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Abstract
In (Bernier in Exact splittingmethods for semigroups generated by inhomogeneous quadratic
differential operators. arXiv:1912.13219, (2019)), some exact splittings are proposed for
inhomogeneous quadratic differential equations including, for example, transport equations,
Fokker–Planck equations, and Schrödinger type equations with an angular momentum rota-
tion term. In thiswork, these exact splittings are used combinedwith pseudo-spectralmethods
in space. High accuracy and efficiency of exact splitting methods are illustrated and com-
parison are performed with the numerical methods in literature. We show that our methods
can be used to improve significantly some classical splitting methods for some nonlinear or
non-quadratic equations.

Keywords Exact splitting · Transport equations · Kinetic equations · Schrödinger equations

1 Introduction

Operator splitting methods have gained a lot of attention in recent years to numerically solve
partial differential equations, as the subsystems obtained are usually easier to solve and even
can be solved exactly, which allows a keen reduction of the computational cost and the
derivation of high order time integrators. For a general introduction to splitting methods, we
refer to [25,30] and references therein. To obtain high order splitting methods, usually more
subsystems in every step are needed to be solved, and proper regularity conditions about
the original systems must be assumed. However, there exist some systems for which some
specific splitting methods, called exact splittings, can give exact solutions indeed, such as in
[2,6,7,13,29].
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Exact splittings are special splitting methods that can give exact solutions for the original
systems. Usually, exact splittings are only available for very simple cases (for example when
the operators involved commute). In [12], exact splittings are obtained for a large class of
PDEs, namely inhomogeneous quadratic differential equations (see Definition 1 below). In
this framework, each subsystem can be solved accurately and efficiently by pseudo-spectral
methods or pointwisemultiplications. Exact splittings are important and useful for the studies
of PDEs theoretically and numerically. They can be of great interest at the theoretical level
since they can decompose the original complicated evolution operators into several simpler
operators, which gives a way to analyze the properties for the original systems (see [1]).
On the numerical side, since the exact splittings we propose can be combined with highly
accurate space discretization methods (spectral methods for instance), the resulting fully
discrete methods are very accurate and efficient and turn out to be very useful to study the
long time behaviors of the original systems.

In this work, our goal is to construct, implement and test in practice the efficiency and
accuracy of the exact splitting methods proposed for inhomogeneous quadratic differential
equations in [12] on different configurations. Note that even if exact splittings are proposed
only for inhomogeneous quadratic differential equations, they can be used to derive new effi-
cient methods for non-quadratic equations by using composition techniques such as Strang
splitting. Indeed, equations can be simply split into quadratic parts and non-quadratic parts.
First, we will focus on high dimensional transport equations for which efficient exact split-
tings can be derived from the exact splittings of the underlying linear ordinary differential
equations. We compare exact splittings with standard methods from the literature, namely
operator splitting method and direct semi-Lagrangian method (combined with NUFFT inter-
polation). Second, we will apply the exact splittings to solve Fokker–Planck type equations
and illustrate two properties of these systems; first, for Fokker–Planck equation, our exact
splittings are able to recover the exponential rate of convergence towards the equilibrium
and second, the regularizing effects of Kramer–Fokker–Planck equation is captured by our
approach. And last but not least, several applications are proposed in the case of Schrödinger
type equations. More precisely, we consider the magnetic Schrödinger equation (see [17,28])
and Gross–Pitaevskii equation with a rotation term (see [3,9,11]) for which we compare our
exact splittings with efficient methods from the literature. When non-quadratic terms are
included in these models (non quadratic potential or nonlinear terms for instance), it is worth
mentioning that the new splittings proposed here have a better efficiency (in terms of accu-
racy and complexity) than methods from the literature and their accuracy increases when
the amplitude of the non-quadratic terms becomes smaller. Both for the Fokker–Planck and
Schrödinger type equations the derivations of the exact splittings rely on Fourier integral
operators developed by Hörmander in [26], which reduces infinite dimensional systems to
corresponding finite dimensional systems.

2 Exact Splittings

In this section, we introduce exact splittings for three kinds of inhomogeneous quadratic
differential equations: transport, Fokker–Planck, and quadratic

Schrödinger equations, which were studied theoretically in [12]. We start by introducing
what we mean by inhomogeneous quadratic equations and exact splittings.
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Inhomogeneous quadratic partial differential equations can be written as{
∂t u(x, t) = −pwu(x, t), t ≥ 0, x ∈ R

n

u(0, x) = u0(x), x ∈ R
n (1)

where n ≥ 1, u0 ∈ L2(Rn) and pw is an inhomogeneous quadratic differential operator
acting on L2(Rn). When the solution at time t of this equation is well defined, it is denoted,
as usual, by e−tpw

u0. This operator pw is the Weyl quantization of a polynomial function
(called symbol) p on C2n of degree 2 or less. Usually this quantization is defined through an
oscillatory integral (see e.g. Sect. 18.5 in [27] or Chapter 1 in [33]). Nevertheless, since we
only deal with inhomogeneous quadratic differential operators, it can be defined much more
elementarily. Indeed, in this context, one can write the polynomial function p as

p(X) = tXQX + tY X + c, (2)

where t· denotes the transposition, X = (tx, tξ) = t(x1, . . . , xn, ξ1, . . . , ξn), Q is a symmetric
matrix of size 2n with complex coefficients, Y ∈ C

2n is a vector and c ∈ C is a constant.
The associated differential operator pw then writes

pw =
t( x

−i∇
)
Q

(
x

−i∇
)

+ tY

(
x

−i∇
)

+ c.

For (−pw)whose real part is bounded by below onR2n , it generates a strongly continuous
semigroup on L2(Rn) (see e.g. [26]). In [12], one of the authors proved that that e−pw

can
be split exactly into simple semigroups. As we shall see below, there are several examples
which enter in this framework and for which the solutions can be split into operators which
are easy to compute. In the following definition, we define what we mean by exact splittings.

Definition 1 An operator acting on L2(Rn) can be computed by an exact splitting if it can be
factorized as a product of operators of the form

eα∂x j , eiαx j , eia(∇), eia(x), eαxk∂x j , e−b(x), eb(∇), eγ (3)

with α ∈ R, γ ∈ C, a, b : Rn → R are some real quadratic forms, b is nonnegative and
j, k ∈ �1, n� and k �= j . As usual, a(∇) (resp. b(∇)) denotes the Fouriermultiplier associated
with −a(ξ) (resp. −b(ξ)), i.e. a(∇) = (−a(ξ))w .

From the definition 1 of exact splittings, we can see that every subsystem in (3) can be
solved exactly in time at least in Fourier variables and as such can be solved efficiently
and accurately by pseudo-spectral methods or pointwise multiplications. The resulting fully
discretized method will benefit from the spectral accuracy in space so that the error will be
negligible in practice.

Below we detail the way we compute the solutions of (1) using pseudo-spectral methods.
First, note that, given a factorization of an operator as a product of elementary operators
of the form (3), there is a natural and minimal factorization of this operator as product of
partial Fourier transforms, inverse partial Fourier transforms and multipliers (i.e. operators
associated with a multiplication by a function). So, as usual, we just discretize the partial
Fourier transforms, their inverts and the multipliers.

The whole space is truncated and we consider an approximation of the solution on a large
box [−R1, R1]× · · ·× [−Rn, Rn]. We discretize the box as a product of gridsG1 ×· · ·×Gn

where each grid G j has N j points and is of the form

G j = h j �−
⌊
N j − 1

2

⌋
,

⌊
N j

2

⌋
� (4)
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where h j = 2R j/N j is its cell-size. Associated with such a grid, its dual, denoted by Ĝ j is

Ĝ j = η j �−
⌊
N j − 1

2

⌋
,

⌊
N j

2

⌋
�

where η j = π/R j . In this paper, the variable implicitly naturally associated with G j (resp.
Ĝ j ) is denoted g j (resp. ω j ).

If L is a product of ( j − 1) grids (and duals of grids) and R is a product of (n − j)
grids (and duals of grids) then the discrete j st partial Fourier transform on L×G j × R is
defined by

F j :

⎧⎪⎨
⎪⎩

L × G j × R → C
L×Ĝ j× R

ψ �→ (
h j

∑
g j∈G j

ψr ,g j ,
e
−ig jω j

)
(r ,ω j ,
)

.

The discrete partial inverse Fourier transforms are defined similarly and are the inverses of
the discrete inverse Fourier transforms

F−1
j :

⎧⎪⎨
⎪⎩

L × Ĝ j × R → C
L×G j× R

ψ �→
( η j

2π

∑
ω j∈Ĝ j

ψr ,ω j ,
e
ig jω j

)
(r ,g j ,
)

.

Note that these discrete transforms can be computed efficiently using Fast Fourier Trans-
forms. Finally, the multipliers are naturally discretized through pointwise multiplications.
An explicit example is provided in Algorithm 2 for Schrödinger equations.

