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Abstract
Primal–dual hybrid gradient (PDHG) and alternating direction method of multipliers
(ADMM) are popular first-order optimization methods. They are easy to implement and
have diverse applications. As first-order methods, however, they are sensitive to problem
conditions and can struggle to reach the desired accuracy. To improve their performance,
researchers have proposed techniques such as diagonal preconditioning and inexact sub-
problems. This paper realizes additional speedup about one order of magnitude. Specifically,
we choose general (non-diagonal) preconditioners that are much more effective at reducing
the total numbers of PDHG/ADMM iterations than diagonal ones. Although the subprob-
lems may lose their closed-form solutions, we show that it suffices to solve each subproblem
approximately with a few proximal-gradient iterations or a few epochs of proximal block-
coordinate descent, which are simple and have closed-form steps. Global convergence of
this approach is proved when the inner iterations are fixed. Our method opens the choices
of preconditioners and maintains both low per-iteration cost and global convergence. Conse-
quently, on several typical applications of primal–dual first-order methods, we obtain 4–95×
speedup over the existing state-of-the-art.
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1 Introduction

In this paper, we consider the following optimization problem:

minimize
x∈Rn

f (x) + g(Ax), (1)

together with its dual problem:

minimize
z∈Rm

f ∗(−AT z) + g∗(z), (2)

where f : Rn → R∪{+∞} and g : Rm → R∪{+∞} are closed proper convex, A ∈ R
m×n ,

and f ∗, g∗ are the convex conjugates of f , g, respectively.
Formulations (1) or (2) abstractsmany application problems, which include image restora-

tion [59], magnetic resonance imaging [51], network optimization [23], computer vision
[45], and earth mover’s distance [35]. They can be solved by primal–dual algorithms such
as primal–dual hybrid gradient (PDHG) and alternating direction method of multipliers
(ADMM).

However, as first-order algorithms, PDHG and ADMM suffer from slow (tail) conver-
gence. They may take thousands of iterations and still struggle reaching just four digits of
accuracy. While they have many advantages such as being easy to implement and friendly to
parallelization, their sensitivity to problem conditions is their main disadvantage.

To improve the performance of PDHG andADMM, researchers have tried using precondi-
tioners, which has been widely applied for forward-backward type of methods [10,16,53], as
well as other methods [9,17,30,52]. Depending on the application and how one applies split-
ting, preconditioned PDHG andADMMmay or may not have subproblems with closed-form
solutions. When they do not, researchers have studied approximate subproblem solutions to
reduce the total running time. In thiswork,we propose a newway of applying preconditioning
that outperforms the existing state-of-the-art.

1.1 Proposed Approach

Simply speaking, we find a way to use non-diagonal preconditioners (thus much fewer iter-
ations) and still have very simple subproblem procedures (thus maintaining the advantages
of PDHG and ADMM).

First, we present Preconditioned PDHG (PrePDHG) along with its convergence condition
and a performance bound. We propose to choose preconditioners to optimize the bound. In
the special case where one preconditioner is trivially fixed as an identity matrix, optimizing
the bound gives us the optimal choice of the other preconditioner, which actually reduces
PrePDHG to ADMM. This explains why ADMM often takes fewer iterations than PDHG.

Next, we study how to solve PrePDHG subproblems. In all applications we are aware
of, only one of the two subproblem is (subject to) ill-conditioned. (After all, we can always
apply splitting to gather ill-conditioned components into one subproblem.) Therefore, we
choose a non-diagonal preconditioner for the ill-conditioned subproblem and a trivial or
diagonal preconditioner for the other subproblem. Again, the pair of preconditioners should
be chosen to (nearly) optimize the performance bound. Since the non-diagonal preconditioner
introduces dependence between different coordinates, its subproblem generally does not
have a closed-form solution. In particular, if the subproblem has an �1-norm, which is often
the reason why PDHG or ADMM is used, it often loses its closed-form solution due to
the preconditioner. Therefore, we propose to approximately solve it to satisfy an accuracy
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condition. Remarkably, there is no need to dynamically stops a subproblem procedure to
honor the condition. Instead, the condition is automatically satisfied as long as one applies
warm start and a common iterative procedure for some fixed number of iterations, which is
new in the literature. Common choices of the procedure include proximal gradient descent,
FISTA with restart, proximal block coordinate descent, and accelerated block-coordinate-
gradient-descent (BCGD) methods (e.g., [1,28,37]). We call this method iPrePDHG (i for
“inexact”).

Next, we establish the overall convergence of iPrePDHG. To handle the inexact subprob-
lem, we first transform iPrePDHG into an equivalent form and then analyze an Lyapunov
function to establish convergence. The technique in our proof appears to be new in the PDHG
and ADMM literature.

Finally, we apply our approach to a few applications including image denoising, graph
cut, optimal transport, and CT reconstruction. For CT reconstruction, we use a diagonal
preconditioner in one subproblem and a non-diagonal preconditioner in the other, which we
approximately solve. In each of the other applications, one subproblem uses no precondi-
tioner, and the other uses a non-diagonal preconditioner. Using these preconditioners, we
observed iPrePDHG was 4–95 times faster than the existing state-of-the-art.

Since ADMM is a special PrePDHG with one trivial preconditioner, our approach also
applies to ADMM. In fact, for three of the above four applications, there are one trivial
preconditioner in each, so their iPrePDHG are inexact preconditioned ADMM.

1.2 Related Literature

The main references for PDHG are [11,22,59]. Many problems to which we apply PDHG
have separable functions f or g, or both, so the resulting PDHG subproblems often (though
not always) have closed-form solutions.When subproblems are simple, we care mainly about
the convergence rate of PDHG, which depends on the problem conditioning. To accelerate
PDHG, diagonal preconditioning [44] was proposed since its diagonal structure maintains
closed-form solutions for the subproblems and, therefore, reduces iteration complexity with-
out making each iteration more difficult. In comparison, non-diagonal preconditioners are
much more effective at reducing iteration complexity, but their off-diagonal entries cou-
ple different components in the subproblems, causing the lost of closed-form solutions of
subproblems.

When a PDHG subproblem has no closed-form solution, one often uses an iterative algo-
rithm to approximately solve it. We call it Inexact PDHG. Under certain conditions, Inexact
PDHG still converges to the exact solution. Specifically, Rasch and Chambolle [46] uses
three different types of conditions to skillfully control the errors of the subproblems; all
those errors need to be summable over all the iterations and thereby requiring the error to
diminish asymptotically. In an interesting method from [6,8], one subproblem computes a
proximal operator of a convex quadratic function, which can include a preconditioner and still
has a closed-form solution involving matrix inversion. This proximal operator is successively
applied n times in each iteration, for n ≥ 1.

ADMM has different subproblems. One of its subproblems minimizes the sum of f (x)
and a squared term involving Ax . Only when A has special structures does the subproblem
have closed-form solutions. Inexact ADMM refers to the ADMM with at least one of its
subproblems inexactly solved. An absolute error criterion was introduced in [19], where
the subproblem errors are controlled by a summable (thus diminishing) sequence of error
tolerances. To simplify the choice of the sequences, a relative error criterion was adopted
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in several later works, where the subproblem errors are controlled by a single parameter
multiplying certain quantities that one can compute during the iterations. In [40], the param-
eters need to be square summable. In [34], the parameters are constants when both objective
functions are Lipschitz differentiable. In [20,21], two possible outcomes of the algorithm are
described: (i) infinite outer loops and finite inner loops, and (ii) finite outer loops and the last
inner loop is infinite, both guaranteeing convergence to a solution. On the other hand, it is
unclear how to recognize them. Since there is no bound on the number of inner loops in case
(i), one may recognize it as case (ii) and stop the algorithm before it converges.

There are works that apply certain kinds of preconditioning to accelerate ADMM. Paper
[24] uses diagonal preconditioning and observes improved performance. After that, non-
diagonal preconditioning is analyzed [6,8], which presents effective preconditioners for
specific applications. One of their preconditioners needs to be inverted (though not needed in
our method). Recently, preconditioning for problems with linear convergence has also been
studied with promising numerical performances [25].

Finally, there is another line of work that combines Nesterov-type acceleration technique
with primal–dual methods to obtain an accelerated convergence rate of O(1/k2). This idea
has been successfully applied to PDHG [11,13,31,39], ADMM [7,26,27,32], and linearized
ADMM [41,56]. We would like to point out that their contributions are orthogonal to this
paper. For example, in order to have simple subproblems in accelerated PDHG, precondi-
tioning is not applied. For accelerated linearized ADMM, certain proximal terms have to be
added in the subproblems to guarantee a closed-form solution.

1.3 Organization

The rest of this paper is organized as follows: Sect. 2 establishes notation and reviews basics.
In the first part of Sect. 3, we provide a criterion for choosing preconditioners. In its second
part, we introduce the condition for inexact subproblems,which can be automatically satisfied
by iterating a fixed number of certain inner loops. This method is called iPrePDHG. In the
last part of Sect. 3, we establish the convergence of iPrePDHG. Section 4 describes specific
preconditioners and reports numerical results. Finally, Sect. 5 concludes the paper.

2 Preliminaries

We use ‖ · ‖ for �2−norm and 〈·, ·〉 for dot product. We use In to denote the identity matrix
of size n × n. M � 0 means M is a symmetric, positive definite matrix, and M � 0 means
M is a symmetric, positive semidefinite matrix.

We write λmin(M) and λmax(M) as the smallest and the largest eigenvalues of M , respec-
tively, and κ(M) = λmax(M)

λmin(M)
as the condition number of M . For M � 0, let ‖ · ‖M and 〈·, ·〉M

denote the semi-norm and inner product induced by M , respectively. If M � 0, ‖ · ‖M is a
norm.

For a proper closed convex functionφ : Rn → R ∪ {+∞}, its subdifferential at x ∈ domφ

is written as

∂φ(x) = {v ∈ R
n | φ(z) ≥ φ(x) + 〈v, z − x〉, ∀z ∈ R

n},
and its convex conjugate as

φ∗(y) = sup
x∈Rn

{〈y, x〉 − φ(x)}.
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We have y ∈ ∂φ(x) if and only if x ∈ ∂φ∗(y).
For any M � 0, we define the extended proximal operator of φ as

ProxMφ (x) := argmin
y∈Rn

{
φ(y) + 1

2
‖y − x‖2M

}
. (3)

If M = γ −1 I for γ > 0, it reduces to a classic proximal operator.
We also have the following generalization of Moreau’s Identity:

Lemma 1 ([15], Theorem 3.1(ii)) For any proper closed convex function φ and M � 0, we
have

x = ProxMφ (x) + M−1 ProxM
−1

φ∗ (Mx). (4)

We say a proper closed function φ is a Kurdyka–Lojasiewicz (KL) function if, for each
x0 ∈ domφ, there exist η ∈ (0,∞], a neighborhood U of x0, and a continuous concave
function ϕ : [0, η) → R+ such that:

1. ϕ(0) = 0,
2. ϕ is C1 on (0, η),
3. for all s ∈ (0, η), ϕ′(s) > 0,
4. for all x ∈ U ∩ {x | φ(x0) < φ(x) < φ(x0) + η}, the KL inequality holds:

ϕ′(φ(x) − φ(x0))dist(0, ∂φ(x)) ≥ 1.

