iterations in each case. The computational
result can be found in Table 2 and Fig. 2.

The next example is to illustrate the application given in Sect. 4.
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Table 2 Numerical results for
Example 5.2

Algorithm 3.2 Algorithm (3.40)

Case IIa

CPU time (s) 0.0587 0.0695

No of iter. 19 24

Case IIb

CPU time (s) 0.0617 0.0637

No. of iter. 19 24

Case IIc

CPU time (s) 0.0188 0.0271

No of iter. 17 23

Case IId

CPU time (s) 0.0263 0.0367

No of iter. 19 24

Iteration number (n)
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E
rr

or
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Fig. 2 Example 5.2: Top left: Case IIa; Top right: Case IIb; Bottom left: Case IIc; Bottom right: Case IId

Example 5.3 Let E1 = E2 = �2(R), where �2(R) := {σ = (σ1, σ2, . . . , σi , . . .), σi ∈ R :∑∞
i=1 |σi |2 < ∞}, ‖σ‖�2 = (

∑∞
i=1 |σi |2) 1

2 , ∀ σ ∈ E1. Let C = C1 := {x ∈ E1 : ||x ||�2 ≤
1}. Let T1 : E1 → E1 be defined by T1x = 3x , ∀x ∈ E1 and define T2 : E2 → E2 by
T2y = 7y, ∀y ∈ E2. Let A : E1 → E2 be a mapping defined by Ax = 1

4 x . Then T1 and T2
are maximal monotone operators. One can easily verify that ResrT1x = x

1+3r , ∀x ∈ E1 and
Kr y = y

1+7r , ∀y ∈ E2, r > 0. Note that in this case, SM I P(T1, T2) = {0 = (0, 0, . . .)}.
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Table 3 Numerical results for
Example 5.3

Algorithm 3.2 Algorithm (3.40)

Case IIIa

CPU time (s) 0.0198 0.0244

No of iter. 34 49

Case IIIb

CPU time (s) 0.0187 0.0409

No. of iter. 36 49

Case IIIc

CPU time (s) 0.0338 0.0437

No of iter. 36 49

Case IIId

CPU time (s) 0.0307 0.0347

No of iter. 36 49
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Fig. 3 Example 5.3: Top left: Case IIIa; Top right: Case IIIb; Bottom left: Case IIIc; Bottom right: Case IIId

Therefore by Theorem 4.1, the sequence {xn} generated by Algorithm 3.2 converges strongly
to 0. We choose r = 3, θn = 2n+1

10n , αn = n+1
4n and μ = 0.35. Using MATLAB R2015(a), we

test Algorithms 3.2 and (3.40) for the following initial values:

Case IIIa: x0 = (4, 2, 1, . . .); x1 = (3,− 1
3

1
27 , . . .);

Case IIIb: x0 = (−2, 1
2 ,− 1

8 , . . .); x1 = (−12, 4,− 4
3 , . . .);

Case IIIc: x0 = (10, 2, 0.4, . . .); x1 = (2, 1, 1
2 , . . .);
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Table 4 Numerical results for
Example 5.4

Algorithm 3.2 Algorithm (3.40)

Case IVa

CPU time (s) 0.0154 0.0184

No of iter. 13 17

Case IVb

CPU time (s) 0.0667 0.0754

No. of iter. 55 74

Case IVc

CPU time (s) 0.0681 0.0902

No of iter. 79 106

Case IVd

CPU time (s) 0.0358 0.0411

No of iter. 30 41
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Fig. 4 Example 5.4: Top left: Case IVa; Top right: Case IVb; Bottom left: Case IVc; Bottom right: Case IVd

Case IIId: x0 = (7,
√
7, 1, . . .); x1 = (18, 6, 2, . . .).

We thus plot the graphs of errors against number of iterations in each case. The computational
result can be found in Table 3 and Fig. 3.

