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Abstract
In this paper, a weak Galerkin finite element method is proposed and analyzed for one-
dimensional singularly perturbed convection–diffusion problems. This finite element scheme
features piecewise polynomials of degree k ≥ 1 on interior of each element plus piecewise
constant on the node of each element. OurWG scheme is parameter-free and has competitive
number of unknowns since the interior unknowns can be eliminated efficiently from the
discrete linear system. An ε-uniform error bound ofO((N−1 ln N )k) in the energy-like norm
is established on Shishkin mesh, where N is the number of elements. Finally, the numerical
experiments are carried out to confirm the theoretical results. Moreover, the numerical results
show that the presentmethod has the optimal convergence rate ofO(N−(k+1)) in the L2-norm
and the superconvergence rates of O((N−1 ln N )2k) in the discrete L∞-norm.
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1 Introduction

In this paper, we consider the following one-dimensional singularly perturbed convection–
diffusion problem {−εu′′ + bu′ + cu = f in Ω = (0, 1),

u(0) = u(1) = 0,
(1.1)

where 0 < ε � 1 is a small positive parameter, and b, c, f are sufficiently smooth functions
with the following properties

b(x) ≥ b0 > 0, c(x) ≥ 0, c(x) − 1

2
b′(x) ≥ c0 > 0, ∀x ∈ Ω̄, (1.2)

for some constants b0 and c0. This assumption guarantees that problem (1.1) has a unique
solution in H2(Ω) ∩ H1

0 (Ω) for all f ∈ L2(Ω) [16,26].
It is well known that the exact solution of problem (1.1) typically has an exponential

boundary layer at x = 1, which cause difficulties for classical numerical methods. For
example, the standard finite element or finite difference method fails to produce an accurate
numerical solution unless the mesh size is comparable or smaller than the parameter ε.

Layer-adapted meshes [9,13], such as Bakhvalov mesh and Shishkin mesh, have been
developed to remedy the difficulties caused by the boundary layers. As it is shown in [4],
on layer-adapted meshes one can use standard discretization techniques such as conforming
finite element method [16,26], but some small oscillations still appear in the discrete solution.
Additional stabilization is necessary to improve the situation. Over the past several decades,
many stabilized numerical methods such as the up-winding finite difference scheme [8],
the streamline-diffusion finite element method [10,11,17], variational multiscale method
[19], and the discontinuous Galerkin finite element method [5,6,14,18,23–25,27,30,31], have
been developed for the singularly perturbed convection–diffusion problem. Details of these
methods can be found in the classical book [15] and the references therein.

Recently, the WG finite element methods have attracted increasing attention. The WG
methods, first proposed and analyzed by Wang and Ye [20], provide a general finite element
technique for solving partial differential equations. In general, the WG scheme for PDEs by
replacing usual derivatives by weakly-defined derivatives in the corresponding weak form
with additional parameter-free stabilization term. The WG methods have been successfully
applications in the elliptic problems [20,28], the options pricing problem [29], the Stokes
equation [21], the Maxwell equations [12], the biharmonic equations [22], and etc.

Most recently, the WG methods demonstrate robust and stable discretizations for sin-
gularly perturbed problems (SPP). For example, a WG method with an upwinding-type
stabilization was presented and analyzed for the SPP with convection–diffusion type [7].
A P0-P0 WG method was investigated in [1] for the SPP with reaction-diffusion type. The
WG method was also studied for the fourth order singularly perturbed problems [2]. But
the uniform convergence of the WG finite element method on layer-adapted mesh has not
been discussed so far. The main concern here is to investigate the uniform convergence of
the WG finite element scheme on a Shishkin mesh for one-dimensional singularly perturbed
convection–diffusion equations.

The outline of this paper is organized as follows. In Sect. 2, we introduce some prelimi-
naries and notations which will be used later. The formulation of WG finite element method
for the singularly perturbed convection–diffusion equation is presented in Sect. 3. The error
estimates of the proposed method are discussed in Sect. 4. Some numerical experiments are
displayed in Sect. 6. It aims to confirm our theoretical results and investigate some interesting
convergence phenomenons.
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In the following, C denotes generic positive constants independent of N and ε, and their
value will not be the same in different inequalities.

2 Preliminary and Notations

2.1 The Shishkin Mesh

Let N be an even integer. Define the transition parameter

τ = min

(
1

2
,
k + 1

b0
ε ln N

)
,

where k is the degree of polynomials in the finite element space which will be given later.
Then divide each of the subdomainsΩ1 = [0, 1−τ ] andΩ2 = [1−τ, 1] into N/2 equidistant
subintervals. Notice that ε � 1 , here and below we take τ = k+1

b0
ε ln N . Now, we have

x0 = 0, x j = x j−1 + h j , h j =
{
hc, j = 1, . . . , N/2,
h f , j = N/2 + 1, . . . , N ,

where

hc = 2(1 − τ)/N , h f = 2τ/N .

It can be easily shown that

hc = O(N−1), h f = O(ε N−1 ln N ).

Denote the mesh by I j = [x j−1, x j ] for j = 1, . . . , N and set TN = {I j , j = 1, . . . , N }.
For each interval I j ∈ TN , we define its outward unit normal nI j (x j ) = 1 and nI j (x j−1) =
−1; if there is no confusion, instead of nI j we simply write n.

2.2 Weak Function andWeak Derivative

On each interval I j = [x j−1, x j ], a weak function on the interval I j refers to a function
v = {v0, vb} such that v0 ∈ L2(I j ) and vb ∈ L∞(∂ I j ), where ∂ I j = {x j−1, x j }. That is, for
each interval I j ∈ TN , j = 1, . . . , N , we have

v =
{

v0, in I j ,
vb, on ∂ I j .

Here v0 can be understood as the value of v in (x j−1, x j ), and vb represents the values of v

on the endpoints of I j . Denote by M(I j ) the space of weak functions on I j , i.e.,

M(I j ) = {v = {v0, vb} : v0 ∈ L2(I j ), vb ∈ L∞(∂ I j )}.
The local Sobolev space H1(I j ) can be embedded into the space M(I j ) by the inclusion
map

iM(v) = {v|I j , v|∂ I j }, ∀v ∈ H1(I j ).