3 Main Results

This section presents the key results of our paper. In Sect. 3.1 we demonstrate how to apply
preconditioning to PDHG. Then, we establish rules of preconditioner selection in Sect. 3.2. In
Sect. 3.3, we present the proposed method iPrePDHG. Finally, we establish the convergence
of iPrePDHG in Sect. 3.4.

Throughout this section, we assume the following regularity assumptions:

Assumption 1

1. f : Rn → R ∪ {+∞}, g : Rm → R ∪ {+∞} are proper closed convex.
2. A primal–dual solution pair (x
, z
) of (1) and (2) exists, i.e.,

0 ∈ ∂ f (x
) + AT z
, 0 ∈ ∂g(Ax
) − z
.

Problem (1) also has the following convex-concave saddle-point formulation:

min
x∈Rn

max
z∈Rm

ϕ(x, z) := f (x) + 〈Ax, z〉 − g∗(z). (5)

A primal–dual solution pair (x
, z
) is a solution of (5).

3.1 Preconditioned PDHG

The method of primal–dual hybrid gradient or PDHG [11,59] for solving (1) refers to the
iteration

xk+1 = Proxτ f (x
k − τ AT zk),

zk+1 = Proxσ g∗(zk + σ A(2xk+1 − xk)).
(6)
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When 1
τσ

≥ ‖A‖2, the iterates of (6) converge [11] to a primal–dual solution pair of (1).
We can generalize (6) by applying preconditioners M1, M2 � 0 (their choices are discussed
below) to obtain Preconditioned PDHG or PrePDHG:

xk+1 = ProxM1
f

(
xk − M−1

1 AT zk
)

,

zk+1 = ProxM2
g∗

(
zk + M−1

2 A(2xk+1 − xk)
)

,
(7)

where the extended proximal operators ProxM1
f and ProxM2

g∗ are defined in (3). We can obtain
the convergence of PrePDHG using the analysis in [12].

There is no need to compute M−1
1 and M−1

2 since (7) is equivalent to

xk+1 = argmin
x∈Rn

{
f (x) + 〈x − xk, AT zk〉 + 1

2
‖x − xk‖2M1

}
,

zk+1 = argmin
z∈Rm

{
g∗(z) − 〈z − zk, A(2xk+1 − xk)〉 + 1

2
‖z − zk‖2M2

}
.

(8)

3.2 Choice of Preconditioners

In this section, we discuss how to select appropriate preconditioners M1 and M2. As a by-
product, we show that ADMM corresponds to choosing M1 = 1

τ
In and optimally choosing

M2 = τ AAT , thereby, explaining why ADMM appears to be faster than PDHG.
The following well-known lemma characterizes primal–dual solution pairs of (1) and (2).

For completeness, we included its proof in “Appendix A”.

Lemma 2 Under Assumption 1, (X , Z) is a primal–dual solution pair of (1) if and only
if ϕ(X , z) − ϕ(x, Z) ≤ 0 for any (x, z) ∈ R

n+m, where ϕ is given in the saddle-point
formulation (5).

We present the following ergodic convergence result, adapted from [12, Theorem 1].

Theorem 1 Let (xk, zk), k = 0, 1, . . . , N be a sequence generated by PrePDHG (7). Under
Assumption 1, if in addition

M̃ :=
(
M1 −AT

−A M2

)
� 0, (9)

then, for any x ∈ R
n and z ∈ R

m, it holds that

ϕ(XN , z) − ϕ(x, ZN ) ≤ 1

2N
(x − x0, z − z0)

(
M1 −AT

−A M2

)(
x − x0

z − z0

)
, (10)

where XN = 1
N

∑N
i=1 x

i and Z N = 1
N

∑N
i=1 z

i .

Proof This follows from Theorem 1 of [12] by setting L f = 0, 1
τ
Dx (x, x0) = 1

2‖x − x0‖2M1
,

1
σ
Dz(z, z0) = 1

2‖z−z0‖2M2
, and K = A. Note that in Remark 1 of [12], Dx and Dz need to be

1−strongly convex to ensure their inequality (13) holds, which is exactly our (9). Therefore,
we do not need Dx and Dz to be strongly convex. ��

Based on the above results, one approach to accelerate convergence is to choose precon-
ditioners M1 and M2 to obey (9) and make the right-hand side of (10) as small as possible
for all x, z, x0, z0. When a pair of preconditioner matrices attains this minimum, we say they
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are optimal. When one of them is fixed, the other that attains the minimum is also called
optimal.

By Schur complement, the condition (9) is equivalent to M2 � AM−1
1 AT . Hence, for any

given M1 � 0, the optimal M2 is AM
−1
1 AT .1

Original PDHG (6) corresponds to M1 = 1
τ
In , M2 = 1

σ
Im with τ and σ obeying 1

τσ
≥

‖A‖2 for convergence. In “Appendix B”, we show that ADMM for problem (1) corresponds
to setting M1 = 1

τ
In, M2 = τ AAT , M2 is optimal since AM−1

1 AT = τ AAT = M2 (This
is related to, but different from, the result in [11, Sect. 4.3] stating that PDHG is equivalent
to a preconditioned ADMM). In the next section, we show that when the z−subproblem is
solved inexactly, a choice of M1 = 1

τ
In, M2 = τ AAT + θ Im with a small θ guarantees

convergence (see Proposition 2).
By using more general pairs of M1, M2, we can potentially have even fewer iterations of

PrePDHG than ADMM.

3.3 PrePDHGwith Fixed Inner Iterations

It wastes time to solve the subproblems in (8) very accurately. It is more efficient to develop a
proper condition and stop the subproblem procedure, i.e., inner iterations, once the condition
is satisfied. It is even better if we can simply fix the number of inner iterations and still
guarantee global convergence.

In this subsection, we describe the “bounded relative error” of the z-subproblem in (7)
and then show that this can be satisfied by running a fixed number of inner iterations with
warm start, uniformly for every outer loop, which is new in the literature.

Definition 1 (Bounded relative error condition) Given xk , xk+1 and zk , we say that the z-
subproblem in PrePDHG (7) is solved to a bounded relative error by some iterator S, if there
is a constant c > 0 such that

0 ∈ ∂g∗(zk+1) + M2

(
zk+1 − zk − M−1

2 A(2xk+1 − xk)
)

+ εk+1, (11)

‖εk+1‖ ≤ c‖zk+1 − zk‖. (12)

Remarkably, this condition does not need to be checked at run time. For a fixed c > 0, the
condition can be satisfied by apply warm start and a fixed number of inner iterations using,
for example, S being the proximal gradient iteration (Theorem 2). One can also use faster
solvers, e.g., FISTA with restart [42], and solvers that suit the subproblem structure, e.g.,
cyclic proximal BCD (Theorem 3). Although the error in solving z-subproblems appears to
be neither summable nor square summable, convergence can still be established. But first,
we summarize this method in Algorithm 1.

Theorem 2 Take Assumption 1. Suppose in iPrePDHG, or Algorithm 1, we choose S as the
proximal-gradient step with stepsize γ ∈ (0, 2λmin(M2)

λ2max(M2)
) and repeat it p times, where p ≥ 1.

Then, zk+1 = zk+1
p is an approximate solution to the z-subproblem up to a bounded relative

error in Definition 1 for

c = c(p) =
1
γ

+ λmax(M2)

1 − ρ p
(ρ p + ρ p−1), (13)

where ρ = √
1 − γ (2λmin(M2) − γ λ2max(M2)) < 1.

1 LetM2 = AM−1
1 AT +M0, whereM0 � 0, then the right-hand side of Eq. (10) is minimizedwhenM0 = 0.
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Algorithm 1 Inexact Preconditioned PDHG or iPrePDHG
Input: f , g, A in (1), preconditioners M1 and M2, initial (x0, z0), z-subproblem iterator S, inner iteration
number p, max outer iteration number K .
Output: (xK , zK )

1: for k ← 0, 1, . . . , K − 1 do
2: xk+1 = ProxM1

f (xk − M−1
1 AT zk );

3: zk+1
0 = zk ;

4: for i ← 0, 1, . . . , p − 1 do
5: zk+1

i+1 = S(zk+1
i , xk+1, xk );

6: end for
7: zk+1 = zk+1

p ; � which approximates ProxM2
g∗ (zk + M−1

2 A(2xk+1 − xk ))

8: end for

Proof The z-subproblem in (8) is of the form

minimize
z∈Rm

h1(z) + h2(z), (14)

for h1(z) = g∗(z) and h2(z) = 1
2‖z − zk − M−1

2 A(2xk+1 − xk)‖2M2
. With our choice of S

as the proximal-gradient descent step, the inner iterations are

zk+1
0 = zk,

zk+1
i+1 = Proxγ h1

(
zk+1
i − γ∇h2

(
zk+1
i

))
, i = 0, 1, . . . , p − 1, (15)

Concerning the last iterate zk+1 = zk+1
p , we have from the definition of Proxγ h1 that

0 ∈ ∂h1
(
zk+1
p

)
+ ∇h2

(
zk+1
p−1

)
+ 1

γ

(
zk+1
p − zk+1

p−1

)
.

Compare this with (11) and use zk+1 = zk+1
p to get

εk+1 = 1

γ

(
zk+1
p − zk+1

p−1

)
+ ∇h2

(
zk+1
p−1

)
− ∇h2

(
zk+1
p

)
.

It remains to show that εk+1 satisfies (12).
Let zk+1


 be the solution of (14), α = λmin(M2), and β = λmax(M2). Then h1(z) is
convex and h2(z) is α-strongly convex and β-Lipschitz differentiable. Consequently, [3,
Prop. 26.16(ii)] gives∥∥∥zk+1

i − zk+1



∥∥∥ ≤ ρi
∥∥∥zk+1

0 − zk+1



∥∥∥ , ∀i = 0, 1, . . . , p,

where ρ = √
1 − γ (2α − γβ2).

Let ai = ‖zk+1
i − zk+1


 ‖. Then, ai ≤ ρi a0. We can derive

‖εk+1‖ ≤
(
1

γ
+ β

) ∥∥∥zk+1
p − zk+1

p−1

∥∥∥ ≤
(
1

γ
+ β

)
(ap + ap−1)

≤
(
1

γ
+ β

)
(ρ p + ρ p−1)a0.

