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Abstract

The solutions of the nonlinear time fractional parabolic problems usually undergo dramatic
changes at the beginning. In order to overcome the initial singularity, the temporal discretiza-
tion is done by using the Alikhanov schemes on the nonuniform meshes. And the spatial
discretization is achieved by using the finite element methods. The optimal error estimates
of the fully discrete schemes hold without certain time-step restrictions dependent on the
spatial mesh sizes. Such unconditionally optimal convergent results are proved by taking the
global behavior of the analytical solutions into account. Numerical results are presented to
confirm the theoretical findings.

Keywords Nonlinear time-fractional parabolic equations - Alikhanov scheme - Nonuniform
meshes - Unconditional error estimates

1 Introduction
In this paper, we consider the nonuniform Alikhanov FEMs for solving nonlinear time frac-

tional parabolic equations (TFPEs):

ofu — Au = g(u), in Q2 x (0, T,
u(x,0) =up(x), ing, (1.1)
u(x,t) =0, on a2 x (0, T],
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where Q ¢ R?, (d = 2 or 3) is a bounded and convex (smooth) polygon in R (or polyhedron
inR3), u(x, t) is an unknown function defined in €2 x [0, T'], and g(u) € C2%(R) is a nonlinear
function. Here, 0;*u denotes the Caputo fractional derivative of order «, defined by

t
0 u =/ Wi—a(t =)' (s)ds, 0<a <1,
0

where I'(+) is the common Gamma function and w4 (t) = F(tl;fa) TFPEs are widely used to
describe different natural phenomena involving some anomalous transport mechanism. The
typical models include the time fractional Allen—Cahn equation, the time fractional fokker
planck equation, the time fractional fisher equations and so on [1,2].

In the past several decades, different numerical schemes are developed to numerically
solve the TFPBs, including finite different methods [3—7], spectral methods [8,9] and so on
[10-13]. Since the typical solutions of TFPEs have the initial layers, the implication of the
direct L1-type methods, BDF convolution quadrature methods lead some possible loss of
accuracy [14]. To overcome the initial difficulties, M. Stynes et al. applied the L.1-scheme on
the graded meshes to solve the linear time fractional problems [15] and obtained the optimal
error estimates of the fully discrete schemes. Cao et al. studied the corrected implicit-explicit
schemes for the nonlinear fractional equations with nonsmooth solutions [16]. Jin et al.
considered the corrected BDF convolution quadrature [17]. More about the topic, we refer
readers to the recent papers [18-26].

In this study, we present an effective numerical scheme for solving the TFPEs. The numer-
ical scheme is constructed as follows. The time discretization is done by using the Alikhanov
scheme on the nonuniform meshes, taking global behavior of the analytical solutions into
account. The spatial discretization is done by using the Galerkin FEMs. The nonlinear term
is approximated by using the Newton linearized methods. Then, we obtain the uncondition-
ally optimal error estimates of the fully discrete and linearized scheme. Such unconditional
results imply that the error estimate holds without any time-step restrictions dependent on the
spatial mesh sizes. We believe that this paper is the first to get the unconditional convergence
results of Alikhanov formula on the general nonuniform meshes.

The key proof of the unconditional convergence results is the temporal-spatial error split-
ting argument, which has a successful application in analysis of numerical schemes for two-
and three-dimensional PDEs of parabolic type [27-31]. However, the previous results are
obtained by using the uniform meshes or graded meshes. The proof of the present results
is much more technical due to the use of the nonuniform meshes and the non-locality of
the problem. On one hand, the local truncation error is expressed in a discrete convolution
form. We need to consider the effect of the errors at different time level. On the other hand,
we have to estimate the boundedness of some nonlocal operator and the numerical solutions
involving different time levels.

The rest of this paper is organized as follows. In Sect. 2, we propose a linearized nonuni-
form Alikhanov FEM for solving the problem (1.1) and present our main results. In Sect. 3,
a discrete fractional Gronwall type inequality and the time-spatial splitting methods are used
to obtain the error estimates. In Sect. 4, numerical tests are done to verify our theoretical
findings. Finally, we give some conclusions in Sect. 5.
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2 The Nonuniform Alikhanov Formula and Main Results

In this section, we present the fully discrete numerical schemes for solving problem (1.1)
and the convergence results of the schemes.