Let Pk(I j ) be the set of polynomials defined on I j with degree no more than k. Denote
by P

0(∂ I j ) is the set of piecewise constants on ∂ I j . For a given integer k ≥ 1, we define a
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local WG finite element space MN (I j ) on each element I j ∈ TN as follows

MN (I j ) = {v = {v0, vb} : v0|I j ∈ P
k(I j ), vb|∂ I j ∈ P

0(∂ I j )}.
A globalWG finite element spaceMN is then obtained by gluing all the local spaceMN (I j )
with common values on interior nodes. In other words, for any function v = {v0, vb} ∈ MN ,
it means v0|I j belongs to the polynomial space Pk(I j ) for j = 1, . . . , N , and vb has a single
value on the nodes of the partition TN .

Let M0
N be the subspace of MN consisting of discrete weak functions with vanishing

boundary values, i.e.,

M0
N = {v = {v0, vb} : v ∈ MN , vb(0) = vb(1) = 0}. (2.1)

The weak derivative of a weak function v = {v0, vb} ∈ MN is defined as follows.

Definition 2.1 For any weak function v ∈ MN (I j ), the weak derivative of v = {v0, vb} is
defined as the unique polynomial Dw,I j v ∈ P

k−1(I j ) satisfying

(Dw,I j v, q)I j = −(v0, q
′)I j + 〈vb, qn〉∂ I j , ∀q ∈ P

k−1(I j ). (2.2)

Here, we have used the notation

(ϕ, ψ)I j :=
∫
I j

ϕ(x)ψ(x)dx

and

〈ϕ,ψn〉∂ I j := ϕ(x j )ψ(x j ) − ϕ(x j−1)ψ(x j−1).

To approximate the convection term bu′ in the problem (1.1), we introduce a weak con-
vection derivative as follows.

Definition 2.2 For any weak function v ∈ MN (I j ), the weak convection derivative of v =
{v0, vb} is defined as the unique polynomial Db

w,I j
v ∈ P

k(I j ) satisfying

(Db
w,I j v, q)I j = −(v0, (bq)′)I j + 〈vb, bqn〉∂ I j , ∀q ∈ P

k(I j ). (2.3)

The weak derivatives Dw and Db
w on the finite element space MN can be computed by

using the Eqs. (2.2) and (2.3) respectively on each element I j ∈ TN . More precisely, it is
given by

(Dwv)|I j = Dw,I j (v|I j ), (Db
wv)|I j = Db

w,I j (v|I j ), ∀v ∈ MN .

3 TheWeak Galerkin Finite Element Scheme

For simplicity, we adopt the following notations,

(ϕ, ψ)TN =
N∑
j=1

(ϕ, ψ)I j , 〈ϕ,ψ〉∂TN =
N∑
j=1

〈ϕ,ψ〉∂ I j .
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To describe our weak Galerkin finite element method, we need to introduce three bilinear
forms on MN as follows: for any ϕ = {ϕ0, ϕb}, ψ = {ψ0, ψb} ∈ MN , we define

A(ϕ, ψ) := ε(Dwϕ, Dwψ)TN + (Db
wϕ + cϕ0, ψ0)TN ,

Sd(ϕ, ψ) :=
N∑
j=1

〈σ j (ϕ0 − ϕb), ψ0 − ψb〉∂ I j ,

Sc(ϕ, ψ) :=
N∑
j=1

〈bnI j (ϕ0 − ϕb), ψ0 − ψb〉∂+ I j ,

where ∂+ I j = {x ∈ ∂ I j : b(x)nI j (x) ≥ 0}, σ j is a penalty parameter given as follows:

σ j =
{
1, if j = 1, . . . , N/2,
N/ ln N , if j = N/2 + 1, . . . , N .

(3.1)

Remark 1 The value of σ j is chose as σ j = εh−1
j in most of existence works of WG finite

element method such as [20,28,29]. But ε-uniform error estimates can’t be obtained by this
choice of σ j .

With the above notations and definitions, the weak Galerkin finite element approximation
of the problem (1.1) is to find an approximate solution uN = {u0, ub} ∈ M0

N such that

B(uN , vN ) = ( f , v0), ∀ vN = {v0, vb} ∈ M0
N , (3.2)

where
B(ϕ, ψ) := A(ϕ, ψ) + Sd(ϕ, ψ) + Sc(ϕ, ψ). (3.3)

Let φ
j
0,i , i = 1, . . . , k + 1 be the basis functions of piecewise polynomial space Pk(I j ).

Denote by E0
N = {x j , j = 1, . . . , N − 1} the set of interior nodes of the mesh TN . And let

φb, j , j = 0, . . . , N be the nodal basis function of P0(EN ), i.e., φb, j (xi ) = δi j , where δi j = 1

if j = i else δi j = 0 if j �= i . Denote Φ0,m = {φ j
0,i , 0} where m = i + ( j − 1)(k + 1), with

i = 1, . . . , k + 1, j = 1, . . . , N . Let Φb, j = {0, φb, j } with j = 1, . . . , N − 1. Then the WG
finite element space M0

N = span{Φ0,1, . . . , Φ0,(k+1)N , Φb,1, . . . Φb,N−1}. Denote by
(B0,0)i j = BN (Φ0, j , Φ0,i ), i, j = 1, . . . , (k + 1)N ,

(B0,b)i j = BN (Φb, j , Φ0,i ), i = 1, . . . , (k + 1)N , j = 1, . . . , N − 1,

(Bb,0)i j = BN (Φ0, j , Φb,i ), j = 1, . . . , (k + 1)N , i = 1, . . . , N − 1,

(Bb,b)i j = BN (Φb, j , Φb,i ), i, j = 1, . . . , N − 1,

Fj = ( f , Φ0, j ), j = 1, . . . , (k + 1)N ,

then the matrix form of the WG scheme (3.2) can be written as(
B0,0 B0,b

Bb,0 Bb,b

) (
U0

Ub

)
=

(
F
0

)
,

whereU0 andUb represent the vectors of degrees of freedom for u0 and ub, respectively. We
can write the above system as

(Bb,b − Bb,0B
−1
0,0B0,b)Ub + Bb,0B

−1
0,0F = 0
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and

U0 = B−1
0,0(F − B0,bUb).

We emphasize that the inverse B−1
0,0 can be computed on each element independently of

each other since the matrix B0,0 is block-diagonal owing to the discontinuous nature of the
approximation space M0

N .

Remark 2 It can be observed that the interior degrees of freedomU0 can be locally eliminated
in terms of the interface degrees of freedomUb in practical implementation. This means that,
the linear system resulting from WG finite element methods only involves the degrees of
freedom on the skeleton of the mesh. Therefore, the degrees of freedom of theWGmethod is
comparablewith conformingfinite elements, and it ismuch less than the degrees of freedomof
the discontinuous Galerkin method. It is worth to point out that the procedure of elimination
of U0 by Ub is the so-called Schur complement technique in the domain decomposition
community, which can be used any dimensional problem.