3 Application to Transport Equations

In this section, we introduce the exact splittings for constant coefficients transport equations.
The transport equation we consider here is

∂t f (x, t) = (Mx) · ∇ f (x, t), x ∈ R
n, n ≥ 1, f (x, t = 0) = f0(x), (5)

where M is a real square matrix of size n ≥ 1 such that{∀i, Mi,i = 0,
∃i,∀ j �= i, Mj,i �= 0,

(6)

and the corresponding symbol of (5) is p(X) = −i(Mx) · ξ according to the notation (2).
Even if the solution of (5) can be computed from the initial condition as f (x, t) =

f0(etMx), efficient numerical methods are required when the initial data is only known on a
mesh or when (5) is a part of more complex models. Below, we start by giving some details
of the time (exact) splittings before illustrating the efficiency with numerical results.

3.1 Presentation of the Exact Splittings

In this part, we construct an exact splitting for (5). Let us start with a simple example for

n = 2 and M =
(

0 1
−1 0

)
, etM becomes a two dimensional rotation matrix, which can be

expressed as the product of three shear matrices (see [13])

etM =
(
1 tan(t/2)
0 1

)(
1 0

− sin t 1

)(
1 tan(t/2)
0 1

)
. (7)
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As a consequence, the computation of f can be done by solving three one dimensional linear
equations (in x1, x2, and x1 directions successively), i.e.,

f0(x)
tan(t/2)−→ f0(x1 + tan(t/2)x2, x2)

− sin(t)−→ f0(x1 + tan(t/2)(x2 − sin(t)x1), x2 − sin(t)x1)

tan(t/2)−→ f (x, t).
(8)

Formula (7) has been used in the computation of Vlasov–Maxwell equations to improve
efficiency and accuracy by avoiding high dimensional reconstructions in [2,13].

For the case n = 3 and M is skew symmetric, similar formula of expressing the rotation
matrix etM as the product of 4 shear matrices is proposed in [18,34]. To generalize this
formula to transport equations in arbitrary dimension, we have the following result proved
in [12].

Proposition 1 Let M be a real square matrix of size n ≥ 1 satisfying condition (6) and
i ∈ {1, . . . , n}, then there exist t0 > 0 andananalytic function (y(
), (y(k))k=1,...,n;k �=i , y(r)) :
(−t0, t0) → R

n×(n+1) satisfying {
y(
)
i = y(r)

i = 0
∀k �= i, y(k)

k = 0
(9)

such that for all t ∈ (−t0, t0) we have

etMx·∇ = et(y
(
)(t)·x)∂xi

⎛
⎝∏

k �=i

et(y
(k)(t)·x)∂xk

⎞
⎠ et(y

(r)(t)·x)∂xi . (10)

Remark 1 Proposition 1 not only enables to recover some results from the literature (in
particular when M is skew symmetric) but also it claims that n dimensional linear equations
of the form (5) can be split into (n + 1) one dimensional linear equations which can be
solved very efficiently by means of pseudo-spectral methods or semi-Lagrangian methods.
In particular, this turns out to be much more efficient than standard Strang splitting which
would require 2(n − 1) + 1 one dimensional linear equations to solve. Let us also recall that
Strang splittings are second order accurate whereas the splittings proposed in Proposition 1
are exact in time.

Remark 2 Let us remark that when every non-diagonal element of M is not zero, n! dif-
ferent exact splittings (10) can be constructed, which is the number of permutations of set
{1, 2, · · · , n}.
Remark 3 Another alternative to solve (5) would be the direct n-dimensional semi-
Lagrangian method. However, this approach brings huge computational cost at the inter-
polation stage.

3.2 Practical Construction of the Exact Splitting

Following Proposition 2.1 in [12], we write a code from Algorithm 1 to compute the coeffi-
cients y(
), y(r), y(k)(k �= i) arising in the exact splitting (10). For the sake of simplicity, we
present the pseudo-code to construct the following splitting

etMx·∇ = et(y
(
)(t)·x)∂x1

(
et(y

(2)(t)·x)∂x2 . . . et(y
(n)(t)·x)∂xn

)
et(y

(r)(t)·x)∂x1 .
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Algorithm 1 Pseudo-code for (10)
Input:

B = tM, denote B�, j the j th column of B,

In the identity matrix of size n, e j the j th element of the canonical basis of Rn ,

t the time step and N ∈ N
�

Initialize y(m), y(
), y(r), y( j)for j = 2, . . . , n.

1: for k = 1 to N do
2: P = (In + t y(
)

k ⊗ e1)
(
�n

j=2(In + t y( j)
k ⊗ e j )

)
(In + t y(r)

k ⊗ e1) ,

3: g = 1/t log(P),
4: �τ = [B, v ⊗ e1] with v ∈ R

n s.t. v1 = 0 and v j = −g j , j /B1, j for j = 2, . . . , n,

5: �b = g − �τ ,

6: y(m)
k+1 = y(m)

k + B�,1 − �b
�,1,

7: y( j)
k+1 = y( j)

k + B�, j − �b
�, j , for j = 2, · · · , n,

8: y(r)
k+1 = y(r)

k − 1
t v,

9: y(
)
k+1 = y(m)

k+1 − y(r)
k+1,

10: end for
Output: y(r) = y(r)

N+1, y
(l) = y(
)

N+1, y
( j) = y( j)

N+1, j = 2, · · · , n.
The iteration number N is chosen large enough to ensure the convergence of the algorithm.

3.3 Numerical Results

Exact splittings are used to solve 3D and 4D transport equations, and compared with the
usual Strang splittings and Semi-Lagrangian methods combined with NUFFT in space. We
are interested in the numerical approximation of

∂t f (x, t) = (Mx) · ∇ f (x, t), f (x, t = 0) = f0(x), x ∈ R
n, (11)

for n = 3, 4. For numerical reasons, the domain will be truncated to [−R, R]n and we will
consider N points per direction so that the mesh size is h = 2R/N . The grid, defined as usual
through (4), is denoted G

n . We shall denote f ng by an approximation of the exact solution
of (11) with g ∈ G

n , and �t > 0 is the time step. We also define the L2 error between the
numerical solution and the exact one as√

hn
∑
g∈Gn

| f ng − f (n�t, g)|2. (12)

3D transport equation
We consider (11) in the case n = 3 with

M =
⎛
⎝ 0 −0.36 −0.679

0.36 0 −0.758
0.679 0.758 0

⎞
⎠ .

The domain is defined by R = 2 and initial value is chosen as follows

f0(x) = 1

2(πβ)2

(
e−(x1−0.3)2/β + e−(x1+0.3)2/β

)
e−x22/βe−x23/β,

withβ = 0.06.The following three numericalmethods are used to solve the three dimensional
transport equation
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– NUFFT: direct 3D Semi-Lagrangian method combined with interpolation by NUFFT;
this method is exact in time.

– Strang: Strang directional splitting method combined with Fourier pseudo-spectral
method; this method is second order accurate in time.

– ESR: Exact splitting (10) combined with Fourier pseudo-spectral method; this method
is exact in time.

Let us detail the coefficients used for ESR. From Prop. 1 (with i = 3), we have

e�tMx·∇ = e�t(y(
)·x)∂x3 e�t(y(1)·x)∂x1 e�t(y(2)·x)∂x2 e�t(y(r)·x)∂x3 ,

where the coefficients are as follows when �t = 0.3

y(
) �
⎛
⎝0.4671877592195030.257781732992119

0

⎞
⎠ , y(1) �

⎛
⎝ 0

−0.381811510002637
−0.626618917055694

⎞
⎠ ,

and

y(2) �
⎛
⎝ 0.386696405646122

0
−0.708474220370764

⎞
⎠ , y(r) �

⎛
⎝0.2050151165838650.492630313928284

0

⎞
⎠ .

First, the time evolution of the L2 error (defined by (12)) is plotted in Fig. 1 for Strang and
ESR for N = 64 and �t = 0.3. As expected, we observe that the error from ESR is close
to the level of 10−11 whereas the error from Strang is much larger. We can also see that the
error from Strang has an almost periodic behavior (similar to what has been observed in 2D
case in [13]). As in [13], this phenomena is well explained by its backward error analysis.
In the Sect. 1 of the Appendix, we prove that it is associated with the transport equation of
a rotation (up to a near identity map) whose pulsation coincides with that of etM up to a
correction of order �t2. We also compare in Fig. 1 the CPU time of the two methods and
the NUFFT method (which also gives error close to machine precision) by running them
for 100 steps. We can observe that ESR is the most efficient. Indeed, for each time step,
5 one dimensional transport equations are needed for Strang splitting, whereas ESR only
has 4 one dimensional transport equations to solve. Moreover, the NUFFT method is the
most expensive, even if NUFFT and ESR have the same complexity O(N 3 log(N )). Let us
mention that parallelization can be developed to improve the efficiency of splitting methods
like ESR (see [13,19]).

4D transport equation
We consider now the case n = 4 where the matrix M in (5) is given by

M =

⎛
⎜⎜⎝

0 1 −1.5 −3
−1 0 2 1
1.5 −2 0 0
3 −1 0 0

⎞
⎟⎟⎠ .