(16)

On the other hand, we have

‖zk+1 − zk‖ ≥ a0 − ap ≥ (1 − ρ p)a0. (17)
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Combining these two equations yields

‖εk+1‖ ≤ c‖zk+1 − zk‖,
where c is given in (13). ��
Theorem 2 uses the iterator S that is the proximal-gradient step. It is straightforward to extend
its proof to S being the FISTA step with restart since it is also linearly convergent [42]. We
omit the proof.

In our next theorem, we let S be the iterator of one epoch of the cyclic proximal BCD
method. ABCDmethod updates one block of coordinates at a timewhile fixing the remaining
blocks. In one epoch of cyclic BCD, all the blocks of coordinates are sequentially updated,
and every block is updated once. In cyclic proximal BCD, each block of coordinates is
updated by a proximal-gradient step, just like (15) except only the chosen block is updated
each time. When h1 is block separable, each update costs only a fraction of updating all the
blocks together.When different blocks are updated one after another, the Gauss–Seidel effect
brings more progress. In addition, since the Lipschitz constant of each block gradient of h2
is typically less than than that of ∇h2, one can use a larger stepsize γ and get potentially
even faster progress. Therefore, the iterator of cyclic proximal BCD is a better choice for S.

In summary, with h1(z) = g∗(z) and h2(z) = 1
2‖z − zk − M−1

2 A(2xk+1 − xk)‖2M2
, an

epoch of cyclic proximal BCD for the z−subproblem is written as

zk+1
0 = zk,

zk+1
i+1 = S

(
zk+1
i , xk+1, xk

)
, i = 0, 1, . . . , p − 1,

zk+1 = zk+1
p .

where S is the iterator of cyclic proximal BCD. Define

T (z) := Proxγ h1(z)(z − γ∇h2(z)), B(z) := 1

γ
(z − T (z)),

and the j th coordinate operator of B:

Bj (z) = (0, . . . , (B(z)) j , . . . , 0), j = 1, 2, . . . , l.

Then, we have

zk+1
i+1 = S

(
zk+1
i , xk+1, xk

)
= (I − γ Bl)(I − γ B2) . . . (I − γ B1)z

k+1
i .

Theorem 3 Let Assumption 1 hold and g be block separable, i.e., z = (z1, z2, . . . , zl) and
g(z) = ∑l

j=1 g j (z j ). Suppose in iPrePDHG, or Algorithm 1, we choose S as the iterator of
cyclic proximal BCD with stepsize γ satisfying

0 < γ ≤ min

⎧⎨
⎩
2λmin(M2))

λ2max(M2))
,
1 −

√
1 − γ

(
2λmin(M2) − γ λ2max(M2)

)
4
√
2γ lλmax(M2)

,

1

4lλmax(M2)
,

2lλmax(M2)

17lλmax(M2) + 2

(
1−√

1−γ (2λmin(M2)−γ λ2max(M2))
γ

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,
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and we set p ≥ 1. Then, zk+1 = zk+1
p is an approximate solution to the z-subproblem up to

a bounded relative error in Definition 1 for

c = c(p) =
(
lλmax(M2) + 1

γ

)
(ρ p + ρ p−1)

1 − ρ p
, (18)

where ρ = 1 −
(
1−

√
1−γ (2λmin(M2)−γ λ2max(M2))

)2
2γ < 1.

Proof See “Appendix C”. ��

3.4 Global Convergence of iPrePDHG

In this subsection, we show the convergence of Algorithm 1. Our approach first transforms
Algorithm 1 into an equivalent algorithm in Proposition 1 below and then proves its conver-
gence in Theorems 5 and 6 below.

First, let us show that PrePDHG (7) is equivalent to an algorithm applied on the dual prob-
lem (2). This equivalence is analogous to the equivalence between PDHG (6) and Linearized
ADMM applied to the dual problem (2), shown in [22]). Specifically, PrePDHG is equivalent
to

zk+1 = ProxM2
g∗

(
zk + M−1

2 AM−1
1

(
−AT zk − yk + uk

))
,

yk+1 = Prox
M−1

1
f ∗ (uk − AT zk+1),

uk+1 = uk − AT zk+1 − yk+1.

(19)

When M1 = 1
τ
I , M2 = λI , (19) reduces to Linearized ADMM, also known as Split Inexact

Uzawa [58].
Furthermore, iPrePDHG in Algorithm 1 is equivalent to (19) with inexact subproblems,

which we present in Algorithm 2.

Algorithm 2 Inexact Preconditioned ADMM
Input: f , g, A in (1), preconditioners M1 and M2,
initial vector (z0, y0, u0), subproblem solver S for the z-subproblem in (19), number of inner loops p, number
of outer iterations K .
Output: (zK , yK , uK )

1: for k ← 0, 1, . . . , K − 1 do
2: zk+1

0 = zk ;
3: for i ← 0, 1, . . . , p − 1 do
4: zk+1

i+1 = S(zk+1
i , yk , uk );

5: end for
6: zk+1 = zk+1

p ; � approximate ProxM2
g∗ (zk + M−1

2 AM−1
1 (−AT zk − yk + uk )).

7: yk+1 = Prox
M−1
1

f ∗ (uk − AT zk+1);

8: uk+1 = uk − AT zk+1 − yk+1;
9: end for

Proposition 1 Under Assumption 1 and the transforms uk = M1xk , yk+1 = uk − AT zk −
uk+1, PrePDHG (7) is equivalent to (19), and iPrePDHG in Algorithm 1 is equivalent to
Algorithm 2.
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Proof Set uk = M1xk , yk+1 = uk − AT zk − uk+1. Then (4) and (7) yield

yk+1 = M1x
k − AT zk − M1x

k+1 = Prox
M−1

1
f ∗ (uk − AT zk),

and

uk+1 = uk − AT zk − yk+1,

zk+1 = ProxM2
g∗

(
zk + M−1

2 AM−1
1 (−AT zk − yk+1 + uk+1)

)
.

If the z-update is performed first, then we arrive at (19).
In iPrePDHG or Algorithm 1, we are solving the z-subproblem of PrePDHG (7) approx-

imately to the relative error in Definition 1. This is equivalent to doing the same to the
z-subproblem of (19), which yields Algorithm 2. ��

Let us define the following generalized augmented Lagrangian:

L(z, y, u) = g∗(z) + f ∗(y) +
〈
−AT z − y, M−1

1 u
〉
+ 1

2
‖AT z + y‖2

M−1
1

. (20)

Inspired by [54], we use (20) as the Lyapunov function to establish convergence of Algo-
rithm 2 and, equivalently, the convergence of Algorithm 1. This appears to be a new proof
technique for inexact PDHG and inexact ADMM.

We first establish subsequential convergence of iPrePDHG in Algorithm 1 under the
following additional assumptions.

Assumption 2

1. f (x) is μ f −strongly convex.
2. g∗(z) + f ∗(−AT z) is coercive, i.e., lim‖z‖→∞ g∗(z) + f ∗(−AT z) = ∞.

Toestablish convergence of iPrePDHGinAlgorithm1,we also need the following assump-
tion.

Assumption 3 L(z, y, u) is a KL function.

Assumption 3 is true when both g∗(z) and f ∗(y) are semi-algebraic, or more generally,
definable in an o-minimal structure (more details can be referred to Sect. 2.2 of [2] and Sect.
2.2 of [56] and the references therein).

Note that under Assumptions 2 and 3, it is not necessarily true that PDHG is linearly
convergent.2

Theorem 4 Take Assumptions 1 and 2. Choose any preconditioners M1, M2 and inner iter-
ation number p such that

C1 = 1

2
M−1

1 − λmax(M1)

μ2
f

In � 0, (21)

C2 = M2 − 1

2
AM−1

1 AT − c(p)Im � 0, (22)

where c(p) depends on the z-subproblem iterator S and M2 (e.g., (13) and (18)). Define
Lk := L(zk, yk, uk). Then, Algorithm 2 satisfies the following sufficient descent and lower
boundedness properties, respectively:

Lk − Lk+1 ≥ ‖yk − yk+1‖2C1
+ ‖zk − zk+1‖2C2

, (23)

2 A counterexample can be found at Sect. 6.2.1 of [11]. The ROF functional satisfy these assumptions, and
PDHG(ALG1) hasO(1/N ) convergence in Table 1. This is also mentioned on page 26 of [11].
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Lk ≥ g∗(z
) + f ∗(−AT z
) > −∞. (24)

Proof Since the z-subproblem of Algorithm 2 is solved to the bounded relative error in Def.
1, we have

0 ∈ ∂g∗(zk+1) + M2

(
zk+1 − zk − M−1

2 AM−1
1 (−AT zk − yk + uk)

)
+ εk+1, (25)

where εk+1 satisfies (12):

‖εk+1‖ ≤ c(p)‖zk+1 − zk‖. (26)

The y and u updates produce

0 = ∇ f ∗(yk+1) + M−1
1 (yk+1 − uk + AT zk+1) = ∇ f ∗(yk+1) − M−1

1 uk+1, (27)

uk+1 = uk − AT zk+1 − yk+1. (28)

In order to show (23), let us write

g∗(zk) ≥ g∗(zk+1)

+
〈
M2(z

k − zk+1) + AM−1
1 (−AT zk − yk + uk) − εk+1, zk − zk+1

〉
,

f ∗(yk) ≥ f ∗(yk+1) +
〈
M−1

1 uk+1, yk − yk+1
〉
.

Assembling these inequalities with (26) gives us

Lk − Lk+1 ≥ ‖zk − zk+1‖2M2−c(p)Im

+
〈
AM−1

1 (−AT zk − yk + uk), zk − zk+1
〉
+

〈
M−1

1 uk+1, yk − yk+1
〉

+
〈
−AT zk − yk, M−1

1 uk
〉

−
〈
AT zk+1 − yk+1, M−1

1 (uk − AT zk+1 − yk+1)
〉

+ 1

2
‖AT zk + yk‖2

M−1
1

− 1

2
‖AT zk+1 + yk+1‖2

M−1
1

(29)

= ‖zk − zk+1‖2M2−c(p)Im (A)

+
〈
AM−1

1 (−AT zk − yk), zk − zk+1
〉
+

〈
M−1

1 uk+1, yk − yk+1
〉

+
〈
−yk, M−1

1 uk
〉
−

〈
−yk+1, M−1

1 uk
〉

(B)

+ 1

2
‖AT zk + yk‖2

M−1
1

− 3

2
‖AT zk+1 + yk+1‖2

M−1
1

,

where the terms in (A) and (B) simplify to〈
AM−1

1 (−AT zk − yk), zk − zk+1
〉
+

〈
M−1

1 (−AT zk+1 − yk+1), yk − yk+1
〉
. (30)

Apply the following cosine rule on the two inner products above:

〈a − b, a − c〉M−1
1

= 1

2
‖a − b‖2

M−1
1

+ 1

2
‖a − c‖2

M−1
1

− 1

2
‖b − c‖M−1

1
.
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Set a = AT zk, c = AT zk+1, and b = −yk to obtain〈
AM−1