Let 7;, be a conforming and shape regular simplicial triangulation or tetrahedra of 2, and
let h = maxg¢7;, {diam K} be the mesh size. Denote V}, by the finite-dimensional subspace of
H(; (£2), which consists of continuous piecewise polynomials of degree r (r > 1) on 7j,. Let
timestep tp =ty —tg—1, kg = (1 =Nty +01,_1,0 =1y <t1 <th < --- < ty,0 € [0, 1),
where N is an integer. Denote the step size ratios p; := 7 /Tx+1 and the maximum step size
T := maxj<k<py T. For a sequence of functions{w" }, we write

0= (1-0)"+600"", Vi =" —"', 1<n<N, e:%. 2.1

The nonuniform Alikhanov approximation to Caputo’s fractional derivative at t,_g is
defined by

th—o
@) = f Wi—g(ta—p — $)¢ (5)ds

—0

In
Z/ wlfa(trLfO - S)ff’/(s)ds +/ wlfa(tn70 - s)¢/(s)ds
k=1 In—

n—1

/ Wi—a(tn—g — )(Taxd) (5)ds

k=1

+ / Wi—a(tn_g — $)(TT1nd) (5)ds,
h—1

where I ¢ means the quadratic interpolate at fx_1, fx and x4, and I1; x¢ denoted as the
linear interpolate with the nodes #x_1, ;. Omit the truncation error, the nonuniform Alikhanov
formula is given by

n—1

(D)~ Z/ Wi—g(ty—g — 3 )[V"” 4 282 he1) (g g —wk)} ds

Tk T (Tk + Tkt 1)
n—6 4)”
+/ W—g(th—p — ) =
In—1 Tn

=Gy Vio" + Z(aw Veh + bl Ve gttt — b Vg
k=1

= AV, 9" + ZA(") (2.2)
k=1

where the discrete coefficients &2’?,{ and l;,(;? © are

ORI o _ 1"
a,’ = f/ Wi—q(tn—g —$)ds, a,’; = f/ Wi—g(th—g — s)ds,
In Tk th—

T Ji,

i

= (s =t _1)wi—g(th—g — s)ds,
" T (Tk + Thg1) /t;(,l k=3
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and
Zl(()") + pn_ll;i"), k =n,
A, = a;(?%k +pi<f)lb;(1r:)k+1 —b L 2<k=n—1,
~(n ~(n
a,”, —b,",, k=1.

The Newton linearized nonuniform Alikhanov Galerkin FEM is to find U;} € Vj such
that, forn =1,2,..., N,

(v, v) + (vup?, vo)
—(g(U;j—l) + (1= g U — U, v) —0 YveVi (23)

—1 9
where g1 (U} ™") = $g|u=U,n_1.

The typical solutions of the nonlinear time fractional problems have an initial layer, which
are widely described by (see. e.g., [21])

™ Wl oo o.7: 141y < CA+177™), m=0,1,2,3, 0 €(0,1)U(1,2), r=12,
(2.4)

where C is a constant.

Remark 2.1 As pointed out in [14,15], if the initial condition uo(x) € H"™(Q) N HJ (Q)
for each ¢ and the nonlinear term is Lipschitz continuous, then problem (1.1) has a unique
solution # such that

u e C*([0, T1; La(2)) N C([0, T]: H(Q) N H (2)).

It implies that 0 = « in most references. For the assumption o € (0, ), we refer readers to
[32,33]. Suppose that the solution is smoother, i.e., 0 > «, some additional hypothesis should
be added (see [15]). This is quite restrictive. Just to make the current analysis extendable, we
assume that o € (0, 1) U (1, 2).

To capture the initial singularities, we have some restrictions on the temporal stepsizes,
i.e., we assume that there exists a constant C;, > 0, independent of k, and a fixed y > 1 such
that

w < Cyrmin{l,f, "} 1 <k <N, <Cyi_y and
T /tk < Cyth—1/te—1, 2<k < N. (2.5)

Here and below, we always assume (2.4) and (2.5) hold whenever they are refereed.

Now, we present optimal error estimates of the fully discrete schemes and leave the main
proof to the next sections.

Theorem 2.1 Suppose thatug € H'+1(Q) N H(} (2) and the nonlinear time fractional prob-
lem (1.1) has a unique solution, satisfying u(-,t) € H™H(Q) N HOl (S2). Then, there exist
positive constants Ty and hg, such that when t < to and h < hy, the r —degree finite element
system defined in (2.3) has a unique solution U}’l”, m=1,2,3,..., N, satisfying

W™ — U2 < Co(x™ntre2h 4 prtly (2.6)

where u™ = u(-, tp,) and Cy is a positive constant independent of T and h.
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Remark 2.2 The assumption (2.5) is necessary due to the initial layer. A typical example
satisfying (2.5) is the graded meshes, i.e, for a given interval [0, Tp], we let

k\7
tk:TO(VO) ) k:0713"'7N07

where N is a positive integer.

