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Abstract
Combining the mixed discontinuous Galerkin method for the Darcy flow and the interior
penalty discontinuous Galerkin methods for the Stokes problem, a locally conservative dis-
crete scheme is proposed for numerically solving the coupled Stokes and Darcy problem.We
prove the well-posedness of the solution of the proposed numerical scheme by boundedness,
K-ellipticity and a discrete inf-sup condition. A priori error estimates, in proper norms are
derived, and to verify the theoretical analysis, some numerical experiments are given.

Keywords Stokes and Darcy problem · Discontinuous Galerkin methods · Priori error
estimates

1 Introduction

The coupled Stokes and Darcy model describes the interaction between free flow and porous
media flow. Such systems arise, for example, in modeling the groundwater (aquifer) contami-
nation through filtration and streams, and numerical modeling of this complicated interaction
is a challengingwork in both theoretical analysis andpractical engineering applications.There
are some related works of the coupled system. Based on the Beavers–Joseph–Saffman inter-
face conditions [14] Layton, Schieweck, and Yotov [27] prove the existence and uniqueness
of a weak solution of the coupled system and, present and analyze its numerical scheme by
adopting continuous finite element methods to discretize the Stokes problem andmixed finite
element methods (MFE) to discrete the Darcy problem. Rivière et al. [3,4,13] propose and
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analyze a locally conservative discrete scheme by employing discontinuous Galerkin (DG)
methods and mixed finite element methods for the coupled Stokes and Darcy equations, and
by utilizing the DG methods for the coupled Navier–Stokes and Darcy problem. In addition,
based on DG methods and mixed finite element methods, a strongly conservative numerical
scheme is given in [15] by this group. Fu and Lehrenfeld [16] propose a strongly conserva-
tive numerical scheme for the coupled system by considering hybrid discontinuous Galerkin
methods (HDG) and mixed finite element methods. Based on a continuous trace approxi-
mation of velocity and a discontinuous trace approximation of pressure, Cesmelioglu et al.
present a embedded-hybridized discontinuous Galerkin (EDG-HDG) finite element method
[1] with strong mass conservation for the coupled Stokes–Darcy problem.

Mixed discontinuous Galerkin (MDG) method [12] and discontinuous Galerkin (DG)
methods [2,5,6,8,11] are two kinds of locally mass conservative numerical methods. Mixed
numerical formulations are popular for porous media problems and DG methods have many
attractive properties such as being element-wise conservative, high-order methods, easily
implementable on unstructured meshes. Then, we propose a locally conservative discrete
scheme to numerically solving the coupled Darcy–Stokes problem, which is constructed by
using DG methods to approximate the Stokes problem and MDG method to approximate
the Darcy problem. The proposed scheme is different from the above mentioned numerical
methods expect for the EDG-HDGfinite element method, since we employ theMDGmethod
to approximate the Darcy problem rather than the MFE methods, and the numerical scheme
adopts the totally discontinuous polynomial spaces in both Stokes domain and Darcy region.
Such choices of discontinuous polynomial spaces avoid the difficulty of the construction of
conforming finite element space. It thus is more convenient for us to implement the algorithm
in a unified framework of DG methods.

The EDG-HDG finite element method is an efficient and attractive numerical schemewith
strong mass conservation, especially when the higher-order polynomial spaces are used. It
also utilizes the element discontinuous polynomial spaces in both Stokes domain and Darcy
region, even though a continuous approximation of trace of velocity is employed. Comparing
to the proposed numerical scheme, from the point of degrees of freedom (DOF), the EDG-
HDG finite element method needs fewer DOF in matching triangle (tetrahedra) meshes and
quadrilateral (hexahedron) meshes if the lowest order finite element space is used, since a
continuous approximationof trace of velocity is applied.However, if themeshes are polygonal
and non-matching with hanging nodes, we can’t draw this conclusion. Furthermore, our
scheme may be superior to this EDG-HDG finite element method if the lowest order finite
element space is used and a complete HDG finite element method is utilized, which means
the trace of velocity is discontinuous rather than continuous. Thus, our scheme has acceptable
DOF for the lowest order finite element space. What’s more, our scheme requires less matrix
assembly, storage, and is easier to code and implement. In a word, we think our scheme
is more suitable for the lowest order polynomial space and the EDG-HDG finite element
method is more attractive for higher-order polynomial spaces.

The features of the proposed numerical scheme are that the lowest order finite element
space has acceptable DOF.Moreover, it is more convenient for us to implement the algorithm
in a unified framework of DG methods and can be generalized to other porous media flow
problems such as Stokes-Biot model [17] and Stokes-dual-porosity model [18,21], since it is
constructed by a straightforward combination ofMDGmethod and DGmethods. In addition,
we present the numerical analysis for the proposed scheme in proper norms and show some
numerical tests to verify the analysis. The novelty of the analysis mainly includes that we
generalize the primal MDG method with Dirichlet boundary condition to an MDG method
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with Neumann boundary condition, and based on H(div)-like DG norm we also prove the
K-ellipticity by using the local lift operator in the kernel space.

The outline of the article is given as follows: In Sect. 2, the coupled Stokes and Darcy
equations, notation and numerical scheme are presented. Section 3 recalls some inequalities
and approximation operators. In Sect. 4, the boundedness, K-ellipticity and a discrete inf-sup
condition are derived. Section 5 proves the priori error estimates. In Sect. 6, some numerical
experiments are used to validate the theoretical analysis.

