
Journal of Scientific Computing (2020) 85:39
https://doi.org/10.1007/s10915-020-01350-6

Nonuniform Alikhanov Linearized Galerkin Finite Element
Methods for Nonlinear Time-Fractional Parabolic Equations

Boya Zhou1 · Xiaoli Chen1 · Dongfang Li1,2

Received: 6 March 2020 / Revised: 12 October 2020 / Accepted: 14 October 2020 /
Published online: 27 October 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The solutions of the nonlinear time fractional parabolic problems usually undergo dramatic
changes at the beginning. In order to overcome the initial singularity, the temporal discretiza-
tion is done by using the Alikhanov schemes on the nonuniform meshes. And the spatial
discretization is achieved by using the finite element methods. The optimal error estimates
of the fully discrete schemes hold without certain time-step restrictions dependent on the
spatial mesh sizes. Such unconditionally optimal convergent results are proved by taking the
global behavior of the analytical solutions into account. Numerical results are presented to
confirm the theoretical findings.

Keywords Nonlinear time-fractional parabolic equations · Alikhanov scheme · Nonuniform
meshes · Unconditional error estimates

1 Introduction

In this paper, we consider the nonuniform Alikhanov FEMs for solving nonlinear time frac-
tional parabolic equations (TFPEs):

⎧
⎨

⎩

∂α
t u − �u = g(u), in � × (0, T ],
u(x, 0) = u0(x), in �,

u(x, t) = 0, on ∂� × (0, T ],
(1.1)
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where� ⊂ R
d , (d = 2 or 3) is a bounded and convex (smooth) polygon inR2 (or polyhedron

inR3 ), u(x, t) is an unknown function defined in�×[0, T ], and g(u) ∈ C2(R) is a nonlinear
function. Here, ∂α

t u denotes the Caputo fractional derivative of order α, defined by

∂α
t u =

∫ t

0
w1−α(t − s)u′(s)ds, 0 < α < 1,

where�(·) is the commonGamma function andw1−α(t) = t−α

�(1−α)
. TFPEs arewidely used to

describe different natural phenomena involving some anomalous transport mechanism. The
typical models include the time fractional Allen–Cahn equation, the time fractional fokker
planck equation, the time fractional fisher equations and so on [1,2].

In the past several decades, different numerical schemes are developed to numerically
solve the TFPBs, including finite different methods [3–7], spectral methods [8,9] and so on
[10–13]. Since the typical solutions of TFPEs have the initial layers, the implication of the
direct L1-type methods, BDF convolution quadrature methods lead some possible loss of
accuracy [14]. To overcome the initial difficulties, M. Stynes et al. applied the L1-scheme on
the graded meshes to solve the linear time fractional problems [15] and obtained the optimal
error estimates of the fully discrete schemes. Cao et al. studied the corrected implicit-explicit
schemes for the nonlinear fractional equations with nonsmooth solutions [16]. Jin et al.
considered the corrected BDF convolution quadrature [17]. More about the topic, we refer
readers to the recent papers [18–26].

In this study, we present an effective numerical scheme for solving the TFPEs. The numer-
ical scheme is constructed as follows. The time discretization is done by using the Alikhanov
scheme on the nonuniform meshes, taking global behavior of the analytical solutions into
account. The spatial discretization is done by using the Galerkin FEMs. The nonlinear term
is approximated by using the Newton linearized methods. Then, we obtain the uncondition-
ally optimal error estimates of the fully discrete and linearized scheme. Such unconditional
results imply that the error estimate holds without any time-step restrictions dependent on the
spatial mesh sizes. We believe that this paper is the first to get the unconditional convergence
results of Alikhanov formula on the general nonuniform meshes.

The key proof of the unconditional convergence results is the temporal-spatial error split-
ting argument, which has a successful application in analysis of numerical schemes for two-
and three-dimensional PDEs of parabolic type [27–31]. However, the previous results are
obtained by using the uniform meshes or graded meshes. The proof of the present results
is much more technical due to the use of the nonuniform meshes and the non-locality of
the problem. On one hand, the local truncation error is expressed in a discrete convolution
form. We need to consider the effect of the errors at different time level. On the other hand,
we have to estimate the boundedness of some nonlocal operator and the numerical solutions
involving different time levels.

The rest of this paper is organized as follows. In Sect. 2, we propose a linearized nonuni-
form Alikhanov FEM for solving the problem (1.1) and present our main results. In Sect. 3,
a discrete fractional Grönwall type inequality and the time-spatial splitting methods are used
to obtain the error estimates. In Sect. 4, numerical tests are done to verify our theoretical
findings. Finally, we give some conclusions in Sect. 5.
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2 The Nonuniform Alikhanov Formula andMain Results

In this section, we present the fully discrete numerical schemes for solving problem (1.1)
and the convergence results of the schemes.

Let Th be a conforming and shape regular simplicial triangulation or tetrahedra of �, and
let h = maxK∈Th {diam K } be themesh size. Denote Vh by the finite-dimensional subspace of
H1
0 (�), which consists of continuous piecewise polynomials of degree r (r ≥ 1) on Th . Let

time step τk = tk − tk−1, tk−θ = (1− θ)tk + θ tk−1, 0 = t0 < t1 < t2 < · · · < tN , θ ∈ [0, 1),
where N is an integer. Denote the step size ratios ρk := τk/τk+1 and the maximum step size
τ := max1≤k≤N τk . For a sequence of functions{ωn}, we write

ωn,θ = (1 − θ)ωn + θωn−1, ∇τω
n = ωn − ωn−1, 1 ≤ n ≤ N , θ = α

2
. (2.1)

The nonuniform Alikhanov approximation to Caputo’s fractional derivative at tn−θ is
defined by

(∂α
t φ)n−θ =

∫ tn−θ

0
w1−α(tn−θ − s)φ′(s)ds

=
n−1∑

k=1

∫ tk

tk−1

w1−α(tn−θ − s)φ′(s)ds +
∫ tn−θ

tn−1

w1−α(tn−θ − s)φ′(s)ds

≈
n−1∑

k=1

∫ tk

tk−1

w1−α(tn−θ − s)(�2,kφ)′(s)ds

+
∫ tn−θ

tn−1

w1−α(tn−θ − s)(�1,nφ)′(s)ds,

where �2,kφ means the quadratic interpolate at tk−1, tk and tk+1, and �1,kφ denoted as the
linear interpolatewith the nodes tk−1, tk . Omit the truncation error, the nonuniformAlikhanov
formula is given by