Example 5.4 Let E1 = E2 = �3(R), where �3(R) := {x = (x1, x2, . . . , xi , . . .), xi ∈ R :∑∞
i=1 |xi |3 < ∞} with the norm ‖x‖�3 = (

∑∞
i=1 |xi |3) 1

3 , ∀x ∈ E1. Let C = C1 := {x ∈
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E1 : ||x ||�3 ≤ 1}. For all x ∈ E1, we define A : E1 → E2 by

Ax =
(

x1,
x2√
2
,

x3√
3
, . . .

)
.

Let (en) be a sequence in �3(R) defined by en = (δn,1, δn,2, . . . , ) for each n ∈ N, where

δn,i =
{
1 if n = i,

0 if n �= i .
(5.4)

Let f (x) = 1
3‖x‖3�3 for all x ∈ �3(R). We define T : E1 → E1 by

T x =
{

x
n+1 if x = en,
x
2 if x �= en .

(5.5)

Note that F̃(T ) = {0 = (0, 0, . . .)} = F(T ). Let x ∈ E1. If x = en , for some n ∈ N, then


3(0, T x) = f (0) − f (T x) − 〈J E1
3 (T x), 0 − T x〉

= f (0) − 1

(n + 1)3
f (x) − 1

(n + 1)3
〈J E1

3 x, 0 − x〉

= 1

(n + 1)3
(

f (0) − f (x) − 〈J E1
3 x, 0 − x〉)

≤ 
3(0, x).

If x �= en , then


3(0, T x) = f (0) − f (T x) − 〈J E1
3 (T x), 0 − T x〉

= f (0) − 1

8
f (x) − 1

8
〈J E1

3 x, 0 − x〉

= 1

8

(
f (0) − f (x) − 〈J E1

3 x, 0 − x〉)
≤ 
3(0, x).

It therefore follows that T is Bregmanweak relatively nonexpansive.We defineU : E2 → E2

by U x = 3x
4 , x ∈ E2. Furthermore, we choose μn = 0.0001, θn = 2n

10n+3 and αn = 2n+1
13n .

We make different choices of initial values x0 and x1 as follows:

Case IVa: x0 = (8, 4, 2, . . .), x1 = (6,−2, 2
3 , . . .);

Case IVb: x0 = (3,− 3
2 ,

3
4 , . . .), x1 = (−1, 1

3√2
,− 1

3√4
, . . .);

Case IVc: x0 = (−2, 3
√
4,− 3

√
2, . . .), x1 = (3, 3

√
3, 1, . . .);

Case IVd: x0 = (4, 0.4, 0.04 . . .), x1 = (5, 5
4 ,

5
16 , . . .).

Using MATLAB R2015(a), we compare the performance of Algorithms 3.2 and (3.40).
The stopping criterion used for our computation is ‖xn+1 − xn‖�3 < 10−7. The duality
mapping is computed using the formula in Example 2.1 and the Bregman projection is
calculated using Proposition 5.1 in Alber and Butnariu [3] for a fixed constant k > 0. We
plot the graphs of errors against the number of iterations in each case. The numerical results
and figures are shown in Table 4 and Fig. 4, respectively.

Next, we apply our main result to an inverse problem stemming from image restoration
problem. For most of the contents, we follow the recent works of Cholamjiak et al. [18] and
Suparatulatorn et al. [45].
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Fig. 5 Example 5.5: Top left: Original image; Top right: Blurred Image; Bottom left: Restored image by
Algorithm 3.2 with SNR = 35.0321; Bottom right: Restored image by Algorithm (3.40) with SNR = 34.9926

Fig. 6 Example 5.5: Top left: Original image; Top right: Blurred Image; Bottom left: Restored image by
Algorithm 3.2 with SNR = 42.1303; Bottom right: Restored image by Algorithm (3.40) with SNR = 42.0827