2 Model Equations, Notation, and Scheme

Let � be a open bounded domain inRd , d = 2, 3, comprised of two subdomains �1 and �2.
Let �12 be the interface and �12 = ∂�1 ∩ ∂�2. Define �i = ∂�i \ �12, i = 1, 2. Denote
by n the unit outward normal vector to ∂�. Let n12 (resp., τ

j
12) be the unit normal (resp.,

tangential) vector to �12 outward of �1, where j = 1, . . . , d − 1. Denote by u = (u f ,us)

the fluid velocity in (�1,�2) and p = (p f , ps) the fluid pressure in (�1,�2). We assume
the Stokes equations in �1, and there holds

− ∇ · T(u f , p f ) = f in �1, (1)

∇ · u f = 0 in �1, (2)

u f = 0 on �1. (3)

Here T is the stress tensor

T(u f , p f ) = −p f I + 2μD(u f ),

where μ > 0 is the constant viscosity coefficient and the strain tensor is defined by

D(u f ) = 1

2
(∇u f + ∇uT

f ).

In region �2, the governing equations satisfy the Darcy equations

∇ · us = g in �2, (4)

K−1us + ∇ ps = 0 in �2, (5)

us · n = 0 on �2, (6)

where the permeability tensor K is symmetric and positive definite, and satisfies for some
0 < kmin ≤ kmax < ∞,

kminξ T ξ ≤ ξ TK(x)ξ ≤ kmaxξ
T ξ ∀ξ ∈ R

d .

The physical quantities in �1 and �2 are coupled by the following interface conditions on
�12:

u f · n12 = us · n12, (7)

p f − 2μ(D(u f )n12) · n12 = ps, (8)

u f · τ
j
12 = −2G(D(u f )n12) · τ

j
12, j = 1, . . . , d − 1. (9)

Note that interface condition (7) denotes themass conservation, interface condition (8) stands
for balance of forces, and interface (9) represents the Beaver–Joseph–Saffman law, where
G > 0 is friction coefficient determined by numerical experiments.
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For i = 1, 2, let εi
h be a non-overlapping and quasi-uniform decomposition [22] of �i ,

let �i
h be the set of interior facets and let hi denote the maximum diameter of elements in

εi
h . For any non-negative integer k and number r ≥ 1, the classical Sobolev spaces [23] on
a domain O is denoted by W k,r (O) = {v ∈ Lr (O) : Dm(v) ∈ Lr (O),∀m ≥ k}, where
Dm(v) are the partial derivatives of v of order m. The associated Sobolev norm (respectively,
semi-norm) is denoted by ‖ · ‖k,r ,O (respectively, | · |k,r ,O ), or by ‖ · ‖k,O (respectively,
| · |k,O ) if r = 2. We use the notation Hk(O) for W k,2(O) and L2

0(O) for the space of
square integrable functions with zero average. The L2 inner-product will be denoted by (·, ·).
Moreover, let H(div;�2) = {v ∈ (L2(�2))

d ,∇ · v ∈ L2(�2)} with norm ‖v‖2H(div;�2)
=

‖v‖20,�2
+‖∇ ·v‖20,�2

, and let H0(div;�2) = {v ∈ H(div;�2) : v ·n|�2 = 0}. Throughout
the paper, c will denote a generic positive constant whose value may vary with different
equations but shall be independent of the mesh-sizes h1 and h2. Particularly, our scheme
requires that the trace of the normal derivatives of u f and the trace of u f , p f , us , ps are well
defined, and are square-integrable, therefore, we define the following functional spaces:

X f = {v f ∈ (L2(�1))
d , ∀E ∈ ε1h, v f |E ∈ (H2(E))d},

Xs = {vs ∈ (L2(�2))
d , ∀E ∈ ε2h, vs |E ∈ (H1(E))d},

M f = {q f ∈ L2(�1), ∀E ∈ ε1h, q f |E ∈ H1(E)},
Ms = {qs ∈ L2(�2), ∀E ∈ ε2h, qs |E ∈ H1(E)}.

Let w be any scalar or vector-valued function. Given a fixed unit normal vector ne on each
interior facet e ∈ ∂ E1 ∩ ∂ E2, pointing from E1 to E2, the average {w} and jump [w] of
function w are uniquely defined

{w} = 1

2
(w|E1 + w|E2), [w] = w|E1 − w|E2 .

In addition, if e ∈ ∂� and e ∈ E1, then the average {w} and jump [w] of function w are

{w} = w|E1 , [w] = w|E1 .

Define the general DG norms:

‖v f ‖2X f = |||∇v f |||20,�1
+

∑

e∈�1
h∪�1

σ1,e

|e| ‖[v f ]‖20,e + μ

G

d−1∑

j=1

∑

e∈�12

‖v f · τ
j
12‖20,e,

‖q f ‖2M f = ‖q f ‖20,�1
, ‖qs‖2Ms = ‖qs‖20,�2

,

and H(div)-like norm:

‖vs‖2Xs = |||vs |||20,�2
+ |||∇ · vs |||20,�2

+
∑

e∈�2
h∪�2

σ2,e

|e| ‖[vs · ne]‖20,e,

where |e| denotes the measure of facet e, the parameters σ1,e and σ2,e are positive penalty
constants, and the ||| · ||| norm is the usual “broken” norm with m = 0 or m = 1

|||w|||2m,�i
=

∑

E∈εi
h

‖w‖2m,E ∀i = 1, 2.