1 (−AT zk − yk), zk − zk+1
〉

(31)

= −1

2
‖AT zk + yk‖2

M−1
1

− 1

2
‖AT zk − AT zk+1‖2

M−1
1

+ 1

2
‖yk + AT zk+1‖2

M−1
1

. (32)

Set a = yk+1, c = yk , and b = −AT zk+1 to obtain〈
M−1

1 (−AT zk+1 − yk+1), yk − yk+1
〉

(33)

= 1

2
‖AT zk+1 + yk+1‖2

M−1
1

+ 1

2
‖yk − yk+1‖M−1

1

− 1

2
‖AT zk+1 + yk‖2

M−1
1

. (34)

Combining (30), (32), and (34) yields

Lk − Lk+1 ≥ ‖zk − zk+1‖2
M2− 1

2 AM
−1
1 AT −c(p)Im

+ ‖yk − yk+1‖21
2 M

−1
1

− ‖AT zk+1 + yk+1‖2
M−1

1
. (35)

Since f is μ f -strongly convex, we know that ∇ f ∗ is 1
μ f

−Lipschitz continuous. Conse-
quently,

‖AT zk+1 + yk+1‖2
M−1

1
= ‖uk − uk+1‖2

M−1
1

≤ 1

λmin(M
−1
1 )

∥∥∥M−1
1 (uk − uk+1)

∥∥∥2

(27)≤ λmax(M1)

μ2
f

‖yk − yk+1‖2. (36)

Combining (35) and (36) gives us (23).
Now, to show (24), we use (27) and smoothness of f ∗ to get

f ∗(yk) ≥ f ∗(−AT zk) +
〈
M−1

1 uk, yk + AT zk
〉
− 1

2μ f
‖AT zk + yk‖2.

Hence, we arrive at

Lk = g∗(zk) + f ∗(yk) +
〈
−AT zk − yk, M−1

1 uk
〉
+ 1

2
‖AT zk + yk‖2

M−1
1

≥ g∗(zk) + f ∗(−AT zk) + 1

2
‖AT zk + yk‖2

M−1
1

− 1

2μ f
‖AT zk + yk‖2. (37)

Since C1 � 0 if and only if μ f >
√
2λmax(M1), (24) follows. ��

Remark 1 In Theorem 4, we require C2 = M2 − 1
2 AM

−1
1 AT − c(p)Im � 0. Recall that p is

the number of inner loops applied to solve the z−subproblem and c(p) converges linearly to
0. Therefore, if we apply a smaller p, then M2 needs to be larger. This means that the dual
update needs to use a smaller effective stepsize.

Next, we provide a simple choice of M1, M2, and p that ensures the positive definiteness
of C1 and C2 in Theorem 4.

123



21 Page 14 of 34 Journal of Scientific Computing (2021) 86 :21

Proposition 2 In order to ensure (21) and (22), it suffices to set M1 = 1
τ
In where τ < 1√

2
μ f ,

M2 = τ AAT + θ Im with θ > 0, and large p such that c(p) < θ .

Proof Since M1 = 1
τ
In , it is evident that C1 � 0 if and only if τ < 1√

2
μ f . With M1 = 1

τ
In

and M2 = τ AAT + θ Im , we have

C2 = 1

2
τ AAT + (θ − c(p))Im .

As we have seen in Theorem 2, and 3, c(p) = O(τ p) with some τ ∈ [0, 1) for S being
proximal gradient or cyclic proximal BCD. Therefore, there exists p0 such that C2 � 0 for
any p ≥ p0.

Remark 2 With a small θ > 0, the choices of M1 and M2 given in Proposition 2 is close to
the “ADMM choice” M1 = 1

τ
In and M2 = τ AAT , where M2 is optimal (see Sect. 3.2).

We are now ready to show convergence of Algorithm 1.

Theorem 5 Take Assumptions 1 and 2. Then, (xk, zk) in Algorithm 1 are bounded, and any
cluster point is a primal–dual solution pair of (1) and (2).

Proof According to Theorem 1, it is sufficient to show that {M−1
1 uk, zk} is bounded, and its

cluster points are primal–dual solution pairs of (1).
Since Lk is nonincreasing, (37) tells us that

g∗(zk) + f ∗(−AT zk) + 1

2
‖AT zk + yk‖2

M−1
1

≤ L0 < +∞.

Since g∗(z)+ f ∗(−AT z) is coercive, {zk} is bounded, and, by theboundedness of {AT zk+yk},
{yk} is also bounded. Furthermore, (27) gives us

∥∥∥M−1
1 (uk − u0)

∥∥∥ ≤ 1

μ f
‖yk − y0‖.

Therefore, {M−1
1 uk} is bounded, too.

Let (zc, yc, uc) be a cluster point of {zk, yk, uk}. We shall show (zc, yc, uc) is a saddle
point of L(z, y, u), i.e.,

0 ∈ ∂L(zc, yc, uc), (38)

or equivalently,

0 ∈ ∂g∗(zc) − AM−1
1 uc, 0 = ∇ f ∗(yc) − M−1

1 uc, 0 = AT zc + yc,

which ensures (M−1
1 uc, zc) to be a primal–dual solution pair of (1).

In order to show (38), we first notice that (20) gives

∂x L(zk+1, yk+1, uk+1) = ∂g∗(zk+1) − AM−1
1 uk+1 + AM−1

1 (AT zk+1 + yk+1),

∇y L(zk+1, yk+1, uk+1) = ∇ f ∗(yk+1) − M−1
1 uk+1 + M−1

1 (AT zk+1 + yk+1),

∇u L(zk+1, yk+1, uk+1) = M−1
1 (−AT zk+1 − yk+1).

Comparing these with the optimality conditions (25), (27), and (28), we have

dk+1 =
(
dk+1
z , dk+1

y , dk+1
u

)
∈ ∂L

(
zk+1, yk+1, uk+1

)
, (39)
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where

dk+1
z = M2(z

k − zk+1) + 2AM−1
1 (uk − uk+1) − AM−1

1 (uk−1 − uk) − εk+1,

dk+1
y = M−1

1 (uk − uk+1),

dk+1
u = M−1

1 (uk+1 − uk). (40)

Since (23) and (24) imply zk − zk+1, yk − yk+1 → 0, (27) gives uk − uk+1 → 0. Combine
these with (12), we have dk → 0.

Finally, let us take a subsequence {zks , yks , uks } → (zc, yc, uc). Since dks → 0 as s →
+∞, [48, Def. 8.3] and [48, Prop. 8.12] yield (38), which tells us that (M−1

1 uc, zc) is a
primal–dual solution pair of (1).

Following the axiomatic approach developed in [2] for decent algorithms onKL functions,
we can show that thewhole sequence (xk , zk) inAlgorithm1 converges to a primal–dual solu-
tion pair. This approach has also been applied in [5] for KL-based Lagrangian optimization.

Theorem 6 Take Assumptions 1, 2, and 3. Then, {xk, zk} in Algorithm 1 converges to a
primal–dual solution pair of (1).

Proof By Theorem 5, we can take {zks , yks , uks } → (zc, yc, uc) as s → ∞. Since L is
a KL function, we can prove the convergence of {zk, yk, uk} to {zc, yc, uc} following [2].
Specifically, let us first verify that conditions H1, H2, and H3 of [2] are satisfied for vk :=
(zk, yk, uk) and L(vk).

First, (23) gives

L(vk+1)+λmin(C1)‖yk − yk+1‖2 + λmin(C2)‖zk − zk+1‖2 ≤ L(vk). (41)

By (27) and the 1
μ f

−Lipschitz differentiability of f ∗, we know that

1

2
‖yk − yk+1‖2 ≥ μ2

f

2

∥∥∥M−1
1 uk − M−1

1 uk+1
∥∥∥2 . (42)

Combine (41) with (42), we know that there exists a > 0 such that

L(vk+1) + a‖vk+1 − vk‖2 ≤ L(vk).

which satisfies condition H1 of [2].
From (39) and (40), we know that dk+1 ∈ ∂L(vk+1) satisfies

‖dk+1‖ ≤ b‖vk+1 − vk‖
for some b > 0, which satisfies condition H2 of [2].

Next, let us verify that condition H3 of [2] also holds true.
Recall that we have taken {zks , yks , uks } → (zc, yc, uc) as s → ∞. Note that

L(zks , yks , uks ) is monotonic nonincreasing and lower bounded due to Theorem 4, which
implies the convergence of L(zks , yks , uks ). Since L is lower semicontinuous, we have

L(zc, yc, uc) ≤ lim
s→∞ L(zks , yks , uks ). (43)

Since the only potentially discontinuous term in L is g∗, we have

lim
s→∞ L(zks , yks , uks ) − L(zc, yc, uc) ≤ lim sup

s→∞
g∗(zks ) − g∗(zc). (44)
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By (25), we know that

g∗(zc) ≥ g∗(zks ) +
〈
M2(z

ks−1 − zks )

+AM−1
1 (−AT zks−1 − yks−1 + uks−1) − εks , zc − zks

〉
,

Then, by Theorem 4, we further get zks−1 − zks → 0. Since zks → zc and {zk, yk, uk} is
bounded, we obtain

lim sup
s→∞

g∗(zks ) − g∗(zc) ≤ 0.

Combining this with (43) and (44), we conclude that

lim
s→∞ L(zks , yks , uks ) = L(zc, yc, uc),

which satisfies condition H3 of [2].
Finally, since the conditions H1, H2, and H3 are satisfied, we can follow the proof of

Theorem 2.9 of [2] to establish the convergence of vk = (zk, yk, uk) to (zc, yc, uc), which
is a critical point of L(z, y, u). By (40), we further now that {M−1

1 uk, zk} converges to
a primal–dual solution pair of (1), which is exactly {xk, zk} in Algorithm 1 according to
Theorem 1.

Remark 3 In order to remove the strong convexity assumption in Assumption 2, we also
establish the ergodic convergence of iPrePDHG in the case where g∗ = 0, and gradient
descent is applied to solve the z-subproblem inexactly. See “Appendix D” for details.

4 Numerical Experiments

In this section, we compare our iPrePDHG (Algorithm 1) with (original) PDHG (6),
diagonally-preconditioned PDHG (DP-PDHG) [44], accelerated PDHG (APDHG) [11], and
accelerated linearized ADMM (ALADMM) [56]. We consider four popular applications of
PDHG: TV-L1 denoising, graph cuts, estimation of earth mover’s distance, and CT recon-
struction.

For the preconditioners M1 and M2 in iPrePDHG, we choose M1 = 1
τ
In and M2 =

τ AAT + θ I as suggested in Proposition 2, which corresponds to ADMM and M2 is nearly
optimal for small θ (see Sect. 3.2).Although f maynot be strongly convex in our experiments,
we still observe significant speedups compared to other algorithms.