3.1 Coercivity of the Bilinear formB(·, ·)

We introduce an energy norm ||| · ||| in the finite element space MN as follows: for all
v = {v0, vb} ∈ MN ,

|||v|||2 := |v|21,ε + ‖√c0v0‖2L2(TN )
+ |v|2J , (3.4)

with the seminorm

|v|21,ε := ε‖Dwv‖2L2(TN )
+ Sd(v, v),

|v|2J :=
N∑
j=1

w j |
√
b(v0 − vb)|2(x−

j ),

where

w j =
{ 1

2 , j = N ,

1, j = 1, . . . , N − 1.

In addition, for v ∈ MN + H1
0 (Ω), define the discrete H1 energy norm

‖v‖2M := |v|2∗,ε + ‖√c0v0‖2L2(TN )
+ |v|2J . (3.5)

with the seminorm

|v|2∗,ε := ε‖v′
0‖2L2(TN )

+ Sd(v, v).

It is worth noting that a function v ∈ H1
0 (Ω) can be understood as a weak function {v0, vb}

with v0 = v|I j and vb = v|∂ I j for any I j ∈ Th .
The following lemma shows that the ||| · |||-norm and ‖ ·‖M are equivalent in theWG finite

element space M0
N .

Lemma 3.1 For any vN = {v0, vb} ∈ M0
N , there holds

Clb‖vN‖M ≤ |||vN ||| ≤ Cub‖vN‖M,

where Cub := max{Ceq, 1} with Ceq = max{√2,
√
1 + 2C∗} and Clb := 1/Cub.
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Proof For any vN = {v0, vb} ∈ M0
N , it follows from the definition of weak derivative (2.1)

and integration by parts that

(DwvN , w)I j = (v′
0, w)I j − 〈v0 − vb, wn〉∂ I j , ∀w ∈ P

k−1(I j ),∀I j ∈ TN . (3.6)

Let w = DwvN in (3.6), we have

(DwvN , DwvN )I j = (v′
0, DwvN )I j − 〈v0 − vb, DwvNn〉∂ I j .

Using the Cauchy-Schwarz inequality and the trace inequality (4.3), we infer

‖DwvN‖2L2(I j )
≤ ‖v′

0‖L2(I j )‖DwvN‖L2(I j ) + ‖v0 − vb‖L2(∂ I j )‖DwvN‖L2(∂ I j )

≤ (‖v′
0‖L2(I j ) + C∗h−1/2

j ‖v0 − vb‖L2(∂ I j ))‖DwvN‖L2(I j ).

Thus,

‖DwvN‖L2(I j ) ≤ (‖v′
0‖L2(I j ) + C∗h−1/2

j ‖v0 − vb‖L2(∂ I j )).

Squaring this inequality and summing over I j ∈ TN yields

ε‖DwvN‖2L2(TN )
≤ 2(ε‖v′

0‖2L2(TN )
+ C2∗

N∑
j=1

εh−1
j ‖v0 − vb‖2L2(∂ I j )

).

Recalling (3.1), we have

εh−1
j

σ j
≤ C for j = 1, . . . , N .

Then, from the definition of Sd(·, ·), we get
N∑
j=1

εh−1
j ‖v0 − vb‖2L2(∂ I j )

=
N∑
j=1

εh−1
j

σ j
· σ j‖v0 − vb‖2L2(∂ I j )

≤ CSd(vN , vN )

As a result,

ε‖DwvN‖2L2(TN )
≤ 2(ε‖v′

0‖2L2(TN )
+ C2∗Sd(vN , vN )).

Moreover,

|vN |21,ε ≤ 2ε‖v′
0‖2L2(TN )

+ (1 + 2C2∗)Sd(vN , vN ),

which yields

|vN |1,ε ≤ Ceq|vN |∗,ε (3.7)

with Ceq = max{√2,
√
1 + 2C∗}.

As to the lower bound, we choose w = v′
0 in (3.6) to obtain

(v′
0, v

′
0)I j = (DwvN , v′

0)I j + 〈v0 − vb, v
′
0n〉∂ I j .

Using the Cauchy-Schwarz inequality and the trace inequality (4.3), we infer

‖v′
0‖2L2(I j )

≤ ‖Dwv‖L2(I j )‖v′
0‖L2(I j ) + ‖v0 − vb‖L2(∂ I j )‖v′

0‖L2(∂ I j )

≤ (‖DwvN‖L2(I j ) + C∗h−1/2
j ‖v0 − vb‖L2(∂ I j ))‖v′

0‖L2(I j ).
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Thus,

‖v′
0‖L2(I j ) ≤ (‖DwvN‖L2(I j ) + C∗h−1/2

j ‖v0 − vb‖L2(∂ I j )).

As a result,

ε‖v′
0‖2L2(TN )

≤ 2(ε‖DwvN‖2L2(TN )
+ C2∗Sd(vN , vN )),

which yields

‖vN‖2∗,ε ≤ 2ε‖DwvN‖2L2(TN )
+ (1 + 2C2∗)Sd(vN , vN ) ≤ C2

eq‖vN‖21,ε.
Then, we arrive at

C−1
eq ‖v‖∗,ε ≤ ‖v‖1,ε,

which together with (3.7) yields

C−1
eq |vN |∗,ε ≤ |vN |1,ε ≤ Ceq|vN |∗,ε.

From the definition of ||| · |||-norm and ‖ · ‖M-norm, we observe that

Clb‖vN‖M ≤ |||vN ||| ≤ Cub‖vN‖M,

with Cub := max{Ceq, 1} and Clb := 1/Cub. The proof is completed. ��
Nowwe turn to the coercivity of theWGbilinear formB(·, ·)with respect to the |||·|||-norm

defined by (3.4).