(Dα
τ φ)n−θ : =

n−1∑

k=1

∫ tk

tk−1

w1−α(tn−θ − s)

[∇τ φ
k

τk
+ 2(s − tk−1/2)

τk(τk + τk+1)
(ρk∇τ φ

k+1 − ∇τ φ
k)

]

ds

+
∫ tn−θ

tn−1

w1−α(tn−θ − s)
∇τ φ

n

τn
ds

= ã(n)
0 ∇τ φ

n +
n−1∑

k=1

(ã(n)
n−k∇τ φ

k + ρk b̃
(n)
n−k∇τ φ

k+1 − b̃(n)
n−k∇τ φ

k)

= A(n)
0 ∇τ φ

n +
n−1∑

k=1

A(n)
n−k∇τ φ

k, (2.2)

where the discrete coefficients ã(n)
n−k and b̃

(n)
n−k are

ã(n)
0 = 1

τn

∫ tn−θ

tn−1

w1−α(tn−θ − s)ds, ã(n)
n−k = 1

τk

∫ tk

tk−1

w1−α(tn−θ − s)ds,

b̃(n)
n−k = 2

τk(τk + τk+1)

∫ tk

tk−1

(s − tk− 1
2
)w1−α(tn−θ − s)ds,
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and

A(n)
n−k =

⎧
⎪⎨

⎪⎩

ã(n)
0 + ρn−1b̃

(n)
1 , k = n,

ã(n)
n−k + ρk−1b̃

(n)
n−k+1 − b̃(n)

n−k, 2 ≤ k ≤ n − 1,

ã(n)
n−1 − b̃(n)

n−1, k = 1.

The Newton linearized nonuniform Alikhanov Galerkin FEM is to find Un
h ∈ Vh such

that, for n = 1, 2, . . . , N ,
(
(Dα

τ Uh)
n−θ , v

)
+
(
∇Un,θ

h ,∇v
)

−
(
g(Un−1

h ) + (1 − θ)g1(U
n−1
h )(Un

h −Un−1
h ), v

)
= 0 ∀v ∈ Vh, (2.3)

where g1(U
n−1
h ) = ∂

∂u g
∣
∣
u=Un−1

h
.

The typical solutions of the nonlinear time fractional problems have an initial layer, which
are widely described by (see. e.g., [21])

‖u(m)
t ‖L∞(0,T ;Hr+1) ≤ C(1 + tσ−m), m = 0, 1, 2, 3, σ ∈ (0, 1) ∪ (1, 2), r = 1, 2,

(2.4)

where C is a constant.

Remark 2.1 As pointed out in [14,15], if the initial condition u0(x) ∈ Hr+1(�) ∩ H1
0 (�)

for each t and the nonlinear term is Lipschitz continuous, then problem (1.1) has a unique
solution u such that

u ∈ Cα([0, T ]; L2(�)) ∩ C([0, T ] : Hr+1(�) ∩ H1
0 (�)).

It implies that σ = α in most references. For the assumption σ ∈ (0, α), we refer readers to
[32,33]. Suppose that the solution is smoother, i.e., σ > α, some additional hypothesis should
be added (see [15]). This is quite restrictive. Just to make the current analysis extendable, we
assume that σ ∈ (0, 1) ∪ (1, 2).

To capture the initial singularities, we have some restrictions on the temporal stepsizes,
i.e., we assume that there exists a constant Cγ > 0, independent of k, and a fixed γ ≥ 1 such
that

τk ≤ Cγ τ min{1, t1−1/γ
k } , 1 ≤ k ≤ N , tk ≤ Cγ tk−1 and

τk/tk ≤ Cγ τk−1/tk−1, 2 ≤ k ≤ N . (2.5)

Here and below, we always assume (2.4) and (2.5) hold whenever they are refereed.

Now, we present optimal error estimates of the fully discrete schemes and leave the main
proof to the next sections.

Theorem 2.1 Suppose that u0 ∈ Hr+1(�)
⋂

H1
0 (�) and the nonlinear time fractional prob-

lem (1.1) has a unique solution, satisfying u(·, t) ∈ Hr+1(�)
⋂

H1
0 (�). Then, there exist

positive constants τ0 and h0, such that when τ ≤ τ0 and h < h0, the r−degree finite element
system defined in (2.3) has a unique solution Um

h , m = 1, 2, 3, . . . , N, satisfying

‖um −Um
h ‖L2 ≤ C0(τ

min{γ σ,2} + hr+1), (2.6)

where um = u(·, tm) and C0 is a positive constant independent of τ and h.
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Remark 2.2 The assumption (2.5) is necessary due to the initial layer. A typical example
satisfying (2.5) is the graded meshes, i.e, for a given interval [0, T0], we let

tk = T0

(
k

N0

)γ

, k = 0, 1, · · · , N0,

where N0 is a positive integer.

Remark 2.3 At present, there are some convergence results of the nonuniformAlikhanov time
discretization for time-fractional problems. In [34], Liao et al. presented the error convolution
structure and a global consistency analysis of the nonuniformAlikhanov approximation. They
also obtained a sharp L2-norm error estimate for the linear reaction-subdiffusion problems.
In [26], Chen and Martin showed that the scheme attains second-order convergence for the
linear time-fractional diffusion problem. The analysis in [26] followed a completely different
line of attack. In ourmanuscript, the convergence results rely heavily on the discreteGrönwall
inequality in [21] and the error convolution structure in [34]. However, the emphasis is quite
different from the previous investigations on linear problems. In order to get convergence
results for high-dimensional nonlinear problems, the boundedness of numerical solutions
in the maximum norm is usually required. For this, one may apply the inverse inequality,
which may lead to certain space-time restriction condition τ = O(h p) (p is a constant). The
main contribution of the present paper is to get the optimal error estimates by removing the
restrictions. We believe that this paper is the first to get the results on the Alikhanov scheme
for the nonlinear problems. The results imply that the numerical solutions are bounded
without placing any condition on the relative sizes of the temporal and spatial meshes. Then
the error estimates hold without certain time-step restrictions dependent on the spatial mesh
size.

3 Proof of theMain Results

In this section, we focus on the proof of the main results.

3.1 Preparation

Some properties of A(n)
n−k will play an important role in the proof. They are proved in [7,34].

Here we list them.

A1. The discrete kernels are monotone, i.e., 0 < A(n)
k−1 ≤ A(n)

k−2, 2 ≤ k ≤ n ≤ N .