Now we define

X = X f × Xs, M = {q ∈ L2
0(�) : q|�1 ∈ M f , q|�2 ∈ Ms},
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and the corresponding norms

‖v‖2X = ‖v f ‖2X f + ‖vs‖2Xs , ‖q‖2M = ‖q f ‖2M f + ‖qs‖2Ms . (10)

Let k1 and k2 be positive integers. We consider the finite-dimensional approximation spaces
X f

h ⊂ X f , Xs
h ⊂ Xs , M f

h ⊂ M f and Ms
h ⊂ Ms , defined as follows:

X f
h = {v f ∈ X f , ∀E ∈ ε1h, v f |E ∈ (Pk1(E))d},

Xs
h = {vs ∈ Xs, ∀E ∈ ε2h, vs |E ∈ (Pk2(E))d},

M f
h = {q f ∈ M f , ∀E ∈ ε1h, q f |E ∈ Pk1−1(E)},

Ms
h = {qs ∈ Ms, ∀E ∈ ε2h, qs |E ∈ Pk2−1(E)},

where Pk1(E), Pk2(E) stand for polynomial spaces of degree less than or equal to k1, k2
respectively. LetXh and Mh be finite-dimensional subspaces and belong toX and M , respec-
tively, such that

Xh = X f
h × Xs

h, Mh = (M f
h × Ms

h) ∩ L2
0(�).

Before giving the numerical scheme, some bilinear forms shall be introduced. For any
u f , v f ∈ X f ,

a f (u f , v f ) = 2μ
∑

E∈ε1h

∫

E
D(u f ) : D(v f )dx +

∑

e∈�1
h∪�1

∫

e

σ1,e

|e| [u f ] · [v f ]ds

− 2μ
∑

e∈�1
h∪�1

∫

e
{D(u f )ne} · [v f ]ds + 2με

∑

e∈�1
h∪�1

∫

e
{D(v f )ne} · [u f ]ds

+
d−1∑

j=1

∑

e∈�12

∫

e

μ

G
u f · τ

j
12v f · τ

j
12ds,

where ε = ±1 and σ1,e > 0 is the penalty constant. For any us, vs ∈ Xs ,

as(us, vs) =
∑

E∈ε2h

∫

E
K−1us · vsdx +

∑

e∈�2
h∪�2

∫

e

σ2,e

|e| [us · ne][vs · ne]ds,

where the stability constant σ2,e > 0. For any v f ∈ X f , p f ∈ M f and us ∈ Xs, ps ∈ Ms ,

b f (v f , p f ) = −
∑

E∈ε1h

∫

E
p f ∇ · v f dx +

∑

e∈�1
h∪�1

∫

e
[v f · ne]{p f }ds,

bs(vs, ps) = −
∑

E∈ε2h

∫

E
ps∇ · vsdx +

∑

e∈�2
h∪�2

∫

e
[vs · ne]{ps}ds.

Define the finite-dimensional space of functions 
h = Xs
h · n12 on the interface and let

Vh = {(v f , vs) ∈ Xh :
∑

e∈�12

∫

e
η(v f − vs) · n12ds = 0 ∀η ∈ 
h}.

Assumption 2.1 We assume 
h = {η ∈ L2(�12),∀e ∈ �12, η|e ∈ Pk2(e)}.

123



26 Page 6 of 27 Journal of Scientific Computing (2020) 85 :26

Indeed, the Assumption 2.1 holds true by choosing a proper basis of space Xs
h .

Define a = a f + as and b = b f + bs , the numerical scheme reads as: Find (uh, ph) ∈
Vh × Mh such that

a(uh, vh) + b(vh, ph) =
∫

�1

f · vhdx ∀vh ∈ Vh, (11)

−b(uh, qh) =
∫

�2

gqhdx ∀qh ∈ Mh . (12)

Remark 2.1 We can check that the numerical scheme (11)–(12) is locally mass conservative.
Indeed, taking the test function qh in (12) such that qh = 1 on element E and qh = 0 on the
remaining elements E , we obtain

∫

E
{uh} · nE dx =

∫

E
χ�2gdx ∀E ∈ ε1h ∪ ε2h,

where χ�2 is the characteristic function taking the value 0 in �1 and 1 in �2.

Remark 2.2 To facilitate the theoretical analysis, we introduce the space Vh of weakly-
continuous-normal velocities on the interface. Clearly, it is difficult to construct this space,
thus, an equivalent formulation to (11)–(12) is presented in Sect. 6. It only depends on the
space Xs

h , and it is more convenient for implementation. The space 
h , as a Lagrange multi-
plies space, is used to impose the continuity of the normal velocities. The choice
h = Xs

h ·n12
is to ensure the well-posedness, stability and accuracy of the discrete scheme (11)–(12).

Next, we show the exact solution of the coupled Stokes andDarcy problem (1)–(9) satisfies
the numerical scheme (11)–(12) up to an error term on the interface.