When we write these examples in the form of (1), the matrix A (or a part of A) is one of
the following operators:

Case 1: 2D discrete gradient operator D : RM×N → R
2M×N :

For images of size M × N and grid stepsize h, we have

(Du)i, j =
(

(Du)1i, j
(Du)2i, j

)
,

where

(Du)1i, j =
{

1
h (ui+1, j − ui, j ) if i < M,

0 if i = M,
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(Du)2i, j =
{

1
h (ui, j+1 − ui, j ) if j < N ,

0 if j = N .

Case 2: 2D discrete divergence operator: div: R2M×N → R
M×N given by

div(p)i, j = h
(
p1i, j − p1i−1, j + p2i, j − p2i, j−1

)
,

where p = (p1, p2)T ∈ R
2M×N , p10, j = p1M, j = 0 and p2i,0 = p2i,N = 0 for

i = 1, . . . , M , j = 1, . . . , N .

in Algorithm 1, we can take S as the iterator of FISTA. To take the advantage of the
finite-difference structure of these operators, we also let S be the iterator of cyclic proximal
BCD. We split {1, 2, . . .m} into 2 blocks (for case 2) or 4 blocks (for case 1), which are
inspired by the popular red-black ordering [49] for solving sparse linear system.

According to Theorem 3, running finitely many epochs of cyclic proximal BCD gives
us a bounded relative error in Definition 1. We expect that this solver brings fast overall
convergence. Specifically, when g∗ = 0, the z-subproblem in PrePDHG reduces to a linear
system with a structured sparse matrix AAT . Therefore, proximal gradient descent amounts
to the Richardson method [47,49], and cyclic proximal BCD amounts to the Gauss–Seidel
method and the Successive Overrelaxation (SOR) method [49,55], which are typically faster.

The following two claims tell us that with specific block partitions, the cyclic proximal
BCD steps have a closed-form, so Algorithm 1 is easy to implement. Furthermore, each
execution of BCD step can use parallel computing.

Claim When A = div (i.e. AT = −D) and M2 = τ AAT , for z ∈ R
M×N , we separate z into

two block zb, zr where

zb := {zi, j | i + j is even}, zr := {zi, j | i + j is odd},
for 1 ≤ i ≤ M , 1 ≤ j ≤ N . If g(z) = Σi, j gi, j (zi, j ) and proxγ g∗

i, j
have closed-form

solutions for all 1 ≤ i ≤ M , 1 ≤ j ≤ N and γ > 0, then S as the iterator of cyclic proximal
BCD in Algorithm 1 has a closed-form and computing S is parallelizable.

Fig. 1 Two-block ordering in
Claim 4

123



21 Page 18 of 34 Journal of Scientific Computing (2021) 86 :21

Fig. 2 Four-block ordering in
Claim 4

Proof As illustrated in Fig. 1, every black node is connected to its neighbor red nodes, so
we can update all the coordinates corresponding to the black nodes in parallel, while those
corresponding to the red nodes are fixed, and vice versa. See “Appendix E” for a complete
explanation. ��
Claim When A = D (i.e. AT = −div) and M2 = τ AAT , for z = (z1, z2)T ∈ R

2M×N , we
separate z into four blocks zb, zr , zy and zg , where

zb =
{
z1i, j | i is odd

}
, zr =

{
z1i, j | i is even

}
,

zy =
{
z2i, j | j is odd

}
, zg =

{
z2i, j | j is even

}
,

for 1 ≤ i ≤ M , 1 ≤ j ≤ N . If g(z) = Σi, j gi, j (zi, j ) and all proxγ g∗
i, j

have closed-form
solutions for all 1 ≤ i ≤ M , 1 ≤ j ≤ N and γ > 0, then S as the iterator of cyclic proximal
BCD in Algorithm 1 has a closed-form and computing S is parallelizable.

Proof In Fig. 2, the 4 blocks are in 4 different colors. The coordinates corresponding to nodes
of the same color can be updated in parallel, while the rest are fixed. See “Appendix E” for
details. ��

In the following sections, PDHG denotes original PDHG in (6) without any precon-
ditioning; DP-PDHG denotes the diagonally-preconditioned PDHG in [44], APDHG is the
accelerated PDHG in [11], ALADMM is the accelerated linearized ADMMproposed in [56].
PrePDHG denotes Preconditioned PDHG in (7) where the (k + 1)th z-subproblem is solved

until ‖zk−zk+1‖2
max{1,‖zk+1‖2} < 10−5 using the TFOCS [4] implementation of FISTA; iPrePDHG

(Inner: BCD) and iPrePDHG (Inner: FISTA) denote our iPrePDHG in Algorithm 1 with
the iterator S being cyclic proximal BCD or FISTA, respectively. All the experiments were
performed on MATLAB R2018a on a MacBook Pro with a 2.5 GHz Intel i7 processor and
16GB of 2133MHz LPDDR3 memory.

A comparison between PDHG and DP-PDHG is presented in [44] on TV-L1 denoising
and graph cuts, and in [50] on CT reconstruction. A PDHG algorithm is proposed to estimate
earth mover’s distance (or optimal transport) in [35]. In order to provide a direct comparison,
we use their problem formulations.
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4.1 Graph Cuts

The total-variation-based graph cut model involves minimizing a weighted TV energy:

minimize ‖Dwu‖1 + 〈u, ωu〉
subject to 0 ≤ u ≤ 1,

where wu ∈ R
M×N is a vector of unary weights, wb ∈ R

2MN is a vector of binary weights,
and Dw = diag(wb)D for D being the 2D discrete gradient operator with h = 1. Specifically,
we have wu

i, j = α(‖Ii, j − μ f ‖2 − ‖Ii, j − μb‖2), w
b,1
i, j = exp(−β|Ii+1, j − Ii, j |), and

w
b,2
i, j = exp(−β|Ii, j+1 − Ii, j |).
To formulate this problem as (1), we take f (u) = 〈u, wu〉 + δ[0,1](u), A = Dw , and g as

the �1−norm g(z) = ∑2MN
i=1 |zi |.

In our experiment, the input image3 has a size 660 × 720. We set α = 1/2, β = 10,
μ f = [0; 0; 1] (for the blue foreground) and μb = [0; 1; 0] (for the green background). We

run all algorithms until δk := |Φk−Φ
|
|Φ
| < 10−8, where Φk is the objective value at the kth

iteration and Φ∗ is the optimal objective value obtained by running CVX4 [18].
We summarize the test results in Table 1. For APDHG and ALADMM, the best results of

μ ∈ {10, 1, 0.1, 0.01, 0.001} are presented, and the rest of their parameters are set as sug-
gested in [11,56], respectively. For iPrePDHG, the best results of τ ∈ {10, 1, 0.1, 0.01, 0.001}
and p ∈ {1, 2, 3, 10, 20, 30} are presented, where the step size of cyclic proximal BCD was
chosen as γ = 1

‖M2‖ . Thanks to the efficiency of cyclic proximal BCD on the subprob-
lems, we can simply apply 2 inner loops to achieve a superior performance. It is also worth
mentioning that its number of outer iterations is close to that of PrePDHG, which solves z-
subproblem much more accurately. In the last row of Table 1, we take M2 = τDwDT

w + θ Im
with θ > 0 as suggest in Proposition 2, the performance is similar to that of θ = 0. In
practice, we recommend simply taking θ = 0. Finally, we would like to mention that the
number of inner iterations are not exactly proportional to the runtime, this is because Matlab
handles operations of sparse matrices in a pretty efficient way, and the runtime of the other
parts of the tested algorithms is not negligible.

The input image can be found in Fig. 3. For all the tested algorithms, the output images
look similar, therefore, we only present the output image of iPrePDHG in Fig. 4. This is also
the case for the other tests in this paper.

4.2 Total Variation Based Image Denoising

The following problem is known as the (discrete) TV-L1 model for image denoising:

minimizeu Φ(u) = ‖Du‖1 + λ‖u − b‖1,

where D is the 2D discrete gradient operator with h = 1, b ∈ R
1024×1024 is a noisy input

image with noise level 0.15 (see Fig. 5), and λ = 1 is a regularization parameter. We run the

3 https://www.shutterstock.com/image-photo/many-blue-hydrangea-flowers-growing-garden-174945887.
4 Note that by the default setting of CVX, Φ∗ given by CVX has an absolute error of O(10−8), while
Φ∗ = O(105). Therefore, Φ∗ is accurate enough for our tests. This is also the case for the other experiments
in this paper.
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Table 1 Performance of PDHG, DP-PDHG, ADMM, and iPrePDHG on the graph cut model

Method Outer Iter Inner Iter Runtime (s) Parameters

PDHG 5529 5529 140.5777 τ = 1, M1 = 1/τ In ,

M2 = τ‖Dw‖2 Im
DP-PDHG 3571 3571 104.5392 M1 = diag(Σi |Dw i, j |),

M2 = diag(Σ j |Dw i, j |)
PrePDHG (ADMM) 282 19,961 938.3787 τ = 10, M1 = 1/τ In

M2 = τDwDT
w

APDHG – – > 104 τ0 = 1, Mk
1 = 1

τk
In

Mk
2 = τk‖Dw‖2 Im , μ = 1

ALADMM 17,583 17,583 643.7214 μ = 0.001

iPrePDHG (Inner: FISTA) 734 14,680 216.1936 τ = 10, M1 = 1
τ In ,

M2 = τDwDT
w , p = 20

iPrePDHG (Inner: BCD) 411 822 14.9663 τ = 10, M1 = 1
τ In ,

M2 = τDwDT
w , p = 2

iPrePDHG (Inner: BCD) 402 804 14.7687 τ = 10, M1 = 1
τ In ,

M2 = τDwDT
w + θ Im ,

θ = 0.1, p = 2

The results of iPrePHDG (inner: BCD) are in bold as it perfroms the best

Fig. 3 Input image of graph cut
with a size 660 × 720

algorithms until |Φk−Φ
|
|Φ
| < 10−6, where Φk is the kth objective value and Φ∗ is the optimal

objective value obtained by CVX [18].5

To formulate as (1), we take f (u) = λ‖u − b‖1, g(z) = ‖z‖1, and A = D.
Observed performance is summarized in Table 2, where the best results for μ, τ ∈

{10, 1, 0.1, 0.01, 0.001} and p ∈ {1, 2, 3, 5, 10, 20} are presented (Again, the step size of

5 http://www.hlevkin.com/TestImages/man.bmp.

123

http://www.hlevkin.com/TestImages/man.bmp


Journal of Scientific Computing (2021) 86 :21 Page 21 of 34 21

Fig. 4 Output of graph cut by our
iPrePDHG (Inner: BCD), where
the flower part has been extracted

cyclic proximal BCD has been chosen as γ = 1
‖M2‖ ). Our iPrePDHG (Inner: BCD) is signif-

icantly faster than the other algorithms. Finally, the denoised image can be found in Fig. 6.
When taking θ = 0.1, we get nearly identical results. This is because θ > 0 adds a

proximal term θ
2‖z− zk‖2 in the z-subproblem (see Eq. (8)), whose gradient at zk is 0. Since

p = 1 and cyclic proximal BCD is initialized exactly at zk , we get the same iterates as that
of θ = 0. In practice, we recommend simply taking θ = 0.