A2. Let πA = 11
4 . It holds that A

(n)
n−k ≥ 1

πAτk

∫ tk
tk−1

w1−α(tn − s)ds, 1 ≤ k ≤ n ≤ N .

A3. There exists a constant ρ > 0 such that the step size ratio ρk ≤ ρ, 1 ≤ k ≤ N − 1.

Thanks to the properties of the coefficients, one can get the following lemmas.

Lemma 3.1 [21] Let

P(n)
0 := 1

A(n)
0

, P(n)
n− j := 1

A( j)
0

n∑

k= j+1

(A(k)
k− j−1 − A(k)

k− j )P
(n)
n−k, 1 ≤ j ≤ n − 1. (3.1)

Then, it holds
n∑

j=1

P(n)
n− jw1−α(t j ) ≤ πA, 1 ≤ n ≤ N ,
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and
n∑

j=1

P(n)
n− j ≤ tαn πA�(2 − α). (3.2)

Lemma 3.2 [21] For any sequence {vn}Nn=0, it holds

1

2

n∑

k=1

A(n)
n−k∇τ (‖vk‖2) ≤ 〈

vn,θ , (Dα
τ v)n−θ

〉
, f or 1 ≤ n ≤ N . (3.3)

Lemma 3.3 [21] Suppose the nonnegative sequences {vn, ξn}Nn=0 satisfy

n∑

k=1

A(n)
n−k∇τ (v

k)2 ≤ λ1(v
n)2 + λ2(v

n−1)2 + vn,θ (ξn + η) n ≥ 1. (3.4)

Then, it holds

vn ≤ 2Eα(2max(1, ρ)πAλtαn )

⎡

⎣v0 + max
1≤k≤n

k∑

j=1

P(k)
k− jξ

j + πA�(2 − α)tαn η

⎤

⎦ , (3.5)

where τn satisfies max1≤n≤N τn ≤ (2πA�(2 − α)λ)− 1
α , λ = λ1 + λ2, and Eα(z) =

∑∞
k=0

zk
�(1+kα)

is the Mittag-Leffler function.

Lemma 3.4 [34] Suppose that v ∈ C3((0, T ]) and there exists a constant Cv > 0 such that

|v′′′(t)| ≤ Cv(1 + tσ−3), f or 0 ≤ t ≤ T .

Then, it holds that

n∑

j=1

P(n)
n− j |ϒ j

1 | ≤ Cv

(
τσ
1

σ
+ max

2≤k≤n
tσ−(3−α)/γ

k τ 3−α

)

,

where ϒn
1 = 1

�(1−α)

∫ tn−θ

0
v′(s)

(t−s)α ds − (Dα
τ v(t))n−θ .

Lemma 3.5 ([34], Lemma3.8) Suppose that v ∈ C2((0, T ])with ‖v′′(t)‖H2 ≤ Cν(1+tσ−2),
where σ ∈ (0, 1) ∪ (1, 2). Then, it holds that

n∑

j=1

P(n)
n− j |ϒ j,θ

2 | ≤ Cv(τ
σ+α
1 /σ + tαn max

2≤k≤n
tσ−2
k−1 τ 2k ), 1 ≤ n ≤ N , (3.6)

where ϒ
n,θ
2 = �v(tn−θ ) − �vn,θ for 1 ≤ n ≤ N.

Lemma 3.6 Assume that ν ∈ C2((0, T ]) satisfies |ν′(t)| ≤ Cν(1+tσ−1), σ ∈ (0, 1) ∪ (1, 2)
and g ∈ C2(R) is a nonlinear function. Denote νn = ν(tn) and Rn

ν = g(νn−θ ) − g(νn−1) −
g1(νn−1)(νn−θ − νn−1), 1 ≤ n ≤ N, θ ∈ [0, 1) then

n∑

j=1

P(n)
n− j |R j

ν | ≤ 2Cν(τ
2σ+α
1 + tαn max

2≤k≤n
τ 2k t

2(σ−1)
k−1 ), 1 ≤ n ≤ N .
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Proof Applying Taylor expansion, it holds that, for any 0 < s < 1,

R j
ν = (1 − θ)2

2
(ν j − ν j−1)2g′′(ν j−1 + s(ν j−θ − v j−1))

≤ (1 − θ)2Cg1

2

(∫ t j

t j−1

|ν′(t)|dt
)2

,

where Cg1 is a constant dependent on g. By using the condition of ν(t) and fundamental
inequality (a + b)2 ≤ 2(a2 + b2), we get

|R1
ν | ≤ Cν

[∫ t1

0
(1 + tσ−1)dt

]2

≤ 2Cν

(

τ 21 + τ 2σ1

σ 2

)

,

and

|R j
ν | ≤ Cν[

∫ t j

t j−1

(1 + tσ−1)dt]2 ≤ 2Cν(τ
2
j + τ 2j t

2(σ−1)
j−1 ), 2 ≤ j ≤ N ,

which further gives that

n∑

j=1

P(n)
n− j |R j

ν | ≤ P(n)
n−1|R1

ν | +
n∑

j=2

P(n)
n− j |R j

ν |

≤ �(2 − α)πAτα
1 |R1

ν | + max
2≤k≤n

|Rk,θ
ν |

n∑

j=1

P(n)
n− j

≤ 2Cν[τα+2σ
1 + max

2≤k≤n
tαn (τ 2k + τ 2k t

2σ−2
k−1 )],

which finishes the proof. ��
Let Rh : H1

0 (�) → Vh be Ritz projection operator satisfying

(∇(u − Rhu),∇ω) = 0, ∀ω ∈ Vh . (3.7)

By classical FEM theory [35], we can find that for any v ∈ Hs(�) ∩ H1
0 (�),

‖v − Rhv‖L2 + h‖∇(v − Rhv)‖L2 ≤ C�h
s‖v‖Hs , 1 ≤ s ≤ r + 1. (3.8)

To prove Theorem 2.1, we need to introduce the following time-discrete system

(Dα
τ U )n−θ = �Un,θ + g(Un−1) + g1(U

n−1)(1 − θ)(Un −Un−1), n = 1, 2, . . . , N ,

(3.9)

with initial and boundary conditions

Un(x) = 0, x ∈ ∂�, n = 1, 2, 3, . . . , N , (3.10)

U 0(x) = u0(x), x ∈ �. (3.11)

