Journal of Scientific Computing (2020) 85:26
https://doi.org/10.1007/510915-020-01342-6

®

Check for

A Discontinuous Galerkin Method for the Coupled Stokes and o
Darcy Problem

Jing Wen' - Jian Su' . Yinnian He' - Hongbin Chen’

Received: 24 December 2019 / Revised: 5 September 2020 / Accepted: 8 October 2020 /
Published online: 19 October 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Combining the mixed discontinuous Galerkin method for the Darcy flow and the interior
penalty discontinuous Galerkin methods for the Stokes problem, a locally conservative dis-
crete scheme is proposed for numerically solving the coupled Stokes and Darcy problem. We
prove the well-posedness of the solution of the proposed numerical scheme by boundedness,
K-ellipticity and a discrete inf-sup condition. A priori error estimates, in proper norms are
derived, and to verify the theoretical analysis, some numerical experiments are given.

Keywords Stokes and Darcy problem - Discontinuous Galerkin methods - Priori error
estimates

1 Introduction

The coupled Stokes and Darcy model describes the interaction between free flow and porous
media flow. Such systems arise, for example, in modeling the groundwater (aquifer) contami-
nation through filtration and streams, and numerical modeling of this complicated interaction
isachallenging work in both theoretical analysis and practical engineering applications. There
are some related works of the coupled system. Based on the Beavers—Joseph—Saffman inter-
face conditions [14] Layton, Schieweck, and Yotov [27] prove the existence and uniqueness
of a weak solution of the coupled system and, present and analyze its numerical scheme by
adopting continuous finite element methods to discretize the Stokes problem and mixed finite
element methods (MFE) to discrete the Darcy problem. Riviere et al. [3,4,13] propose and
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analyze a locally conservative discrete scheme by employing discontinuous Galerkin (DG)
methods and mixed finite element methods for the coupled Stokes and Darcy equations, and
by utilizing the DG methods for the coupled Navier—Stokes and Darcy problem. In addition,
based on DG methods and mixed finite element methods, a strongly conservative numerical
scheme is given in [15] by this group. Fu and Lehrenfeld [16] propose a strongly conserva-
tive numerical scheme for the coupled system by considering hybrid discontinuous Galerkin
methods (HDG) and mixed finite element methods. Based on a continuous trace approxi-
mation of velocity and a discontinuous trace approximation of pressure, Cesmelioglu et al.
present a embedded-hybridized discontinuous Galerkin (EDG-HDG) finite element method
[1] with strong mass conservation for the coupled Stokes—Darcy problem.

Mixed discontinuous Galerkin (MDG) method [12] and discontinuous Galerkin (DG)
methods [2,5,6,8,11] are two kinds of locally mass conservative numerical methods. Mixed
numerical formulations are popular for porous media problems and DG methods have many
attractive properties such as being element-wise conservative, high-order methods, easily
implementable on unstructured meshes. Then, we propose a locally conservative discrete
scheme to numerically solving the coupled Darcy—Stokes problem, which is constructed by
using DG methods to approximate the Stokes problem and MDG method to approximate
the Darcy problem. The proposed scheme is different from the above mentioned numerical
methods expect for the EDG-HDG finite element method, since we employ the MDG method
to approximate the Darcy problem rather than the MFE methods, and the numerical scheme
adopts the totally discontinuous polynomial spaces in both Stokes domain and Darcy region.
Such choices of discontinuous polynomial spaces avoid the difficulty of the construction of
conforming finite element space. It thus is more convenient for us to implement the algorithm
in a unified framework of DG methods.

The EDG-HDG finite element method is an efficient and attractive numerical scheme with
strong mass conservation, especially when the higher-order polynomial spaces are used. It
also utilizes the element discontinuous polynomial spaces in both Stokes domain and Darcy
region, even though a continuous approximation of trace of velocity is employed. Comparing
to the proposed numerical scheme, from the point of degrees of freedom (DOF), the EDG-
HDG finite element method needs fewer DOF in matching triangle (tetrahedra) meshes and
quadrilateral (hexahedron) meshes if the lowest order finite element space is used, since a
continuous approximation of trace of velocity is applied. However, if the meshes are polygonal
and non-matching with hanging nodes, we can’t draw this conclusion. Furthermore, our
scheme may be superior to this EDG-HDG finite element method if the lowest order finite
element space is used and a complete HDG finite element method is utilized, which means
the trace of velocity is discontinuous rather than continuous. Thus, our scheme has acceptable
DOF for the lowest order finite element space. What’s more, our scheme requires less matrix
assembly, storage, and is easier to code and implement. In a word, we think our scheme
is more suitable for the lowest order polynomial space and the EDG-HDG finite element
method is more attractive for higher-order polynomial spaces.

The features of the proposed numerical scheme are that the lowest order finite element
space has acceptable DOF. Moreover, it is more convenient for us to implement the algorithm
in a unified framework of DG methods and can be generalized to other porous media flow
problems such as Stokes-Biot model [17] and Stokes-dual-porosity model [18,21], since it is
constructed by a straightforward combination of MDG method and DG methods. In addition,
we present the numerical analysis for the proposed scheme in proper norms and show some
numerical tests to verify the analysis. The novelty of the analysis mainly includes that we
generalize the primal MDG method with Dirichlet boundary condition to an MDG method
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with Neumann boundary condition, and based on H(div)-like DG norm we also prove the
K-ellipticity by using the local lift operator in the kernel space.

The outline of the article is given as follows: In Sect. 2, the coupled Stokes and Darcy
equations, notation and numerical scheme are presented. Section 3 recalls some inequalities
and approximation operators. In Sect. 4, the boundedness, K-ellipticity and a discrete inf-sup
condition are derived. Section 5 proves the priori error estimates. In Sect. 6, some numerical
experiments are used to validate the theoretical analysis.

2 Model Equations, Notation, and Scheme

Let 2 be a open bounded domain in R d =23, comprised of two subdomains €21 and 2.
Let I'j» be the interface and ', = 02; N 0. Define I'; = ‘852,- \ I'12, i = 1, 2. Denote
by n the unit outward normal vector to d<2. Let ny, (resp., tljz) be the unit normal (resp.,
tangential) vector to I"j> outward of €21, where j = 1,...,d — 1. Denote by u = (uy, uy)
the fluid velocity in (€21, 22) and p = (py, ps) the fluid pressure in (€21, £27). We assume
the Stokes equations in €21, and there holds

—V T, pp)=f in Q, (1)
V. llf =0 in Q], (2)
ur=0 on I}. 3)

Here T is the stress tensor
Ty, pr) = —prI+2uD(uy),
where p > 0 is the constant viscosity coefficient and the strain tensor is defined by
1 T
D(uy) = E(Vuf + Vuf).

In region €2, the governing equations satisfy the Darcy equations

V-ugy=g in Qp, “4)
K l'uy+Vp, =0 in Q, 5)
u,-n=0 on Iy, (6)

where the permeability tensor K is symmetric and positive definite, and satisfies for some
0 < kmin < kipax < 00,

kninETE < ETK(X)E < knax£TE VE € RY.