Remark 2.3 At present, there are some convergence results of the nonuniform Alikhanov time
discretization for time-fractional problems. In [34], Liao et al. presented the error convolution
structure and a global consistency analysis of the nonuniform Alikhanov approximation. They
also obtained a sharp L2-norm error estimate for the linear reaction-subdiffusion problems.
In [26], Chen and Martin showed that the scheme attains second-order convergence for the
linear time-fractional diffusion problem. The analysis in [26] followed a completely different
line of attack. In our manuscript, the convergence results rely heavily on the discrete Gronwall
inequality in [21] and the error convolution structure in [34]. However, the emphasis is quite
different from the previous investigations on linear problems. In order to get convergence
results for high-dimensional nonlinear problems, the boundedness of numerical solutions
in the maximum norm is usually required. For this, one may apply the inverse inequality,
which may lead to certain space-time restriction condition T = O(h?) (p is a constant). The
main contribution of the present paper is to get the optimal error estimates by removing the
restrictions. We believe that this paper is the first to get the results on the Alikhanov scheme
for the nonlinear problems. The results imply that the numerical solutions are bounded
without placing any condition on the relative sizes of the temporal and spatial meshes. Then
the error estimates hold without certain time-step restrictions dependent on the spatial mesh
size.

3 Proof of the Main Results

In this section, we focus on the proof of the main results.

3.1 Preparation

Some properties of A,(;?  Will play an important role in the proof. They are proved in [7,34].
Here we list them.

Al. The discrete kernels are monotone, i.e., 0 < A,((”_)1 < A,(cn_)z, 2<k<n<N.

A2. Letmy = 4 Ttholds that A}, > —L— [ ‘wy_4(t, —s)ds, 1<k<n<N.

A3. There exists a constant p > 0 such that the step size ratio py < p, 1 <k <N — 1.

Thanks to the properties of the coefficients, one can get the following lemmas.

Lemma 3.1 [21] Let

1 |

(n) . (n) . (k) (k) (n) .

Py’ = w Pn_j = E (Ak_j_1 — Ak_j)Pn_k, 1<j<n—-1. 3.1
Ay A k=j+1

Then, it holds

n

Y PP wi o) <ma.  1<n <N,
=1
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and

n

Y P < maTQ2 - ). (3.2)
j=1

Lemma 3.2 [21] For any sequence {v”}flvzo, it holds

n

1
3 Y AP < (0 (D20 ). for 1<n <N, (3.3)
k=1

Lemma 3.3 [21] Suppose the nonnegative sequences {v", & ”}2[:0 satisfy

n
AW V05 < MM+ ")+ E ) 0 1 (3.4)
k=1

Then, it holds

k

n o 0 (k) &j _ a

V" < 2E,(2max(1, p)wart®) | v +1‘§£§,,Zl”k—ﬁ + AT -y |, (3.5)
J=

where T, satisfies maXj<,<y Tn < (mal'(2 — (X))\.)_é, A= A 4+ A, and Ey(z2) =

)y F(%kka) is the Mittag-Leffler function.

Lemma 3.4 [34] Suppose that v € c? ((0, T'D) and there exists a constant C,, > 0 such that
W ()] < Co(1+1°73),  for 0<t<T.

Then, it holds that

o

n
i T (3
E Pn(’i)lel]I <Cy (—1 + max t,f ¢ a)/yt%“),
g
j=1

2<k=<n

where Y| = ﬁ (;"70 (;}_(5))01 ds — (D%v(1)"".

Lemma 3.5 ([34], Lemma3.8) Suppose thatv € C>((0, T1) with |v" (t)|| 2 < C,(14+1°72),
where o € (0, 1) U (1, 2). Then, it holds that

=<

n
(n) 1A~J 0 + -2.2
; P = GGl o 0y max 77750, 1=n =N, (3.6)
j:

where Tg’e = Av(ty—g) — AV for1 <n < N.

Lemma 3.6 Assume thatv € C2((0, T1) satisfies V' (1)| < C,(1+t°71), ¢ € (0, 1) U (1,2)
and g € C R)isa nonlinear function. Denote v = v(t,) and R}, = g(v"_e) - g(v”_l) -
g1 H"? —v"= 1 <n <N, 0 €0,1) then

n

j 2 2.2(c—1
> PR <20, (17T 418 Jnax 79, 1<n<N.
j=1 ==
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Proof Applying Taylor expansion, it holds that, forany 0 <s < 1,

R,-_(l—é))2
L)

(1—60)2Cq1 [ (1 ’
< — % (/ wmm) ,
2 f

J—=

e o A (S ()

where Cg is a constant dependent on g. By using the condition of v(z) and fundamental
inequality (a + b)? < 2(a? + b?), we get

bl 2 ‘ng
IRilfCu[/ (l+t“’1)dt} <20, i+ 1),
0 o

. tj
IRI| <Gl A+t Hdr? <2C,2+ 227Dy, 2<j <N,
v J
ti—1

and

Jhj-1
which further gives that
n n
(n) j (n) | pl (n) j
> PRI < PR+ Y P IR]|
Jj=1 j=2

n
<T@ - a)marf|Ry| + max |RYY] Y0P,
ks =

< 2Cv[rf‘+2” + Jmax t,‘f(rkz + rkzt,fffz)],
=K=n

which finishes the proof. O
Let Ry, : HOl (2) — V), be Ritz projection operator satisfying
(V(u — Rpu), Vo) =0, Yo € V). (3.7)
By classical FEM theory [35], we can find that for any v € H*(2) N HO1 (2),
[v—Ruvll 2 + AV = Rp)ll 2 < Coh'lvllgs, 1<s<r+1 (3.8)
To prove Theorem 2.1, we need to introduce the following time-discrete system