We split the errors into two terms, i.e.,

‖un −Un
h ‖ ≤ ‖un −Un‖ + ‖Un −Un

h ‖ := ‖en‖ + ‖Un −Un
h ‖, (3.12)

where un := u(·, tn). Then, we will show the numerical solutions are bounded without any
certain time-step restrictions dependent on the spatial mesh sizes.
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3.2 Analysis of the Time-Discrete System

In this subsection, we focus on the error estimates of time discrete systems.
Considering t = tn−θ in first equation of (1.1) and un−θ := u(tn−θ ), we have

(Dα
τ u)n−θ − �un,θ − [

g(un−1) + g1(u
n−1)(1 − θ)(un − un−1)

] = Pn, (3.13)

where

Pn = (Dα
τ u)n−θ − Dα

tn−θ
u + �u(tn−θ ) − �un,θ + g(un−θ )

−[g(un−1) + g1(u
n−1)(1 − θ)(un − un−1)

]
. (3.14)

Subtracting (3.9) from (3.13), we have

(Dα
τ e)

n−θ − �en,θ − rn,θ = Pn, (3.15)

where en := un −Un and

rn,θ = g(un−1) + g1(u
n−1)(1 − θ)(un − un−1) − g(Un−1)

−g1(U
n−1)(1 − θ)(Un −Un−1)

= g(un−1) − g(Un−1) + g1(u
n−1)(1 − θ)un − g1(u

n−1)(1 − θ)un−1

−g1(U
n−1)(1 − θ)Un + g1(U

n−1)(1 − θ)Un−1

= g(un−1) − g(Un−1) + (1 − θ)g1(u
n−1)un − (1 − θ)g1(U

n−1)un

+(1 − θ)g1(U
n−1)un − (1 − θ)g1(U

n−1)Un

+(1 − θ)g1(U
n−1)Un−1 − (1 − θ)g1(u

n−1)Un−1

+(1 − θ)g1(u
n−1)Un−1 − (1 − θ)g1(u

n−1)un−1. (3.16)

Meanwhile, it holds that

�u = ∂α
t u − g(u),

and

�Un,θ = (Dα
τ U )n−θ − g(Un−1) − g1(U

n−1)(1 − θ)(Un −Un−1).

Then, we have, for n = 1, 2, · · · , N ,

�en,θ =
∫ tn−θ

0
w1−α(tn−θ − s)u′(s)ds − (Dα

τ U )n−θ

−g(un,θ ) + g(Un−1) + g1(U
n−1)(1 − θ)(Un −Un−1).

Noting that un = Un = 0 as x → ∂�, it holds that
∫ tn−θ

0
w1−α(tn−θ − s)u′(x, s)ds = (Dα

τ U )n−θ = 0, x → ∂�,

and

g(un−θ ) − g(Un−1) − g1(U
n−1)(1 − θ)(Un −Un−1)

= g(un−1) − g(Un−1) = g′(0)(un−1 −Un−1)

= 0, x → ∂�.

Therefore,

�en,θ = 0, x → ∂�. (3.17)
123
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Theorem 3.1 The semi-discrete system (3.9)–(3.11) has a unique solution Um and there
exists a positive τ ∗

1 such that, when τ ≤ τ ∗
1 ,

‖em‖H2 ≤ C∗
1τ

min{σγ,2}, (3.18)

‖Um‖H2 + ‖(Dα
τ U )m−θ‖H2 ≤ C∗∗

1 , (3.19)

where m = 1, 2, . . . , N and C∗
1 ,C

∗∗
1 are two positive number independent of τ and h.

Proof Noting that at each time level, system (3.9) is a linear elliptic equation. The existence
and uniqueness of the solution Un can be obtained obviously. Next, we prove the main
results by using the mathematical induction. Firstly, we can check that the estimation holds
for m = 0. Now, we suppose that (3.18) holds for 0 ≤ m ≤ n − 1. Then, we have, for
m ≤ n − 1,

‖Um‖L∞ ≤ ‖um‖L∞ + ‖em‖L∞

≤ ‖um‖L∞ + C�‖em‖H2

≤ ‖um‖L∞ + C�C
∗
1τ

min{σγ,2}

≤ K1,

where τ ≤ τ̃1 = (C�C∗
1 )

− 1
min{σγ,2} and here and below

K1 := max
1≤n≤N

‖un‖L∞ + 1.

Together with g ∈ C2(R), there exists a positive constant CL independent of τ such that

‖g1(un−1)‖L2 ≤ CL , (3.20)

‖g(Un−1) − g(un−1)‖L2 ≤ CL‖en−1‖L2 , (3.21)

‖g1(Un−1) − g1(u
n−1)‖L2 ≤ CL‖en−1‖L2 . (3.22)

Now we start to estimate the error for m = n. Taking inner with en,θ both sides in Eq. (3.15)
and using Cauchy–Schwarz inequality, we arrive

((Dα
τ e)

n−θ , en,θ ) ≤ ‖en,θ‖L2‖rn,θ‖L2 + ‖Pn‖L2‖en,θ‖L2 . (3.23)

Substituting (3.20)–(3.22) into (3.16), we get

‖rn‖L2 ≤ CL

[
‖en−1‖L2 + (1 − θ)‖un‖L∞‖en−1‖L2 + (1 − θ)‖en‖L2

+(1 − θ)‖Un−1‖L∞‖en−1‖L2 + (1 − θ)‖en−1‖L2

]

≤ [
CL + (1 − θ)CLK1 + K1CL(1 − θ) + CL(1 − θ)

]‖en−1‖L2

+(1 − θ)CL‖en‖L2

≤ C1(‖en−1‖L2 + ‖en‖L2), (3.24)

where C1 is a positive constant only depending on CL , K1, θ .

123



39 Page 10 of 20 Journal of Scientific Computing (2020) 85 :39

Substituting (3.24) into (3.23) and applying (a+b)2 ≤ 2(a2+b2)withYoung’s inequality,
we have

((Dα
τ e)

n−θ , en,θ ) ≤ ‖en,θ‖2L2 + 1

4
‖rn,θ‖2L2 + ‖Pn‖L2‖en,θ‖L2

≤ 2(1 − θ)2‖en‖2L2 + 2θ2‖en−1‖2L2 + C2
1

2
(‖en−1‖2L2 + ‖en‖2L2)

+‖Pn‖L2‖en,θ‖L2

≤ [2θ2 + C2
1

2
]‖en−1‖2L2 + [2(1 − θ)2 + C2

1

2
]‖en‖2L2 + ‖Pn‖L2‖en,θ‖L2

≤ C2‖en−1‖2L2 + C3‖en‖2L2 + ‖Pn‖L2‖en,θ‖L2 ,

whereC2 = 2θ2+ C2
1
2 ,C3 = 2(1−θ)2+ C2

1
2 . Recall Lemma 3.2, the inequality above further

implies

1

2

n∑

k=1

A(n)
n−k∇τ‖ek‖2L2 ≤ C2‖en−1‖2L2 + C3‖en‖2L2 + ‖Pn‖L2‖en,θ‖L2 .