The physical quantities in €27 and €2, are coupled by the following interface conditions on
ip:

Uy -mp2 = U N, @)
pr—2uD@ys)np) -y = py, 8)
us -t = 2GM@np) -1, j=1,...,d—1. ©9)

Note that interface condition (7) denotes the mass conservation, interface condition (8) stands
for balance of forces, and interface (9) represents the Beaver—Joseph—Saffman law, where
G > 0 is friction coefficient determined by numerical experiments.
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Fori = 1,2, let 8;1 be a non-overlapping and quasi-uniform decomposition [22] of ;,
let FL be the set of interior facets and let &; denote the maximum diameter of elements in
82. For any non-negative integer k and number r > 1, the classical Sobolev spaces [23] on
a domain O is denoted by Wk (0) = (v € L"(0) : D™(v) € L"(0),Vm > k}, where
D™ (v) are the partial derivatives of v of order m. The associated Sobolev norm (respectively,
semi-norm) is denoted by || - ||k, 0 (respectively, | - |x.r.0), or by || - |lx,0 (respectively,
| - lk,0) if r = 2. We use the notation H*(0) for W52(0) and L%(O) for the space of
square integrable functions with zero average. The L? inner-product will be denoted by (-, -).
Moreover, let H(div; 25) = {v € (L%($2))?,V - v € L%(,)} with norm ||v||%1(dl.v;92) =
||V||(2)‘Q2 + IIV'VII(%yQZ, and let Hy(div; Q2) = {v € H(div; €7) : v-n|r, = 0}. Throughout
the paper, ¢ will denote a generic positive constant whose value may vary with different
equations but shall be independent of the mesh-sizes & and h;. Particularly, our scheme
requires that the trace of the normal derivatives of u s and the trace of uy, p s, uy, py are well
defined, and are square-integrable, therefore, we define the following functional spaces:

X/ = vy e L@, VEee,, vrlg e (H(E)),
X' ={vs € (L2 @), VE€sj, vilg € (H(E)),
M/ =lq; € LX(Q)), VE€s,, qflp e H(E),
M* =lqs € L*(Q), VE s}, 4lp € H'(E)).
Let w be any scalar or vector-valued function. Given a fixed unit normal vector n, on each
interior facet ¢ € dE| N dE», pointing from E| to Ej, the average {w} and jump [w] of
function w are uniquely defined
1
{w}zi(w|E1 +w|E2)7 [U)]:U)|E1 _U)|E2.
In addition, if e € 92 and e € E{, then the average {w} and jump [w] of function w are
{w}=wlg,, [w]=wlg.
Define the general DG norms:
o1 M d-1 .
Vel = VYA e + D0 <MV lIGe+ 5 D0 D vy - thlie

e °
eeljur, el j=leel

larl?r = larlBa,.  lashs = lgsld g,
and H(div)-like norm:

02.¢

le|

2 2 2 2
Vel = Vsll5.0, + 111V - Vel + D Vs - neTl e

eel2Ur,

where |e| denotes the measure of facet e, the parameters o1 . and o2 . are positive penalty

constants, and the ||| - ||| norm is the usual “broken” norm withm =0 orm =1
2 2 .
Nwlllh.g = Y llwly, g Vi=1,2.
Ees)

Now we define

X=X xX°, M={qeL}):qle €M/ qlg, € M°},
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and the corresponding norms

VIR = Vsl + IVellkss Ngllas = llgrls,, + laslis- (10)
Let k1 and k> be positive integers. We consider the finite-dimensional approximation spaces
X/ c X/, X3 X5, M] ¢ M/ and Mi C M?, defined as follows:
I =(vyeX!, VEcel, vilp e @ (ENY,
s =1v, €X', VEecer, vilp e B (E)7),
M =lqy e M’ VEee). qfleePy1(E)
M ={q; e M*, VE €¢}, ¢l €Pr_1(E)},

where Py, (E), Py, (E) stand for polynomial spaces of degree less than or equal to ki, k>
respectively. Let Xj, and M}, be finite-dimensional subspaces and belong to X and M, respec-
tively, such that

X, =X/ x X}, M, =M x M})n L.

Before giving the numerical scheme, some bilinear forms shall be introduced. For any
ur, vy € X/,

ap(up,ve) =2y / D@uy) :D(vdx+ » / oLl [vslds
Eee! &y eEFhUFI

~2e Y [ wpna - tvilds+2ue Y [ D -uy1ds
eer},ur] ¢ eerjur; °¢

+Z Z / Sure T12Vf leds

j 1eel' ¢
where € = £1 and 01, > 0 is the penalty constant. For any uy, vy € X%,
ag(ug, vg) = / K™ uv vedX + Z / le| -n][vy - n]ds,

Eeel eel2uUr,

where the stability constant 05, > 0. Forany v, € X/, py € M/ andu; € X*, p; € M*,

br(Vi,pr) =— Z/pfv vedx+ Y f[vf n{pslds,

eerjur; °¢

bs(vg, ps) = — Z/psv Vedx + Z /[Vs n.l{ps}d

e
EEF} ur,

Define the finite-dimensional space of functions Aj; = X;l -nj2 on the interface and let

Vi={(vyp,v) €Xp: Y [ n(vp—v) mids =0 Vi€ Ay).

eecl'n ¢

Assumption 2.1 We assume A, = {n € L%(T'12),Ve € T'1a, nle € Pk, (e)}.
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Indeed, the Assumption 2.1 holds true by choosing a proper basis of space X .
Define a = ay + a, and b = by + by, the numerical scheme reads as: Find (uy,, pp,) €
Vi, x My, such that

a(uay, vp) + bV, pp) :/ f-vpdx Vv, €V, (11)
Q)

—b(uy, qn) =/ gqndx Nqn € My . (12)
Q)

Remark 2.1 We can check that the numerical scheme (11)—(12) is locally mass conservative.
Indeed, taking the test function g, in (12) such that g, = 1 on element E and g;, = 0 on the
remaining elements E, we obtain

f{uh}-ndezf X9, 8dX VEee}erﬁ,
E E

where xq, is the characteristic function taking the value 0 in €2 and 1 in €>.

Remark 2.2 To facilitate the theoretical analysis, we introduce the space Vj of weakly-
continuous-normal velocities on the interface. Clearly, it is difficult to construct this space,
thus, an equivalent formulation to (11)-(12) is presented in Sect. 6. It only depends on the
space X7, and it is more convenient for implementation. The space Aj, as a Lagrange multi-
plies space, is used to impose the continuity of the normal velocities. The choice A, = Xj -nj2
is to ensure the well-posedness, stability and accuracy of the discrete scheme (11)—(12).

Next, we show the exact solution of the coupled Stokes and Darcy problem (1)—(9) satisfies
the numerical scheme (11)—(12) up to an error term on the interface.