The domain is defined by R = 5 and the initial value is

f0(x) =
(
2

π

)4

e−|x|2 . (13)

Since the direct 4D semi-Lagrangian method would be too costly, we compare here the
Strang directional splitting and the new method ESR. From Proposition 1, we define the
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Fig. 1 a Time evolution of L2 error (semi-log10 scale) for NUFFT, ESR, and Strang for 3D transport problem
with grids 64×64×64 and step size�t = 0.3; b CPU time for NUFFT, ESR and Strang of running 100 steps

ESR method by (here we have chosen i = 2)

e�tMx·∇ = e�t(y(
)·x)∂x2
(
e�t(y(1)·x)∂x1 e�t(y(3)·x)∂x3 e�t(y(4)·x)∂x4

)
e�t(y(r)·x)∂x2 ,

whose coefficients are (when �t = 0.05)

y(
) � t(−5.344642460486645, 0, 0.823467853756413,−2.992867555994520),

y(r) � t(3.737426150781880, 0, 1.523124853600163, 4.681057037906191),

y(1) � t(0, 1.142288588772368,−1.484580777109155,−2.786376511283418),

y(3) � t(1.015044786749623,−2.011875030994669, 0,−0.314761305209573),

y(4) � t(2.758340963158925,−1.064751317849253, ! 0.082700298557278, 0).
The space grid has N = 47 points per direction and the final computation time is t = 100
for the two methods (Strang and ESR). Contour plots of f (t, x1, x2, x3 = −0.9574, x4 =
−0.9574) at t = 100 by ESR, Strang method are presented in Fig. 2a, b. Compared with
the exact solution in Fig. 2c, we can observe that the Strang method has larger error which
is partly due to the wrong angular velocity. Moreover, in Fig. 2d, the time evolutions of the
L2 error defined in (12) are plotted for the Strang method (10−2) and ESR method (10−11).
Let us remark that other than pseudo-spectral method, alternative reconstructionmethods can
also be chosen such as high order interpolationmethods (see [16]). Regarding the complexity,
only n+1 = 5 shears are required in the exact splitting for each time step whereas 2n−1 = 7
shears are needed for the Strang splitting.

4 Application to Fokker–Planck Equations

In this section, we are interested in Fokker–Planck type equations which can be used to
describe particle systems (in plasma physics or astrophysics). The unknown is a distribution
function of particles f (t, x, v) ∈ R

+ with time t ≥ 0, space x ∈ R, and velocity v ∈
R. We will focus on two examples which both contain a free transport part in x and an
operator (related to collisional terms) which only acts on the v direction. The first example is
the Kramer–Fokker–Planck equation (see [20,22,23] for some mathematical and numerical
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Fig. 2 a Contour plots of f (t = 30, x1, x2,−0.9574,−0.9574) computed by a ESR and b Strang method; c
Contour plots of exact f (t = 30, x1, x2, −0.9574,−0.9574); d Time evolution of L2 solution error

aspects)

∂t f + v2 f − ∂2v f + v∂x f = 0, f (t = 0, x, v) = f0(x, v). (KFP)

The second example is the Fokker–Planck equation (see [20,22,24] for some mathematical
and numerical aspects)

∂t f + v∂x f − ∂2v f − ∂v(v f ) = 0, f (t = 0, x, v) = f0(x, v). (FP)

For these two examples which enter in the class of inhomogeneous quadratic equations, exact
splittings will be recalled from [12] and numerical results will be given.

4.1 Presentation of the Exact Splittings

For the Kramer–Fokker–Planck (KFP) equation, the symbol is p(x, v, ξ, η) = v2+η2+ivξ ,
and the symbol is p(x, v, ξ, η) = ivξ + η2 − ivη − 1

2 for the Fokker–Planck (FP) equation,
where ξ (resp. η) denotes the Fourier variable of x (resp. v). We can see that for both cases,
the symbols are polynomial functions of degree 2 and according to [12], the solutions can be
split exactly into simple flows. More precisely, for KFP, we have the following exact splitting
formula

∀t ≥ 0, e−t(v2−∂2v +v∂x ) = e− 1
2 tanh(t) v2e∇·(AKFP

t ∇)e− tanh(t) v∂x e− 1
2 tanh(t) v2 , (14)
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with ∇ = (∂x , ∂v) and where At is the following nonnegative matrix defined by

AKFP
t = 1

2

( 1
2

(
t − tanh(t)(1 − sinh2(t))

)
sinh2(t)

sinh2(t) sinh(2t)

)
. (15)

For FP, we have the exact splitting formula

e−t(v∂x−∂2v −∂vv) = et/2e−(et−1)v∂x e∇·(AFP
t ∇)eiαt ∂

2
v e−iβtv2e−iβt ∂2v eiαtv

2
, (16)

where αt = 1
2

√
(1 − e−t )e−t , βt = 1

2

√
et − 1, and AFP

t is the following positive matrix (see
[1]) defined by

AFP
t = 1

2

(
e2t + 2t + 3 − 4et −4 sinh2(t/2)

−4 sinh2(t/2) 1 − e−2t

)
.

Below, we detail a bit the link between exact splittings for PDEs and corresponding finite
dimensional Hamiltonian systems on the example of KFP. Following [12], the exact splitting
(14) is equivalent to the following equality between matrices

e−2i t J Q = e−2i t J Q1e−2i t J Q2e−2i t J Q3e−2i t J Q1 , (17)

where J is the symplectic 4 × 4 matrix, Q, Qi ∈ S4(C) (i = 1, 2, 3) are the matrices
corresponding to the quadratic forms q, qi (i = 1, 2, 3) defining the operators involved in
the exact splitting (14). Indeed, the quadratic form q associated to the quadratic operator
qw := v2 − ∂2v + v∂x is q(X) = tXQX with X = (x, v, ξ, η) and Q is

Q =

⎛
⎜⎜⎝
0 0 0 0
0 1 i/2 0
0 i/2 0 0
0 0 0 1

⎞
⎟⎟⎠ .

Let us define the other quadratic forms involved in (14): q1(X) = tanh(t)
t v2 =

tXQ1X , q2(X) = tXQ2X , q3 = i tanh(t)t vξ = tXQ3X where

Q1 = tanh(t)

t

⎛
⎜⎜⎝
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , Q2 = 1

t

(
02 02
02 AK FP

t

)
, Q3 = tanh(t)

t

⎛
⎜⎜⎝
0 0 0 0
0 0 i/2 0
0 i/2 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

02 is the zero 2x2 matrix and AKFP
t is given by (15).

4.2 Numerical Results

In this section, numerical simulations are performed using the above exact splittings to illus-
trate the exponential decay to equilibrium property and regularizing effects. Let us remark
that since the Fokker–Planck and Krammer–Fokker–Planck operators are homogeneous with
respect to the space variable x , we do not have to consider localized functions and thus con-
sider periodic functions in this direction. The domain is truncated to [−R1, R1]×[−R2, R2]
and the number of uniform grids is N1 (resp. N2) in x-direction (resp. the v-direction).
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Fig. 3 a Initial distribution function f (t = 0, x, v); b distribution function at t = 20: f (t = 20, x, v); (c)
time evolution of the entropy given by (18)

Fokker–Planck equation
For the FP equation, we aim at checking an important property that the solution converges

to the equilibrium state exponentially with time (see [20]). The domain is taken as R1 = π

and R2 = 7 (so that (x, v) ∈ [−π, π ] × [−7, 7]). The initial function is

f0(x, v) = 1√
2π

exp(−v2/2)
(
1 + 0.5 sin(x) cos(

π

7
v)
)

.

We are interested in the time evolution of the entropy which is defined by

F(t) =
∫ L

0

∫ ∞

−∞
( f (t, x, v) − μ(v))2

μ(v)
dvdx, (18)

with μ(v) = 1√
2π

e− v2
2 .

The numerical parameters are N1 = 27, N2 = 181, the time step is �t = 0.1 and the
simulation is ended at t = 20. In Fig. 3, the contour plots of distribution function are plotted
at the initial and the ending time and we can observe the relaxation towards the Maxwellian
profile. This is more quantitatively shown in Fig. 3c where the time history of entropy (18)
is plotted. Indeed, the exponential decay is clearly observed, the rate is equal to −1.99 (red
straight line), which is in good agreement with [20].
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Fig. 4 a L2 error (log10 − log10 scale) of the formula (19) with different time step size �t ; b Time evolution
of the L2 norm (in x and v) of f in semi-log10 scale

Kramer–Fokker–Planck equation
Now we apply the exact splitting for the numerical simulation of the KFP equation. The

domain is chosen with R1 = 4 and R2 = 15 (so that (x, v) ∈ [−4, 4] × [−15, 15]). In the
following experiments, we consider N1 = N2 = 199. The initial function is

f0(x, v) = 1

8
√
2π

e− v2
2 .