Applying the discrete Grönwall inequality in Lemmas 3.3–3.6, we have there exists a τ̃2 (0 <

τ̃2 ≤ (2πA�(2 − α)(C2 + C3))
− 1

α such that

‖en‖L2 ≤ 4Eα(4max(1, ρ)πA(C2 + C3)t
α
n ) max

1≤k≤n

k∑

j=1

P(k)
k− j‖P j‖L2

≤ 4Eα(4max(1, ρ)πA(C2 + C3)t
α
n ) max

1≤k≤n

k∑

j=1

P(k)
k− j‖P j‖L2

≤ 4Eα(4max(1, ρ)πA(C2 + C3)t
α
n )Cν

(
τσ
1

σ
+ max

2≤k≤n
tk

σ− 3−α
γ τ 3−α + τσ+α

1

σ

+tαn max
2≤k≤n

tσ−2
k−1 τ 2k + τ 2σ+α

1 + tαn max
2≤k≤n

t2(σ−1)
k−1 τ 2k

)

≤ C4

(
τσ
1

σ
+ max

2≤k≤n
tk

σ− 3−α
γ τ 3−α + tαn max

2≤k≤n
tσ−2
k−1 τ 2k + tαn max

2≤k≤n
t2(σ−1)
k−1 τ 2k

)

,

(3.25)

where C4 = 4CνEα(4max(1, ρ)πA(C2 +C3)tαn ) is a positive constant independent of n, τ

and h. In addition, denote ζ = min{2, σγ }, we have for 2 ≤ k ≤ n,

tσ−2
k−1 τ 2k ≤ Cγ t

σ−2
k τ 2k ≤ Cγ t

σ−2
k τ

2−ζ
k

(

τ min{1, t1−
1
γ

k }
)ζ

≤ Cγ t
σ−2
k τ

2−ζ
k τ ζ t

ζ− ζ
γ

k

≤ Cγ t
σ− ζ

γ

k (τk/tk)
2−ζ τ ζ . (3.26)
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Therefore,

‖en‖L2 ≤ C4[Cγ τσγ + Cγ t
α+σ− ζ

γ
n (τk/tk)

2−ζ τ ζ ] ≤ C4Cγ T
α+σ− ζ

γ τ ζ = C5τ
min{σγ,2},

(3.27)

where C5 = C4Cγ T
α+σ− ζ

γ .
Similarly, multiplying by−�en,θ and�2en,θ in (3.15), respectively, integrating it over�

and using Cauchy–Schwarz inequality and the condition of boundary value (3.11), we have,
there exist two constant C̃2 and C̃3, such that

((Dα
τ ∇e)n−θ ,∇en,θ ) ≤ ‖∇Pn‖L2‖∇en,θ‖L2 + C̃2‖∇en‖2L2 + C̃3‖∇en−1‖2L2 , (3.28)

and

((Dα
τ �e)n−θ ,�en,θ ) ≤ ‖�Pn‖L2‖�en,θ‖L2 + C̃2‖�en‖2L2 + C̃3‖�en−1‖2L2 , (3.29)

where we have noted (3.17).
By Lemmas 3.2 and 3.3 , there exists a positive constant τ̃3, when τ ≤ τ̃3, such that

‖∇en‖L2 ≤ 4Eα(2max(1, ρ)πAλtαn ) max
1≤k≤n

k∑

j=1

P(k)
k− j‖∇P j‖L2 ,

and there exists a positive constant τ̃4, when τ ≤ τ̃4, such that

‖�en‖L2 ≤ 4Eα(2max(1, ρ)πAλtαn ) max
1≤k≤n

k∑

j=1

P(k)
k− j‖�P j‖L2 ,

where the constant λ is independent of τ and h.
Together with Lemmas 3.2–3.4, we obtain

‖∇en‖L2 ≤ C6τ
min{σγ,2}, (3.30)

‖�en‖L2 ≤ C7τ
min{σγ,2}. (3.31)

Now, by (3.27), (3.30) and (3.31), we get, when τ ≤ τ̃5 = min{τ̃1, τ̃2, τ̃3, τ̃4},

‖en‖H2 ≤
√

‖en‖2
L2 + ‖∇en‖2

L2 + ‖�en‖2
L2

≤ √
C5 + C6 + C7τ

min{σγ,2}

≤ Ccτ
min{σγ,2},

which further implies that

‖Un‖H2 ≤ ‖un‖H2 + ‖en‖H2 ≤ ‖un‖H2 + Ccτ
min{σγ,2} ≤ K1,

when τ ≤ τ̃6 = C
− 1

min{σγ,2}
c . Taking τ ∗

1 = min{τ̃1, τ̃2, τ̃3, τ̃4, τ̃5, τ̃6}, we conclude that the
result (3.18) holds for m = n.
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Using the definition of (Dα
τ v)n−θ , we arrive that

‖(Dα
τ e)

n−θ‖H2 ≤ A(n)
0 ‖en‖H2 +

n−1∑

k=1

(A(n)
n−k − A(n)

n−k−1)‖ek‖H2 − A(n)
n−1‖e0‖H2

≤
[

A(n)
0 +

n−1∑

k=1

(A(n)
n−k − A(n)

n−k−1)

]

C∗
1τ

min{σγ,2}

≤ A(n)
0 C∗

1τ
min{σγ,2}

≤ 24τ−α
n

11�(2 − α)
C∗
1τ

min{σγ,2},

where A(n)
0 ≤ ã(n)

0 + ρn−1b̃
(n)
1 ≤ 24

11τn

∫ tn
tn−1

w1−α(tn − s)ds is used under the condition A3
and the proof can be found in Theorem 2.2 of reference [34].