Lemma 2.1 Let (u, p) satisfy the coupled Stokes—Darcy problem (1)~(9), such that uy =

ulq ., us =ulg, and py = pla,, ps = pla,, then (u, p) solves the variational problem

a(u,Vh)+b(Vh,P)=/ f-vpdx — Z Ps(Vep —Vsp) M2 vy € Vg,  (13)
Q

! eel'n ¢

—b(u, qh)=/ gqndx Vqp € Mp. (14)
Q)

Proof Multiplying the Stokes Eq. (1) by vs ;, € X}{ , integrating by parts over element £ and
summing over all elements E. From the regularity of the exact solution and the boundary
condition, we can obtain

> / @uD(us) : D(vp) = psV-vedx+ Y / P}y - melds

Ees) eel}ur
—2u Z /{D(uf)ne}-[vf,h]ds—l—Zue Z /‘{D(Vf,h)ne}.[uf]ds
eerjur, *¢ eeriur; °¢
o,
+ ) /lTle[uf]-[vf,h]ds— > /(—pf1+2MD(uf))n12-vf,hds
eerjur; °¢ eelp V¢

=/ f-vypdx.
Qi
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The interface term can be rewritten as
d-1 o
(=psI+2uDuys)n;y = —pynp + Cu(D(uy)ngg) -npngz + Z(ZM(D(U/')nlz) )T,
j=1

combining the interface conditions (8) and (9), we get

— Z /(—Pf1+2MD(llf))n12~Vf,hds = Z /ps(Vf,l1 -my2)ds

ecl'p ¢ ecln e
M d—1 ' ‘
+ EZ ) /e(“f'fl’z)(Vf,h - ty)ds.
j=1 ecl

Thus, we have

aFg,vep) +br(Ven, pr)+ Z /Ps(Vf,h ‘np)ds =K, vy Vi € X;f,

e

eEFlz
(15)
Similarly, we obtain
—brus,qgrn) =0 Vgrn € M,‘,f,
(16)
ag(ug, Vs ) + by (Voo ps) — ) / Ps(Vyn - mi2)ds =0 AVED. of
eel‘lz ¢
(17
_bb‘(uSv qs,h) = (ga QS,h)Qz Vqs,h S M/S,
(18)
Adding (15)—(16) to (17)—(18), we complete the proof. ]

Remark 2.3 Note that, if k| = kp, the exact solution of the coupled system (1)—(9) satisfies
the numerical scheme (11)—(12) without the interface error term appearing in (13).

3 Inequalities and Approximation Operators

Recall the standard trace inequalities [2], there holds on a given element E with diameter / g
V¢ € H'(E), Ve CIE, |pl§, <cthz' 15 +heldlip). (19

V$ € HX(E), Ye CIE, Vo -nl§, <cthp'll} s +helphp).  (20)

Vo € Bi(E), Ve COE. |dlloe < chy*1dlo.E. @1

Vo € Py(E), Ve COE, |V -neloe < chy*1pl1E. (22)

Also, recall the discrete Korn’s inequality [26]

1
Wi e Xl IVVeallidg <c| DO rDIRg + Y |7|||[vf,h]||%),e . (23)
eerjur,
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Let p € L?(R2), we denote by p the L2- projection of p in M}, satisfying
Vars €PuaE). [ apalp =) =0 VE e, 4
E
Vgs,n € Pry—1(E), / gsn(p—p) =0 VE €¢j, (25)
E

and, if plg, € H k() and pPlo, € H k2(2,), then the following approximation properties
hold

Ip = pllme < chs ™™ ply.e, Eceh, m=0,1, (26)

~ ky—
Ip = pllme < ch " pliye, Ecef, m=0,1. 27)

Let H}{ S (HY(Q))Y > X}{ be the quasi-local interpolation [24], and the quasi-local
interpolation satisfies for any E € ¢ }l

Vv, e (HY(Q1), Vg € Py _1(E), /quv (M vp —vp)dx =0, (28)
Vv e (HY(Q)?, VeeTl), Vqse (Py-1(e)?, /qf M vslds =0, (29)

e
Vv, € (H Q) VeeTy, Vqre (P _1(e), /qf T vpds =0,  (30)

e
|||H;{Vf|||l,91 <clvglh,ge- 31

For any v, € (Hj(Q1))?, by (28), (29) and (30) we have
br(Tvi—vi,qp) =0 VgreM]. (32)
f

Moreover, the interpolation operator IT; satisfies the following approximation property

|H;{Vf ~VilmE < ™MV lsomy Y1 <s <k +1,¥v; e (H Q)% m=0,1,
(33)

where §(F) is a macro-element containing E. Moreover, there exists at least one facet e of
every element E € ¢ }1, such that

/(n,{vf —vp)ds =0 Vvpe (H Q). (34)

Indeed, if d = 2, when ki = 1 and k; = 2, (34) holds true for all facets, when k; = 3,
it holds true for all facets of most practical mesh (see [24]), if d = 3, when k; = 1, (34)

holds true for all facets. Specially, for the interpolation operator IT }{ , we have the following
bounds.

Lemma3.1 Let1 <s <k + 1. Forallvy € (HS(21))? and vrlr, =0, there holds

Ny = velxs < chi ™ Vels.or, 33
1T vlxr < clveline,- (36)
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Proof From the approximation property (33) and (34) (see Lemma 3.9 of [24]), we have
vy =vilxs < cllVALve = vpllloe < chj™ Vil

Using the fact that [[v[lxs < c[v/ll1,q,, for any vy € (H!(22))?, the bound (36) follows
from (35) with s = 1 and triangle inequality. O

Let IT5 1 (H?(Q2))? N H(div; Q) — X be the MFE interpolant [10] for any 6 > 0,
where X;; satisfies

XS = Ho(div; Q) N X3, 37
indeed, the space X is BDMj, [25]. For any v, € (H(22))¢ N Ho(div; 2»), it holds
bs(ITj vy — vy, q5) =0 Vgs € M}, (38)

./‘((Hflvx —Vy)-m)Wy-n, =0 Ve e 1"% UTy UT 2, YW, € Xj. (39)
e

Forany E € 8%, I satisfies the approximation properties
”szs = Vsllm,E < ChSE|vS|S*m,E 1<s<k+1,m=0,1, (40)
IV - (I, vs = Vo)llo,g < chglV -Vsls g 0 <5 < ka. (41)
In addition, we have the following result [4,25]

ITT5, Vs | 2 (i 20) < (Vs llo, 0 + IV - Vsllo,@,)- (42)

Remark 3.1 Note that, the interpolation operator Hil holds in any dimension, However, the
existence of interpolation operators n/ , in three dimensions, for k1 = 1 is presented in [10].

As for other k1, we don’t know whether the interpolation operators I'T }{ is exist.

4 Well-Posedness

In this section, we prove the boundedness of bilinear operators a(-, -) and b(-, -), K-ellipticity
of bilinear operator a(-, -) and discrete inf-sup condition of bilinear operator b(-, -). Then,
the well-posedness of the numerical scheme (11)—(12) is obtained by using the boundedness,
K-ellipticity and discrete inf-sup condition.

The boundedness of bilinear operators a(:, -) and b(-, -) are proved in the following
Lemma.

Lemma 4.1 There exists a constant c, independent of mesh-sizes hy and h» such that

a(ug, vp) < clluglxlivellx Yup, vy € Xy,

b(vp, pr) < clivilixllprllm Yvi € Xy, pp € M.

Proof By Cauchy-Schwarz inequality, trace inequalities (21) and (22), the bilinear operators
ar(,-),as(-,-)and by(-, ), by(-, -) satisfy

aggp, ven) <cllarnllxsIVenllxs Yagn, ven € X,,f
dg (us,h, Vs,h) =< C”us,h ”X“' ||Vs,h ”X" Vus,ha Vs,h € Xi,,
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by pra) < clVinlxrlprallyr YpneX), prne M,
bs(Ve.n, Ps,n) < cllVsnllxs I ps,nllms YVsn € X}vl’ Ps.h € M;Yl

From the relations a(-,-) = ar(-,-) +as(-,-) and b(-,-) = bs(-, -) + bs(-, -), immediately,
we have the boundedness of bilinear operators a(-, -) and b(-, -). O

Next, we present the K-ellipticity of bilinear operator a(-, -). To prove the K-ellipticity,
the following conditions shall be given.