First, in Fig. 4a, we plot the L2 norm (in log10 − log10 scale) of the following formula

e−�t(v2−∂2v +v∂x ) f0(x, v) − e−�t/2(v2−∂2v +v∂x )e−�t/2(v2−∂2v +v∂x ) f0(x, v) (19)

using different time steps. Two different methods are used to compute
e−t(v2−∂2v +v∂x ) f0(x, v): the exact splitting (14) and a Strang operator splitting. First, we

observe that the exact splitting gives an error at themachine precision level whereas we obtain
an error of O(�t3) which corresponds the local error of the Strang method and confirms the
correct implementation of the algorithms.

Then, we illustrate the regularizing effects property of the evolution operator in KFP [1].
To do so, the initial condition is chosen as random values (discrete L1 norm is 1) and the
step size is �t = 0.1. In Fig. 5, the contour plots of distribution function are displayed for
different times: t = 0, 0.2, 1, 100. We observe that starting from a random initial value, the
numerical solution becomes smoother as time increases. Moreover, it can be proved that the
solution is exponentially decreasing towards zero with time. This is illustrated in Fig. 4b
where we plot the time history of L2 norm of f (semi-log10 scale).

5 Application to Schrödinger Equations

In this section, we recall and apply exact splitting methods for Schrödinger type equations
in [12]: magnetic Schrödinger equations, and rotating Gross-Pitaevskii equations (see [5,9,
11,17,32] for more details on these models).
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Fig. 5 Time evolution of the distribution function f a t = 0; b t = 0.2; c t = 1; d t = 100

Weconsider the following linear Schrödinger equation (with a rotation termandaquadratic
external potential) of unknown ψ(x, t) ∈ C with x ∈ R

n, t ∈ R+

i
∂ψ(x, t)

∂t
= −1

2
�ψ(x, t) − i(Bx) · ∇ψ(x, t) + V (x)ψ(x, t), ψ(x, t = 0) = ψ0(x),

(QM)

where n ∈ N
∗, B ∈ An(R) is a skew symmetric matrix of size n and V : Rn → R is a

quadratic potential. According to the previous framework, this model is an inhomogeneous
quadratic PDE, since it can be represented by the following symbol

p(X) = i
|ξ |2
2

+ i Bx · ξ + iV (x), X = (x, ξ) ∈ R
2n . (20)

In the sequel, an exact splitting is presented. Then, extensions to nonlinear and non-quadratic
Schrödinger equations are discussed. This section will be ended by several numerical results
that will be compared to different numerical methods from the literature to illustrate the
efficiency of our approach.

5.1 Presentation of the Exact Splitting

We present an exact splitting method for (QM) which has been introduced in [12].
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Theorem 1 There exists some quadratic forms v
(r)
t , at on R

n, a strictly upper triangular
matrixUt ∈ Mn(R), a strictly lower triangularmatrix Lt ∈ Mn(R) and a diagonal quadratic
form v

(
)
t on R

n, all depending analytically on t ∈ (−t0, t0) for some t0 > 0, such that for
all t ∈ (−t0, t0) we have

eit(�/2−V (x))−t Bx·∇ = e−i tv(
)
t (x)

⎛
⎝n−1∏

j=1

e−t(Utx) j ∂x j

⎞
⎠ eitat (∇)

⎛
⎝ n∏

j=2

e−t(Ltx) j ∂x j

⎞
⎠ e−i tv(r)

t (x)

(21)

where at (∇) denotes the Fourier multiplier of symbol −at (ξ) and (Utx) j (resp. (Ltx) j ) the
j st coordinate of Utx (resp. Ltx).

Let us detail this splitting to emphasize the fact that due to the triangular structure of the
matrices Lt and Ut , only 2n FFT calls are required in every step:

– From e−i tv(r)
t (x) to e−t(Ltx)n∂xn , we need a FFT in xn direction;

– From e−t(Ltx) j ∂x j to e−t(Ltx) j−1∂x j−1 , j ∈ �3, n�, as Lt is a strictly lower triangular
matrix, (Ltx) j only depends on xi , i ∈ �1, j − 1�, then we only need a FFT in x j−1

direction.
– From e−t(Ltx)2∂x2 to eitat (∇), we need a FFT in x1 direction.
– From eitat (∇) to e−t(Utx)n−1∂xn−1 , we need an inverse FFT in xn direction;
– From e−t(Utx) j ∂x j to e−t(Utx) j−1∂x j−1 , j ∈ �2, n − 1�, because Ut is a strictly upper

triangular matrix, (Utx) j−1 only depends on xi , i ∈ � j, n�, we only need an inverse FFT
in x j direction.

– From e−t(Utx)1∂x1 to e−i tv(
)
t (x), we need an inverse FFT in x1 direction.

To sum up, this new method only needs 2n FFT (or inverse FFT) calls in every time step.
Below, we detail a bit the link of exact splittings between the Schrödinger equations and

corresponding finite dimensional Hamiltonian systems. Following [12], the exact splitting
(21) is equivalent to prove an equality at the level of matrices. Indeed, from Hörmander
[26], there exists a morphism between the Hamiltonian flow of the following linear ODE
Ẋ = −i J∇ p(X) and e−pw

(up to one sign), where J is the symplectic matrix of size 2n. So
we can check the following exact splitting at the linear ODE level for (21):

e−2i t J Q = e−2i t J V (
)

⎛
⎝n−1∏

j=1

e−2i t JU ( j)

⎞
⎠ e−2i t J A

⎛
⎝ n∏

j=2

e−2i t J L( j)

⎞
⎠ e−2i t J V (r)

, (22)

where Q, V (
),U ( j), A, L( j), V (r) are symmetric matrices of the quadratic forms (symbols)
of the following operators iv(
)

t (x), i(Utx) j∂x j ,−i At (∇), i(Ltx) j∂x j , iv
(r)
t (x) respectively.

5.2 Practical Construction of the Splittings

In this subsection, the iteration method giving the coefficients in the above exact splitting is
presented. The proof for Theorem 1 is based on the implicit function theorem which gives a
practical way to construct the exact splitting. Indeed, it furnishes an iteration method which
is presented below. We refer to [12] for more details.

In this context, the iterative method giving the coefficients of the exact splitting can be
made much more explicit. Indeed, identifying a quadratic form with its symmetric matrix, if
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the time step size t is small enough, we define, by induction, the following sequences

⎧⎪⎪⎨
⎪⎪⎩

At,k+1 = At,k + In/2 − Ãt,k

Lt,k+1 = Lt,k + L − L̃ t,k

Ut,k+1 = Ut,k +U − Ũt,k

V (m)
t,k+1 = V (m)

t,k + V − Ṽ (m)
t,k + t

2 [Dt,k, B] + t2
2 D

2
t,k

where (At,0, Lt,0 +Ut,0, V
(m)
t,0 ) = (In/2, B, V ), L +U = B and

(
2Ṽ (m)

t,k
t̃
Lt,k + t

Ũt,k + t Dt,k

L̃ t,k + Ũt,k + t Dt,k 2 Ãt,k

)
= −t−1 J log(Pt,k)

and

Pt,k =
⎡
⎣n−1∏

j=1

(
In + tU ( j)

t,k

In − t
t
U ( j)
t,k

)⎤
⎦
(
In 2t At,k

In

)⎡
⎣ n∏

j=2

(
In + t L( j)

t,k

In − t
t
L( j)
t,k

)⎤
⎦

×
(

In
−2tV (m)

t,k In

)

with L( j)
t,k = (e j ⊗ e j )Lt,k ,U

( j)
t,k = (e j ⊗ e j )Ut,k and (e1, . . . , en) the canonical basis of Rn .

One can prove that the sequence ( Ãt,k, L̃ t,k, Ũt,k,− t
2Dt,k, V

(m)
t,k + 1

2Dt,k) generated by
this induction converges towards the elements in the exact splitting 1, i.e.

|At − Ãt,k | + |Lt − L̃ t,k | + |Ut − Ũt,k | + |V (
)
t + 1

2
Dt,k | + |V (r)

t − V (m)
t,k − 1

2
Dt,k | ≤

(
t

τ0

)k

.

as soon as t is small enough (0 < |t | < τ0 for a given τ0 > 0).

5.3 Extension to More General Schrödinger Equations

Before presenting some numerical results, some time discretizations based on the previous
exact splittings are proposed here in order to deal with more general Schrödinger equations.
Keeping the same notations ψ(x, t) ∈ C for the unknown (x ∈ R

n and t ≥ 0), we then
consider the following Schrödinger equation to illustrate our strategy

i
∂ψ(x, t)

∂t
= −1

2
�ψ(x, t) − i(Bx) · ∇ψ(x, t) + V (x)ψ(x, t) + f (x, |ψ |2)ψ(x, t), (23)

where f is a real valued function, B ∈ An(R) is a skew symmetric matrix of size n, and
V (x) : Rn → R is a real valued quadratic potential. Some well known examples can be
given in the case n = 2, 3

– f (x, |ψ |2) = β|ψ |2 (β ∈ R), (Bx) · ∇ψ = �(x2∂x1 − x1∂x2)ψ, � ∈ R. In this
case, (23) is the so-called Gross–Pitaevskii equation (GPE) with an angular momentum
rotation term (see [9,11]).