Therefore

‖(Dα
τ U )n−θ‖H2 ≤ ‖(Dα

τ u)n−θ‖H2 + ‖(Dα
τ e)

n−θ‖H2 ≤ C∗∗
1 ,

the mathematical induction is closed, which completes the proof. ��

3.3 Analysis of Spatial-Discrete System

In this subsection, we aim to get the boundedness of the numerical solutions. Firstly, by
Theorem 3.1 and ‖Rhυ‖L∞ ≤ C�‖υ‖H2 for any υ ∈ H2(�), we can obtain ‖RhUn‖L∞ is
bounded. Therefore, we define

K2 = max
1≤n≤N

‖RhU
n‖L∞ + 1. (3.32)

The weak form of Eq. (3.9) can be written as

((Dα
τ U )n−θ , v) = (�Un,θ , v)

+(g(Un−1) + g1(U
n−1)(1 − θ)(Un −Un−1), v), ∀v ∈ H1

0 ,

(3.33)

where n = 1, 2, . . . , N .
Let

Un −Un
h = Un − RhU

n + RhU
n −Un

h = Un − RhU
n + ϑn

h , n = 0, 1, 2, . . . , N .

Subtracting (2.3) from (3.33) and using (3.7), we have

((Dα
τ ϑh)

n−θ , v) + (∇ϑ
n,θ
h ,∇v) − (Rn

2 , v)

= −((Dα
τ (Un − RhU

n))n−θ , v), f or v ∈ Vh, (3.34)

where

Rn
2 = g(Un−1) + g1(U

n−1)(1 − θ)(Un −Un−1)

−[g(Un−1
h ) + g1(U

n−1
h )(1 − θ)(Un

h −Un−1
h )]. (3.35)
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Theorem 3.2 Let Um and Um
h be the solutions of (3.33) and (2.3), respectively. Then, for

m = 1, 2, 3, . . . , N, there exists τ ∗
2 > 0, h∗

1 > 0 such that, when τ ≤ τ ∗
2 , h ≤ h∗

1,

‖ϑm
h ‖L2 ≤ h

11
6 , (3.36)

‖Um
h ‖L∞ ≤ K2. (3.37)

Proof As the fact that the coefficient matrix of the resulting equation is diagonally dominant
when taking sufficiently small τ , the solution of the Eq. (3.33) exists and is unique. Next,
we still prove (3.36) by mathematic induction. Since U 0

h = Rhu0, we have (3.36) holds for
m = 0.

Now, suppose that (3.36) holds for m = 1, · · · , n − 1. We will show the result holds for
m = n. By the assumption and (3.32), we have

‖Um
h ‖L∞ ≤ ‖RhU

m‖L∞ + ‖RhU
m −Um

h ‖L∞

≤ ‖RhU
m‖L∞ + C�h

− d
2 ‖RhU

m −Um
h ‖L2

≤ ‖RhU
m‖L∞ + C�h

− d
2 h

11
6

≤ ‖RhU
m‖L∞ + 1

≤ K2, (3.38)

for d = 2, 3 and h ≤ h1 = C
− 6

11−3d
� .

With the similar approach of processing rn , we can obtain that

Rn
2 = g(Un−1) − g(Un−1

h ) + (1 − θ)g1(U
n−1)(Un −Un−1)

− (1 − θ)g1(U
n−1
h )(Un

h −Un−1
h )

= g(Un−1) − g(Un−1
h ) + (1 − θ)[g1(Un−1)Un − g1(U

n−1
h )Un

+ g1(U
n−1
h )Un − g1(U

n−1
h )Un

h ]
−(1 − θ)[g1(Un−1)Un−1 − g1(U

n−1
h )Un−1 + g1(U

n−1
h )Un−1 − g1(U

n−1
h )Un−1

h ]
= g(Un−1) − g(Un−1

h ) + (1 − θ)[g1(Un−1) − g1(U
n−1
h )]Un

+ (1 − θ)g1(U
n−1
h )(Un −Un

h )

− (1 − θ)[g1(Un−1) − g1(U
n−1
h )]Un−1 − (1 − θ)g1(U

n−1
h )(Un−1 −Un−1

h ).

Considering the boundedness of ‖Un‖H2 , ‖Un−1
h ‖L∞ and g ∈ C2(R), we can see that,

there exists a positive constant Cg dependent on C∗
1 , K2,C� such that

‖g1(Un−1
h )‖L2 ≤ Cg, (3.39)

‖g(Un−1) − g(Un−1
h )‖L2 ≤ Cg‖Un−1 −Un−1

h ‖L2 , (3.40)

‖g1(Un−1) − g1(U
n−1
h )‖L2 ≤ Cg‖Un−1 −Un−1

h ‖L2 , (3.41)

which further implies that

‖Rn
2‖L2 ≤ 2Cg(K1 + 1)‖Un−1 −Un−1

h ‖L2 + Cg‖Un −Un
h ‖L2

≤ 2Cg(K1 + 1)(‖Un−1 − RhU
n−1‖L2 + ‖ϑn−1

h ‖L2)

+Cg(‖Un − RhU
n‖L2 + ‖ϑn

h ‖L2)

≤ 2Cg(K1 + 1)(C�K1h
2 + ‖ϑn−1

h ‖L2) + Cg(C�K1h
2 + ‖ϑn

h ‖L2)

≤ CKh
2 + 2Cg(K1 + 1)‖ϑn−1

h ‖L2 + Cg‖ϑn
h ‖L2 . (3.42)
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Here CK is a positive constant independent of n but dependent on K1,Cg,C�. Taking
v = ϑ

n,θ
h in Eq. (3.34), we obtain

((Dα
τ ϑh)

n−θ , ϑ
n,θ
h ) + (∇ϑ

n,θ
h ,∇ϑ

n,θ
h ) − (Rn

2 , ϑ
n,θ
h ) + ((Dα

τ (U − RhU ))n−θ , ϑ
n,θ
h ) = 0.