DU = AU + (U Y + U H(1 —-0)U" U, n=1,2,...,N,

(3.9)
with initial and boundary conditions
U"(x) =0, xe€ed, n=12,3,...,N, (3.10)
U'(x) = up(x), xeQ. (3.11)
We split the errors into two terms, i.e.,
" — Uyl < lu" = U +11U" = Uyl == lle" | + 1U" = Uy, (3.12)
where " = u(-, t,). Then, we will show the numerical solutions are bounded without any

certain time-step restrictions dependent on the spatial mesh sizes.
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3.2 Analysis of the Time-Discrete System
In this subsection, we focus on the error estimates of time discrete systems.
Considering t = f,_p in first equation of (1.1) and u"? .= u(r,_g), we have
(DFu)"™" — Au"? — [¢@"™ ) + 1" H(1 = OHW" —u"H] =P, (3.13)
where
P" = (Du)"™? = DY u+ Au(tyg) — Au™" + gu"™?)
—[8@"™ ) + 1" HA =)W' —u"h]. (3.14)
Subtracting (3.9) from (3.13), we have
(D&e)" " — Ae™? — ¥ = P, (3.15)
where ¢" :=u" — U" and

=g + g " HA = 0" —u") —g(Umh

—g1(U"Ha —ewr - v

=g —gW" )+ g1 (A — 0" — g1 " H(1 — O
—g1(U"H( —0U" + g1 (U H(1 —o)ur!

=g ) —gW" H+ 1 -0)g @ Hu" — (1-0)g U Hu"
+(1 = 0)g1 (U Hu" — (1 —0)g1 (U™ HU"
+(1 =g U HU" — (1 =g Hu!
+(1 =g @ Hu ' =1 —0)g " Hu"". (3.16)

Meanwhile, it holds that
Au =3} u — gu),
and
AU = (DIU)"™" = gU"h) = g1 (U"THA = OU" U,
Then, we have, forn =1,2,---, N,
Ae™? = /Ow Wi_a(tn_g — )i’ (s)ds — (DXU)"

—g@"") +gU" Y + (U H( - U - U,

Noting that u” = U" = 0 as x — 9%, it holds that

th—g
/ Wi—g(ti—g — ' (x,5)ds = (DXU)" =0, x — 3%,
0

and
g — g — g U H(1 - WU - U
=g —gU"H =g O —U"Th
=0, x — 092.
Therefore,
AP =0, x> Q. (3.17)
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Theorem 3.1 The semi-discrete system (3.9)—(3.11) has a unique solution U™ and there
exists a positive t{" such that, when t < 1,

lle™ | 2 < CFe™intor-2), (3.18)
U™ g2 + ||(D?U)m79||H2 <Cy". (3.19)
wherem = 1,2,..., N and C{, C{* are two positive number independent of t and h.

Proof Noting that at each time level, system (3.9) is a linear elliptic equation. The existence
and uniqueness of the solution U" can be obtained obviously. Next, we prove the main
results by using the mathematical induction. Firstly, we can check that the estimation holds
for m = 0. Now, we suppose that (3.18) holds for 0 < m < n — 1. Then, we have, for
m<n-1,

U™ llzoe < ™ 2o + lle™ [l
< "l + Calle™ || 2
< u" [l + CoCyrmner2
< Ki,

___ 1
where T < 7| = (CqC{) ™r.J and here and below

Ky := max |u"|p~ + 1.
1<n<N

Together with g € C?(R), there exists a positive constant C; independent of 7 such that

g1 @™ M2 < Cp, (3.20)
lg(U™™") — g™ Hli2 < Crlle" i, (3.21)
g1 (U™ — g1 " Y2 < Crlle" 2. (3.22)

Now we start to estimate the error for m = n. Taking inner with ¢"-? both sides in Eq. (3.15)
and using Cauchy—Schwarz inequality, we arrive

(DZe)" 7 &™)y < 1™l 2 lr™ 0 |l 2+ P 1 2 €™l 2. (3.23)
Substituting (3.20)—(3.22) into (3.16), we get
72 < cL[ne”‘lan + (1 =)z lle" i + (1 —6)lle" |2

(1= O IU" el 2 + (1= Ol 2 ]

<[CL+ 1 =0)CLK +KiCL(1 —8)+Cr(1—0)]lle" 2
+(1 = 0)Crlle" || 2
< Cr(lle" NIz + lle™ll12), (3.24)

where C| is a positive constant only depending on Cr,, K1, 6.
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Substituting (3.24) into (3.23) and applying (a +b)? < 2(a®>+b?) with Young’s inequality,
we have

- 1
(DF)" ™, ) < e IiT + LI + 1P g2l 2
2 2 2 12 C12 12 2
<201 = 001" 72 + 207"~ IZ + S (le" I + lle”I72)
+HIP" 2l 2

c: C?
< 1207+ —F1le" g + 120 = 0)% 4+ ZFlle" 72 + 1P 2 lle™ I

—1)2 2 9
< Colle" 2 + Calle 2 + 1P 2l .2,

2 2
where Cp = 202+ %, C3=2(1— 49)2 + % Recall Lemma 3.2, the inequality above further
implies

1 — _
5 2 A Velleb e < Calle T2 + Calle I + 1P 2l 2.