1. o1, > 1 for all facets in I‘}L UTyif e =1, e.g., one may choose o1, = 2.
2. 01, = op > 0 for o¢ large enough if e = —1.
3. 03, > 1 for all facets in Fﬁ U Ty, e.g., one also may choose 03 , = 2.

Specially, the local lifting operator [9] is introduced and used to prove the K-ellipticity.

Lemma4.2 The local lifting operator r,: L?(e) — M; is defined by

/ re(w)gs pdx = — / wlgs.n}ds Yw € L*(e),Ygs.n € M. (43)
Q)

e
Then, for any e € Fﬁ U I'y, the following inequality holds
—1/2
lre)llo.0, < che " wllo.e- (44)
Proof By taking g5, = r.(w) in (43) and using the trace inequality (21), we have

172
lwllo,ellre(w)llo,s,

1 -~ _
VeeTh, lrew)fq, < Enwno,g(nre(w)*no,e + Ire(w) " llo,e) < che
and

2 ~1/2
Ve T llre)lf g, < Iwlloellre@)lloe < che lwllo.elire(w)llo.g,-

Note that r, (w) vanishes outside the union of the elements containing facet e.

Lemma 4.3 There exists a constant Cx > 0, independent of mesh-sizes h| and h» such that
a(uy, up) > Cg luplly Yuy € Zy, (45)

where Zy, is the kernel space Z, = {vy € Xp; b(vuh,qn) =0 Vg, € Mp}.

Proof Note that, if o1 , is sufficiently large fore = —1 and if o1 , = 1 for € = 1, by discrete
Korn’s inequality (23), we obtain the global coercivity in Stokes domain (see [2])

ap(yp,uyp) > Cf”uf,h”?(f Vuy € X;f,

where Cy is independent of mesh-size /1. The proof is a trivial and not presented in this
paper. We need to prove the remaining K-ellipticity of as(-, -). In light of the definition of
the local lifting operator, for any uy , € Zj; and any g, , € M;, we have

bs(uy p, CIs,h) = - Z f V- us,hqs,hdx - / Z re([ug, - Mgy ndx
' JE Q

Eee} % eel7Ul
==Y / (Veougn+ Y re(lugn - me])gs pdx.
Eee2 eCIE\T)
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Due to uy j, € Zy, it satisfies bs(ug 4, g5.n) = 0. Choosing

qs.h = V. U 1 + Z re([us,h . ne]) VE € 8]%7

eCOE\T'12
yields
Veugp=— Y re(ug-nl) VE€sj.
eCIE\I'12
By (44), we obtain
—-1/2
IV -uenllog, <c > kP lugs - nelllo..
eel'2Ur,
Note that o2, > 1, therefore
02.¢

2 2 2
ag(us i, us ) = [lugalllfo + ) Ifus s 0l = Csllug allxs Vug s € Za,

eel2Ur,

le]

where Cj is independent of mesh-size h;. By combining the global coercivity of as(-, -)

and the K-ellipticity of as(-, -), we finish the proof of the K-ellipticity by taking Cx =

. C
mm(Tf, %). O

Finally, a discrete inf-sup condition shall be derived.

Lemma 4.4 There exists a positive constant B, independent of mesh-sizes h1 and hy such
that
b(Vh, gn)

inf sup —— > 6. (46)
aneMu v, ev, IValixlignllm

Proof To this end, we consider the space X, = X{ X f(;l and X, C X}, where the space 5(2
is introduced in (37). Define

Vi=1{vsv)eXp: Z/’?(Vf_vs)'nn:() Vi e Ay

eelp ¢

If the following inf-sup condition holds

b(Vi, qn)

inf _ >
Ve llxllgnlla

47
qn€Mp “7)

Vi th
immediately, we finish the proof of this Lemma. Let g, € M} be fixed, then there exists a
v e (H'(2)) such that

V.-v=—q, in Q, v=0 on 0%,
satisfying
Ivili,e < clignllo.e-

Note that, by v € (H'(Q))?,

b(v, qn) = — /g (V- Vgndx = llgnll} o
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which, combining with the given priori bound, yields
1
b(v,qn) = ~lignllo.2lvih.q-

The idea of the proof of the inf-sup condition is thap we construct a T,V € \7;, such that the
inf-sup condition (47) holds. To this end, let 7, : X/ x (XN (H ()% — V, satisfying

b(wpv —v,qp) =0 Vg, € My, and |mpvix < c|lvl1,q. (48)

Let mpv = (n,{v, V) € X,{ X 5(2 We take n,{vv = H{:v where nhf (X > X}{ is the
quasi-local interpolation defined in (28)—(30). Clearly, by (30) and (36) we have

byt v=v.q1) =0 Yan € My, and |mvixs < clviie,. (49)
To define 7;;, we consider the auxiliary problem

V.-V¢p =0 in £,
V¢ -n=0 on Iy,

V¢ -njp = (ﬂhfv —v)-njp on I'pp.

The auxiliary problem is well-defined, since

(n,{v —V)-npds =0,
2

due to (34). Let z = V¢. Note that, the piecewise smooth function nhf v-n, € H? (I'yp) for
any 0 < 6 < 1/2. By elliptic regularity [20], we can obtain

Izllg.0, < cllr/v—v) -niallo—ijar, 0<6<1/2. (50)

Let w = v + z, the auxiliary problem implies V-w =V -vin Qy and w - njp = rrhfv -nyp
on I';p. We now define ;v = IIj w, where I} : (H?(Q22))? N Hy(div; Q) — 5(;1 is the
MEFE interpolation defined in (38). Employing (38), it holds

by (v, gs.n) = by (TTy W, g5 1) = bs(W, gs.n)

= —/ V - wg pdx = —/ V - vgs pdX = bg(V, q5.n) Vgs,n € M},
Q> Q2

due to the regularity w € Hy(div; ©23). Thus, mpv = (nhfv, m,v) satisfies
b(zpv, qn) =0 Vg, € Mj.

We can check that ;v € \7;,. Indeed, for every e € I'12 and n € Ay, by (39) and the fact
that Ay, = Xil -nj2,

/nﬁv-nnnds = /H;,W-nlznds = /w-nlznds = /-nhfv-nlznds.
e e e e
Using (40), (42) and (50), we have

Il viixs = [ITT, wllxs
=< M viixs + 1Tz xs

@ Springer



Journal of Scientific Computing (2020) 85:26 Page 130f27 26

<c(Ivlii,e + lzllo,2,)

<c(Ivlia+ G/ v =v) -npllor,)-

It remains to bound the last term. For every e € "1, and facetof E € ¢ }l, using (19) and (33)

—1/2 1/2
It/ v —v) -nalloe < chy Ax v = vio.g + hxllm] v — Vi) < chi V1 5.

(S
Therefore
lpvilxs < cllvilie,
combining with (49), which proves (48). Now using (48) we have
ol <55 1(];) - b(ﬁrvhuvf,zh) : bl(ﬁ:vﬁ;) Y € M
and finish the proof of inf-sup condition (47). O

Now, in light of boundedness, K-ellipticity and the discrete inf-sup condition, we analyze
the existence and uniqueness, and stability of solution of discrete scheme (11)—(12). However,
the stability is a direct result of saddle point problem [10]. Thus, we only present the existence
and uniqueness of solution.

Theorem 4.1 The numerical scheme (11)—(12) has a unique solution.