Example 5.5 (Image Deblurring) We recall the following linear model used in image restora-
tion problem:

y = Ax̄ + ξ,

where x̄ is the original image, y is the degraded image, A is a blurring matrix and ξ is the
noise. For a grayscale image of M pixels wide and N pixels height, each pixel value is known
to be in the range [0, 255]. Let D := M × N . Then the underlying real Hilbert space is RD

equipped with the standard Euclidean norm ‖ · ‖2, and C = [0, 255]D . Our aim here is to
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Fig. 7 Example 5.5: Top left: Original image; Top right: Blurred Image; Bottom left: Restored image by
Algorithm 3.2 with SNR = 32.8327; Bottom right: Restored image by Algorithm (3.40) with SNR = 32.8150

Table 5 Numerical comparison
of SNR (dB) values of
Algorithms 3.2 and (3.40)

Images n Algorithm 3.2 Algorithm (3.40)

Cameraman.tif 100 29.0561 28.8228

(256 × 256) 500 33.8089 33.7228

1000 35.0321 34.9926

Pout.tif 100 33.8904 33.5328

(291 × 240) 500 40.5099 40.3971

1000 42.1303 42.0827

Tire.tif 100 27.7237 27.3897

(205 × 232) 500 32.2460 32.2039

1000 32.8327 32.8150

recover the original image x̄ given the data of the blurred image y and A. An approach to
estimate an approximation of x̄ is to recast the deblurring problem as the following convex
minimization problem:

min
x

‖Ax − y‖2. (5.6)

Setting Q = {y}, T = PC and U = PQ , then (5.6) is equivalent to the following SCFPP:

find x ∈ F(T ) such that Ax ∈ F(Q).

It then follows that our Algorithm 3.2 can be used to solve the problem. Using MATLAB
R2015(a), we apply Algorithm 3.2 to recover the original image x̄ from the burred image y.
The quality of the restored image is measured by the signal-to-noise ratio (SNR) in decibel
(dB) as follows:

SN R := 20 log10
‖x̄‖2

‖x − x̄‖2 ,
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Fig. 8 Example 5.5: Top:
Cameraman.tif (256 × 256);
Middle: Pout.tif (291 × 240);
Bottom: Tire.tif (205 × 232)
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where x̄ is the original image and x is the restored image. The larger the SNR, the better the
quality of the restored image. The initial values for our experiments are x0 = 0 ∈ R

D and
x1 = 1 ∈ R

D . The gray test images for our experiments are Cameraman, Pout and Tire. Each
test image is degraded by Gaussian 7 × 7 blur kernel with standard deviation 4. We choose
θn = n

10n+5 and αn = n
3n+1 . We test our Algorithms 3.2 and (3.40). The original, blurred

and restored images by each of the algorithms are shown in Figs. 5, 6 and 7.
The computational results are shown in Table 5 and Fig. 8.

Remark 5.6 From the computational results, we see that Algorithm 3.2 performs better than
Algorithm (3.40) in both CPU time taken and number of iteration. This illustrates the effi-
ciency of the inertial extrapolation term.

6 Conclusion

We study the Split Common Fixed Point Problem (SCFPP) for a new mapping of type (P)
in p-uniformly convex and uniformly smooth Banach spaces. We then propose an inertial
shrinking projection algorithm and proved a strong convergence theorem for solving the
SCFPP for mapping of type (P) and Bregman weak relatively nonexpansive mapping in
p-uniformly convex and uniformly smooth Banach space. In addition, the implementation of
our algorithm does not require an a priori estimate of the norm of the bounded linear operator.
Lastly, we give numerical examples to demonstrate the performance of our algorithm and
also apply our results to image deblurring problem.