Lemma 3.2 (Coercivity with respect to the ||| · |||-norm) The WG bilinear form defined by
(3.3) is coercive on M0

N with respect to the ||| · |||-norm, i.e.,
B(vN , vN ) ≥ |||vN |||2, ∀vN ∈ M0

N . (3.8)

Proof Let vN = {v0, vb}, wN = {w0, wb} ∈ M0
N . It follows from (2.2) and integration by

parts that

(Db
wvN , w0)TN = −(v0, (bw0)

′)TN + 〈vb, bnw0〉∂TN

= (bv′
0, w0)TN − 〈bn(v0 − vb), w0〉∂TN . (3.9)

Since vb and wb are single value at the interior nodes of TN and vanish at the boundaries
nodes of TN , we have

〈bnvb, wb〉∂TN =
N∑
j=1

[(bvbwb)(x j ) − (bvbwb)(x j−1)]

= (bvbwb)(1) − (bvbwb)(0) = 0,

whence we infer from (2.2) that

(Db
wwN , v0)TN = −(w0, (bv0)

′)TN + 〈wb, bnv0〉∂TN

= −(w0, (bv0)
′)TN + 〈wb, bn(v0 − vb)〉∂TN . (3.10)

Summing (3.9) and (3.10), and let vN = wN , we obtain

(Db
wvN , v0)TN = −1

2
(b′v0, v0)TN − 1

2
〈bn(v0 − vb), v0 − vb〉∂TN . (3.11)
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By a simple manipulation, we have

Sc(vN , vN ) − 1

2
〈bn(v0 − vb), v0 − vb〉∂TN = |vN |2J ,

which together with (3.11) yields

(Db
wvN + cv0, v0)TN + Sc(vN , vN ) = ((c − 1

2
b′)v0, v0)TN + |vN |2J

≥ ‖√c0v0‖2L2(TN )
+ |vN |2J (3.12)

Owing to the definition of B(·, ·) and (3.12), we obtain, for any vN ∈ M0
N ,

B(vN , vN ) ≥ ε(∇wvN ,∇wvN ) + Sd(vN , vN ) + ‖√c0v0‖2L2(TN )
+ |vN |2J = |||vN |||2.

(3.13)

The proof is completed. ��
As a consequent of Lemma 3.1 and Lemma 3.2, the WG bilinear form Bh(·, ·) also has the
coercivity with respect to the ‖ · ‖M-norm defined by (3.5).

Lemma 3.3 (Coercivity with respect to the ‖ · ‖Mnorm) The WG bilinear form defined by
(3.3) is coercive on M0

N with respect to the ‖ · ‖M-norm, i.e.,

B(vN , vN ) ≥ Clb‖vN‖2M, ∀vN ∈ M0
N .

3.2 Interpolation Operator

Usually, the locally defined L2 projections on each element and its boundaries are used
for the error analysis of WG finite element method in all existence references such as [20,
28,29]. Unfortunately, the interpolation error bound of L2 projection is not ε-uniform on
Shishkin mesh because of its anisotropic property. So in our analysis we will adopt a special
interpolation introduced in [19].

On each element I j ∈ TN with I j = [x j−1, x j ], we define the set of k+1 nodal functionals

N0(v) = v(x j−1), Nk(v) = v(x j ), (3.14)

Nl(v) = h−l
j

∫
I j

(x − x j−1)
k−1v(x)dx, l = 1, . . . , k − 1. (3.15)

Now a local interpolation I : H1(I j ) → P
k(I j ) is defined by

Nl(Iv − v) = 0, l = 0, 1, . . . , k, (3.16)

which can be extended to a continuous global interpolation Iv.
Obviously, Iv|I j is continuous on I j and belongs to H1(I j ). Then, the weak function

{(Iv)|I j , (Iv)|∂ I j }, still denoted by Iv for simplicity, belongs to the local WG finite element
space MN (I j ).

Lemma 3.4 (Commutativity of I)Let I be the interpolation operator defined by (3.16). Then,
on each element I j ∈ TN , we have

Dw(Iv) = (Iv)′, ∀v ∈ H1(I j ).
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Proof It follows from the definition of weak derivative (2.1) that for any w ∈ P
k−1(I j )

(Dw(Iv),w)I j = −(Iv,w′)I j + 〈Iv,wn〉∂ I j .
Applying integration by parts to the first term on the right hand side of the above equation
leads to the assertion. ��

3.3 Error Equation

The WG finite element scheme (3.2) is not consistent in the sense that for the solution u of
problem (1.1), one doesn’t have BN (u, vN ) = ( f , v0) for some vN = {v0, vb} ∈ M0

N . As a
result of the inconsistency, the usual orthogonality property for the conformingGalerkin finite
element methods doesn’t hold true for the weak Galerkin method; i.e., BN (u − uN , vN ) �= 0
for some vN = {v0, vb} ∈ M0

N . In this subsection, we will derive an error equation which
will be used in error analysis.

Lemma 3.5 Let u be the solution of the problem (1.1). Then for vN = {v0, vb} ∈ M0
N , there

holds

−ε(u′′, v0)TN = ε(Dw(Iu), DwvN )TN − E1(u, vN ). (3.17)

where

E1(u, vN ) = ε〈u′ − (Iu)′, (v0 − vb)n〉∂TN . (3.18)

Proof Let vN = {v0, vb} ∈ M0
N . We infer from Lemma 3.4 that Dw(Iu) = (Iu)′, which

yields

(Dw(Iu), DwvN )I j = ((Iu)′, DwvN )I j , ∀I j ∈ TN . (3.19)

Then, it follows the definition of the weak derivative (2.1) and integration by parts that

((Iu)′, DwvN )I j = −(v0, (Iu)′′)I j + 〈vbn, (Iu)′〉∂ I j
= ((Iu)′, v′

0)I j − 〈(Iu)′, (v0 − vb)n〉∂ I j . (3.20)

The definition of I and integration by parts implies

((u − Iu)′, v′
0)I j = −(u − Iu, v′′

0 )I j + 〈u − Iu, v′
0n〉∂ I j = 0,

thus

((Iu)′, v′
0)I j = (u′, v′

0)I j ,

which together with (3.19) and (3.20), leads to

(Dw(Iu), DwvN )I j = (u′, v′
0)I j − 〈(Iu)′, (v0 − vb)n〉∂ I j .