Lemma 2.1 Let (u, p) satisfy the coupled Stokes–Darcy problem (1)–(9), such that u f =
u|� f , us = u|�s and p f = p|� f , ps = p|�s , then (u, p) solves the variational problem

a(u, vh) + b(vh, p) =
∫

�1

f · vhdx −
∑

e∈�12

∫

e
ps(v f ,h − vs,h) · n12 vh ∈ Vh, (13)

−b(u, qh) =
∫

�2

gqhdx ∀qh ∈ Mh . (14)

Proof Multiplying the Stokes Eq. (1) by v f ,h ∈ X f
h , integrating by parts over element E and

summing over all elements E . From the regularity of the exact solution and the boundary
condition, we can obtain

∑

E∈ε1h

∫

E
(2μD(u f ) : D(v f ,h) − p f ∇ · v f ,h)dx +

∑

e∈�1
h∪�1

∫

e
{p f }[v f ,h · ne]ds

− 2μ
∑

e∈�1
h∪�1

∫

e
{D(u f )ne} · [v f ,h]ds + 2με

∑

e∈�1
h∪�1

∫

e
{D(v f ,h)ne} · [u f ]ds

+
∑

e∈�1
h∪�1

∫

e

σ1,e

|e| [u f ] · [v f ,h]ds −
∑

e∈�12

∫

e
(−p f I + 2μD(u f ))n12 · v f ,hds

=
∫

�1

f · v f ,hdx.
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The interface term can be rewritten as

(−p f I + 2μD(u f ))n12 = −p f n12 + (2μ(D(u f )n12) · n12)n12 +
d−1∑

j=1

(2μ(D(u f )n12) · τ
j
12)τ

j
12,

combining the interface conditions (8) and (9), we get

−
∑

e∈�12

∫

e
(−p f I + 2μD(u f ))n12 · v f ,hds =

∑

e∈�12

∫

e
ps(v f ,h · n12)ds

+ μ

G

d−1∑

j=1

∑

e∈�12

∫

e
(u f · τ

j
12)(v f ,h · τ

j
12)ds.

Thus, we have

a f (u f , v f ,h) + b f (v f ,h, p f ) +
∑

e∈�12

∫

e
ps(v f ,h · n12)ds = (f, v f ,h)�1 ∀v f ,h ∈ X f

h .

(15)

Similarly, we obtain

−b f (u f , q f ,h) = 0 ∀q f ,h ∈ M f
h ,

(16)

as(us, vs,h) + bs(vs,h, ps) −
∑

e∈�12

∫

e
ps(vs,h · n12)ds = 0 ∀vs,h ∈ Xs

h,

(17)

−bs(us, qs,h) = (g, qs,h)�2 ∀qs,h ∈ Ms
h .

(18)

Adding (15)–(16) to (17)–(18), we complete the proof. �
Remark 2.3 Note that, if k1 = k2, the exact solution of the coupled system (1)–(9) satisfies
the numerical scheme (11)–(12) without the interface error term appearing in (13).

3 Inequalities and Approximation Operators

Recall the standard trace inequalities [2], there holds on a given element E with diameter hE

∀φ ∈ H1(E), ∀e ⊂ ∂ E, ‖φ‖20,e ≤ c(h−1
E ‖φ‖20,E + hE |φ|21,E ), (19)

∀φ ∈ H2(E), ∀e ⊂ ∂ E, ‖∇φ · ne‖20,e ≤ c(h−1
E ‖φ‖21,E + hE |φ|22,E ), (20)

∀φ ∈ Pk(E), ∀e ⊂ ∂ E, ‖φ‖0,e ≤ ch−1/2
E ‖φ‖0,E , (21)

∀φ ∈ Pk(E), ∀e ⊂ ∂ E, ‖∇φ · ne‖0,e ≤ ch−1/2
E |φ|1,E . (22)

Also, recall the discrete Korn’s inequality [26]

∀v f ,h ∈ X f
h , |||∇v f ,h |||20,�1

≤ c

⎛

⎜⎝|||D(v f ,h)|||20,�1
+

∑

e∈�1
h∪�1

1

|e| ‖[v f ,h]‖20,e

⎞

⎟⎠ . (23)
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Let p ∈ L2(�), we denote by p̃ the L2- projection of p in Mh satisfying

∀q f ,h ∈ Pk1−1(E),

∫

E
q f ,h(p − p̃) = 0 ∀E ∈ ε1h, (24)

∀qs,h ∈ Pk2−1(E),

∫

E
qs,h(p − p̃) = 0 ∀E ∈ ε2h, (25)

and, if p|�1 ∈ Hk1(�1) and p|�2 ∈ Hk2(�2), then the following approximation properties
hold

‖p − p̃‖m,E ≤ chk1−m
E |p|k1,E , E ∈ ε1h, m = 0, 1, (26)

‖p − p̃‖m,E ≤ chk2−m
E |p|k2,E , E ∈ ε2h, m = 0, 1. (27)

Let �
f
h : (H1(�1))

d → X f
h be the quasi-local interpolation [24], and the quasi-local

interpolation satisfies for any E ∈ ε1h

∀v f ∈ (H1(�1))
d , ∀q f ∈ Pk1−1(E),

∫

E
q f ∇ · (�

f
h v f − v f )dx = 0, (28)