– f (x, |ψ |2) = Vnq(x) where Vnq(x) denotes a non-quadratic potential. Moreover, if
V (x) = 1

2 |Bx|2, (23) is the so-called magnetic Schrödinger equation (see [17,28]).
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Algorithm 2 Pseudo-spectral method for ESQM (25)

Input: ψ0 = ψ0|G1×G2×G3
, K�t = T f inal

1: for k = 0 to K − 1 do

2: ψ(1) = e−i�t/2 f (g,|ψk
g |2)

ψn

3: ψ(2) = e−i�tV (r)
�t (g)

ψ(1)

4: ψ(3) = e−i�tω3(L�t,31g1+L�t,32g2) F3ψ
(2)

5: ψ(4) = e−i�tω2L�t,21g1 F2ψ
(3)

6: ψ(5) = e−i�ta(ω) F1ψ
(4)

7: ψ(6) = e−i�tω2U�t,23g3 F−1
3 ψ(5)

8: ψ(7) = e−i�tω1(U�t,12g2+U�t,13g3) F−1
2 ψ(6)

9: ψ(8) = e−i�tV (r)
�t (g) F−1

1 ψ(7)

10: ψk+1 = e−i�t/2 f (g,|ψ(8)
g |2)

ψ(8)

11: end for
Output: ψK

ω j and g j are the variables associated with G j and Ĝ j (see end of Sect. 2).

On can show that (23) has the following two conserved quantities,

(mass) M(t) =
∫
Rn

|ψ(x, t)|2dx,

(energy) E(t) =
∫
Rn

[1
2
|∇ψ |2 + V |ψ |2 + F(x, |ψ |2) − Re(i(Bx) · ∇ψ ψ∗)

]
dx,

(24)

where F(x, ·) denotes the primitive of f (x, ·) vanishing at the origin and f ∗ and Re( f )
denote the conjugate and real part of the function f respectively.

From the exact splitting presented above, we deduce a new splitting for (23). This splitting
is based on Strang composition of the quadratic and the non-quadratic parts. Indeed, we first
rewrite (23) as

i∂tψ = −pwψ + f (x, |ψ |2)ψ,

where −pwψ := − 1
2�ψ − i(Bx) · ∇ψ + V (x)ψ denotes the quadratic part (in the sense

of Sect. 2) and f (x, |ψ |2)ψ denotes the non quadratic part (which can be nonlinear). Based
on this formulation and on the fact that exact splittings have been derived for the quadratic
part, we then propose the following splitting (ESQM method) for k ≥ 0

(ψ(x, tk) ≈)ψk(x)=
(
e−i �t

2 f (x,|·|2)e−i�tpw

e−i �t
2 f (x,|·|2))k ψ0(x), (25)

where the computation of e−i�tpw
is done using (21) and e−i �t

2 f (x,|·|2) denotes the nonlinear
operator defined by e−i �t

2 f (x,|·|2)ψ = e−i �t
2 f (x,|ψ |2)ψ . Let us remark that for this Strang

based splitting, eachpart can be solved exactly in time and arbitrary highorder time integrators
can be constructed by composition methods (see [21]). It can also be shown that the L2 norm
of ψk is preserved by the numerical schemes proposed here. In Algorithm 2, we detail
the different substeps of the splitting (25) involving the pseudo-spectral discretization in
dimension 3.
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Remark 4 Note that some optimizations can be performed in Algorithm 2 by noticing the
following rearrangement (with K�t = Tfinal)

ψK =
(
e−i �t

2 f (x,|·|2)ei�t(−V (x)+ �
2 −Bx·∇)e−i �t

2 f (x,|·|2))K ψ0

= e−i �t
2 f (x,|·|2)−i�tV (
)

�t (x)e−t(U�tx)1∂x1 e−t(U�tx)2∂x2 eit A�t (∇)e−�t(L�tx)2∂x2 e−�t(Ltx)3∂x3(
e−i�t f (x,|·|2)−i�tV (
)

�t (x)−i�tV (r)
�t (x)e−�t(U�tx)1∂x1 e−�t(U�tx)2∂x2 ei�t A�t (∇)

e−�t(L�tx)2∂x2 e−�t(L�tx)3∂x3
)K−1

e−i�tV (r)
�t (x)−i �t

2 f (x,|ψ0|2)ψ0.

(26)

5.4 Numerical Results

This section is devoted to applications of exact splittings to the Schrödinger type equations
(23) both in the two and three dimensional cases. We show higher accuracy and efficiency
of the exact splittings by comparing with other usual numerical methods proposed in the
literature [10,11].

Aspreviously, the spacediscretization requires a truncateddomaindenotedby [−R1, R1]×
· · · × [−Rn, Rn]. We will consider a uniform grid with N j points per direction so that the
mesh size are 2R j/N j .

5.4.1 2D Schrödinger Equations

Firstly, we consider the application of the exact splittings in the two-dimensional case on the
magnetic Schrödinger equation and on the rotating Gross–Pitaevskii equation.

2D magnetic Schrödinger equation
In this numerical experiment, following 2D magnetic Schrödinger equation is consid-

ered [28],

iε∂tψ(x, t) = −ε2

2
�ψ(x, t) + iεA · ∇ψ(x, t) + 1

2
|A|2ψ(x, t), (27)

with ε = 1/32, x = (x1, x2) ∈ R
2, and A = 1

2
t(−x2, x1). The initial condition is given by

ψ0(x) = e−20(x1−0.05)2−20(x2−0.1)2ei sin(x1) sin(x2)/ε .

The numerical parameters are chosen as follows: N1 = N2 = 256, R1 = R2 = 3π and
�t = 0.3. We shall compare three different splittings:

– ESQM (see (25) with f = 0 and (21)); this method is exact in time.
– ESR (see “Appendix 2”); this method is second order accurate in time.
– Strang (see “Appendix 2”); this method is second order accurate in time.

Let us remark that ESR and Strang are two operator splittings which differ from the treatment
of the rotation part ∂tψ = A ·∇ψ . Indeed, this part is solved exactly in the ESRmethod (this
is the reason why we used the same name as in Sect. 3) whereas a second order directional
splitting is used in the Strang method. We refer to “Appendix 2” for details. From (21), the
ESQM is

e
iε�t( �

2 − 1
2ε2

|A|2)+�tA·∇ = e−ε�tv(
)(x)e−ε�t(U�tx)1∂x1eiε�ta(∇)e−ε�t(L�tx)2∂x2 e−ε�tv(r)(x),
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where v(
)(x) = txV (
)
�t x, v(r)(x) = txV (r)

�t x, and a(∇) = ∇·(A�t∇), V (
)
�t , L�t ,U�t , V

(r)
�t ,

A�t are the following 2 × 2 matrices (�t = 0.3)

A�t �
(

0.503532819405421 −0.074439184790650
−0.074439184790650 0.503784060194312

)
,

L�t �
(

0 0
−16.121089926218119 0

)
, U�t �

(
0 15.761077688604765
0 0

)
,

V (
)
�t �

(
128.9687194097432 0

0 −0.0000000000018

)
,

V (r)
�t �

(
2.8800979009085 −19.0564313064080

−19.0564313064080 126.0886215088400

)
.

First of all, we show the contour plots of |ψ(x, t)|2 at time t = 300 in Fig. 6 obtained by
these three methods. Second, the time history of energy error (defined by (24)) given by
these three methods is presented in Fig. 7. As (27) is a quadratic equation, by Theorem 1,
the ESQM method gives the exact solution (if neglecting space error). From Fig. 7, we can
see that its energy error is at machine precision level, which is much smaller than the energy
errors of Strang and ESR. Specifically, as the rotation velocity of Strang is not correct (see
[13]), we can see in Fig. 6 that the contour plot obtained by Strang is not good. For ESR,
even if the rotation velocity is right and the shape of the solution has the correct orientation,
error is clearly observed.

2D rotating Gross–Pitaevskii equation
We now consider the dynamics of rotating Bose–Einstein condensates, which is described

by the following rotating Gross–Pitaevskii equation (GPE) (see [9,11])

i∂tψ(x, t) = −1

2
�ψ(x, t) + V (x)ψ(x, t) + β|ψ |2ψ(x, t) − �Lx3ψ(x, t), ψ(x, 0) = ψ0(x)

(28)

where ψ(x, t) (x = (x1, x2) ∈ R
2, t ≥ 0) is wave function , Lx3 = −i(x1∂x2 − x2∂x1) is

the x3-component of the angular momentum, � is the angular speed of the laser beam, β is
a constant characterizing the particle interactions, and V (x) denotes the external harmonic
oscillator potential

V (x) = 1

2
(γ 2

x1x
2
1 + γ 2

x2 x
2
2 ), γx1 > 0, γx2 > 0. (29)

In addition to the mass and energy conservations (24), the expectation of angular momen-
tum is also conserved when γx1 = γx2

Lz(t) :=
∫
R2

ψ∗(x, t)Lx3ψ(x, t)dx = Lz(0). (30)

We are also interested in the time evolution of condensate widths and mass center defined as
follows,

condensate widths : Sα(t) =
√∫

R2
α2|ψ(x, t)|2dx, α = x1, x2,

mass center : xc(t) =
∫
R2

x|ψ(x, t)|2dx.
(31)
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Fig. 6 Contour plots of density |ψ(x)|2 a at t = 0; computed by b ESQM; c ESR and d Strang method at
t = 300 with �t = 0.3, N1 = N2 = 256, ε = 1
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Fig. 7 Time evolution of energy
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splitting method with �t = 0.3,
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For the two dimensional rotating GPE (28), our first numerical test is the so-called dynam-
ics of a stationary state with a shifted center [9]. We take γx1 = γx2 = 1, β = 100 in (28)
and the initial condition is taken as

ψ0(x) = φe(x − x0),
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where φe(x) is a ground state computed numerically by using the method proposed in [35]
and x0 = t(1, 1). The numerical parameters are chosen as follows: �t = 0.001 and the
spatial domain [−8, 8]2 is discretized using N1 = N2 = 256 points.