Notice that ‖∇ϑ
n,θ
h ‖2

L2 ≥ 0 , we have

((Dα
τ ϑh)

n−θ , ϑ
n,θ
h ) ≤ ‖Rn

2‖L2‖ϑn,θ
h ‖L2 + ‖(Dα

τ (U − RhU ))n−θ‖L2‖ϑn,θ
h ‖L2 . (3.43)

Substituting (3.42) into (3.43) and using Lemma 3.2, the above inequality further gives that

1

2

n∑

k=1

A(n)
n−k∇τ‖ϑn

h ‖2L2 ≤ ‖Rn
2‖L2‖ϑn,θ

h ‖L2 + ‖(Dα
τ (U − RhU ))n−θ‖L2‖ϑn,θ

h ‖L2

≤ CKh
2‖ϑn,θ

h ‖L2 + 2Cg(K1 + 1)‖ϑn−1
h ‖L2‖ϑn,θ

h ‖L2

+Cg‖ϑn
h ‖L2‖ϑn,θ

h ‖L2 + ‖(Dα
τ (U − RhU ))n−θ‖L2‖ϑn,θ

h ‖L2

≤ C10‖ϑn−1
h ‖2L2 + C11‖ϑn

h ‖2L2 + CKh
2‖ϑn,θ

h ‖L2

+‖(Dα
τ (U − RhU ))n−θ‖L2‖ϑn,θ

h ‖L2

≤ C10‖ϑn−1
h ‖2L2 + C11‖ϑn

h ‖2L2

+(CK + C�‖(Dα
τ U )n−θ‖H2)h2‖ϑn,θ

h ‖L2 ,

where C10 = 2Cg(K1 + 1) + Cgθ

2 ,C11 = Cg(K1 + 1)(1 − θ) + Cg(2−θ)

2 .
Applying the inequality (3.19), Lemma 3.3 and U 0

h = Rhu0, we arrive

‖ϑn
h ‖L2 ≤ 2Eα(4max(1, ρ)πA(C10 + C11)t

α
n )[‖ϑ0

h‖L2

+2πA�(2 − α)tαn (Ck + C�K1)h
2]

≤ 4Eα(4max(1, ρ)πA(C10 + C11)t
α
n )[πA�(2 − α)T α(Ck + C�C

∗∗
1 )]h2

≤ h
11
6 ,

where h ≤ h2 = [4Eα(4max(1, ρ)πA(C10 + C11)tαn )(πA�(2 − α)T α(Ck + C�C∗∗
1 ))]− 1

6 .
Furthermore,

‖Un
h ‖L∞ ≤ ‖RhU

n‖L∞ + ‖ϑn
h ‖L∞ ≤ ‖RhU

n‖L∞ + C�h
−d/2h

11
6 ≤ K2.

Then, (3.36) and (3.37) hold for m = n. The mathematical induction is done and the proof
is completed. ��

3.4 Optimal Error Estimates

In Sect. 3.3, the boundedness of ‖Un
h ‖L∞ is obtained without certain time-step restrictions

dependent on the spatial mesh sizes. Thanks to the results, we are ready to get the uncondi-
tionally optimal error estimates.

The weak form of Eq. (3.13) satisfies

((Dα
τ u)n−θ , v) − (�un,θ , v) − (g(un−1)

+g1(u
n−1)(1 − θ)(un − un−1), v) = (Pn, v), ∀v ∈ Vh . (3.44)
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Denote

un −Un
h = un − Rhu

n + Rhu
n −Un

h = un − Rhu
n + ηnh , n = 0, 1, 2, . . . , N .

(3.45)

Subtracting (3.44) from (2.3) gives

((Dα
τ ηh)

n−θ , v) + (∇η
n,θ
h ,∇v) − (Rn

3 , v) = (Pn, v) + (Rn
4 , v), (3.46)

where

Rn
3 = g(un−1) + g1(u

n−1)(1 − θ)(un − un−1)

−[g(Un−1
h ) + g1(U

n−1
h )(1 − θ)(Un

h −Un−1
h )]

and

Rn
4 = (Dα

τ (u − Rhu))n−θ .

By (3.37),

‖Rn
3‖L2 ≤ ‖g(un−1) + g1(u

n−1)(1 − θ)(un − un−1)

−[g(Un−1
h ) + g1(U

n−1
h )(1 − θ)(Un

h −Un−1
h )]‖L2

≤ ‖g(un−1) − g(Un−1
h )‖L2 + (1 − θ)[ ‖(g1(un−1) − g1(U

n−1
h ))un‖L2

+‖g1(Un−1
h )(un −Un

h )‖L2 ] + (1 − θ)[‖g1(un−1)(un −Un−1
h )‖L2

+‖(g1(un−1) − g1(U
n−1
h ))Un−1

h ‖L2 ]
≤ C12(‖un −Un

h ‖L2 + ‖un−1 −Un−1
h ‖L2)

≤ C12(C�‖un‖r+1h
r+1 + ‖ηnh‖L2 + C�‖un−1‖r+1h

r+1 + ‖ηn−1
h ‖L2)

≤ C12(‖ηn−1
h ‖L2 + ‖ηnh‖L2 + C�h

r+1), (3.47)

where C12 is a constant dependent on u and g.
Substituting v = η

n,θ
h into (3.46) and using Cauchy–Schwarz inequality, we derive

((Dα
τ ηh)

n−θ , η
n,θ
h ) ≤ ‖Rn

3‖L2‖ηn,θ
h ‖L2 + ‖Pn‖L2‖ηn,θ

h ‖L2 + ‖Rn
4‖L2‖ηn,θ

h ‖L2

≤ C12

[

θ + (1 − θ)2

2
+ (1 − θ)

]

‖ηn−1
h ‖2L2

+C12

[
(1 − θ)2

2
+ (1 − θ)

]

‖ηnh‖2L2

+C12C�h
r+1‖ηn,θ

h ‖L2 + ‖Pn‖L2‖ηn,θ
h ‖L2 + ‖Rn

4‖L2‖ηn,θ
h ‖L2

≤ 3C12

2
(‖ηnh‖2L2 + ‖ηn−1

h ‖2L2) + C12C�h
r+1‖ηn,θ

h ‖L2

+‖Pn‖L2‖ηn,θ
h ‖L2 + ‖Rn

4‖L2‖ηn,θ
h ‖L2 . (3.48)

Together with the regularity of exact solution u, we get

max
1≤k≤n

k∑

j=1

P(k)
k− j‖R j

4‖L2 ≤ max
1≤k≤n

k∑

l=1

k∑

j=l

P(k)
k− j A

( j)
j−l‖∇τ (u

l − Rhu
l)‖L2

≤ max
1≤k≤n

k∑

l=1

‖∇τ (u
l − Rhu

l)‖L2
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≤ max
1≤k≤n

k∑

l=1

∫ tl

tl−1

‖(u − Rhu)′(t)‖L2dt

≤ C�h
r+1

∫ tn

0
‖u′(t)‖Hr+1dt ≤ C�(tn + tσn )hr+1.