∀v f ∈ (H1(�1))
d , ∀e ∈ �1

h, ∀q f ∈ (Pk1−1(e))
d ,

∫

e
q f · [� f

h v f ]ds = 0, (29)

∀v f ∈ (H1
0 (�1))

d , ∀e ∈ �1, ∀q f ∈ (Pk1−1(e))
d ,

∫

e
q f · �

f
h v f ds = 0, (30)

|||� f
h v f |||1,�1 ≤ c‖v f ‖1,�1 . (31)

For any v f ∈ (H1
0 (�1))

d , by (28), (29) and (30) we have

b f (�
f
h v f − v f , q f ) = 0 ∀q f ∈ M f

h . (32)

Moreover, the interpolation operator �
f
h satisfies the following approximation property

|� f
h v f − v f |m,E ≤ chs−m

E |v f |s,δ(E) ∀1 ≤ s ≤ k1 + 1,∀v f ∈ (Hs(�1))
d , m = 0, 1,

(33)

where δ(E) is a macro-element containing E . Moreover, there exists at least one facet e of
every element E ∈ ε1h such that

∫

e
(�

f
h v f − v f )ds = 0 ∀v f ∈ (Hs(�1))

d . (34)

Indeed, if d = 2, when k1 = 1 and k1 = 2, (34) holds true for all facets, when k1 = 3,
it holds true for all facets of most practical mesh (see [24]), if d = 3, when k1 = 1, (34)
holds true for all facets. Specially, for the interpolation operator �

f
h , we have the following

bounds.

Lemma 3.1 Let 1 ≤ s ≤ k1 + 1. For all v f ∈ (Hs(�1))
d and v f |�1 = 0, there holds

‖� f
h v f − v f ‖X f ≤ chs−1

1 |v f |s,�1 , (35)

‖� f
h v f ‖X f ≤ c‖v f ‖1,�1 . (36)
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Proof From the approximation property (33) and (34) (see Lemma 3.9 of [24]), we have

‖� f
h v f − v f ‖X f ≤ c|||∇(�

f
h v f − v f )|||0,�1 ≤ chs−1

1 |v f |s,�1 .

Using the fact that ‖v f ‖X f ≤ c‖v f ‖1,�1 , for any v f ∈ (H1(�1))
d , the bound (36) follows

from (35) with s = 1 and triangle inequality. �
Let �s

h : (H θ (�2))
d ∩ H(div;�2) → X̃s

h be the MFE interpolant [10] for any θ > 0,
where X̃s

h satisfies

X̃s
h ≡ H0(div;�2) ∩ Xs

h, (37)

indeed, the space X̃s
h is B DMk2 [25]. For any vs ∈ (H θ (�2))

d ∩ H0(div;�2), it holds

bs(�
s
hvs − vs, qs) = 0 ∀qs ∈ Ms

h, (38)
∫

e
((�s

hvs − vs) · ne)ws · ne = 0 ∀e ∈ �2
h ∪ �2 ∪ �12,∀ws ∈ Xs

h . (39)

For any E ∈ ε2h , �
s
h satisfies the approximation properties

‖�s
hvs − vs‖m,E ≤ chs

E |vs |s−m,E 1 ≤ s ≤ k2 + 1, m = 0, 1, (40)

‖∇ · (�s
hvs − vs)‖0,E ≤ chs

E |∇ · vs |s,E 0 ≤ s ≤ k2. (41)

In addition, we have the following result [4,25]

‖�s
hvs‖H(div;�2) ≤ c(‖vs‖θ,�2 + ‖∇ · vs‖0,�2). (42)

Remark 3.1 Note that, the interpolation operator �s
h holds in any dimension, However, the

existence of interpolation operators �
f
h , in three dimensions, for k1 = 1 is presented in [10].

As for other k1, we don’t know whether the interpolation operators �
f
h is exist.

4 Well-Posedness

In this section, we prove the boundedness of bilinear operators a(·, ·) and b(·, ·), K-ellipticity
of bilinear operator a(·, ·) and discrete inf-sup condition of bilinear operator b(·, ·). Then,
the well-posedness of the numerical scheme (11)–(12) is obtained by using the boundedness,
K-ellipticity and discrete inf-sup condition.

The boundedness of bilinear operators a(·, ·) and b(·, ·) are proved in the following
Lemma.

Lemma 4.1 There exists a constant c, independent of mesh-sizes h1 and h2 such that

a(uh, vh) ≤ c‖uh‖X‖vh‖X ∀uh, vh ∈ Xh,

b(vh, ph) ≤ c‖vh‖X‖ph‖M ∀vh ∈ Xh, ph ∈ Mh .

Proof By Cauchy–Schwarz inequality, trace inequalities (21) and (22), the bilinear operators
a f (·, ·), as(·, ·) and b f (·, ·), bs(·, ·) satisfy

a f (u f ,h, v f ,h) ≤ c‖u f ,h‖X f ‖v f ,h‖X f ∀u f ,h, v f ,h ∈ X f
h ,

as(us,h, vs,h) ≤ c‖us,h‖Xs ‖vs,h‖Xs ∀us,h, vs,h ∈ Xs
h,
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b f (v f ,h, p f ,h) ≤ c‖v f ,h‖X f ‖p f ,h‖M f ∀v f ,h ∈ X f
h , p f ,h ∈ M f

h ,

bs(vs,h, ps,h) ≤ c‖vs,h‖Xs ‖ps,h‖Ms ∀vs,h ∈ Xs
h, ps,h ∈ Ms

h .