Acknowledgements The authors sincerely thank the anonymous reviewer for his careful reading, constructive
comments and fruitful suggestions that substantially improved the manuscript. The first author acknowledges
with thanks the International Mathematical Union Breakout Graduate Fellowship (IMU-BGF) Award for
his doctoral study. The second author acknowledges with thanks the bursary and financial support from
Department of Science and Technology and National Research Foundation, Republic of South Africa Center
of Excellence in Mathematical and Statistical Sciences (DST-NRF COE-MaSS) Doctoral Bursary. The third
author is supported by the National Research Foundation (NRF) of South Africa Incentive Funding for Rated
Researchers (Grant Number 119903). Opinions expressed and conclusions arrived are those of the authors
and are not necessarily to be attributed to the CoE-MaSS, IMU and NRF

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interests.

References

1. Agarwal, R.P., Regan, D.O., Sahu, D.R.: Fixed Point Theory for Lipschitzian-TypeMappings with Appli-
cations. Springer, Berlin (2009)

2. Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient extragradient method with
self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization
(2020). https://doi.org/10.1080/02331934.2020.1723586

3. Alber, Y., Butnariu, D.: Convergence of Bregman projection methods for solving consistent convex
feasibility problems in reflexive Banach spaces. J. Optim. Theory Appl. 92(1), 33–61 (1997)

4. Ansari, Q.H., Rehan, A.: Split feasibility and fixed point problems. In: Ansari, Q.H. (ed.) Nonlinear
Analysis: ApproximationTheory,Optimization andApplication, pp. 281–322. Springer, NewYork (2014)

5. Aoyama, K., Kohsaka, F., Takahashi, W.: Strong convergence theorems for a family of mappings of
type (P) and applications. In: Nonlinear Analysis and Optimization, pp. 1–17. Yokohama Publishers,
Yokohama (2009)

123

https://doi.org/10.1080/02331934.2020.1723586


12 Page 28 of 30 Journal of Scientific Computing (2021) 86 :12

6. Aoyama, K., Kohsaka, F., Takahashi, W.: Three generalizations of firmly nonexpansive mappings: their
relations and continuity properties. J. Nonlinear Convex Anal. 10, 131–147 (2009)

7. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Bregman monotone optimization algorithms. SIAM J.
Control Optim. 42(2), 596–636 (2003)

8. Bello Cruz, J.Y., Shehu, Y.: An iterative method for split inclusion problems without prior knowledge
of operator norms. J. Fixed Point Theory Appl. 19, 2017–2036 (2017). https://doi.org/10.1007/s11784-
016-0387-8

9. Borwein, J.M., Reich, S., Sabach, S.: A characterization of Bregman firmly nonexpansive operators using
a new monotonicity concept. J. Nonlinear Convex Anal. 12(1), 161–184 (2011)

10. Bryne, C.: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl.
18(2), 441–453 (2002)

11. Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex
Anal. 13, 759–775 (2012)

12. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-
modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

13. Censor, Y., Elfving, T.: Amultiprojection algorithm usingBregman projections in a product space. Numer.
Algorithms 8(2), 221–239 (1994)

14. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applica-
tions for inverse problems. Inverse Probl. 21, 2071–2084 (2005)

15. Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16,
587–600 (2009)

16. Chen, J., Wan, Z., Yuan, L., Zheng, Y.: Approximation of fixed points of weak Bregman relatively
nonexpansive mappings in Banach spaces. IJMMS (2011). Article ID 420192

17. Chidume, C.E.: Geometric Properties of Banach Spaces and Nonlinear Iterations, Lecture Notes in Math-
ematics 1965, vol. 1965. Springer, London (2009)

18. Cholamjiak, P., Thong, D.V., Cho, Y.J.: A novel inertial projection and contraction method for solv-
ing pseudomonotone variational inequality problems. Acta Appl. Math. (2019). https://doi.org/10.1007/
s10440-019-00297-7

19. Gibali, A., Jolaoso, L.O., Mewomo, O.T., Taiwo, A.: Fast and simple Bregman projection methods for
solving variational inequalities and related problems in Banach spaces. Results Math. 75 (2020). Art. No.
179

20. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel
Dekker, New York (1984)