Applying the discrete Gronwall inequality in Lemmas 3.3-3.6, we have there exists a 7 (0 <
% < 27aT (2 — a)(Ca 4+ C3))~# such that

le"llz2 = 4Ea(4max(l, p)ma(C + Ca)ey) max ZP“” 1P 2

< 4E,(4max(1, p)ms(Cy + C3)1® ) max ZP(k) 1P/,

a 3w ,L.O’+Ot
< 4Eq(4max(1, p)ma(Cy + C3)t9)C, | = + Jmax. w4 L
< o
+1 kaax 7 1211(2 + r2“+°‘ + 1 mkax t,f(gl D ,(2)

7 _3=a 4
§C4<—1—|— max ° V‘c3°‘+tfl‘
o

2(0—1) 2
max 7 1: +t max t s
2<k<n k— 1 k k—1 )

2<k<n 2<k=n
(3.25)

where C4 = 4C, E,(4max(1, p)ma(Cy + C3)t7) is a positive constant independent of n, T
and A. In addition, denote ¢ = min{2, oy}, we have for2 < k < n,

-1 ¢
102 < Cptt T2 < C i 2 (tmin{l,tk V})

¢-
< C 02 by Y

< cyt,f_V(zk/rkﬁ—i 4. (3.26)
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Therefore,

4o—% Y .
le"l 2 < CalCyt® + Cyty 7 (w00 ~$1°] < C4C, T* 0776 = Cse™inlor2)]
(3.27)

_z
where Cs = C4C,, Ty,

Similarly, multiplying by —Ae™? and A%¢™? in (3.15), respectively, integrating it over
and using Cauchy-Schwarz inequality and the condition of boundary value (3.11), we have,
there exist two constant C» and C3, such that

(DFVe)" =0, ey < VP 2|[Ve™P || 2 + CallVer |7, + C3l Ve 72, (3.28)
and

(DXAe)"™, Ae™) < [|AP™|| 2| Ae™ 12 + CallAe" |17, + C3llAe™112,, (3.29)

where we have noted (3.17).
By Lemmas 3.2 and 3.3, there exists a positive constant 73, when T < 73, such that

k
n o (k) J
Vel 2 = 4Eq (2 max(l, /O)YTAMn)]Ig]?; E 1Pk,j||VP llz2,
J:

and there exists a positive constant 74, when 7 < 74, such that

k
®) :
18"z = 4Eq2max(L, p)mars) max X} PO AP 2,
]:

where the constant X is independent of t and A.
Together with Lemmas 3.2-3.4, we obtain

Ve[l 2 < Cor™nlor:2) (3.30)
[ Ae"|| 2 < Cormintor2), (3.31)

Now, by (3.27), (3.30) and (3.31), we get, when t < 75 = min{7y, T2, T3, T4},

le" Il < \llen2, + IVer 2, + llaer|2,

< /Cs + Cg + Cyrmintor:2)

< Ccrmin{ay,Z},
which further implies that

NU™M 2 < 14" g2 + Nle™ | g2 < 4" || g2 + Cer™™or2 < Ky,

___ 1
when v < % = C, ™", Taking 7 = min{7i, T, 73, T4, T5, T}, we conclude that the
result (3.18) holds for m = n.
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Using the definition of (Dﬁ‘v)”’g, we arrive that

n—1

1Dy 2 < AG N g2 + Y (AL = AL Db gz — AL 11602

k=1
n—1 )

<[44 s - 4, |epemen
k=1

< A(()”)Cikrmin{ay,ﬁ

- 247, «_min{oy,2)

= = 4 ,

11r2 — a)

~(n)

where A(”) <ay” + pn _lb(”) < 1%1 fn ' Wi—o(ty — s)ds is used under the condition A3

and the proof can be found in Theorem 2 2 of reference [34].
Therefore

IDEUY" | g < IDZw) Nl g2 + 1(DZe)" O || 2 < CFF,

the mathematical induction is closed, which completes the proof. O

3.3 Analysis of Spatial-Discrete System

In this subsection, we aim to get the boundedness of the numerical solutions. Firstly, by
Theorem 3.1 and || Ryv|lre < Cq|lv| g2 forany v € HZ(Q), we can obtain IR,U™| L is
bounded. Therefore, we define