From the relations a(·, ·) = a f (·, ·) + as(·, ·) and b(·, ·) = b f (·, ·) + bs(·, ·), immediately,
we have the boundedness of bilinear operators a(·, ·) and b(·, ·). �

Next, we present the K-ellipticity of bilinear operator a(·, ·). To prove the K-ellipticity,
the following conditions shall be given.

1. σ1,e ≥ 1 for all facets in �1
h ∪ �1 if ε = 1, e.g., one may choose σ1,e = 2.

2. σ1,e ≥ σ0 > 0 for σ0 large enough if ε = −1.
3. σ2,e ≥ 1 for all facets in �2

h ∪ �2, e.g., one also may choose σ2,e = 2.

Specially, the local lifting operator [9] is introduced and used to prove the K-ellipticity.

Lemma 4.2 The local lifting operator re: L2(e) → Ms
h is defined by

∫

�2

re(w)qs,hdx = −
∫

e
w{qs,h}ds ∀w ∈ L2(e),∀qs,h ∈ Ms

h . (43)

Then, for any e ∈ �2
h ∪ �2, the following inequality holds

‖re(w)‖0,�2 ≤ ch−1/2
e ‖w‖0,e. (44)

Proof By taking qs,h = re(w) in (43) and using the trace inequality (21), we have

∀e ∈ �2
h, ‖re(w)‖20,�2

≤ 1

2
‖w‖0,e(‖re(w)+‖0,e + ‖re(w)−‖0,e) ≤ ch−1/2

e ‖w‖0,e‖re(w)‖0,�2 ,

and

∀e ∈ �2, ‖re(w)‖20,�2
≤ ‖w‖0,e‖re(w)‖0,e ≤ ch−1/2

e ‖w‖0,e‖re(w)‖0,�2 .

�
Note that re(w) vanishes outside the union of the elements containing facet e.

Lemma 4.3 There exists a constant CK > 0, independent of mesh-sizes h1 and h2 such that

a(uh,uh) > CK ‖uh‖2X ∀uh ∈ Zh, (45)

where Zh is the kernel space Zh = {vh ∈ Xh; b(vh, qh) = 0 ∀qh ∈ Mh}.
Proof Note that, if σ1,e is sufficiently large for ε = −1 and if σ1,e = 1 for ε = 1, by discrete
Korn’s inequality (23), we obtain the global coercivity in Stokes domain (see [2])

a f (u f ,h,u f ,h) > C f ‖u f ,h‖2X f ∀u f ,h ∈ X f
h ,

where C f is independent of mesh-size h1. The proof is a trivial and not presented in this
paper. We need to prove the remaining K-ellipticity of as(·, ·). In light of the definition of
the local lifting operator, for any us,h ∈ Zh and any qs,h ∈ Ms

h , we have

bs(us,h, qs,h) = −
∑

E∈ε2h

∫

E
∇ · us,hqs,hdx −

∫

�2

∑

e∈�2
h∪�2

re([us,h · ne])qs,hdx

= −
∑

E∈ε2h

∫

E
(∇ · us,h +

∑

e⊂∂ E\�12

re([us,h · ne]))qs,hdx.
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Due to us,h ∈ Zh , it satisfies bs(us,h, qs,h) = 0. Choosing

qs,h = ∇ · us,h +
∑

e⊂∂ E\�12

re([us,h · ne]) ∀E ∈ ε2h,

yields

∇ · us,h = −
∑

e⊂∂ E\�12

re([us,h · ne]) ∀E ∈ ε2h .

By (44), we obtain

‖∇ · us,h‖0,�2 ≤ c
∑

e∈�2
h∪�2

h−1/2
e ‖[us,h · ne]‖0,e.

Note that σ2,e > 1, therefore

as(us,h,us,h) = |||us,h |||20,�2
+

∑

e∈�2
h∪�2

σ2,e

|e| ‖[us,h · ne]‖20,e ≥ Cs‖us,h‖2Xs ∀us,h ∈ Zh,

where Cs is independent of mesh-size h2. By combining the global coercivity of a f (·, ·)
and the K-ellipticity of as(·, ·), we finish the proof of the K-ellipticity by taking CK =
min(

C f
2 , Cs

2 ). �
Finally, a discrete inf-sup condition shall be derived.

Lemma 4.4 There exists a positive constant β, independent of mesh-sizes h1 and h2 such
that

inf
qh∈Mh

sup
vh∈Vh

b(vh, qh)

‖vh‖X‖qh‖M
≥ β. (46)

Proof To this end, we consider the space X̃h = X f
h × X̃s

h and X̃h ⊂ Xh , where the space X̃s
h

is introduced in (37). Define

Ṽh =
⎧
⎨

⎩(v f , vs) ∈ X̃h :
∑

e∈�12

∫

e
η(v f − vs) · n12 = 0 ∀η ∈ 
h

⎫
⎬

⎭ .