Summing the above equation over all element I j ∈ TN , we obtain

(Dw(Iu), DwvN )TN = (u′, v′
0)TN − 〈(Iu)′, (v0 − vb)n〉∂TN . (3.21)

Integration by parts shows that

−(u′′, v0)I j = (u′, v′
0)I j − 〈u′, v0n〉∂ I j
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Summing the above equation over all element I j ∈ TN , and recalling the fact

N∑
j=1

〈u′, vbn〉∂ I j = 0,

we obtain

−(u′′, v0)TN = (u′, v′
0)TN − 〈u′, (v0 − vb)n〉∂TN ,

which combining with (3.21) yields the assertion (3.17). ��
Lemma 3.6 Let u be the solution of the problem (1.1). Then for vN = {v0, vb} ∈ M0

N , there
holds

(bu′, v0)TN = (Db
w(Iu), v0)TN − E2(u, vN ), (3.22)

where

E2(u, vN ) = (u − Iu, (bv0)
′)TN . (3.23)

Proof It follows from the definition of the weak convection derivative (2.2) that

(Db
w(Iu), v0)TN = −(Iu, (bv0)

′)TN + 〈Iu, bnv0〉∂TN . (3.24)

Integration by parts shows that

(bu′, v0)TN = −(u, (bv0)
′)TN + 〈u, bnv0〉∂TN ,

which together with (3.24) and recalling the fact Iu = u on ∂ I j yields the assertion (3.22).��
Lemma 3.7 (Error equation) Let u and uN ∈ M0

N be the solutions of problem (1.1) and
(3.2), respectively. Then, for any vN ∈ M0

N , there holds

B(Iu − uN , vN ) = E(u, vN ), (3.25)

where

E(u, vN ) := E1(u, vN ) + E2(u, vN ) + E3(u, vN ). (3.26)

Here E1(u, vN ) and E2(u, vN ) are defined by (3.18) and (3.23) respectively, and E3(u, vN )

is given as

E3(u, vN ) = (c(Iu − u), v0)TN . (3.27)

Proof Testing (1.1) by vN = {v0, vb} ∈ M0
N , we arrive at

−ε(u′′, v0)TN + (bu′, v0)TN + (cu, v0)TN = ( f , v0)TN .

Plugging (3.17) and (3.22) into the above equation yields

A(Iu, vN ) = ( f , v0)TN + E(u, vN ).

Since Iu is continuous in Ω , with the aid of the definitions of Sc(·, ·) and Sd(·, ·), we
conclude

Sc(Iu, vN ) = 0, Sd(Iu, vN ) = 0.

Thus,

B(Iu, vN ) = ( f , v0)TN + E(u, vN ). (3.28)

Subtracting (3.2) from (3.28) yields the error equation (3.25). The proof is completed. ��

123



34 Page 12 of 22 Journal of Scientific Computing (2020) 85 :34

4 Error Analysis on a Shishkin Mesh

In this section, we will provide a ε-uniform error estimate for the error u − uN in the ‖ · ‖M-
norm defined by (3.5). The error analysis relies on a layer-adapted mesh — the Shishkin
mesh, S-decomposition and a priori estimate of the exact solution of (1.1) and a special
interpolation introduced in [19]. In the following analysis, we will assume ε ≤ N−1 which
is realistic for singularly perturbed problem.

The following trace inequality and inverse inequality from [3] will be used frequently in
our analysis:

‖v‖2L2(∂ I j )
≤ Ctr(h

−1
j ‖v‖2L2(I j )

+ ‖v‖L2(I j )‖v′‖L2(I j )), ∀v ∈ H1(I j ), (4.1)

‖v′
N‖L2(∂ I j ) ≤ Cinvh

−1
j ‖vN‖L2(I j ), ∀vN ∈ P

k(I j ), (4.2)

‖vN‖L p(∂ I j ) ≤ C∗h−1/p
j ‖vN‖L p(I j ), ∀1 ≤ p ≤ ∞,∀vN ∈ P

k(I j ), (4.3)

where Ctr , Cinv and C∗ are positive constants, and independent of both I j and h j .
The following statements present a decomposition of the exact solution u of problem

(1.1) into a sum of a smooth part and a layer part, which is necessary to the ε-uniform error
estimates of numerical methods for singularly perturbed problems [8].

Lemma 4.1 (S-decomposition) [15] Let q be some positive integer. Consider the problem
(1.1) with the assumption of (1.2). The exact solution u can be composed as u = uS + uE ,
where the smooth part uS and the layer part uE satisfies

−εu′′
S + bu′

S + cuS = f ,

−εu′′
E + bu′

E + cuE = 0,

and

|u(l)
S (x)| ≤ C, |u(l)

E (x)| ≤ Cε−l exp(−b0(1 − x)/ε) for 0 ≤ l ≤ q. (4.4)

The following lemma shows the approximation properties of the interpolation operator I
defined by (3.16).

Lemma 4.2 [19] For any element I j ∈ TN with I j = [x j−1, x j ] and v ∈ Hk+1(I j ), the
interpolation Iv defined by (3.16) has the following approximation properties:

|v − Iv|Hl (I j ) ≤ Chk+1−l
j |v|Hk+1(I j ), l = 0, 1, . . . , k + 1, (4.5)

‖v − Iv‖L∞(I j ) ≤ Chk+1
j |v|Wk+1,∞(I j ), (4.6)

where C is independent of h j and ε.

From Lemmas 4.1 and 4.2, we have the following interpolation error estimates on the
Shishkin mesh TN .

Lemma 4.3 [19,31] Let the exact solution u = uS + uE of the problem (1.1) can be decom-
posed into a smooth and layer part, respectively. Denote IuS and IuE by the interpolations
uS and uE on a Shishkin mesh, respectively. Assume ε ln N ≤ b0/2(k + 1). Then, we have
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Iu = IuS + IuE and the estimates

‖u − Iu‖L∞(Ω1) ≤ CN−(k+1), (4.7a)

‖u − Iu‖L∞(Ω2) ≤ C(N−1 ln N )k+1, (4.7b)

‖(uS − IuS)(l)‖L2(Ω) ≤ CNl−(k+1), l = 0, . . . , k, (4.7c)

‖uE − IuE‖L2(Ω2)
≤ Cε1/2(N−1 ln N )k+1, (4.7d)

N−1‖(IuE )′‖L2(Ω1)
+ ‖IuE‖L2(Ω1)

≤ C(ε1/2 + N−1/2)N−(k+1), (4.7e)

‖uE‖L∞(Ω1) + ε−1/2‖uE‖L2(Ω1)
≤ CN−(k+1), (4.7f)

‖u′
E‖L2(Ω1)

≤ Cε−1/2N−(k+1). (4.7g)

Lemma 4.4 Assume u ∈ Hk+1(Ω). Under the conditions of Lemma 4.3, there holds

‖(uE − IuE )(l)‖L2(Ω1)
≤ Cε1/2−l N−(k+1),

‖(uE − IuE )(l)‖L2(Ω2)
≤ Cε1/2−l(N−1 ln N )k+1−l

with l = 1, 2.

Proof Owing to the triangle inequality and (4.7e) and (4.7g) of Lemma 4.3,

‖(uE − IuE )′‖L2(Ω1)
≤ ‖u′

E‖L2(Ω1)
+ ‖(IuE )′‖L2(Ω1)

≤ Cε−1/2N−(k+1).