K> = max ||[RyU"|p + 1. (3.32)
1<n<N

The weak form of Eq. (3.9) can be written as

((Dgu)n—e’ U) — (AU”’G, U)
+U" )+ @ H(U -0 U" —U""), v), Vv € Hy,
(3.33)

wheren =1,2,..., N.
Let

U"—-U; =U"—-RyU"+ R U"-U; =U"-R,U"+9;, n=0,1,2,...,N.
Subtracting (2.3) from (3.33) and using (3.7), we have

(DE03)" 0, v) + (VO V) — (R}, v)
= —((D%(U" = RyU™)" %, v), for ve WV, (3.34)

where

Rg — g(UVl—l) +g1(Un_1)(1 _ 9)(Uﬂ _ Uﬂ—l)
g + g1 (U Ha — ey —uphHl. (3.35)
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Theorem 3.2 Let U™ and U, be the solutions of (3.33) and (2.3), respectively. Then, for

m=1,2,3,..., N, there exists ty > 0, h{ > 0 such that, when T < t;, h < hj,
197" 1,2 < ke, (3.36)
U L < Ka. (3.37)

Proof As the fact that the coefficient matrix of the resulting equation is diagonally dominant
when taking sufficiently small 7, the solution of the Eq. (3.33) exists and is unique. Next,
we still prove (3.36) by mathematic induction. Since U,? = Rjug, we have (3.36) holds for
m = 0.

Now, suppose that (3.36) holds form =1, --- ,n — 1. We will show the result holds for
m = n. By the assumption and (3.32), we have

IO I < IRAU™ I + | RRU™ = Ul
< IRy U™ |1 + Coh™ T [RyU™ — U 2
< |R U™ |z + Coh™he
< |RRU™ 1 + 1
< K, (3.38)

e
ford =2,3and h Shl :CQII—M.
With the similar approach of processing r”, we can obtain that

R =gU" - ™H+1-0)gqU"Hw" -v"
— (=0 U HWUp —uH
=g H — g H+ 1 -0 Hu" — g (U HU"
+1(UHU" — g1(UpHU
—(1 =g HU" ! = (U HU + (U HU = iUy HU T
=g ) =g+ -0)a1 WY - g1 Uy HIU"
+1 =g U HWw" - up
— (1= U™ — U HWw" ! — A —ogup Hw ! —uph.

Considering the boundedness of [U" || g2, ||U,’Z—] llzeo and g € C2(R), we can see that,
there exists a positive constant C, dependent on C}, K3, Cq such that

g1 (U M2 < Cq, (3.39)
g™ = g D2 < CllU™ = U2, (3.40)
lg1 (@Y — g1 D2 < CelU"™ = U2, (3.41)

which further implies that
RS2 < 2Co(Ky + DIU"™" = Up~ 2 + ColU™ = Ul 12
< 2C, (K + DU = RyU" iz + 19771 12)
+Co(IU™ = RyU" (12 + 19711 2)
< 2C, (K1 + D(CaKih? + 197" 12) + Co(CaKih* + |0} 1] 2)
< Cxh*+2C, (K1 + D97 2 + Collo) Nl 2. (3.42)
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Here Ck is a positive constant independent of n but dependent on K, Cy, Cq. Taking
v= 192’9 in Eq. (3.34), we obtain

((DFo)" 0 + (Vo0 VoY) — (R 03 + (DEWU — RyU))" ", 0%) =
Notice that || V9, 0 ||2 > 0, we have

(Do) 0, 0y < IRS 20970 11 12 + (DX — RyUNY N 2197 112 (3.43)

Substituting (3.42) into (3.43) and using Lemma 3.2, the above inequality further gives that

.0 - .0
fZA(’” Vel 12, < IR 2104 12 + 1D W — RaU)Y" Nl 21977 I 2

< Cx 2119 12 +2Co (K1 + DI 121970 11,2
+Cq 9y |12 ||19Z’9I|L2 + (DU — RyU))"™ Gllelll‘/‘Z’elle
< Crollop =" 12, + Cullof 112, + Cx 219, 2
HIDEWU — RyUN" N1 20107112
< Crollop "7, + Cullwy i3,
+(Ck + CQII(D?U)”_QIIHZ)hzllﬁZ’g .2,
where Cjo = 2C, (K1 + 1)+ %2, €1y = Co(Ky + D)(1 —0) + T2
Applying the inequality (3.19), Lemma 3.3 and U }? = Ryu®, we arrive
197012 < 2Eq(4max(1, p)wa(Cro + Cn)t,‘f)[llﬁ;?lle
4247 (2 — a)t%(Cy + CaK1)h?]
< 4E4(4max(1, p)wa(Cro + C1t)[maT 2 — ) T*(Ck + CoCi*)1h?
<hw,
where i < hy = [4Ey(4max(1, p)wa(Cio + C1)tf) (wal' (2 — ) T*(Cy + CQCT*))]_%.
Furthermore,

_ 11
IUM oo < IRWU™[[Loe + 197 e < [IRRU" |1 + Coh™?h's < K.