If the following inf-sup condition holds

inf
qh∈Mh

sup
vh∈Ṽh

b(vh, qh)

‖vh‖X‖qh‖M
≥ β, (47)

immediately, we finish the proof of this Lemma. Let qh ∈ Mh be fixed, then there exists a
v ∈ (H1(�))d such that

∇ · v = −qh in �, v = 0 on ∂�,

satisfying

‖v‖1,� ≤ c‖qh‖0,�.

Note that, by v ∈ (H1(�))d ,

b(v, qh) = −
∫

�

(∇ · v)qhdx = ‖qh‖20,�,
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which, combining with the given priori bound, yields

b(v, qh) ≥ 1

c
‖qh‖0,�‖v‖1,�.

The idea of the proof of the inf-sup condition is that we construct a πhv ∈ Ṽh such that the
inf-sup condition (47) holds. To this end, let πh : X f × (Xs ∩ (H1(�2))

2) → Ṽh satisfying

b(πhv − v, qh) = 0 ∀qh ∈ Mh, and ‖πhv‖X ≤ c‖v‖1,�. (48)

Let πhv = (π
f

h v, π s
hv) ∈ X f

h × X̃s
h . We take π

f
h v = �

f
h v where π

f
h : X f → X f

h is the
quasi-local interpolation defined in (28)–(30). Clearly, by (30) and (36) we have

b f (π
f

h v − v, qh) = 0 ∀qh ∈ Mh, and ‖π1
hv‖X f ≤ c‖v‖1,�1 . (49)

To define π s
h , we consider the auxiliary problem

∇ · ∇φ = 0 in �2,

∇φ · n = 0 on �2,

∇φ · n12 = (π
f

h v − v) · n12 on �12.

The auxiliary problem is well-defined, since
∫

�12

(π
f

h v − v) · n12ds = 0,

due to (34). Let z = ∇φ. Note that, the piecewise smooth function π
f

h v · n12 ∈ H θ (�12) for
any 0 < θ < 1/2. By elliptic regularity [20], we can obtain

‖z‖θ,�2 ≤ c‖(π f
h v − v) · n12‖θ−1/2,�12 0 ≤ θ ≤ 1/2. (50)

Let w = v + z, the auxiliary problem implies ∇ · w = ∇ · v in �2 and w · n12 = π
f

h v · n12
on �12. We now define π s

hv = �s
hw, where �s

h : (H θ (�2))
d ∩ H0(div;�2) → X̃s

h is the
MFE interpolation defined in (38). Employing (38), it holds

bs(π
s
hv, qs,h) = bs(�

s
hw, qs,h) = bs(w, qs,h)

= −
∫

�2

∇ · wqs,hdx = −
∫

�2

∇ · vqs,hdx = bs(v, qs,h) ∀qs,h ∈ Ms
h,

due to the regularity w ∈ H0(div;�2). Thus, πhv = (π
f

h v, π s
hv) satisfies

b(πhv, qh) = 0 ∀qh ∈ Mh .

We can check that πhv ∈ Ṽh . Indeed, for every e ∈ �12 and η ∈ 
h , by (39) and the fact
that 
h = Xs

h · n12,
∫

e
π s

hv · n12ηds =
∫

e
�s

hw · n12ηds =
∫

e
w · n12ηds =

∫

e
π

f
h v · n12ηds.

Using (40), (42) and (50), we have

‖π s
hv‖Xs = ‖�s

hw‖Xs

≤ ‖�s
hv‖Xs + ‖�s

hz‖Xs
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≤ c(‖v‖1,� + ‖z‖θ,�2)

≤ c(‖v‖1,� + ‖(π f
h v − v) · n12‖0,�12).

It remains to bound the last term. For every e ∈ �12, and facet of E ∈ ε1h , using (19) and (33)

‖(π f
h v − v) · n12‖0,e ≤ ch−1/2

E (‖π f
h v − v‖0,E + hK ‖π f

h v − v‖1,E ) ≤ ch1/2
K |v|1,δ(E).

(51)

Therefore

‖π s
hv‖Xs ≤ c‖v‖1,�,

combining with (49), which proves (48). Now using (48) we have

1

c
‖qh‖M ≤ b(v, qh)

‖v‖1,� = b(πhv, qh)

‖v‖1,� ≤ b(πhv, qh)
1
c ‖πhv‖X

∀qh ∈ Mh,

and finish the proof of inf-sup condition (47). �

Now, in light of boundedness, K-ellipticity and the discrete inf-sup condition, we analyze
the existence and uniqueness, and stability of solution of discrete scheme (11)–(12). However,
the stability is a direct result of saddle point problem [10]. Thus, we only present the existence
and uniqueness of solution.

Theorem 4.1 The numerical scheme (11)–(12) has a unique solution.

Proof Since the scheme (11)–(12) is square and finite-dimensional system, it is equivalent to
the uniqueness of homogeneous system. The homogeneous system is obtain by setting f = 0
and g = 0. Thus, we have

b(uh, qh) = 0 ∀qh ∈ Mh,

which implies uh ∈ Zh . Taking vh = uh and qh = ph in (11) and (12), respectively, we
can obtain a(uh,uh) = 0. The K-ellipticity (45), immediately, yields uh = 0. In light of the
discrete inf-sup condition (47), we have ph = 0 and finish the proof. �

5 A Priori Error Estimates

In this section, a priori error estimates under proper norms are obtained for both velocity
field and pressure field. Before giving the error estimates, an approximation conclusion is
obtained in the space Vh .