By Lemmas 3.3, 3.4 and 3.6, there exists a positive constant τ ∗
3 , when τ ≤ τ ∗

3 , it holds

‖ηnh‖L2 ≤ 4Eα(2max(1, ρ)πA3C12t
α
n )[‖η0h‖L2 + max

1≤k≤n

k∑

j=1

P(k)
k− j (‖P j‖L2 + ‖R j

4‖L2)

+πA�(2 − α)tαn C12C�h
r+1]

≤ 4Eα(6max(1, ρ)πAC12t
α
n )[C12C�h

r+1 + Cpτ
min{σγ,2}]

≤ C13(h
r+1 + τmin{σγ,2}),

where C13 = 4Eα(6max(1, ρ)πAC12tαn )(C12C� + Cp).
With (3.8), the above inequality further implies that

‖un −Un
h ‖L2 ≤ ‖un − Rhu

n‖L2 + ‖Rhu
n −Un

h ‖L2 ≤ (C�C + C13)(τ
min{σγ,2} + hr+1),

(3.49)

for 1 ≤ n ≤ N . Therefore, (2.6) holds when τ ≤ τ0 = min{τ ∗
1 , τ ∗

2 , τ ∗
3 }, h ≤ h0 = h∗

1 and
C0 ≥ C�C + C13. This completes the proof of the Theorem 2.1.

4 Numerical Experiments

In this section, we present several numerical examples to confirm the theoretical results.
In the numerical experiments, the interval [0,T] is divided into two parts [0, T0] ∪ [T0, T ],
where T0 := 2−γ . In the interval [0, T0], we let tn = (n/N0)

γ T0 for 0 ≤ n ≤ N0, where
N0 := � γ N

2γ −1+γ
�. The smoothly graded meshes are applied in the first part [0, T0] and a

uniform is used in the interval [T0, T ].
Example 1 Consider the two-dimensional time-fractional Fisher’s equation,which arewidely
used in heat and mass transfer, ecology and physiology [2].

∂α
t u − �u − u(1 − u) = g, x ∈ �, 0 < t < 1, (4.1)

where � = [0, 1]2. The initial condition and the source term g are chosen correspondingly
to the exact solution

u = (1 + tσ )x2(1 − x)3y2(1 − y)3.

Toverify the numerical errors and convergence orders in temporal and spatial direction, the
L2-normof the error is computedwithσ = α andσγ = 2 for differentα and N = �M (r+1)/2�
with M = 10, 20, 40, 80. Here, M means uniform triangular partition with M + 1 nodes
in each direction. That is to say, we choose M = N with linear finite element methods
(L-FEMs) and N = �M3/2� for Q-FEMs, respectively. The numerical errors are shown in
Tables 1, 2 and 3, respectively. It can be clearly seen that all convergence results agree with
theoretical findings.
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Table 1 The errors and orders
with σ = α = 0.4, γ = 2/σ
(Example 4.1)

M τ = h, r = 1 τ = h3/2, r = 2

Errors Orders Errors Orders

10 8.7537e–05 ∗ 2.3274e–06 ∗
20 2.3109e–05 1.9214 2.8630e–07 3.0231

40 5.8590e–06 1.9797 3.6169e–08 2.9847

80 1.4699e–06 1.9949 4.8258e–08 2.9059

Table 2 The errors and orders
with σ = α = 0.6, γ = 2/σ
(Example 4.1)

M τ = h, r = 1 τ = h3/2, r = 2

Errors Orders Errors Orders

10 8.7741e–05 ∗ 2.3282e–06 ∗
20 2.3162e–05 1.9215 2.8690e–07 3.0206

40 5.8725e–06 1.9797 3.6392e–08 2.9789

80 1.4734e–06 1.9949 4.8843e–09 2.8974

Table 3 The errors and orders
with σ = α = 0.8, γ = 2/σ
(Example 4.1)

M τ = h, r = 1 τ = h3/2, r = 2

Errors Orders Errors Orders

10 8.7996e–05 ∗ 2.3389e–06 ∗
20 2.3226e–05 1.9217 2.8686e–07 3.0274

40 5.8889e–06 1.9797 3.5812e–08 3.0019

80 1.4775e–06 1.9949 4.5573e–09 2.9742
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Fig. 1 2D problem: L2-errors of linear element approximations with fixed τ by changing spatial mesh sizes
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Fig. 2 2D problem: L2-errors of quadratic element approximations with fixed τ by changing spatial mesh
sizes

Fig. 3 3D problem: L2-errors of quadratic element approximations with fixed τ by changing spatial mesh
sizes (α = 0.6)

At the same time, the unconditional convergence can be confirmed by taking τ =
1/5, 1/10, 1/20, 1/40 with L-FEMs and Q-FEMs. We plot the numerical results in Figs.
1 and 2, respectively. We can see that the errors tend to be a constant. The numerical results
indicate that the error estimates hold without certain time-step restrictions dependent on the
spatial mesh sizes.
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Table 4 The errors and orders in temporal and spatial direction with linear element (σ = α, γ = 2/σ )
(Example 4.2)

M = N α = 0.4 α = 0.6 α = 0.8

Errors Orders Errors Orders Errors Orders

M = 5 5.5750e–01 ∗ 5.7260e–01 ∗ 5.8634e–01 ∗
M = 10 1.4823e–01 1.9558 1.5073e–01 1.9256 1.5359e–01 1.9327

M = 15 6.6393e–02 1.9808 6.7527e–02 1.9803 6.9005e–02 1.9733

M = 20 3.7450e–02 1.9903 3.8185e–03 1.9817 3.8973e–02 1.9859

Example 2 Consider the three-dimensional time fractional Allen–Cahn equation,
⎧
⎨

⎩

C
0 D

α
t u − �u − u(1 − u2) = g, x ∈ �, 0 < t < 1,

u(x, 0) = u0(x), x ∈ �,

u = 0, x ∈ ∂�,

(4.2)

where � = [0, 1]3, g is chosen correspondingly to the exact solution

u = (1 + tσ ) sin(πx) sin(π y) sin(π z).

We solve problem (4.2) by using L-FEMs with M = N . The numerical results and the
convergence orders are given in Table 4. Figure 3 illustrates that the errors tend to a constant,
which implies that the conditional time steps are not needed.

5 Conclusions

In this paper, a linearized nonuniformAlkihanov FEM is proposed to solve TFPE effectively.
Optimal error estimates of the fully discrete scheme are obtained. Such convergence results
hold without certain time-step restrictions dependent on the spatial mesh sizes.
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