There are many accurate and efficient numerical methods in the literature for the rotating
Gross–Pitaevskii equation, such as [6–11,14,15]. Similar to the magnetic Schrödinger case,
we will consider different methods to solve (28) and compare with our approach

– ESQM (see (25)with f (x, |ψ |2) = β|ψ |2 and (21)); thismethod is second order accurate
in time.

– Lagrangian from [10] (see “Appendix 2”); this method is second order accurate in time.
– BW from [11] (see “Appendix 1”); this method is second order accurate in time.

Concerning ESQM, we show how the quadratic part pw := (i/2)� − �Lx3 − iV (x) of the
nonlinear equation (28) is split. This is done as follows (two cases � = −0.5 and � = 0 are
considered)

ei�tpw = e−�tv(
)(x)e−�t(U�tx)1∂x1 ei�ta(∇)e−�t(L�tx)2∂x2 e−�tv(r)(x),

where v(
)(x) = txV (
)
�t x, v(r)(x) = txV (r)

�t x, and a(∇) = ∇·(A�t∇), V (
)
�t , L�t ,U�t , V

(r)
�t ,

A�t being 2 × 2 matrices. In the case � = −0.5, we have

A�t �
(
0.499999979166548 0.000249999947774
0.000249999947774 0.499999979166793

)
,

L�t �
(

0 0
0.500000041666437 0

)
, U�t �

(
0 −0.499999916666871
0 0

)
,

V (
)
�t �

(
0.312500037655718 0

0 0.187500011768640

)
,

V (r)
�t �

(
0.187500043073584 0.000062500002635
0.000062500002635 0.312500006460442

)
,

and in the case � = 0, we have

A�t �
(
0.499999916666670 0

0 0.499999916666676

)
,

L�t =
(
0 0
0 0

)
, U�t =

(
0 0
0 0

)
,

V (
)
�t �

(
0.250000020830159 0

0 0.250000020843983

)
,

V (r)
�t �

(
0.250000020836518 0

0 0.250000020822696

)
.

We first validate our ESQM approach by plotting the time evolutions of mass center, con-
densate widths (31), and angular momentum expectation error (30) in Fig. 8. We can see
that time evolution of mass center is periodic, and the period is equal to 2π (resp. 4π) when
� = 0 (resp. � = −0.5), which is in good agreement to the results in [9].

In the sequel, we compare ESQMwith Lagrangian and BW. Both ESQM and Lagrangian
method need 4 FFT for each time step whereas BW needs 6. As the FFT calls are the most
consuming part of the three methods, ESQM and Lagrangian are the most efficient methods.
The energy error (24) and angular momentum expectation error (30) with different time step
sizes of the threemethods (Lagrangian, ESQMandBW) are presented in Fig. 9 for� = −0.5
and with different values of the nonlinearity factor (β = 5 and β = 100). First, we notice that
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Fig. 8 Time evolution of mass center, coordinates of mass center, error on angular momentum expectation,
and condensate widths by ESQM when � = 0 (top four figures) and � = −0.5 (bottom four figures)
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Fig. 9 Energy error and angular momentum expectation error (semi-log10 scale) as a function of the step size
for the three methods ESQM, Lagrangian and BW at t = 1 for � = −0.5, when β = 5, (a,c), β = 100, (b,d)

these three methods are second order accurate regarding the energy as expected. However,
the error of ESQM is much smaller (two orders of magnitude smaller), which is due to the
fact that the linear part is solved exactly. Moreover, the advantage of ESQM is more obvious
when the nonlinearity factor β is smaller. For the angular moment expectation conservation,
we can see that BW is still second order in time, whereas the error of Lagrangian and ESQM
is close to the machine precision. The reason is that angular moment expectation is conserved
by the solution of each subsystem in ESQM and Lagrangian (see [9] for more details).

To end this part, we focus on the second numerical experiment, in which the time evolution
of a ground state is studied by changing the corresponding potential initially as [3,15]. The
parameters are β = 1000, � = 0.9, the potential is given by (29) with γx1 = 1.05, γx2 =
0.95. The initial condition is the ground state corresponding to the isotropic potential V (x) =
|x|2/2, β = 1000, and � = 0.9, generated using the Matlab toolbox GPELab1. [4,5]. In this
numerical test, we only use ESQM and consider the numerical parameters as follows: the
spatial grid is defined by [−8, 8]2, N1 = N2 = 128, and the time step size is �t = 10−3.
The coefficients for ESQM in (21) are given by

A�t �
(

0.500000110624718 −0.000449999864087
−0.000449999864087 0.500000127291716

)
,

1 http://gpelab.math.cnrs.fr
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Fig. 10 β = 1000,� = 0.9. Time evolution of the solution of (28) by changing the potential initially

Fig. 11 β = 1000,� = 0.9.
Time evolution of the energy of
(28) by changing the potential
initially
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L�t �
(

0 0
−0.900000273000100 0

)
, U�t �

(
0 0.899999484000032
0 0

)
,

V (
)
�t �

(
0.478125137872035 0

0 0.023124993175043

)
,

V (r)
�t �

(
0.073125336336629 −0.000364499913716

−0.000364499913716 0.428124781225271

)
.

The contour plots of |ψ(x, t)|2 are plotted for different times (t = 0, 1.5, 3, 4) in Fig. 10.
These results are in very good agreement with those obtained in the literature [3,15]. We also
present in Fig. 11 the time evolution of the energy error, from which we can see that energy
conservation is very good (about 10−7).
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5.4.2 3D Schrödinger Equations

In this section, 3D Schrödinger equations are considered in two cases: (i) a quadratic
Schrödinger equation is constructed specifically such that the solution is periodic in time;
(i i) a magnetic Schrödinger equation with a non-quadratic potential (see [17]).

3D time-periodic quadratic linear Schrödinger equation
For (23), we consider f = 0 and

B = π

3

⎛
⎝ 0 −1 1

1 0 −1
−1 1 0

⎞
⎠ and V (x) = π2

9
tx

⎛
⎝λ1

λ2
λ3

⎞
⎠ x, (32)

where x = (x1, x2, x3) and (λ1, λ2, λ3) are the roots of the polynomial Q(X) = 7200X3 −
72196X2 + 222088X − 216341, i.e.

⎛
⎝λ1

λ2
λ3

⎞
⎠ �

⎛
⎝2.270179965518102.53418020791380
5.22286204879033

⎞
⎠ . (33)

In this case, the period of this system is T = 360 (see in “Appendix 6” for the proof) and the
initial condition is

ψ0(x1, x2, x3) =
(
2

π

)3

e−x21 e−2x22 e−2(x3−1)2 + i

(
2

π

)3

e−x21 e−2(x2+1)2e−2(x3−1)2 . (34)

The numerical parameters are chosen as: spatial domain [−8, 8]3 is discretized by N1 =
N2 = N3 = 96 points, time step is �t = 0.2, and final time is t = 720 which corresponds
to two periods 2T . We consider following two numerical methods:

– ESQM from (21) whose coefficients are listed in “Appendix 1”; the method is exact in
time.

– Strang (see in “Appendix 2”); the method is second order accurate in time.