As the same procedure, and using the inverse inequality, we get

‖(uE − IuE )′′‖L2(Ω1)
≤ ‖u′′

E‖L2(Ω1)
+ CN‖(IuE )′‖L2(Ω1)

≤ Cε−3/2[1 + (εN )3/2 + (εN )2]N−(k+1)

≤ Cε−3/2N−(k+1).

Due to (4.5) of Lemma 4.2 and (4.4), we obtain, for l = 1, 2,

‖(uE − IuE )(l)‖2L2(Ω2)
=

∑
I j⊂Ω2

‖(uE − IuE )(l)‖2L2(I j )

≤
∑
I j⊂Ω2

Ch2(k+1−l)
j ‖u(k+1)

E ‖2L2(I j )

≤ Ch2(k+1−l)
f ·

∫ 1

1−τ

ε−2(k+1) exp(−2b0(1 − x)/ε)dx

≤ Cε1−2l(N−1 ln N )2(k+1−l).

The proof is completed. ��
Lemma 4.5 Assume u ∈ Hk+1(Ω). Let σ j is given by (3.1). Under the conditions of Lemma
4.3, there holds ⎧⎨

⎩
N∑
j=1

ε2

σ j
‖(u − Iu)′‖2L2(∂ I j )

⎫⎬
⎭

1/2

≤ C(N−1 ln N )k .

Proof To simplify notation in the proof, let ηS := uS −IuS and ηE := uE −IuE denote the
interpolation errors of uS and uE , respectively. Then, the total interpolation error η := u−Iu
can be written as η = ηS + ηE .
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By the triangle inequality, we have

N∑
j=1

ε2

σ j
‖η′‖2L2(∂ I j )

≤ 2
N∑
j=1

ε2

σ j
(‖η′

S‖2L2(∂ I j )
+ ‖η′

E‖2L2(∂ I j )
). (4.8)

Owing to the trace inequality (4.1),

‖η′
S‖2L2(∂ I j )

≤ Ctr(h
−1
j ‖η′

S‖2L2(I j )
+ ‖η′

S‖L2(I j )‖η′′
S‖L2(I j )),

then, by (4.5) of Lemma 4.2, we arrive at

N∑
j=1

ε2

σ j
‖η′

S‖2L2(∂ I j )
≤ Ctr

N∑
j=1

ε2

σ j
(h−1

j ‖η′
S‖2L2(I j )

+ ‖η′
S‖L2(I j )‖η′′

S‖L2(I j ))

≤ C(ε2N‖η′
S‖2L2(Ω1)

+ ε‖η′
S‖2L2(Ω2)

+ ε2‖η′
S‖L2(Ω1)

‖η′′
S‖L2(Ω1)

+ ε2N−1 ln N‖η′
S‖L2(Ω1)

‖η′′
S‖L2(Ω1)

)

≤ CεN−2k, (4.9)

where εN < 1 and ε ln N < 1 are used.
Using the trace inequality (4.1) again, we have

‖η′
E‖2L2(∂ I j )

≤ Ctr(h
−1
j ‖η′

E‖2L2(I j )
+ ‖η′

E‖L2(I j )‖η′′
E‖L2(I j )).

As a result,

N∑
j=1

ε2

σ j
‖η′

E‖2L2(∂ I j )
≤ Ctr

N∑
j=1

ε2

σ j
(h−1

j ‖η′
E‖2L2(I j )

+ ‖η′
E‖L2(I j )‖η′′

E‖L2(I j ))

≤ C(ε2N‖η′
E‖2L2(Ω1)

+ ε‖η′
E‖2L2(Ω2)

)

+ Cε2(‖η′
E‖L2(Ω1)

‖η′′
E‖L2(Ω1)

+ N−1 ln N‖η′
E‖L2(Ω2)

‖η′′
E‖L2(Ω2)

).

Then, it follows from Lemma 4.4 that

N∑
j=1

ε2

σ j
‖η′

E‖2L2(∂ I j )
≤ C[(ε + N−1)N−(2k+1) + (N−1 ln N )2k],

which combining with (4.8) and (4.9) yields

N∑
j=1

ε2

σ j
‖η′‖2L2(∂ I j )

≤ C[(ε + N−2)N−2k + (N−1 ln N )2k].

Thus, ⎧⎨
⎩

N∑
j=1

ε2

σ j
‖η′‖2L2(∂ I j )

⎫⎬
⎭

1/2

≤ C(N−1 ln N )k .

The proof is completed. ��
Lemma 4.6 Let u ∈ Hk+1(Ω) solve the problem (1.1) and σ j is given by (3.1). Then, for
vN ∈ M0

N , there holds

|E(u, vN )| ≤ C(N−1 ln N )k‖vN‖M, (4.10)
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where C is independent of N and ε.

Proof It follows from the Cauchy-Schwarz inequality and Lemma 4.5 that

|E1(u, vh)| ≤
N∑
j=1

ε|〈u′ − (Iu)′, (v0 − vb)n〉∂ I j |

≤
N∑
j=1

ε‖(u − Iu)′‖L2(∂ I j )‖v0 − vb‖L2(∂ I j )

≤
⎧⎨
⎩

N∑
j=1

ε2

σ j
‖(u − Iu)′‖2L2(∂ I j )

⎫⎬
⎭

1/2 ⎧⎨
⎩

N∑
j=1

σ j‖v0 − vb‖2L2(∂ I j )

⎫⎬
⎭

1/2

≤ C(N−1 ln N )k S1/2d (vN , vN ). (4.11)

From (3.23) and (3.27), we observe that

E2(u, vN ) + E3(u, vN ) = (u − Iu, bv′
0) + (u − Iu, (b′ − c)v0)

= T1 + T2.

With the aid of the Cauchy-Schwarz inequality and the estimates (4.7a), (4.7b) of Lemma
4.3, we have

|T1| ≤ C[‖u − Iu‖L∞(Ω1)‖v′
0‖L1(Ω1)

+ ‖u − Iu‖L∞(Ω2)‖v′
0‖L1(Ω2)

]
≤ C[N−(k+1)‖v′

0‖L1(Ω1)
+ (N−1 ln N )k+1‖v′

0‖L1(Ω2)
]

On Ω1, the inverse inequality implies

‖v′
0‖L1(Ω1)

≤ CN‖v0‖L1(Ω1)
≤ CN |Ω1|1/2‖v0‖L2(Ω1)

≤ CN‖vN‖M,

while on Ω2 the Cauchy-Schwarz inequality gives

‖v′
0‖L1(Ω2)

≤ √
τ‖v′

0‖L2(Ω2)
≤ C(ln N )1/2‖vN‖M.