Remarkably, our algorithm uses fewer outer iterations than PrePDHG under the stopping

criterion ‖zk−zk+1‖2
max{1,‖zk+1‖2} < 10−5, as this kind of stopping criteria may become looser as zk is

closer to z
. In this example, ‖zk−zk+1‖2
max{1,‖zk+1‖2} < 10−5 only requires 1 inner iteration of FISTA

when Outer Iter ≥ 368, while as high as 228 inner iterations on average during the first 100
outer iterations. In comparison, our algorithm uses fewer outer iterations while each of them
also costs less.

In addition, the diagonal preconditioner given in [44] appears to help very little when
A = D. In fact, M1 = diag(Σi |Ai, j |) will be 4In and M2 = diag(Σ j |Ai, j |) will be 2Im
if we ignore the Neumann boundary condition. Therefore, DP-PDHG performs even worse
than PDHG.

4.3 Earth Mover’s Distance

Earth mover’s distance is useful in image processing, computer vision, and statistics [33,38,
43]. A recent method [35] to compute earth mover’s distance is based on

minimize ‖m‖1,2
subject to div(m) + ρ1 − ρ0 = 0,

where m ∈ R
2M×N is the sought flux vector on the M × N grid, and ρ0, ρ1 represents two

mass distributions on the M × N grid. The setting in our experiment here is the same with
that in [35], i.e. M = N = 256, h = N−1

4 , and for ρ0 and ρ1 see Fig. 8.
To formulate as (1), we take f (m) = ‖m‖1,2, g(z) = δ{ρ0−ρ1}(z), and A = div.
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Fig. 5 Noisy input image for the
TV-L1 denoising model with
1024 × 1024 and noise level 0.15

Table 2 Test of PDHG, DP-PDHG, ADMM, and iPrePDHG on the TV-L1 denoising model.

Method Outer Iter Inner Iter Runtime (s) Parameters

PDHG 2990 2990 114.2576 τ = 0.01, M1 = 1
τ In ,

M2 = τ‖D‖2 Im
DP-PDHG 8856 8856 329.7890 M1 = diag(Σi |Di, j |),

M2 = diag(Σ j |Di, j |)
PrePDHG (ADMM) 962 30,242 5641.0435 τ = 0.1, M1 = 1/τ In

M2 = τDDT

APDHG 1696 1696 76.4154 τ0 = 1, Mk
1 = 1

τk
In ,

Mk
2 = τk‖D‖2 Im , μ = 1

ALADMM 1921 1921 127.1235 μ = 1

iPrePDHG (Inner: FISTA) 564 2820 79.3684 τ = 0.01, M1 = 1
τ In ,

M2 = τDDT , p = 5

iPrePDHG (Inner: BCD) 541 541 26.2704 τ = 0.01, M1 = 1
τ In ,

M2 = τDDT , p = 1

iPrePDHG (Inner: BCD) 541 541 26.2951 τ = 0.01, M1 = 1
τ In ,

M2 = τDDT + θ Im

p = 1, θ = 0.1

The results of iPrePHDG (inner: BCD) are in bold as it perfroms the best

Since the iterates mk may not satisfy the linear constraint, the objective Φ(m) =
I{m|div(m)=ρ0−ρ1} + ‖m‖1,2 is not comparable. Instead, we compare ‖mk‖1,2 and the con-
straint violation until k = 100,000 outer iterations in Fig. 7, where we set τ = 3×10−6 as in
[35], and σ = 1

τ‖div‖2 . For iPrePDHG (Inner: BCD), we set M1 = τ−1 In , M2 = τdivdivT,

BCD stepsize γ = 1
‖M2‖ , and number of BCD epochs p = 2.
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Fig. 6 Denoised image by
iPrePDHG (Inner: BCD)

In Fig. 7, we can see that our iPrePDHG provides much lower constraint violation and
much more faithful earth mover’s distance ‖m‖1,2 at any given runtime. Figure 8 shows
the solution obtained by our iPrePDHG (Inner: BCD), where m is the flux that moves the
standing cat ρ1 into the crouching cat ρ0. For our iPrePDHG with M2 = τdiv divT + θ Im ,
the performance is very similar when a small θ is applied. In practice, we recommend simply
taking θ = 0.

DP-PDHG, ALADMM, and PrePDHG are extremely slow in this example and are not
reported in Fig. 7. Similar to Sect. 4.2, when A = div, the diagonal preconditioners proposed
in [44] are approximately equivalent to fixed constant parameters τ = 1

2h , σ = 1
4h and they

lead to extremely slow convergence. As for PrePDHG, it suffers from the high cost per outer
iteration.

It is worth mentioning that unlike [35], the algorithms in our experiments are not paral-
lelized. On the other hand, in our iPrePDHG (Inner: BCD), iterator S can be parallelized
(which we did not implement). Therefore, one can expect a further speedup by a parallel
implementation.

4.4 CT Reconstruction

We test solving the following optimization problem for CT image reconstruction:

minimize Φ(u) = 1
2‖Ru − b‖22 + λ‖Du‖1, (45)

where R ∈ R
13032×65536 is a system matrix for 2D fan-beam CT with a curved detector,

b = Rutrue ∈ R
13032 is a vector of line-integration values, and we want to reconstruct

utrue ∈ R
MN , where M = N = 256. D is the 2D discrete gradient operator with h = 1, and

λ = 1 is a regularization parameter. By using the fancurvedtomo function from the AIR Tools
II package [29], we generate a test problemwhere the projection angles are 0◦, 10◦, . . . , 350◦,
and for all the other input parameters we use the default values.
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Fig. 7 Comparison of PDHG and iPrePDHG on the EMD estimation problem over 100,000 outer iterations

Fig. 8 Mass distributions ρ0, ρ1

for EMD estimation. ρ0 is the
white standing cat, and ρ1 is the
black crouching cat. Both images
are 256 × 256, and the earth
mover’s distance between ρ0 and
ρ1 is 0.6718

Following [50], we formulate the problem (45) in the form of (1) by taking

g

(
p
q

)
= 1

2
‖p − b‖22 + λ‖q‖1, f (u) = 0, A =

(
R
D

)
, (46)

By using this formulation, we avoids inverting the matrices R and D.
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Table 3 Performance of PDHG, DP-PDHG, ADMM, and iPrePDHG on CT reconstruction

Method Outer Inner Runtime (s) Parameters

PDHG 364,366 364,366 3663.0348 τ = 0.001, M1 = 1
τ In ,

M2 = τ‖A‖2 Im
DP-PDHG 70,783 70,783 713.9865 M1 = diag(Σi |Ai, j |),

M2 = diag(Σ j |Ai, j |)
PrePDHG (ADMM) – – > 104 τ = 0.01, M1 = 1

τ In ,

M2 = τ AAT

APDHG 31289 31289 333.1747 τ0 = 0.001, Mk
1 = 1

τk
In ,

Mk
2 = τk‖A‖2 Im , μ = 1

ALADMM 22,286 22,286 342.3022 μ = 10

iPrePDHG (Inner: FISTA) – – > 104 τ = 0.001, M1 = 1
τ In ,

M2 = τ AAT , p = 1, 2, or 3

iPrePDHG (Inner: FISTA) – – > 104 τ = 0.01, M1 = 1
τ In ,

M2 = τ AAT , p = 100

iPrePDHG (Inner: BCD) 587 1174 7.5365 τ = 0.01, M1 = 2
τ In , p = 2,

M2 =
(

τ‖R‖2 Im−2n 0
0 τDDT

)

iPrePDHG (Inner: BCD) 586 1172 7.2112 τ = 0.01, M1 = 2
τ In , p = 2,

M2 =
(

τ‖R‖2 Im−2n 0
0 τDDT + θ I2n

)

iPrePDHG (Inner: BCD) 858 1716 10.3517 τ = 0.01, p = 2

M1 = diag(Σi |Ri, j |) + 1
τ In ,

M2 =
(
diag(Σ j |Ri, j |) 0

0 τDDT

)

iPrePDHG (Inner: BCD) 857 1714 10.3123 τ = 0.01, p = 2

M1 = diag(Σi |Ri, j |) + 1
τ In ,

M2 =
(
diag(Σ j |Ri, j |) 0

0 τDDT + θ I2n

)

The results of iPrePHDG (inner: BCD) are in bold as it perfroms the best

Since the block structure of AAT is rather complicated, if we naively choose M1 = 1
τ
In

and M2 = τ AAT like in the previous three experiments, it becomes hard to find a fast
subproblem solver for the z-subproblem. In Table 3, we report a TFOCS implementation of
FISTA for solving the z-subproblem and the overall convergence is very slow.

Instead, we propose to choose

M1 = 2

τ
In, M2 =

(
τ‖R‖2 Im−2n 0

0 τDDT + θ I2n

)
(47)

or

M1 = diag(Σi |Ri, j |) + 1

τ
In, M2 =

(
diag(Σ j |Ri, j |) 0

0 τDDT + θ I2n

)
(48)
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for some small θ ≥ 0. These choices satisfy (9), and have simple block structures, a fixed
epoch of S as cyclic proximal BCD iterator gives fast overall convergence. Note that (48) is
a little slower but avoids the need of estimating ‖R‖.

We summarize the numerical results in Table 3. All the algorithms are executed until δk :=
|Φk−Φ
|

|Φ
| < 10−4, where Φk is the objective value at the kth iteration and Φ∗ is the optimal
objective value obtained by calling CVX. The best results of μ, τ ∈ {10, 1, 0.1, 0.01, 0.001}
and p ∈ {1, 2, 3} are summarized in Table 3. As in the previous experiments, θ = 0.1 gives
similar performances for iPrePDHG (Inner: BCD). In practice, we recommend simply taking
θ = 0. For iPrePDHG (Inner: FISTA) with M2 = τ AAT , the result for p = 100 is also
reported (here we use the TFOCS implementation of FISTA).

5 Conclusions

We have developed an approach to improve the performance of PDHG and ADMM in this
paper. Our approach uses effective preconditioners to significantly reduce the number of
iterations. In general, most effective preconditioners are non-diagonal and cause very difficult
subproblems inPDHGandADMM, so previous arts are restrictivewith less effective diagonal
preconditioners. However, we deal with those difficult subproblems by “solving” them highly
inexactly, running just very few epochs of proximal BCD iterations with warm start. In all
of our numerical tests, our algorithm needs relatively few outer iterations (due to effective
preconditioners) and has the shortest total running time, achieving 4–95 times speedup over
the state-of-the-art.