In Figs. 12 and 13, the time evolutions of |ψ(t, 0, 0, 0)|2 are presented by using ESQM
and Strang respectively. We also plot the difference |ψ(t ∈ [T , 2T ], 0, 0, 0)|2 − |ψ(t ∈
[0, T ], 0, 0, 0)|2 which should be zero since the solution is time periodic of period T = 360.
We can see that for ESQM, the period is nicely preserved (up to 10−11) in spite of the
fact that the time history of the solution is quite complicated. However, one can observe in
Fig. 13 that the error of Strang method is too large to identify the period. In Fig. 14, the
time history of energy error is plotted for both ESQM and Strang methods. Clearly, Strang
method produces larger error. Some contour plots of the solution (at time t = 360 and the
third spatial direction x3 is fixed to be 0) obtained by ESQM and Strang are presented at
Fig. 15. Note that ψ(t = 360, x1, x2, 0) is the same as the initial condition since the solution
is 360 periodic in time. In Fig. 15, we can see that ESQM gives very accurate results, but
the result obtained by Strang method is rather different. Concerning the computational cost,
6 FFT (or inverse) are required for each time step for ESQM whereas Strang needs 15 FFT
(or inverse).
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Fig. 12 ESQM: a Time evolution of |ψ(t, 0, 0, 0)|2. b The difference |ψ([T , 2T ], 0, 0, 0)|2 −
|ψ([0, T ], 0, 0, 0)|2, T = 360
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Fig. 13 Strang: a Time evolution of |ψ(t, 0, 0, 0)|2. b The difference |ψ([T , 2T ], 0, 0, 0)|2 −
|ψ([0, T ], 0, 0, 0)|2, T = 360
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Fig. 14 a Time evolution of the energy error by ESQM. bTime evolution of the energy error by Strang splitting
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Fig. 15 a Initial contour plot of the real part of ψ(t = 0, x1, x2, 0); b contour plot of real part of ψ(t =
360, x1, x2, 0) by ESQM; c contour plot of real part of ψ(t = 360, x1, x2, 0) by Strang

3D magnetic Schrödinger equation
To end this part, the following 3Dmagnetic Schrödinger equation is considered (see [17]),

i∂tψ(x, t) = −1

2
�ψ(x, t) + iA(x) · ∇ψ(x, t) + 1

2
|A(x)|2ψ(x, t) + Vnq(x)ψ(x, t),

(35)

where A(x) = x × B, B = t(1, 0.1, 2), x = (x1, x2, x3) and

Vnq (x) = α

(
20 cos(

2π(x1 + 5)

10
) + 20 cos(

2π(x2 + 5)

10
) + 20 cos(

2π(x3 + 5)

10
) + 60

)
, α ∈ R.

(36)

The initial condition is

ψ0(x) = 23/8

π3/2 exp

(
−

√
2

2
((x1 − 1)2 + x22 + x23 )

)
,

and the numerical parameters are: the spatial domain [−5, 5]3, N1 = N2 = N3 = 64, and
the final time t = 1. Here we consider three methods

– ESQM (see (25) with f (x, |ψ |2) = Vnq(x) given by (36) and with (21)); this method is
second order accurate in time.
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Fig. 16 Plots of energy error with step size at t = 1 with grids N1 = N2 = N3 = 64. (a) α = 0.1, (b)
α = 0.01

– ESR (see “Appendix 5”); this method is second order accurate in time.
– Strang (see “Appendix 5”); this method is second order accurate in time.

The three methods are compared with different step sizes �t to solve the system (35). The
time evolutions of energy error of these three methods are presented in Fig. 16, with different
parameter α which measures the amplitude of the non-quadratic part in (35). By comparing
the energy error, we can see that the ESQM is the most accurate one, as it solves the linear
quadratic part exactly.Moreover,whenα is smaller, i.e., the non-quadratic term in system (35)
becomes smaller, the advantage of ESQM is more obvious.
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Appendix

Backward Error Analysis of the Strang Splittings for Rotations

We consider the ODE associated with a rotation in R
n

ẏ = By (37)

where B ∈ son(R) is a real skew-symmetric matrix of size n. For t ∈ R, the Strang splitting
naturally associated with the decomposition of this rotation in shear transforms is

Pt =
⎛
⎝n−1∏

j=1

In + t

2
(e j ⊗ e j )B

⎞
⎠ (In + t(en ⊗ en)B)

⎛
⎝n−1∏

j=1

In + t

2
(en− j ⊗ en− j )B

⎞
⎠ .

where e1, . . . , en is the canonical basis of Rn . It is indeed a Strang splitting because since
(e j ⊗ e j )B is nilpotent of order 1 we have

et(e j⊗e j )B = In + t(e j ⊗ e j )B.

The following proposition states that, up to a change of coordinate close to the identity,
Pt is a rotation of which angles coincide with those of exp(t B) up to an error of order t3.
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Proposition 2 There exists t0 > 0 and two analytic functions t ∈ (−t0, t0) �→ (Bt , Qt ) ∈
son(R) × Sn(R) ∩ GLn(R), where Bt is real skew symmetric and Qt is real symmetric and
invertible such that B0 = B, Q0 = In and

∀t ∈ (−t0, t0), Pt = Qt2e
t Bt2 Q−1

t2
.

Proof Observing that since

sp(B) = {SB | S ∈ Sn(R)} is a Lie algebra,
it follows from the Bakker-Campbell-Hausdorff formula that there exist t1 > 0 and an
analytic function t ∈ (−t1, t1) �→ St ∈ Sn(R) such that S0 = In and

∀t ∈ (−t1, t1), Pt = et St B .

Since the Strang splitting is reversible, we have Pt = P−1−t . Thus, since the exponential map
is injective in a neighborhood of the identity, we deduce that t �→ St is an even function.
Consequently, there exists an analytic function t �→ Kt such that Kt2 = St . Furthermore,
since K0 = In , there exists t0 ∈ (0, t1) such that for all t ∈ (−t0, t0), Kt is positive-definite.
Finally, we deduce that,

∀t ∈ (−t0, t0), Pt = et St B = √
Kt2e

t
√

Kt2 B
√

Kt2
√
Kt2

−1 = Qt2e
t Bt2 Q−1

t2

where Qt = √
Kt and Bt = √

Kt B
√
Kt . ��

2DMagnetic Schrödinger Equation

iε∂tψ(x, t) = −ε2

2
�ψ(x, t) + iεA · ∇ψ(x, t) + 1

2
|A|2ψ(x, t), (38)

where x = (x1, x2) ∈ R
2, A = 1

2 (A1, A2), A1 = −x2, A2 = x1. The above system can be
split into three systems:

iε∂tψ(x, t) = −ε2

2
�ψ(x, t), (39)

∂tψ(x, t) = A · ∇ψ(x, t), (40)

iε∂tψ(x, t) = 1

2
|A|2ψ(x, t), (41)

The solutions of the above three subsystems can be obtained by operators eit
ε
2�, etRot, and

etV respectively. Since the second is nothing but a 2D rotation, we call the associated solution
etRot. Then we have the following second order splitting method

ψn+1 = e
�t
2 V ei�t ε

4�e�tRotei�t ε
4�e

�t
2 V , (42)

fromwhich we derive two variants according to the treatment of e�tRot. Indeed,ESR denotes
the splitting method (42) when e�tRot is solved by exact splittings for transport equation
in Proposition 1. Strang denotes (42) when e�tRot is approximated by Strang directional
splitting.
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2D Rotating Gross–Pitaevskii Equation

The rotating Gross-Pitaevskii equation (GPE) [9,11] is

i∂tψ(x, t) = −1

2
�ψ(x, t) + V (x)ψ(x, t) + β|ψ |2ψ(x, t) − �Lx3ψ(x, t), x ∈ R

2, (43)

where ψ(x, t) is the macroscopic wave function, x = (x1, x2), Lx3 = −i(x1∂x2 − x2∂x1).
Two operator splittings are presented to approximate (43).

BWMethod

Here we recall the splitting method introduced in [11] to approximate (43). We will call it
BW in the sequel. BW splitting for rotating GPE (43) is based on the following two-steps
splitting

i∂tψ(x, t) = −1

2
�ψ(x, t) − �Lx3ψ(x, t), (44)

∂tψ(x, t) = V (x)ψ(x, t) + β|ψ(x, t)|2ψ(x, t). (45)

Then, the authors in [11] noticed that (44) can be split further as

i∂tψ(x, t) = −1

2
∂2x1ψ(x, t) − i�x2∂x1ψ(x, t), (46)

i∂tψ(x, t) = −1

2
∂2x2ψ(x, t) + i�x1∂x2ψ(x, t). (47)

The solutions of subsystems (45), (46) and (47) can be obtained by operators etN , et X and etY

respectively, the second order BW method is then derived from the following composition

ψn(x) =
(
e�t/2 Y e�t/2 Xe�t N e�t/2 Xe�t/2 Y

)n
ψ0(x),

= e�t/2 Y (e�t/2 Xe�t N e�t/2 Xe�t Y )n−1e�t/2 Xe�t N e�t/2 Xe�t/2 Yψ0(x).
(48)

Combined with Fourier pseudo-spectral method in space, we can see that in each time step,
we need six calls to FFT.

Lagrangian Method

Here we recall the main step of the method introduced in [10] to approximate (43). We will
call it Lagrangian in the sequel. First, a change of coordinates is considered

φ(x̃, t) := ψ(x, t) = ψ(eJ tx, t),

where J is the 2 × 2 symplectic matrix. Then, φ satisfies the following equation

∂tφ(x̃, t) = −1

2
�φ(x̃, t) + W (x̃, t)φ(x̃, t) + β|φ(x̃, t)|2φ(x̃, t), x̃ ∈ R

2, (49)

with the initial condition φ(x̃, 0) = ψ0(x) and where W is defined by

W (x̃, t) = V (eJ t x̃),
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so that a time dependency is created. However, if V is isotropic, W (x̃, t) = V (x̃) is time-
independent. The main advantage of (49) does not involve the angular momentum rotation
term and the following splitting is used

i∂tφ(x̃, t) = −1

2
�φ(x̃, t), (50)

∂tφ(x̃, t) = W (x̃, t)φ(x̃, t) + β|φ(x̃, t)|2φ(x̃, t). (51)

For harmonic potential V , each step can be solved exactly (which is not the case for general
potential V ). Combined with a Strang splitting and with Fourier pseudo-spectral method in
space, we can see that in each time step, this method needs four calls to FFT.