Then, (3.36) and (3.37) hold for m = n. The mathematical induction is done and the proof
is completed. O

3.4 Optimal Error Estimates

In Sect. 3.3, the boundedness of ||U} ||~ is obtained without certain time-step restrictions
dependent on the spatial mesh sizes. Thanks to the results, we are ready to get the uncondi-
tionally optimal error estimates.

The weak form of Eq. (3.13) satisfies

(D¥u)"? v) — (Au™? v) — (g™ ™)
+g1W" HA =" — ", v) = (P",v), Yve V. (3.44)
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Denote
u" —U) =u" — Ryu" + Rpu" — Ul =u" — Rpu" +nj, n=0,1,2,...,N.
(3.45)
Subtracting (3.44) from (2.3) gives
(D¥n)" ™ v) + (Vi Vo) — (RE, v) = (P, v) + (R}, ), (3.46)
where
Ry =g Y+ g H(1 —0)w" —u"")
— LU Y+ a1 Ha = oWy —UupH]
and
R} = (D¥(u — Ryu))"™".
By (3.37),
1RSIz < llg@™™ ") + g1 @™ H(1 — )" —u™h)
— U Y+ Uy Ha = o)Up — U O]l
< llg@" ™" =g Ol + A =0 IIg1 ") — g1 (Ul 2
g1 HW" = UDI21+ (1= O)llg1 @™ D™ — Ul 2
+ g™ — g1 U NHUE 2]
< Coo(lu" = Uz + u"™" = U )
< Ca(Callu™ lrprh"™ !+ gl 2 + Callu k™ 4 iy~ 2)
< Coa(llmy Mgz + Il 2 + Cah™ ), (3.47)
where C1; is a constant dependent on « and g.
Substituting v = nZ’e into (3.46) and using Cauchy—Schwarz inequality, we derive
(D" 0y < RGN g2l Nz + WP 2 Mgyl + NRG N g2 Wy N 2

(1-6)°

§C12[9+ 3

+(1- 9)] [

(1-0)2
+Ci2 [—2 + (L= | I3,
0 ,0 0
+ Cr2Coh™ MmN 2 + NP 2l 2 + IRG N g2 ) N 2
3C12 _ 0
< == U2, + 1y~ 122) + CraCoh il 2

HIP g2y Nz + IR 2y 2 (3.48)
Together with the regularity of exact solution u, we get
k k k
max Y PRI < max YOS PO AV 1Vl — Ryud)l g2

1<k<n 4 1<k<n - -
j=1 =1 j=I

IA

IA

k
max Y " ||Ve (' — Ryu) |2
=1

1<k<n
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IA

k 4
— Ryu) (¢ dt
191?3»1;[”, ll(u — Ryu) (D)1l 2

IA

I
CQh’“fO (0] gre1dt < Cqty + 2R,

By Lemmas 3.3, 3.4 and 3.6, there exists a positive constant 73, when 7 < 73, it holds

k
o 4
Infllz2 < 4EqQ2max(L, p)ma3Cratnpli2 + max Y PP 2 + 1 R]NI2)
I1<k<n 4 1
j:

+ 74T Q2 — )% CpaCoh’ ']
< 4Ey(6max (1, p)maCratd)[CiaCoh’ ! + Cpr™or-2)]
< C13(hr+l +rmin{oy,2})7
where C13 = 4E, (6 max(l, p)maCi2t))(C12Cq + C)p).
With (3.8), the above inequality further implies that
" = Upllz2 < llu" = Rpu™ll g2 + | Ryt = Upll 2 < (CoC + Cia)(x™™072 4 prth,
(3.49)

for 1 < n < N. Therefore, (2.6) holds when t < 79 = min{z}, 73, 73}, h < ho = h} and
Co > CqC + C13. This completes the proof of the Theorem 2.1.

4 Numerical Experiments

In this section, we present several numerical examples to confirm the theoretical results.
In the numerical experiments, the interval [0,T] is divided into two parts [0, To] U [Tp, T,
where Ty := 277, In the interval [0, Tp], we let 1, = (n/No)¥ Ty for 0 < n < Ny, where
No = [%1. The smoothly graded meshes are applied in the first part [0, Tp] and a
uniform is used in the interval [Ty, T].

Example 1 Consider the two-dimensional time-fractional Fisher’s equation, which are widely
used in heat and mass transfer, ecology and physiology [2].

u—Au—u(l—u) =g, xe, 0<r<l, 4.1)

where Q = [0, 1]%. The initial condition and the source term g are chosen correspondingly
to the exact solution

w=(1+1)x>1 —x)*y>(1 — y)*.