Proof Since the scheme (11)—(12) is square and finite-dimensional system, it is equivalent to
the uniqueness of homogeneous system. The homogeneous system is obtain by setting f = 0
and g = 0. Thus, we have

b(ay, qn) =0 Vg € My,

which implies u, € Z;. Taking vj, = uj and g5 = pj, in (11) and (12), respectively, we
can obtain a(uy, u,) = 0. The K-ellipticity (45), immediately, yields u;, = 0. In light of the
discrete inf-sup condition (47), we have p, = 0 and finish the proof. ]

5 A Priori Error Estimates

In this section, a priori error estimates under proper norms are obtained for both velocity
field and pressure field. Before giving the error estimates, an approximation conclusion is
obtained in the space Vj,.

Lemma5.1 Letv € (H' () such that v|g, € (H*TH(Q))? and v]q, € (HRT(Q))4,
there exists Vi, € Vi, C Vj, such that

bV —Vn, qn) =0 Vau € My, (52)

Ve e[, UTY, /[Vh] ~quds =0 Vg, € (Py, (), (53)
e

v —=alx < e Vikt1.0 + B2 Vb0, + B2V - Vik.0,)- (54)
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Proof Let Vv, = mp,v, by the construction of 7;,v in Lemma 4.4, we can easily obtain (52)
and (53). To show approximation (54), we first note that (35) implies that

Iv = Viixsr < ch{ [VIg+1.- (55)
Next,
IV =7 viixs = IV = T wlixs < v — T vlixs + [TI (W — v)]xs. (56)
Using (40) and (41), there holds
IV =T Vlixs < ch5 ™ Vikga1.0, +B521V - Vi, (57)

The last term in (56) can be bounded by using (42), (50), (19) and (33)

1T, (W — W) [Ixs = [T zllxs < l|z]l6.0,
ki+1/2
< cllv =7/ vy -milor, < by Tk a,- (58)
Combing (55)—(58), we finish the proof. O

Theorem 5.1 Let (u, p) be the solution of the coupled Stokes and Darcy problem (1)—(9).
Assume that ulg, € (HN1 ()9, pla, € HN () for i = 1,2. Let (wy, py) be the
numerical solution of discrete scheme (11)—(12). Then, we have the following estimate

k
la —uplx <chi' (lulg, 1.0, + Plk.2)

i ko—1/2,1/2
+ chy’ ([ulky 41,9, + |Plg.2,) +chy’ / hl/

|Plks, 2, -

Proof Subtracting (13)—(14) from (11)—(12), the error equations are

a(w, —u,vi) + bV, pr—p) — Y /Ps(Vf,h —Ven) -mi2ds =0 Vv, €V, (59)

eecl'n ¢

b(uy, —u,qp) =0 Vg, € M. (60)

Let i, be the interpolation of u defined in Lemma 5.1 and let 5, be the L2- projection of p,
satisfying (24) and (25), we then introduce the following notions

X =up —uy, 0 =u-—1up,
& = pn — P, {=p—Dpn

Based on the above notions, the error Egs. (59)—(60) can be rewritten as

a(x. vi) + bV, &) = a(0.vi) + b(vi. O) + /ps(vf,h — Vs,n) -Mi2ds Vv, € Vi,

eeln ¢

(61)
b(x.qn) =bO,qn) Yan € My. (62)
By (52) in Lemma 5.1, we have b(0, g,) = 0, thus
b(x,qn) =0 Vg, € My,

which implies x € Zj. Choosing v, = x and g5 = & in (61) and (62) yields

a0+ b0 ) = a0, 04500+ Y [ paGty = 100 - miads,

eel'p ¢
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b(x.§) =0.

equivalently,

a(x, x) =a@, x) +b(x,¢) + Z /ps(Xf—xs)-mzdS- (63)

ecl'y ¢

By x € Zj, the K-ellipticity (45) yields a(x, x) > Ckllx ||§. We only to bound the right
hand sides of (63). The first term can be bounded as follows:

ar@, x) =2n Z/ED(G):D(X)dx

1
Eeg,

Y [T taas -2 Y [ 0@m) - Gads

1
lel

eer}ur; eerjur; ”¢
d—1 " ) )
vaue Y [0Gond 1015+ 3 [ o dhr - has
eeriur; °¢ j=leeln "¢

=T +DLH+T3+Ty+Ts.

Using Cauchy—Schwarz inequality, Young inequality and the approximation property (33),

Cg
T <2u Y IVOllo.elVxllos < = VXl 0, +ellIVOllG g,

Eee}
Ck 2 2%y 12
= ?|||VX|||0,Q1 +ch) 1|“|k1+1,s21'

By Cauchy—Schwarz inequality, Young inequality, trace inequality (19) and the approxima-
tion property (33)

Ck o1, o1,
h=—- Y Eldlge+e 3o oo,

—~ el —~ el
eel’, Ul eel’, Ul
Ck Ole 2 %12
=5 X S IDNG e+ el
eerjur;

Let Lj, (u), defined in 1, stand for the classic Lagrange interpolation of degree k1, and note
that Ly, (u) satisfies the optimal approximation, for any E € s},

ILp() —ulyp g <chi™"ulsp ¥2<s<ki+1, m=0,12. (64)

For a fixed e € F}l U I'1, using the Lagrange interpolation in 73, we have

> / DO)N} - [xlds = Y / {D(u — Ly(u)n,} - [x]ds

e e
eer}ur, eerjur,

+ > / {D(Ly () — )0} - [x]ds.
eerjur;
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The first part can be bounded by using trace inequality (20) and the approximation property

of the Lagrange interpolation (64)

> / {D(u — Lyw)n} - [x1ds

eel Ul
01/2 | |1 2
< Y ” |1/2||[X]||oe 7 I{D@ — Ly w)ne}o.e
eel'} Ul
Ck Ol,e 2 le] —1 ~ 2
<— > , L) =@yl 1o+ hel Ly (w) —
8 ) le] Ol,e e
eel’, UM
Ck Ole > 2%k
> 1 2
= Z e Tchi Ml 1 o
8 le]
eelhUI

~ 2
“h|2yEg2)

where £ 812 represents the union of 6} and EZ (e=E el N Eg). Similarly, by the trace inequality

(21), triangle inequality, and the approximation (33), we have

> [ 0wiw - an - 1xlds

eerjur,
Ck Ol,e ~
<5 X " Getc Y ILa) —iyl} o
e
eel Ul eel'j Ul
Ck
2 2k1 12
< E + chy 'u| .
= \ 1 ki+1,Q
8 - le] 1 1
eel’, Ul

Therefore,

Ck Ol.e 2%
Ts<— > ] IS, + chi™ Tl 41q, -
eelhUl

The fourth term vanishes due to the continuity of u and the property (53) of uy,
Ty = 0.