3DTime-Periodic Quadratic Linear Schrödinger Equation

For (23) with f = 0 and B and V are specified in (32) and (33), we consider two numerical
methods: ESQM and a standard Strang operator splitting.

Exact Splitting

The coefficients for ESQM (21) are given by

A�t �
⎛
⎝ 0.503369336514750 0.09260872887966 −0.086577853155386

0.092608728879667 0.499175997238123 0.090475411725230
−0.086577853155386 0.090475411725230 0.482430618251455

⎞
⎠ ,

V (
)
�t �

⎛
⎝1.838313777101704 0 0

0 1.405233579215994 0
0 0 2.416160688906186

⎞
⎠ ,

V (r)
�t �

⎛
⎝ 0.765638127548775 0.097739062052903 −0.244124321719139

0.097739062052903 1.408683914880933 0.141925135897144
−0.244124321719139 0.14192513589714 3.535113753227984

⎞
⎠ ,

L�t �
⎛
⎝ 0 0 0

0.957867410476376 0 0
−0.917880413070041 1.133563918623215 0

⎞
⎠ ,

U�t �
⎛
⎝0 −1.132325985517193 0.915677911046419
0 0 −0.957661219232001
0 0 0

⎞
⎠ .

Strang Method

Classically, we use the following operator splitting

i
∂ψ(x, t)

∂t
= −1

2
�ψ(x, t),

∂ψ(x, t)
∂t

= −(Bx) · ∇ψ(x, t),

i
∂ψ(x, t)

∂t
= V (x)ψ(x, t).
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The solutions of the above three subsystems can be obtained by operators e−i t 12�, etRot, and
e−i tV respectively so that we have the following second order splitting method

ψn+1(x) = e−i �t
2 Ve−i�t 14�e�tRote−i�t 14�e−i �t

2 Vψn(x). (52)

Strang denotes (52) when e�tRot is also approximated by a Strang directional splitting.

3DMagnetic Schrödinger Equation

From (35), where A(x) = x × B, B = t(1, 0.1, 2) and Vnq is given by (36), we can use the
following operator splitting

i
∂ψ(x, t)

∂t
= −1

2
�ψ(x, t),

∂ψ(x, t)
∂t

= A(x) · ∇ψ(x, t),

i
∂ψ(x, t)

∂t
= 1

2
|A(x)|2ψ(x, t) + Vnq(x)ψ(x, t),

The solutions of the above three subsystems can be obtained by operators e−i t 12�, etRot, and
etVA respectively and we can derive a second order splitting method:

ψn+1(x) = e
�t
2 VAe−i�t 14�e�tRote−i�t 14�e

�t
2 VAψn(x). (53)

ESR denotes the splitting method (53) when e�tRot is solved by exact splittings for transport
equation in Proposition 1. Strang denotes (53) when e�tRot is approximated by Strang
directional splitting.

The coefficients when �t = 0.1 for ESQM (25) are as follows

A�t �
⎛
⎝0.506160069704187 0.098840554692409 0.001683128724191
0.098840554692409 0.508317718832811 0.050167780151672
0.001683128724191 0.050167780151672 0.501715861437068

⎞
⎠ ,

V (
)
�t �

⎛
⎝2.025343613765655 0 0

0 0.508168767491105 0
0 0 0.000099459606977

⎞
⎠ ,

V (r)
�t �

⎛
⎝ 0.072891278447532 0.242556937819776 −1.026420948565178

0.242556937819776 1.959142247295385 −0.046535665904951
−1.026420948565178 −0.046535665904951 0.508102737430800

⎞
⎠ ,

L�t �
⎛
⎝ 0 0 0

2.003434507092443 0 0
−0.099043028107977 1.016569585390557 0

⎞
⎠ ,

U�t �
⎛
⎝0 −1.963756896350695 −0.099988990937417
0 0 −1.006635420674690
0 0 0

⎞
⎠ .
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Proof of the Period 360

Lemma 1 The function t �→ Ut = eit(�/2−V (x))−t Bx ·∇ , where V and B are given by (32)
satisfies

∀t ∈ R, Ut+180 = −Ut .

Proof Since t �→ Ut is a group, we just have to prove that

U180 = −IL2(R3).

We recall that by construction, we have Ut = e
−tqw

(QM) where

qw
(QM)

= i
|ξ |2
2

+ i Bx · ξ + iV (x)

Step 1: To conjugate qw
(QMS)

to a sum of harmonic oscillators. We are going to prove that

there exists V ∈ U(L2(Rn)) such that

Ut = V exp(−i t
3∑
j=1

ω j (x
2
j − ∂2x j ))V

∗ (54)

where (ω1, ω2, ω3) = π
180 (20, 75, 132). Assuming first this decomposition, we deduce that

U180 = V exp(−20iπ(x21 − ∂2x1)) exp(−75iπ(x22 − ∂2x2)) exp(−132iπ(x23 − ∂2x3))V
∗.

But, in dimension 1, the eigenvalues of the harmonic oscillator x2−∂2x being the odd positive
integers, we know that exp(iπ(x2 − ∂2x )) = −IL2(R3). Thus, we deduce that

U180 = V IL2(R3)(−IL2(R3))IL2(R3)V
∗ = −IL2(R3).

In order to prove (54) we are going to apply the following theorem due to Hörmander.

Theorem 2 (Hörmander, Theorem 21.5.3 in [27]) Let Q ∈ S++
2n (R) be a real symmetric

positive matrix of size 2n. There exists a real symplectic matrix P ∈ Sp2n(R) of size 2n such
that and some positive numbers ω1, . . . , ωn such that

tPQP = D(ω)

where D(ω) = diag(ω1, . . . , ωn, ω1, . . . , ωn) is the diagonal matrix such that, for j =
1, . . . , n, D(ω) j, j = D(ω) j+n, j+n = ω j .

Indeed, here, it can be checked that Q(QM) (the matrix of q(QM)) is a symmetric positive
matrix (computing, for example, an approximation of its eigenvalues). Thus, applying The-
orem 2, we get a symplectic matrix P and some positive numbers ω1 < ω2 < ω3 such
that

tPQ(QM)P = D(ω). (55)

Consequently, since P is symplectic, we have

exp(2t J Q(QM)) = P exp(2t J D(ω))P−1,
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where J is the symplectic matrix ofR2n . Now, applying the monoid morphism (Theorem 3.1
in [12]) introduced also by Hörmander in [26], we get a function t �→ σt ∈ {±1} such that

∀t ∈ R, Ut = e
−i tqw

(QM) = σt V exp(−i t
3∑
j=1

ω j (x
2
j − ∂2x j ))V

∗

where ±V is the Fourier Integral Operator associated with P . Note that V is unitary. Fur-
thermore, by a straighforward argument of continuity we deduce that σt = 1 for all t ∈ R.
Thus, to conclude, we just have to prove that (ω1, ω2, ω3) = π

180 (20, 75, 132).

Step 2: To determine ω. First, we observe that the matrices J Q(QM) and J D(ω) are similar.
Indeed, since P ∈ Sp6(R), we have tP ∈ Sp6(R) and applying (55) we deduce that

J D(ω) = J tPQ(QM)P = (P−1 J tP−1) tPQ(QM)P = P−1 J Q(QM)P.

Afortiori, J Q(QM) and J D(ω)have the same eigenvalues. Thus, the eigenvalues of J Q(QM)

are

σ(J Q(QM)) = σ(J D(ω)) = {iω1,−iω1, iω2,−iω2, iω3,−iω3}. (56)

Consequently, to determine ω we just have to determine the roots of the characteristic poly-
nomial of J Q(QM), denoted χ(QM). By a straightforward calculation, we observe that

(
3

π

)6

χ(QM)(
πX

3
) = X6 + λ1 + λ2 + λ3 + 3

2
X4 + λ1λ2 + λ1λ3 + λ2λ3 + 9/4

4
X2

−3
λ1 + λ2 + λ3

32
+ λ1λ2 + λ1λ3 + λ2λ3

8
− λ1λ2λ3

8
.

But, by construction λ1 < λ2 < λ3 are the roots of the polynomial

7200X3 − 72196X2 + 222088X − 216341.

Thus, λ1 +λ2 +λ3, λ1λ2 +λ1λ3 +λ2λ3 and λ1λ2λ3 are some explicit rational numbers and
we deduce that (

3

π

)6

χ(QM)(
πX

3
) = X6 + 407

120
X4 + 123

80
X2 − 7

384
.

Finally, we verify by an explicit computation that

χ(QM)(i
π

9
) = χ(QM)(i

5π

12
) = χ(QM)(i

11π

15
) = 0.

So, we deduce of (56) that (ω1, ω2, ω3) = π
180 (20, 75, 132). ��
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