As a result,

|T1| ≤ C[N−k + N−1(ln N )3/2 · (N−1 ln N )k]‖vN‖M
≤ C(N−1 ln N )k‖vN‖M, (4.12)

where we use the fact N−1(ln N )3/2 < 1.
From (4.15) we observe that

‖u − Iu‖L2(Ω) ≤ CN−(k+1).

Hence, T2 can be bounded by

|T2| ≤ C‖u − Iu‖L2(Ω)‖v0‖L2(Ω) ≤ CN−(k+1)‖vN‖M,

which together with (4.11) and (4.12) completed the proof. ��
Theorem 4.1 Let u solve the problem (1.1) and uN ∈ M0

N be the WG finite element solution
of (3.2) calculated on Shishkin mesh TN . Then, there holds

‖Iu − uN‖M ≤ C(N−1 ln N )k,

where C is independent of N and ε.
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Proof Let ξ := Iu − uN . Owing to Lemma 3.3,

Clb‖ξ‖2M ≤ B(ξ, ξ) (4.13)

Taking vN = ξ in the error equation (3.25) leads to

B(ξ, ξ) = E(u, ξ).

It follows from Lemma 4.6 that

B(ξ, ξ) ≤ C(N−1 ln N )k‖ξ‖M,

which together with (4.13) complete the proof. ��
Theorem 4.2 Assume u ∈ Hk+1(Ω) and

√
ε(ln N )k+1 < C. Under the conditions of Lemma

4.3, there holds

‖u − Iu‖M ≤ C(N−1 ln N )k,

where C is independent of N and ε.

Proof Let η = u − Iu. Since η is continuous in Ω , we have |η|J = 0 and Sd(η, η) = 0.
Then,

‖η‖2M = ε‖η′‖2L2(Ω)
+ c0‖η‖2L2(Ω)

(4.14)

Applying the estimates (4.7c)–(4.7f) of Lemma 4.3 and the Cauchy-Schwarz inequality, we
obtain

‖u − Iu‖L2(Ω) ≤ ‖uS − IuS‖L2(Ω) + ‖uE − IuE‖L2(Ω2)

+ ‖uE‖L2(Ω1)
+ ‖IuE‖L2(Ω1)

≤ CN−(k+1)[1 + ε1/2(ln N )k+1 + ε1/2 + N−1/2]
≤ CN−(k+1)[1 + ε1/2(ln N )k+1]
≤ CN−(k+1). (4.15)

Due to Lemma 4.4, we obtain

‖(uE − IuE )′‖2L2(Ω2)
≤ Cε−1(N−1 ln N )2k,

‖(uE − IuE )′‖2L2(Ω1)
≤ Cε−1N−2(k+1),

which together with (4.7c) of Lemma 4.3 yields

ε‖(u − Iu)′‖2L2(Ω)
≤ ε‖(uS − IuS)′‖2L2(Ω)

+ ε‖(uE − IuE )′‖2L2(Ω1)

+ ε‖(uE − IuE )′‖2L2(Ω2)

≤ C[εN−2k + (N−1 ln N )2k + N−2(k+1)]
≤ C(εN−2k + (N−1 ln N )2k + N−2(k+1)) (4.16)

Combining (4.14), (4.15), and (4.16) leads to

‖u − Iu‖M ≤ C(N−1 ln N )k,

which completes the proof. ��
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Using the triangle inequality and the results of Theorems 4.2 and 4.1, we arrive at the
following statements.

Theorem 4.3 Let u ∈ Hk+1(Ω) and uN ∈ M0
N solve the problem (1.1) and (3.2), respec-

tively. Then, there holds

‖u − uN‖M ≤ C(N−1 ln N )k,

where C is independent of N and ε.

5 Numerical Experiments

In this section, we carried out some numerical experiments to verify our theoretical findings
in previous section. The Shishkin mesh with N elements is called mesh N . Let eN denote
the error of the approximate solution computed on the mesh N . Then the approximate order
of convergence, i.e., order(2N ), is computed by

order(2N ) := ln(eN /e2N )

ln(2 ln(N )/ ln(2N ))
.

Firstly, we confirm the convergence rate of the errors between the exact solution u and the
WG finite element solution uN = {u0, ub} computed by (3.2) measured in the ‖ · ‖M-norm
defined by (3.5). Furthermore, we investigate the convergence properties of the error u − uN

measured in the L2-norm defined by

‖u − u0‖L2(TN ) :=
⎧⎨
⎩

N∑
j=1

‖u − u0‖2L2(I j )

⎫⎬
⎭

1/2

,

and the discrete L∞-norm given by

‖u − ub‖L∞(TN ) := max
0≤ j≤N

|u(x j ) − ub(x j )|.

Example 1 Consider the following convection–diffusion problem{−εu′′ + (2 − x)u′ + u = f in (0, 1),
u(0) = u(1) = 0,

with the right-hand side f chosen such that

u(x) = sin

(
1

2
πx

)
− e−(1−x)/ε − e−1/ε

1 − e−1/ε

is the exact solution, which has a boundary layer with the width O(ε ln 1
ε
) at the outflow

boundary x = 1.

Table 1 displays the history of convergence of the WG finite element method for Example
1. They are clear illustrations of the k-th order convergence rate in the energy-like norm
(3.5), which is agree with the theoretical result of Theorem 4.3. The errors ‖u − uN‖M,
‖u−u0‖L2(TN ) and ‖u−ub‖L∞(TN ) for Example 1with ε = 10−9 are plotted on log-log scales
in Fig. 1. It is observed that the rate of convergence in the ‖ · ‖M-norm is O((N−1 ln N )k),
which verifies the theoretical findings in Theorem 4.3. Fig. 1 indicates that our WG finite
element scheme (3.2) has the optimal convergence rates of O(N−(k+1)) in the L2-norm and
the super-convergence rate of O((N−1 ln N )2k) in the discrete L∞-norm.
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Table 1 History of convergence of the WG method, under the norm ‖ · ‖M
ε = 1.0E−03 ε = 1.0E−05 ε = 1.0E−07