Theoretically, we show a fixed number of inner iterations suffice for global convergence
though a new relative error condition. The number depends on various factors but is easy to
choose in all of our numerical results.

There are still open questions left for us to address in the future: (a) Depending on problem
structures, there are choices of preconditioners that are better than M1 = 1

τ
In, M2 = τ AAT

(the ones that lead to ADMM if the subproblems are solved exactly). For example, in CT
reconstruction, our choices of M1 and M2 have much faster overall convergence. (b) Is it
possible to show Algorithm 1 converges even with S chosen as the iterator of faster solvers
like APCG [36], NU_ACDM [1], and A2BCD [28]? (c) In general, how to accelerate a
broader class of algorithms by integrating effective preconditioning and cheap inner loops
while still ensuring global convergence?
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CodeAvailability TheMATLABcodeof the experiments is available onGitHub (https://github.com/xuyunbei/
Inexact-preconditioning).

A Proof of Lemma 2

Proof If (X , Z) is a primal–dual solution pair of (1), then

−AT Z ∈ ∂ f (X), AX ∈ ∂g∗(Z).

Hence, for any (x, z) ∈ R
n+m we have

f (x) ≥ f (X) + 〈−AT Z , x − X〉, g∗(z) ≥ g∗(Z) + 〈AX , z − Z〉.
Adding them together yields ϕ(X , z) − ϕ(x, Z) ≤ 0.

On the other hand, if ϕ(X , z) − ϕ(x, Z) ≤ 0 for any (x, z) ∈ R
n+m , then

〈AX , z〉 + f (X) − g∗(z) − 〈Ax, Z〉 − f (x) + g∗(Z) ≤ 0 for any (x, z) ∈ R
n+m .

Taking x = X yields 〈AX , z− Z〉− g∗(z)+ g∗(Z) ≤ 0, so AX ∈ ∂g∗(Z); Similarly, taking
z = Z gives 〈AX − Ax, Z〉 + f (X) − f (x) ≤ 0, so −AT Z ∈ ∂ f (X). As a result, (X , Z)

is a primal–dual solution pair of (1). ��

B ADMM as a Special Case of PrePDHG

In this section we show that if we choose M1 = 1
τ
and M2 = τ AAT in PrePDHG (7), then

it is equivalent to ADMM on the primal problem (1).
By Theorem 1 of [57], we know that ADMM is primal–dual equivalent, in the sense that

one can recover primal iterates from dual iterates and vice versa. Therefore, it suffices to
show that M1 = 1

τ
and M2 = τ AAT in PrePDHG (7) on the primal problem is equivalent to

ADMM on the dual problem (2).
In Theorem 1 we have shown that, under an appropriate change of variables, PrePDHG on

the primal is equivalent to applying (19) to the dual. As a result, we just need to demonstrate
that the latter is exactly ADMM on the dual when M1 = 1

τ
In and M2 = τ AAT .

For the z-update in (19), we have

zk+1 = argmin
z∈Rm

{
g∗(z) − τ 〈z − zk, A(−AT zk − yk + uk)〉 + τ

2
‖z − zk‖2AAT

}

= argmin
z∈Rm

{
g∗(z) − τ 〈z − zk, A(−yk + uk)〉 + τ

2
‖z‖2AAT

}

= argmin
z∈Rm

{
g∗(z) + τ 〈z, A(yk − uk)〉 + τ

2
‖AT z‖2

}

= argmin
z∈Rm

{
g∗(z) + τ 〈AT z,−uk〉 + τ

2
‖AT z + yk‖2

}

= argmin
z∈Rm

{
g∗(z) + τ 〈−AT z − yk, uk〉 + τ

2
‖AT z + yk‖2

}
. (49)

and for the y-update we have

yk+1 = Prox
M−1

1
f ∗ (uk − AT zk+1)
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= argmin
y∈Rn

{
f ∗(y) + τ

2
‖y − uk + AT zk+1‖2

}

= argmin
y∈Rn

{
f ∗(y) + τ 〈−AT zk+1 − y, uk〉 + τ

2
‖AT zk+1 + y‖2

}
. (50)

Define vk = τuk , (49), (50), and the u−update in (19) become

zk+1 = argmin
z∈Rm

{
g∗(z) + 〈−AT z − yk, vk〉 + τ

2
‖AT z + yk‖2

}
,

yk+1 = argmin
y∈Rn

{
f ∗(y) + 〈−AT zk+1 − y, vk〉 + τ

2
‖AT zk+1 + y‖2

}
,

vk+1 = vk − τ(AT zk+1 + yk+1),

which are ADMM iterations on the dual problem (2).

C Proof of Theorem 3: Bounded Relative Error when S is the Iterator of
Cyclic Proximal BCD

The z-subproblem in (7) has the form

min
z∈Rm

h1(z) + h2(z),

where h1(z) = g∗(z) = ∑l
j=1 g

∗
j (z j ), and h2(z) = 1

2‖z − zk − M−1
2 A(2xk+1 − xk)‖2M2

.

And zk+1 = zk+1
p is given by

zk+1
0 = zk,

zk+1
i+1 = S

(
zk+1
i , xk+1, xk

)
, i = 0, 1, . . . , p − 1,

Here, S is the iterator of cyclic proximal BCD. Define

T (z) = Proxγ h1(z)(z − γ∇h2(z)),

B(z) = 1

γ
(z − T (z)),

and the j th coordinate operator of B:

Bj (z) = (0, . . . , (B(z)) j , . . . , 0), j = 1, 2, . . . , l.

Then, we have

zk+1
i+1 = S

(
zk+1
i , xk+1, xk

)
= (I − γ Bl)(I − γ B2) . . . (I − γ B1)z

k+1
i .

By [3, Prop. 26.16(ii)], we know that T (z) is a contraction with coefficient ρ0 =√
1 − γ (2λmin(M2) − γ λ2max(M2)). We know that for ∀z1, z2 ∈ R

m and μ0 = 1−ρ0
γ

,

〈B(z1) − B(z2), z1 − z2〉 = 1

γ
‖z1 − z2‖2 − 1

γ
〈T (z1) − T (z2), z1 − z2〉

≥ μ0‖z1 − z2‖2,
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Let zk+1

 = argminz∈Rm {h1(z) + h2(z)}. For [14, Thm 3.5], we have∥∥∥zk+1

i − zk+1



∥∥∥ ≤ ρi
∥∥∥zk+1

0 − zk+1



∥∥∥ , ∀i = 1, 2, . . . , p. (51)

where ρ = 1 − γμ2
0

2 .

Let y j = (I − γ Bj ) . . . (I − γ B1)z
k+1
p−1 for j = 1, . . . , l and y0 = zk+1

p−1. Note that

(zk+1
p ) j = (y j ) j for j = 1, 2, . . . , l, and the blocks of y j satisfies

(y j )t =
{(

Proxγ g∗
(
y j−1 − γ∇h2(y j−1)

))
t
, if t = j

(y j−1)t , otherwise.

On the other hand, we have

Proxγ g∗
(
y j−1 − γ∇h2(y j−1)

) = argmin
y∈Rm

{
g∗(y) + 1

2γ
‖y − y j−1 + γ∇h2(y j−1)‖2

}
.

Since g∗ and ‖ · ‖2 are separable, we obtain

0 ∈ ∂g∗
j ((y j ) j ) + 1

γ

(
(y j ) j − (y j−1) j + γ

(∇h2(y j−1)
)
j

)
, ∀ j = 1, 2, . . . , l,

or equivalently,

0 ∈ ∂g∗
j

((
zk+1
p

)
j

)
+ 1

γ

( (
zk+1
p

)
j
−

(
zk+1
p−1

)
j
+ γ

(∇h2(y j−1)
)
j

)
, ∀ j = 1, 2, . . . , l.

Therefore,

0 ∈ ∂g∗ (
zk+1
p

)
+ 1

γ

(
zk+1
p − zk+1

p−1 + γ ξp

)
, ∀ j = 1, 2, . . . , l,

where (ξp) j = (∇h2(y j−1)
)
j for j = 1, 2, . . . , l. Comparing this with (11), we obtain

εk+1 = ξp − ∇h2
(
zk+1
p

)
+ 1

γ

(
zk+1
p − zk+1

p−1

)
.

Notice that the first j − 1 blocks of y j−1 are the same with those of yl = zk+1
p , and the rest

of the blocks are the same with those of y0 = zk+1
p−1, so we have

‖εk+1‖ ≤
l∑

j=1

λmax(M2)

∥∥∥y j−1 − zk+1
p

∥∥∥ + 1

γ

∥∥∥zk+1
p − zk+1

p−1

∥∥∥

≤ lλmax(M2)

∥∥∥zk+1
p−1 − zk+1

p

∥∥∥ + 1

γ

∥∥∥zk+1
p − zk+1

p−1

∥∥∥
≤

(
lλmax(M2) + 1

γ

) (∥∥∥zk+1
p − zk+1




∥∥∥ +
∥∥∥zk+1

p−1 − zk+1



∥∥∥)

Combine this with (51)

‖εk+1‖ ≤
(
lλmax(M2) + 1

γ

)
(ρ p + ρ p−1)

∥∥∥zk+1
0 − zk+1




∥∥∥ . (52)

Combining

‖zk+1 − zk‖ =
∥∥∥zk+1

p − zk+1
0

∥∥∥
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≥
∥∥∥zk+1

0 − zk+1



∥∥∥ −
∥∥∥zk+1

p − zk+1



∥∥∥
≥ (1 − ρ p)

∥∥∥zk+1
0 − zk+1




∥∥∥
with (52), we obtain

‖εk+1‖ ≤
(
lλmax(M2) + 1

γ

)
(ρ p + ρ p−1)

1 − ρ p
‖zk+1 − zk‖.

D Ergodic Convergence of iPrePDHGwhen g∗ = 0 and S Being Gradient
Descent

In this section, we present an ergodic convergence result for iPrePDHG, which does not
require f to be strongly convex.

Theorem 7 Assume that g∗ = 0 and the z−subproblem is solved by applying p itera-
tions of gradient descent with warm-start and stepsize γ ∈ (0, 1

λmax(M2)
). Let (xk, zk), k =

0, 1, . . . , N be a sequence generated by iPrePDHG in Algorithm 1. Under Assumption 1, if
in addition

M̃ :=
(
M1 −AT

−A M2,p

)
� 0,

where M2,p = M−1
2 (I − (I − γ M2)

p). Then, for any x ∈ R
n and z ∈ R

m, it holds that

ϕ(XN , z) − ϕ(x, ZN ) ≤ 1

2N
(x − x0, z − z0)

(
M1 −AT

−A M2,p

)(
x − x0

z − z0

)
,

where XN = 1
N

∑N
i=1 x

i and Z N = 1
N

∑N
i=1 z

i .