21. Izuchukwu, C., Mebawondu, A.A., Mewomo, O.T.: A new method for solving split variational inequality
problems without co-coerciveness. J. Fixed Point Theory Appl. 22(4), 1–23 (2020)

22. Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: An inertial method for solving generalized split feasibility
problems over the solution set of monotone variational inclusions. Optimization (2020). https://doi.org/
10.1080/02331934.2020.1808648

23. Izuchukwu, C., Ugwunnadi, G.C., Mewomo, O.T., Khan, A.R., Abbas, M.: Proximal-type algorithms
for split minimization problem in p-uniformly convex metric space. Numer. Algorithms 82(3), 909–935
(2019)

24. Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: A parallel combination extragradient method
with Armijo line searching for finding common solution of finite families of equilibrium and fixed point
problems. Rend. Circ. Mat. Palermo II 69(3), 711–735 (2020)

25. Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: Strong convergence theorem for solving pseudo-
monotone variational inequality problem using projection method in a reflexive Banach space. J. Optim.
Theory Appl. 185(3), 744–766 (2020)

26. Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A strong convergence theorem for solving
variational inequalities using an inertial viscosity subgradient extragradient algorithm with self adaptive
stepsize. Demonstr. Math. 52(1), 183–203 (2019)

27. Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A unified algorithm for solving variational
inequality and fixed point problems with application to the split equality problem. Comput. Appl. Math.
39(1), 38 (2020)

28. Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: Inertial extragradient method via viscosity
approximation approach for solving Equilibrium problem in Hilbert space. Optimization (2020). https://
doi.org/10.1080/02331934.2020.1716752

29. Kohsaka, F., Takahashi, W.: Existence and approximation of fixed points of firmly nonexpansive-type
mappings in Banach spaces. SIAM J. Optim. 19, 824–835 (2008)

30. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces, vol. II. Springer, Berlin (1979)

123

https://doi.org/10.1007/s11784-016-0387-8
https://doi.org/10.1007/s11784-016-0387-8
https://doi.org/10.1007/s10440-019-00297-7
https://doi.org/10.1007/s10440-019-00297-7
https://doi.org/10.1080/02331934.2020.1808648
https://doi.org/10.1080/02331934.2020.1808648
https://doi.org/10.1080/02331934.2020.1716752
https://doi.org/10.1080/02331934.2020.1716752


Journal of Scientific Computing (2021) 86 :12 Page 29 of 30 12

31. Lin, L.J., Chen, Y.D., Chuang, C.S.: Solutions for a variational inclusion problem with applications to
multiple sets split feasibility problems. Fixed Point Theory Appl. 2013, 333 (2013)

32. Moudafi,A.:A note on the split commonfixed-point problem for quasi-nonexpansive operators.Nonlinear
Anal. 74(12), 4083–4087 (2011)

33. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275–283 (2011)
34. Naraghirad, E., Yao, J.C.: Bregmanweak relatively non expansive mappings in Banach space. Fixed Point

Theory Appl. (2013). https://doi.org/10.1186/1687-1812-2013-141
35. Ogwo, G.N., Izuchukwu, C., Aremu, K.O., Mewomo, O.T.: A viscosity iterative algorithm for a family of

monotone inclusion problems in anHadamard space. Bull. Belg.Math. Soc. Simon Stevin 27(1), 127–152
(2020)

36. Phelps, R.R.: Convex Functions, Monotone Operators, and Differentiability. Lecture Notes in Mathemat-
ics, vol. 1364, 2nd edn. Springer, Berlin (1993)

37. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math.
Math. Phys. 4, 1–17 (1964)

38. Reich, S., Sabach, S.: Existence and approximation of fixed points of Bregman firmly nonexpansive
mappings in reflexive Banach spaces. In: Fixed-Point Algorithms for Inverse Problems in Science and
Engineering, pp. 299-314. Springer, New York (2010)
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