k N ‖u − uN ‖M Order ‖u − uN ‖M Order ‖u − uN ‖M Order

1 8 3.0536E−01 – 3.0522E−01 – 3.0522E−01 –

16 2.1181E−01 0.90 2.1179E−01 0.90 2.1179E−01 0.90

32 1.3588E−01 0.94 1.3587E−01 0.94 1.3587E−01 0.94

64 8.2684E−02 0.97 8.2683E−02 0.97 8.2683E−02 0.97

128 4.8578E−02 0.99 4.8577E−02 0.99 4.8577E−02 0.99

256 2.7858E−02 0.99 2.7858E−02 0.99 2.7858E−02 0.99

512 1.5698E−02 1.00 1.5698E−02 1.00 1.5698E−02 1.00

2 8 9.3756E−02 – 9.3752E−02 – 9.3752E−02 –

16 4.5808E−02 1.77 4.5809E−02 1.77 4.5809E−02 1.77

32 1.8928E−02 1.88 1.8928E−02 1.88 1.8928E−02 1.88

64 7.0095E−03 1.94 7.0096E−03 1.94 7.0096E−03 1.94

128 2.4172E−03 1.98 2.4172E−03 1.98 2.4172E−03 1.98

256 7.9420E−04 1.99 7.9421E−04 1.99 7.9421E−04 1.99

512 2.5204E−04 1.99 2.5204E−04 1.99 2.5204E−04 1.99

3 8 2.8937E−02 – 2.8939E−02 – 2.8939E−02 –

16 1.0029E−02 2.61 1.0030E−03 2.61 1.0030E−02 2.61

32 2.6862E−03 2.80 2.6863E−03 2.80 2.6863E−03 2.80

64 6.0721E−04 2.91 6.0721E−04 2.91 6.0721E−04 2.91

128 1.2303E−04 2.96 1.2303E−04 2.96 1.2303E−04 2.96

256 2.3168E−05 2.98 2.3168E−05 2.98 2.3253E−05 2.98

512 4.1406E−06 2.99 4.1411E−06 2.99 4.6166E−06 2.81

Fig. 1 Example 1. Convergence curve of error with ε = 10−9. a For P1 element, and b for P2 element

Example 2 Consider the following convection–diffusion problem

{−εu′′ + (1 + x)u′ + (2 + x)u = 4 sin(πx) in (0, 1),
u(0) = u(1) = 0.

123



Journal of Scientific Computing (2020) 85 :34 Page 19 of 22 34

Table 2 History of convergence of the WG method, under the norm ‖ · ‖M
ε = 1.0E−03 ε = 1.0E−05 ε = 1.0E−07

k N ‖uN − u2N ‖M Order ‖uN − u2N ‖M Order ‖uN − u2N ‖M Order

1 8 3.3932E−01 – 3.3950E−01 – 3.3950E−01 –

16 2.6021E−01 0.65 2.6029E−01 0.66 2.6029E−01 0.66

32 1.7385E−01 0.86 1.7388E−01 0.86 1.7388E−01 0.86

64 1.0600E−01 0.97 1.0602E−01 0.97 1.0602E−01 0.97

128 6.1573E−02 1.01 6.1581E−02 1.01 6.1582E−02 1.01

256 3.4891E−02 1.01 3.4895E−02 1.02 3.4895E−02 1.02

512 1.9488E−02 1.01 1.9491E−02 1.01 1.9491E−02 1.01

2 8 2.0186E−01 – 2.0186E−01 – 2.0186E−01 –

16 1.1525E−01 1.38 1.1522E−01 1.38 1.1522E−01 1.38

32 5.1769E−02 1.70 5.1742E−02 1.70 5.1742E−02 1.70

64 1.9708E−02 1.89 1.9696E−02 1.89 1.9696E−02 1.89

128 6.8107E−03 1.97 6.8061E−03 1.97 6.8061E−03 1.97

256 2.2270E−03 2.00 2.2255E−03 2.00 2.2254E−03 2.00

512 7.0333E−04 2.00 7.0284E−04 2.00 7.0283E−04 2.00

3 8 1.1006E−01 – 1.1001E−01 – 1.1001E−01 –

16 4.8045E−02 2.04 4.7999E−02 2.05 4.7998E−02 2.05

32 1.5015E−02 2.47 1.4994E−02 2.48 1.4994E−02 2.48

64 3.6572E−03 2.76 3.6512E−03 2.77 3.6512E−03 2.77

128 7.6146E−04 2.91 7.6014E−04 2.91 7.6005E−04 2.91

256 1.4446E−04 2.97 1.4421E−04 2.97 1.4412E−04 2.97

512 2.5850E−05 2.99 2.5809E−05 2.99 3.4582E−05 2.48

The exact solution of this test problem is unknown. Therefore, we use the following variant
of the double mesh principle to estimate the errors. Compute

eN = ‖uN − u2N‖TN ,

where ‖ · ‖TN refers one of the three norm ‖ · ‖M, ‖ · ‖L2 and ‖ · ‖L∞ , and u2N is the
WG solution obtained on a mesh containing the mesh points of the original Shishkin mesh
TN and its midpoints x j = (x j + x j+1)/2, j = 0, 1, . . . , N − 1.

For different ε = 10−1, 10−2, 10−3, the numerical solutions of Example 2 computed by
theWG scheme (3.2) with P1 element on Shishkin meshes of N = 32 elements are displayed
in Fig. 2. It can be observed that there is a boundary layer near x = 1 for small ε.

We show the history of convergence of the WG finite element method for Example 2 in
Table 2. The errors ‖u − uN‖M, ‖u − u0‖L2(TN ) and ‖u − ub‖L∞(TN ) for Example 2 with
ε = 10−9 are plotted on log-log scales in Fig. 3. From Table 2 and Fig. 3, we observe the
same convergence behavior as in Example 1.
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Fig. 2 Example 2. The WG solution computed by P
1 element with N = 32 and different ε =

10−1, 10−2, 10−3

Fig. 3 Example 2. Convergence curve of error with ε = 10−9. a For P1 element, and b for P2 element

6 Conclusion

In this article, aWG finite element method is presented and analyzed for the one-dimensional
singularly perturbed problem of convection–diffusion type. To obtain ε-independent error
estimate, a special stabilization term is proposed for the discretization of the diffusion term.
Optimal and uniformly convergent error estimates in the energy-like norm of the present
method is proved on the Shishkin mesh for any high order element. In the view of implemen-
tation, the presented WG finite element method and the technique of elimination of interior
unknowns can be extended to two-dimensional singularly perturbed problem of convection–
diffusion type.Using our error analysis approach, it is not hard to prove optimal and uniformly
convergent error estimates in the energy-like norm of our presented method with linear ele-
ment on Shishkin meshes. As for the uniform convergence of high order element case, the
main difficulty is to construct a special type of interpolation satisfying two following condi-
tions: (1) its interpolation error is uniformly convergent on Shishkin meshes; (2) it is suitable
for the analysis of the WG finite element method. We will investigate this topic in future
work.
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