The last term can be estimated by using the trace inequality (19),

d—1
w .
L=s > Y M16lloelx - tyllo.e

j=leel'12
l/~ d—1
<5622 2 I thlie + € 30 G100k + helol )
j=leel'12 eel’n
M d—1
2k1+1
<562 2 I thle+ e g,
Jj=leel'p

Let us now estimate a; (6, x),

a(ex)_Z/Kle xdx+ Y /I

Eee} eel2Ul,
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Using the Cauchy—Schwarz inequality, Young inequality and the approximation property
(40) to the first part, we have

1 2ka+2) 12
> [ K0 ax = SE xR o, + e il 0,
Eesﬁ E

The second part is bounded by using trace inequality (19) and the approximation (40)

C 02 02,
> [ 2 X Gl e 3
el 8 £ el : — el
2 2 2
ethUF eel’;ul’ eel’ur
Ck 02.¢ 2 2%
s 32k 2
= 8 z: Iel E +Lh2 |u|kz+l,92'
eel'2UI

Next, we estimate by (x, ¢), by the trace inequality (19), and properties (24) and (26),

by(x, ) = Z/W xax+ [ bcnieds

e

eel‘lul‘h
= ¥ [uenacas
eeryur) °¢
Cg ol 2k
=5 2 o e+ ehi Pl g
eeljury

Similarly, by the trace inequality (19), and properties (25) and (27),

bs(x.¢) = Z/W xdx+ Yy /[x n.]{¢}ds

e

eel2ur,
- /[x-nem}ds
eer2ur, *¢
Ck 02.e 2 2kyy 12
=% X o T eh 1Pl 0,0
eel'2Ur,

It remains to estimate the last term in (63). Since x belongs to V, we obtain

Z /I%(Xf Xs) -My2ds = Z /(Pr P (Xf — Xxs) - myads,

eel'p ¢ eel'p ¢

where p; € Ay, is the L?- projection of ps with respect to L2 inner product on the interface.
Thus, from the definition of the Lagrange multiplier space A, we have

Z /(Ps — D} Xs -Mi2ds = 0.

eeln ¢

For any interface facet e and any piecewise vector-valued constant ¢,, there holds

Z /P‘Y(Xf — Xs) -Mppds = Z /(Ps — Pp)Xs - Mids

eel'n ¢ eel'p ¢
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(ps — Pp)(Xf —€e) - nlzds— (ps — Pj)(Xf — €e) - M12ds.

e e

eeI‘u L’EF]Z

Assume that each interface facet e is shared by the element E, 3 € eﬁ and parts of the elements
Ee1 ;€€ }l, i = 1, k. Then, by the trace inequality (19) and approximation property of L>-
projection, we have (see [4])

ke
ko—1/2 -1/2 1/2
bl g2 Doy s = eello g+ 121Vl g1 s

/(pv — P (X —¢o) -mpads < chy
i=1

therefore
pa=1/2
> /( — (s =€) -mpds < ¢ Z( Pl Eth |VXf||OEI>
eel'n ¢ eel'n i=1

K 2kr—1
?|||Vx|||3,gl + ch3®

IA

2
hi |P|k2,Qz-

Indeed, we can estimate the interface term by using the discrete PoincarK inequality [2]
and not introduce the piecewise vector-valued constant ¢, if p has sufficient smoothness
(plo, € H k2+1(Q5)). Then, based on the above estimates we obtain

d—1
Ck o1, " i
a(x, x) <f|||VX|||ogl > E e f IlLx ]IIOe G E E ||X~ffg||(2),e

eerjur, j=leeln
K 2 Ck 02,¢ 2 2k 12
+ Xl e, + = D2 " et eh® R
eel2uUr,
2k 2k 2k 2kp—1 2
+Ch 2|u|k2+1 Q0 +Ch 1|P|k1 Q) +Ch 2|P|k2 Q +Ch > h1|P|k2,Qz~
Combing the K-ellipticity, we have
2 2k, 12 2kp 12
Ixlx < chi™ ulg, 410, +chy 2 a0,
2k 2k 2ky—1 2
+ chj 1|p|k1 o, Tch; 2|P|1€2 Q, T¢hy? hlpli, o,
which complete the proof by using (54) and the triangle inequality. O

Theorem 5.2 Under the same assumptions and notions of Theorem 5.1, we obtain

k
lpn — ploe < chy' (i 1.9, + 1Plk.o)

ky—1/2 ] 2
+ ch 2 (ulipr1 @, + |Plky.a) + ch2 720

|p|k2 Q-
Proof The error equation (59) can be written as

a(uy — 1, v) + b, pp — pi) = b, p— pr) + ) /Ps(Vf,h — Vi) -Mp2ds Vv € V.

eelp ¢

(65)
From the discrete inf-sup condition (46),

. 1 b(Vi, ph — Pn)
Ips = Prllog < — sup PR Ph), (66)
ﬂ vpeVy, ”Vh”X
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For any v;, € Vj,, we assume that p, — p;, and vy, satisfy (66). From (65), it holds

b(¥h. pr — pn) = —a(@y —w,vi) + Vi, p — pu) + Y /Ps(vf,h — Vs.n) - Mads.

e

ecl'p
(67)
To bound the term a(u, — u, v) in (67),
a(uy, —u, v;) =2 Z / D@, —u) : D(vp)dx + Y _ / " [valds
eEFhUFI
LD / (D(w, ~wn) - tds +20e 3 [ DI - 1w, — ulds
eerjur; ¢ eerjur, °¢
d—1
+Z Z /—(uh u) - T12Vh leds+ Z/(uh—u) vpdx
j=leel'n ¢ Ece? e
+ ) f " -0 ][vh - melds
ethUrz

=01+ 02+ 03+ 04+ 05+ Q¢+ 07.

We now estimate each Q; terms fori = 1, 7. The terms Q1, Q2, Qs, Q¢ and Q7 are bounded
by Cauchy-Schwarz inequality,

Q1+ Q2+ 05+ 06 + Q7 = c|Vallxllup — ulx.

Q3 is estimated by utilizing the Lagrange interpolation

1/2 12
Os<c Y (f') ||V<uh—u>||o,e<%) Ivalllo.e

1 le
eel’, Ul

172

<clvalx [ D BullV, — )5, + AV —ayl3,)
eel}Ur

~ 2 2k 2 1/2
< clvallx (s — (1% + ki ulz g o)

By using the trace inequality (21), there holds

Qs<c Y DN ol [wy —ulfo.e

eelpul

s o1\ /27172
. .
S n P Ivvallo g (W) I — ulllo.e

eel} Ul

= clivalixllup —ullx.
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For the term b(vy, p — pp) in (67), by the properties (24) and (26), we have

byip == Y. [ (= piltvi nelds
eel}UIN

12 1,2
Ol,e |e| ~

E v lllo,e I{p — Pn}llo.e
le o1

,e
eel} Ul

k
= Chll [Pk, VR lIX-
Similarly,

bs(Vi p—P) = ) /{p — Pn}lvn - nelds
eer2ur, *¢

1/2 12
o, B )
< > <|ef> ||[vh.ne]||o,e(az) 1P — Fn}lo.e

2 »€
eel;UlN

k
< ch?|pliy, o, IVallx-

Thus,
bVh, p = Pi) < clvilix (B |pli 2, + 1521 lio.2).
Similar to the proof in Theorem 5.1, the last interface integral term in (67) is bounded by

Z /Ps(Vf,h — Vy,p) - My2ds = Z f(Ps — Pj)Vfh - Mi2ds

eclp V¢ eelp ¢

ko—1/2,1/2
= Ch2 h] |I7|k2,92 ||Vh||X~

Combing the above bounds and the discrete inf-sup condition (66), we have
~ ~ k
lpn — Pllo.e < c(lwy, —ullx + lup — g llx + A7 ulk 41,0
k k ka—=1/2,1/2
+ 1y 1Pl e + B8 Pl 0y + 05 P Dl 0,).