To verify the numerical errors and convergence orders in temporal and spatial direction, the
L?-norm of the erroris computed witho = o andoy = 2 fordifferentr and N = [M+1D/2]
with M = 10, 20, 40, 80. Here, M means uniform triangular partition with M + 1 nodes
in each direction. That is to say, we choose M = N with linear finite element methods
(L-FEMs) and N = [M3/?] for Q-FEMs, respectively. The numerical errors are shown in
Tables 1, 2 and 3, respectively. It can be clearly seen that all convergence results agree with
theoretical findings.
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Table 1 The errors and orders

— — —73/2 . _
witho = = 04,y = 2/0 M r=hr=1 r=hTr=2
(Example 4.1) Errors Orders Errors Orders
10 8.7537e-05 * 2.3274e-06 *
20 2.3109e-05 1.9214 2.8630e-07 3.0231
40 5.8590e-06 1.9797 3.6169¢e-08 2.9847
80 1.4699¢-06 1.9949 4.8258¢-08 2.9059
Table 2 The errors and orders B B _ 32 . _
witho =a = 0.6,y = 2/o M r=hr=1 Tk r=2
(Example 4.1) Errors Orders Errors Orders
10 8.7741e-05 * 2.3282¢-06 *
20 2.3162e-05 1.9215 2.8690e-07 3.0206
40 5.8725e-06 1.9797 3.6392e-08 2.9789
80 1.4734e-06 1.9949 4.8843e-09 2.8974
Table 3 The errors and orders B B _ 132 . _
witho =a = 08,y =2/0 M r=hr=1 r=hr=2
(Example 4.1) Errors Orders Errors Orders
10 8.7996e-05 * 2.3389e-06 *
20 2.3226e-05 1.9217 2.8686e-07 3.0274
40 5.8889¢-06 1.9797 3.5812e-08 3.0019
80 1.4775e-06 1.9949 4.5573e-09 2.9742

Linear FEM(2D)

103 T T T T
= 7=1/5
-8 =1/10
—A— =1/20
—0—7=1/40
10 F
<
[
5
£
o
c
o
-
105 F
10-6 ! ! ! ! ! !
5 10 15 20 25 30 35 40

M

Fig.1 2D problem: L2-errors of linear element approximations with fixed t by changing spatial mesh sizes
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Quadrtic FEM(2D)
10° T T . : . .
——=1/5
—8—7=1/10
—— =1/20
—0— r=1/40
100 F —
14
[<
] ®
E 107¢F
(o]
e
&5
-
108 F 4
10_9 L L L L L L
10 20 30 40 50 60 70 80

M

Fig. 2 2D problem: L2-errors of quadratic element approximations with fixed t by changing spatial mesh
sizes

Quadratic FEMs

10° , : : : , :
—8—=1/5
—e— 1=1/10
- —h— 1=1/20
—— 1=1/40
107
v
S
5
£
(e}
<
N_l
10°}
P
10"1 1 1 1 1 1 1
5 10 15 20 25 30 35 40
M

Fig. 3 3D problem: L2-errors of quadratic element approximations with fixed t by changing spatial mesh
sizes (¢ = 0.6)

At the same time, the unconditional convergence can be confirmed by taking v =
1/5,1/10, 1/20, 1/40 with L-FEMs and Q-FEMs. We plot the numerical results in Figs.
1 and 2, respectively. We can see that the errors tend to be a constant. The numerical results
indicate that the error estimates hold without certain time-step restrictions dependent on the
spatial mesh sizes.
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Table 4 The errors and orders in temporal and spatial direction with linear element (6 = «,y = 2/0)
(Example 4.2)

M =N a=04 a=0.6 a=0.8

Errors Orders Errors Orders Errors Orders
M=5 5.5750e-01 * 5.7260e-01 * 5.8634e-01 *
M =10 1.4823e-01 1.9558 1.5073e-01 1.9256 1.5359¢-01 1.9327
M=15 6.6393e-02 1.9808 6.7527e-02 1.9803 6.9005e-02 1.9733
M =20 3.7450e-02 1.9903 3.8185e-03 1.9817 3.8973e-02 1.9859

Example 2 Consider the three-dimensional time fractional Allen—Cahn equation,

ng‘u—Au—u(l—uz)=g,er,0<t<1,
u(x,0) =ug(x), x € Q, 4.2)
MZO, xeaQ,

where Q = [0, 113, g is chosen correspondingly to the exact solution
u = (1+17)sin(zx)sin(y) sin(wz).

We solve problem (4.2) by using L-FEMs with M = N. The numerical results and the
convergence orders are given in Table 4. Figure 3 illustrates that the errors tend to a constant,
which implies that the conditional time steps are not needed.

5 Conclusions

In this paper, a linearized nonuniform Alkihanov FEM is proposed to solve TFPE effectively.
Optimal error estimates of the fully discrete scheme are obtained. Such convergence results
hold without certain time-step restrictions dependent on the spatial mesh sizes.
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