Proof Essentially, we would like to show that when g∗ = 0 and p iterations of gradi-
ent descent with warm-start are applied to the z−subproblem, we are effectively applying
M2,p = M−1

2 (I − (I − γ M2)
p) as a preconditioner. Therefore, the desired result follows

immediately by applying Theorem 1.
For that purpose, we first recall from Algorithm 1 that the z−subproblem of iPrePDHG is

zk+1 ≈ argmin
z∈Rm

{
g∗(z) − 〈z − zk, A(2xk+1 − xk)〉 + 1

2
‖z − zk‖2M2

}

= argmin
z∈Rm

{
−〈z − zk, A(2xk+1 − xk)〉 + 1

2
‖z − zk‖2M2

}

When applying warm-started gradient descent with stepsize γ to solve it, we have

zk+1
0 = zk,

zk+1
i+1 = zk+1

i − γ
(
M2(z

k+1
i − zk) − A(2xk+1 − xk)

)
, i = 0, 1, . . . , p − 1.

As a result we have the following recursion

zk+1
i+1 − zk = (I − γ M2)

(
zk+1
i − zk

)
+ γ A(2xk+1 − xk),
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which leads to

zk+1
p = zk +

( p∑
i=1

(I − γ M2)
p−i

)
γ A(2xk+1 − xk)

= zk + M−1
2

(
I − (I − γ M2)

p) A(2xk+1 − xk)

= zk − M−1
2,p A(2xk+1 − xk),

wherewehave appliedM2,p = M−1
2 (I − (I − γ M2)

p). Therefore, zk+1
p is the exact solution

of the following problem:

zk+1 = argmin
z∈Rm

{
−〈z − zk, A(2xk+1 − xk)〉 + 1

2
‖z − zk‖2M2,p

}
.

��

E Two-Block Ordering and Four-Block Ordering

According to (8), when M2 = τ AAT , the z-subproblem of Algorithm 1 is

zk+1 = argmin
z∈Rm

{
g∗(z) − 〈z − zk, A(2xk+1 − xk)〉 + τ

2
‖AT (z − zk)‖22

}
. (53)

Let us prove the claim for two-block ordering first. In that claim, A = div ∈ R
MN×2MN

and z ∈ R
MN . Following the definition of the sets zb and zr , we separate the MN columns

of AT = −D into two blocks Lb, Lr by associating them with zb and zr , respectively.
Therefore, we have AT z = Lbzb + Lr zr for any z ∈ R

MN .
By the red-black ordering in Fig. 1, different columns of Lb are orthogonal one another,

so Lb
T Lb is diagonal. Similarly, Lr

T Lr is also diagonal.
Define ck = −A(2xk+1 − xk), and let b be the set of black nodes and r the set of red

nodes. We can rewrite (53) as

zk+1 = argmin
zb,zr∈RMN/2

{
g∗
b(zb) + g∗

r (zr ) +
〈
zb, c

k
b

〉
+

〈
zr , c

k
r

〉

+τ

2

∥∥∥Lb

(
zb − zkb

)
+ Lr

(
zr − zkr

)∥∥∥2
2

}
, (54)

where g∗
b(zb) = ∑

(i, j)∈b g∗
i, j (zi, j ), g

∗
r (zr ) = ∑

(i, j)∈r g∗
i, j (zi, j ), and ckb, c

k
r are the coordi-

nates of ck associated with zb and zr , respectively.
Applying cyclic proximal BCD to black and red blocks with stepsize γ yields

z
k+ t+1

p
b = Proxγ g∗

b

(
z
k+ t

p
b − γ

(
ckb + τ LT

b Lb

(
z
k+ t

p
b − zkb

)
+ τ LT

b Lr

(
z
k+ t

p
r − zkr

)))
,

(55)

z
k+ t+1

p
r = Proxγ g∗

r

(
z
k+ t

p
r − γ

(
ckr + τ LT

r Lb

(
z
k+ t+1

p
b − zkb

)
+ τ LT

r Lr

(
z
k+ t

p
r − zkr

)))
,

(56)

for t = 0, 1, . . . , p − 1, where p is the number of inner iterations in Algorithm 1.
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Since Proxγ g∗
b

= ∑
(i, j)∈b Proxγ g∗

i, j
, Proxγ g∗

r
= ∑

(i, j)∈r Proxγ g∗
i, j

and Proxγ g∗
(i, j)

are
closed-form, (55) and (56) have closed-form solutions. Furthermore, the updates within each
block can be done in parallel.

The proof of the second claim is similar. When A = D, we separate the columns of
AT into four blocks Lb, Lr , Ly , Lg by associating them with zb, zr , zy ,zg , respectively.
Therefore, we have AT z = Lbzb + Lr zr + Lyzy + Lgzg for all z ∈ R

2MN . Similarly, by
the block design in Fig. 2, cyclic proximal BCD iterations have closed-form solutions, and
updates within each block can be executed in parallel.
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16. Combettes, P.L., Vũ, B.C.: Variable metric forward–backward splitting with applications to monotone
inclusions in duality. Optimization 63(9), 1289–1318 (2014)

17. Condat, L.: A primal–dual splitting method for convex optimization involving lipschitzian, proximable
and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

18. CVX Research, I.: CVX: Matlab software for disciplined convex programming, version 2.0. http://cvxr.
com/cvx (2012) Accessed 15 Dec 2018

19. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splittingmethod and the proximal point algorithm
for maximal monotone operators. Math. Program. 55(1–3), 293–318 (1992)

20. Eckstein, J.,Yao,W.:ApproximateADMMalgorithmsderived fromLagrangian splitting.Comput.Optim.
Appl. 68(2), 363–405 (2017)

21. Eckstein, J., Yao, W.: Relative-error approximate versions of Douglas–Rachford splitting and special
cases of the ADMM. Math. Program. 170, 1–28 (2017)

22. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal–dual algorithms
for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

123

http://arxiv.org/abs/1604.06282
http://cvxr.com/cvx
http://cvxr.com/cvx


Journal of Scientific Computing (2021) 86 :21 Page 33 of 34 21

23. Feijer, D., Paganini, F.: Stability of primal–dual gradient dynamics and applications to network optimiza-
tion. Automatica 46(12), 1974–1981 (2010)

24. Giselsson, P., Boyd, S.: Diagonal scaling in Douglas–Rachford splitting and ADMM. In: 2014 IEEE 53rd
Annual Conference on Decision and Control (CDC), pp. 5033–5039. IEEE (2014)

25. Giselsson, P., Boyd, S.: Linear convergence and metric selection for Douglas–Rachford splitting and
ADMM. IEEE Trans. Autom. Control 62(2), 532–544 (2017)

26. Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of
two convex functions. Math. Program. 141(1–2), 349–382 (2013)

27. Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods.
SIAM J. Imaging Sci. 7(3), 1588–1623 (2014)

28. Hannah, R., Feng, F., Yin, W.: A2BCD: an asynchronous accelerated block coordinate descent algorithm
with optimal complexity. arXiv preprint arXiv:1803.05578 (2018)

29. Hansen, P.C., Jørgensen, J.S.: Air tools II: algebraic iterative reconstruction methods, improved imple-
mentation. Numer. Algorithms 79(1), 107–137 (2018)

30. He, B., Yuan, X.: Convergence analysis of primal–dual algorithms for a saddle-point problem: from
contraction perspective. SIAM J. Imaging Sci. 5(1), 119–149 (2012)

31. He, Y., Monteiro, R.D.: An accelerated HPE-type algorithm for a class of composite convex–concave
saddle-point problems. SIAM J. Optim. 26(1), 29–56 (2016)

32. Kadkhodaie,M.,Christakopoulou,K., Sanjabi,M.,Banerjee,A.:Accelerated alternating directionmethod
of multipliers. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 497–506 (2015)

33. Levina, E., Bickel, P.: The earth mover’s distance is the mallows distance: some insights from statistics.
In: null, p. 251. IEEE (2001)

34. Li, M., Liao, L.Z., Yuan, X.: Inexact alternating direction methods of multipliers with logarithmic–
quadratic proximal regularization. J. Optim. Theory Appl. 159(2), 412–436 (2013)

35. Li, W., Ryu, E.K., Osher, S., Yin, W., Gangbo, W.: A parallel method for earth mover’s distance. J. Sci.
Comput. 75(1), 182–197 (2018)

36. Lin,Q., Lu, Z.,Xiao, L.:An accelerated proximal coordinate gradientmethod. Z.Ghahramani, Z.,Welling,
M., Cortes, C., Lawrence, N., Weinberger, K.Q. (Eds.) In: Advances in Neural Information Processing
Systems, vol. 27, pp. 3059–3067 Curran Associates, Inc. (2014)

37. Lin, Q., Lu, Z., Xiao, L.: An accelerated randomized proximal coordinate gradient method and its appli-
cation to regularized empirical risk minimization. SIAM J. Optim. 25(4), 2244–2273 (2015)

38. Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., Virieux, J.: Measuring the misfit between seismograms
using an optimal transport distance: application to full waveform inversion. Geophys. Suppl. Mon. Not.
R. Astron. Soc. 205(1), 345–377 (2016)

39. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)
40. Ng, M.K., Wang, F., Yuan, X.: Inexact alternating direction methods for image recovery. SIAM J. Sci.

Comput. 33(4), 1643–1668 (2011)
41. Ouyang, Y., Chen, Y., Lan, G., Pasiliao Jr., E.: An accelerated linearized alternating direction method of

multipliers. SIAM J. Imaging Sci. 8(1), 644–681 (2015)
42. O’donoghue, B., Candes, E.: Adaptive restart for accelerated gradient schemes. Found. Comput. Math.

15(3), 715–732 (2015)
43. Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: ICCV, vol. 9, pp. 460–467 (2009)
44. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal–dual algorithms in convex

optimization. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1762–1769.
IEEE (2011)

45. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford–Shah
functional. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1133–1140. IEEE
(2009)

46. Rasch, J., Chambolle, A.: Inexact first-order primal–dual algorithms. arXiv preprint arXiv:1803.10576
(2018)

47. Richardson, L.F.: Ix. the approximate arithmetical solution by finite differences of physical problems
involving differential equations, with an application to the stresses in a masonry dam. Phil. Trans. R. Soc.
Lond. A 210(459–470), 307–357 (1911)

48. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, Berlin (2009)
49. Saad, Y.: Iterative Methods for Sparse Linear Systems, vol. 82. SIAM, Philadelphia (2003)
50. Sidky, E.Y., Jørgensen, J.H., Pan, X.: Convex optimization problem prototyping for image reconstruction

in computed tomography with the Chambolle–Pock algorithm. Phys. Med. Biol. 57(10), 3065 (2012)
51. Valkonen, T.: A primal–dual hybrid gradient method for nonlinear operators with applications to MRI.

Inverse Probl. 30(5), 055012 (2014)

123

http://arxiv.org/abs/1803.05578
http://arxiv.org/abs/1803.10576


21 Page 34 of 34 Journal of Scientific Computing (2021) 86 :21
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