In light of Theorem 5.1 and triangle inequality, we complete the proof. O

6 Implementation and Numerical Experiments
6.1 Implementation

In this section, an equivalent discrete scheme (see [19]) is given because it is hard to directly
construct the space of function V. Defining the following bilinear forms

Ar(m,vin) = Z /nvs,h ‘nppds Vn € Ap, Vg € X,{

eel'p ¢

Asn,ven) = Y / Vs, - Miads V1 € Ay, Wy € X5,

ecl'y ¢
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The numerical scheme (11)-(12) can be rewritten as: Find (wy, pn, An) € Xp X My, X Ap
such thatuy , = wsl@,, s, = Wsle, and prn = prle,, Ps.n = Phle, satisfy

arrp, Vep) +br(Ven, prn) +ArQp,vep) =&, vy, Vv € X;{, (68)

—byQug s qpn) =0 Varn € M. (69)
as(g.p, Vs.n) + b (Vs ps.n) — Ds (A, Vs0) =0 Yvsn €X),  (70)
—bs(Us.n, gs.n) = (8, qs.n)e,  Yqsn € My, (71)
Ar(mp,arp) — As(p,ug5) =0 Von € Ap, (72)
/ pf,th-i-/ ps.pdx = 0. (73)
Q o

We can easily verify that the numerical schemes (11)-(12) and (68)-(73) are equivalent. In
the following numerical examples, the discrete scheme (68)-(73) is applied.

For simplicity, we show how to choose a suitable basis for X} such that the Assumption 2.1
always holds true for d = 2. In general, for any element E and for i + j < k», we use the
following basis

span{l x y xy x2 y2 Xiyj}
span{l x y xy x2 y2 ... x'yi})"

However, Xj - nj» doesn’t contain constant if the interface edge e C {(x,y) : y = x +
constant}, thus, it doesn’t belong to discontinuous piecewise polynomials of degree k>. To
avoid this problem, let constants ¢ > 0 and b > 0, and a # b, then the Assumption 2.1
always holds true by taking the following basis

span{a x y xy x2 y2 ... xiy/}
span{b x y xy x2 y2 ... xiy/} )"

This conclusion is trivial, thus we don’t present the concrete proof here. Similarly, leti 4- j +
m < kp and let constantsa > 0,b > 0,c > Oanda # b,a # c, b # c, then the Assumption
2.1 always holds true for d = 3 by taking the following basis

span{a x y 7 xy xz yz ... x'yi 7"}
span{b x y 7 xy xz yz ... x'y/z")}
span{c x y z xy xz yz ... x'y/z"}

6.2 Numerical Experiments

In this section, under uniformly matching mesh, the convergence analysis of the coupled
system shall be reported by some numerical tests. In these numerical examples, the domain
Q = [0, 1] x [0, 1], Stokes domain 1 = [0, 1] x [0.5, 1], Darcy domain €2, = [0, 1] x
[0, 0.5], the interface I'j» = [0, 1] x {0.5}. In addition, we consider the stability constants
ol,e =30u,02, =1ande = 1.

6.2.1 Rates of Convergence

In this part, some tests are given to verify the rates of convergence. Let the permeability
tensor K = kI, we consider the coupled system with the following exact solution [1]

uty = —sin(rx)exp(y/2)/Qn?). us,y = cos(x)exp(y/2)/m.
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Table 1 The convergence rates under k| =k» = 1, u =k = land e = —1

1

1
64 123

w‘_
9

1 1
hy =hy g 16

lup —ugp ”LZ(Ql) 1.6245e-03 4.1008e-04 1.0351e-04 2.5944e-05 6.4860e-06

Rate - 1.986 1.986 1.996 2.000
lup —uyrplxs 8.4094e-02  4.1871e-02 2.0896e-02 1.0442e-02  5.2204e-03
Rate - 1.006 1.003 1.001 1.000
lpr—prranlyr 1.2953e-01 7.0904e-02 3.7000e-02 1.8874e-02 9.5285e-03
Rate - 0.869 0.938 0.971 0.986
llug =g pll;20,) 1.1541e-02  2.9438e-03 7.4116e-04 1.8583e-04  4.6517e-05
Rate - 1.971 1.990 1.996 1.998
llug — g p lIxs 3.2648e-01 1.6340e-01 8.1717e-02  4.0861e-02  2.0431e-02
Rate - 0.998 0.999 0.999 1.000
Ips — ps.nllags 3.3935e-02 1.6985¢-02 8.4948e-03 4.2477e-03 2.1239¢-03
Rate - 0.998 0.999 0.999 1.000

Table2 The convergence rates under k| = ko =1,y =k =1lande = 1

1

1
64 128

-

1 1
hy =hy 3 16

lup —uypy “LZ(QI) 1.6239e-03 4.0591e-04 1.0183e-04 2.5475e-05 6.3664e-06

Rate - 2.000 1.995 1.999 2.001
luy —uyrplygr 84114e-02  4.1873¢-02  2.0897e-02  1.0442e-02  5.2205e-03
Rate - 1.006 1.003 1.001 1.000
lpf—prnlyr 1.3053e-01  7.1144e-02  3.7049¢-02  1.8885e-02  9.5308e-03
Rate - 0.875 0.941 0.972 0.986
s = ug all 2y 1.1533e-02  2.9412e-03  7.4036e-04  1.8560e-04  4.6456e-05
Rate - 1.971 1.990 1.996 1.998
llus — ug p lIxs 3.2648¢-01  1.6340e-01  8.1717e-02  4.0861e-02  2.0431e-02
Rate - 0.998 0.999 0.999 1.000
Ips — ps.nllags 3.3935¢-02  1.6985¢-02  8.4948¢-03  4.2477e-03  2.1239-03
Rate - 0.998 0.999 0.999 1.000

n—2
pf=— cos(mx)exp(y/2),
ki

—2sin(mx)exp(y/2), up s = cos(mx)exp(y/2)/m,

Ul,s

Ps —iCOS(ﬂX)exp(yﬂ),
km

with G = 2/(1+47x?). Then, using the exact solution, the source terms f and g are determined
by the coupled Stokes-Darcy system (1) and (4), respectively, and the boundary conditions
are obtained by restricting the corresponding true solution to boundary d€2. To fully verify
our analysis, we consider the coupled system with different i and & in the following tests.

Let ;o = 1and k = 1, we report the numerical results given in Tables 1, 2, 3, 4 for different
€ and finite element spaces, which are optimal and predicted by the analysis. To adequately
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Table 3 The convergence rates under k| =k» =2, u =k = land e = —1

_ 1 1 1 1
hy = hy 3 3 % 2

1
64

lup —ugp ”LZ(QI) 4.9203e-04 6.3048e-05 8.0006e-06 1.0088e-06 1.2668e-07
Rate - 2.964 2.978 2.987 2.993

lup —ugplixr 1.6032e-02 4.0749¢-03 1.0265e-03 2.5756e-04 6.4507¢-05
Rate - 1.976 1.989 1.995 1.997
lpr—prranlyr 9.7501e-03 2.2329e-03 5.1498e-04 1.2210e-04 2.9611e-05
Rate - 2.126 2.116 2.076 2.044

lugy —ug p ”L(Qz) 3.6081e-03 4.8556e-04 6.2704¢-05 7.9554e-06 1.1052e-06
Rate - 2.894 2.953 2.979 2.848

llas —ug plIxs 6.5739¢-02 1.6737e-02 4.2161e-03 1.0576e-03 2.6480e-04
Rate - 1.974 1.989 1.995 1.998

Ips — ps.illpgs 6.5463¢-03 1.6453¢-03 4.1188¢-04 1.0301e-04 2.5754e-05
Rate - 1.992 1.998 1.999 2.000
Table 4 The convergence rates underk| =k» =2, u =k =lande = 1

=t ; : % ’ i

lup —ugp IILZ(QI) 4.7673e-04 6.2237e-05 7.9996e-06 1.0463e-06 1.4900e-07
Rate - 2.937 2.960 2.935 2.812

lup —uyrplixr 1.5778e-02 4.0073e-03 1.0089¢-03 2.5307e-04 6.3373e-05
Rate - 1.977 1.990 1.995 1.998
lpg—pranlyr 8.9027e-03 2.0009e-03 4.5569¢-04 1.0734e-04 2.5950e-05
Rate - 2.154 2.135 2.086 2.048

lug —ug p ”L(Qz) 3.6132¢-03 4.8574e-04 6.2714e-05 7.9575e-06 1.1116e-06
Rate - 2.895 2.953 2.978 2.840

llus —ug plIxs 6.5740e-02 1.6737e-02 4.2161e-03 1.0576e-03 2.6480e-04
Rate - 1.974 1.989 1.995 1.998

lps — ps.nllms 6.5463¢-03 1.6453e-03 4.1188e-04 1.0301e-04 2.5754e-05
Rate - 1.992 1.998 1.999 2.000
Table 5 The convergence rates under ky = ky = 1, u = 1073, k=1ande = —1

h = ho 8 16 » & %

lup —uygp IILZ(QI) 1.1216e-01 2.8021e-02 7.0724e-03 1.7824e-03 4.4776e-04
Rate - 2.001 1.986 1.988 1.993
lpg—pralyr 4.4457e-02 2.2164e-02 1.1062e-02 5.5249¢-03 2.7609e-03
Rate - 1.004 1.003 1.002 1.001

s —ug nll 20, 2.1723e-02 4.6953¢-03 1.0542e-03 2.4882e-04 6.0536e-05
Rate - 2.210 2.155 2.083 2.039

lps — ps.nllms 3.3944e-02 1.6986e-02 8.4949¢-03 4.2477e-03 2.1239¢-03
Rate - 0.998 0.997 0.999 1.000
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Table 6 The convergence rates underk; =ky =1, u =1, k=10%ande = —1

hi = 5 16 £ @ %

lup —ugp ”LZ(Ql) 1.6367e-03 4.1382e-04 1.0463e-04 2.6244e-05 6.5623e-06
Rate - 1.984 1.984 1.995 2.000
lpr—=prranlyr 1.3493e-01 7.3963e-02 3.8597e-02 1.9688e-02 9.9388e-03
Rate - 0.867 0.938 0.971 0.986

lag —ug p ”Lz(Qz) 8.1755e-03 2.0626e-03 5.1700e-04 1.2937e-04 3.3390e-05
Rate - 1.987 1.996 1.999 1.954

lps = ps,nll s 3.3924¢-05 1.6984¢-05 8.4946e-06 4.2476e-06 2.1239¢-06
Rate - 0.998 0.995 0.999 1.000
Table 7 The convergence rates under k| = ky = 1, u = 107% k=103 ande = —1

hi = h 5 6 £ 51 %

lup — uf*h“Lz(Ql) 1.3558e-01 3.0981e-02 7.4113e-03 1.8150e-03 4.4933e-04
Rate - 2.130 2.064 2.030 2.014
lpr—prrnlyr 4.4156e-05 2.2086e-05 1.1041e-05 5.5196e-06 2.7596e-06
Rate - 0.995 1.000 1.000 1.000

lag —ug p ”LZ(QZ) 1.9495e-02 4.1853e-03 9.3404e-04 2.1850e-04 5.3370e-05
Rate - 2.220 2.164 2.096 2.034

Ips — ps.nllmgs 3.3939%-05  1.6986e-05  8.4948¢-06  4.2477¢-06  2.1239-06
Rate - 0.998 0.999 0.999 1.000
Table 8 The convergence rates underk; = ky = 1, u = 103, k=103 ande = —1

hi =hy ¥ 1 £ & e

g —upnll 2, — 13837e+02  3218le+01  7.7913c+00  1.9209¢+00  4.7704e-01
Rate - 2.104 2.046 2.020 2.010
lof—prnllyr 7.3498e+01  4.0756e+01  1.8081e+01  6.9980e+00  2.9806e+00
Rate - 0.850 1.172 1.369 1.231

s = ug 20 8.9480e-01  5.5280e-01  2.3239e-01  7.5284e-02  2.0777e-02
Rate - 0.694 1.250 1.626 1.857

Ips — ps.nllass 43500e+01  2.4334e+01  1.1530e+01  4.9014e+00  2.2213e+00
Rate - 0.841 1.087 1.234 1.142
verify our analysis, let k; = ko = 1 and € = —1, some numerical results with different p

and k are presented in Tables 5, 6, 7, 8. Note that the exact solution pressure changes with
different viscosity 4 and permeability k, the errors of the pressure and velocity will also
change since the pressure depends on the permeability k and the velocity error is related
to the pressure (see Theorem 5.1). Particularly, it is obvious when & is relatively small and
pressure is relatively large (see Table 8). However, these numerical results with different p
and k are consistent with our convergence analysis. From Tables 1, 2, 3, 4,5, 6, 7, 8, we can
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X

(b) The velocity field.

(€) The pressure field.

Fig.1 The numerical result of Sect. 6.2.2 including the permeability, velocity field and pressure field

conclude that the numerical results support the theoretical analysis derived in Theorems 5.1
and 5.2. In addition, the L? error of velocity in both Stokes and Darcy regions are optimal,
even though the L? optimal convergence can not be proved in this paper.

6.2.2 Coupled Surface and Subsurface Flow

In this part, we consider an example proposed in [1, Example 6.2]. This example is repre-
sentative of surface flow coupled to subsurface flow. Let the boundary of Darcy region be
partitioned as ', = I'§ UT5, where I'§ = {x = 0 or x = 1} and '} = {y = 0}. Similarly,
let the boundary of Stokes region I'y = T'{ U F’l’ UTY{, where I'{ = {x =0}, Fll’ ={x =1}
and I'f = {y = 1}. Then, we consider the following boundary conditions:

uy = (y(1.5—-1y)/5,0), on I'{,

T(uy, ps) =0, on I'?,
u;-n=0, and T(uy, py)' =0, on I,
u;-n=0, on I'f,
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ps = —0.05, on l"lz’,

where T(uy, p f)’ stands for tangential stress (see [1, Example 6.2] and [7, Example 7.2]).
Lete =—1, ki =k =1, u=0.1,5G = K2, f=0, g = 0 and the permeability

k= T700(1 + 0.5(sin(107 x) cos(2071y2) + cos2(6.471x) sin(9.2my))) + 100.

Based on these choices we numerically solve this coupled system on a mesh with 4 = hy =
1/128.

The numerical results are given in Fig. 1, which shows the permeability field, velocity
field and pressure field. As shown in Fig. 1b, the fluid flow from inlet into interface and then
Darcy region, which is similar with the one presented in [1, Example 6.2] and [7, Example
7.2]. The tangential velocity of flow is discontinuous along the interface and the flow field
has relatively small velocity at low permeability in the Darcy region 2. The pressure field
given in Fig. 1c is highest at the entrance (around the inlet I'{) and discontinuous across the
interface. In summary, the proposed scheme can deal with the physical problem and capture
the discontinuity of velocity field and pressure field on the interface.
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