Lemma 5.1 Let v ∈ (H1(�))d such that v|�1 ∈ (Hk1+1(�1))
d and v|�2 ∈ (Hk2+1(�2))

d ,
there exists ṽh ∈ Ṽh ⊂ Vh such that

b(v − ṽh, qh) = 0 ∀qh ∈ Mh, (52)

∀e ∈ �1
h ∪ �1,

∫

e
[ṽh] · qhds = 0 ∀qh ∈ (Pk1(e))

d , (53)

‖v − ṽh‖X ≤ c(hk1
1 |v|k1+1,�1 + hk2+1

2 |v|k2+1,�2 + hk2
2 |∇ · v|k2,�2). (54)
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Proof Let ṽh = πhv, by the construction of πhv in Lemma 4.4, we can easily obtain (52)
and (53). To show approximation (54), we first note that (35) implies that

‖v − π
f

h v‖X f ≤ chk1
1 |v|k1+1,�1 . (55)

Next,

‖v − π s
hv‖Xs = ‖v − �s

hw‖Xs ≤ ‖v − �s
hv‖Xs + ‖�s

h(w − v)‖Xs . (56)

Using (40) and (41), there holds

‖v − �s
hv‖Xs ≤ chk2+1

2 |v|k2+1,�2 + hk2
2 |∇ · v|k2,�2 . (57)

The last term in (56) can be bounded by using (42), (50), (19) and (33)

‖�s
h(w − v)‖Xs = ‖�s

hz‖Xs ≤ ‖z‖θ,�2

≤ c‖(v − π
f

h v) · n12‖0,�12 ≤ chk1+1/2
1 |v|k1+1,�1 . (58)

Combing (55)–(58), we finish the proof. �
Theorem 5.1 Let (u, p) be the solution of the coupled Stokes and Darcy problem (1)–(9).
Assume that u|�i ∈ (Hki +1(�i ))

d , p|�i ∈ Hki (�i ) for i = 1, 2. Let (uh, ph) be the
numerical solution of discrete scheme (11)–(12). Then, we have the following estimate

‖u − uh‖X ≤chk1
1 (|u|k1+1,�1 + |p|k1,�1)

+ chk2
2 (|u|k2+1,�2 + |p|k2,�2) + chk2−1/2

2 h1/2
1 |p|k2,�2 .

Proof Subtracting (13)–(14) from (11)–(12), the error equations are

a(uh − u, vh) + b(vh, ph − p) −
∑

e∈�12

∫

e
ps(v f ,h − vs,h) · n12ds = 0 ∀vh ∈ Vh, (59)

b(uh − u, qh) = 0 ∀qh ∈ Mh . (60)

Let ũh be the interpolation of u defined in Lemma 5.1 and let p̃h be the L2- projection of p,
satisfying (24) and (25), we then introduce the following notions

χ = uh − ũh, θ = u − ũh,

ξ = ph − p̃h, ζ = p − p̃h .

Based on the above notions, the error Eqs. (59)–(60) can be rewritten as

a(χ, vh) + b(vh, ξ) = a(θ, vh) + b(vh, ζ ) +
∑

e∈�12

∫

e
ps(v f ,h − vs,h) · n12ds ∀vh ∈ Vh,

(61)

b(χ, qh) = b(θ, qh) ∀qh ∈ Mh . (62)

By (52) in Lemma 5.1, we have b(θ, qh) = 0, thus

b(χ, qh) = 0 ∀qh ∈ Mh,

which implies χ ∈ Zh . Choosing vh = χ and qh = ξ in (61) and (62) yields

a(χ, χ) + b(χ, ξ) = a(θ, χ) + b(χ, ζ ) +
∑

e∈�12

∫

e
ps(χ f − χs) · n12ds,
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b(χ, ξ) = 0.

equivalently,

a(χ, χ) = a(θ, χ) + b(χ, ζ ) +
∑

e∈�12

∫

e
ps(χ f − χs) · n12ds. (63)

By χ ∈ Zh , the K-ellipticity (45) yields a(χ, χ) ≥ CK ‖χ‖2X. We only to bound the right
hand sides of (63). The first term can be bounded as follows:

a f (θ, χ) = 2μ
∑

E∈ε1h

∫

E
D(θ) : D(χ)dx

+
∑

e∈�1
h∪�1

∫

e

σ1,e

|e| [θ ] · [χ]ds − 2μ
∑

e∈�1
h∪�1

∫

e
{D(θ)ne} · [χ]ds

+ 2με
∑

e∈�1
h∪�1

∫

e
{D(χ)ne} · [θ ]ds +

d−1∑

j=1

∑

e∈�12

∫

e

μ

G
θ · τ

j
12χ · τ

j
12ds

= T1 + T2 + T3 + T4 + T5.

Using Cauchy–Schwarz inequality, Young inequality and the approximation property (33),

T1 ≤ 2μ
∑

E∈ε1h

‖∇θ‖0,E‖∇χ‖0,E ≤ CK

8
|||∇χ |||20,�1

+ c|||∇θ |||20,�1

≤ CK

8
|||∇χ |||20,�1

+ ch2k1
1 |u|2k1+1,�1

.

By Cauchy–Schwarz inequality, Young inequality, trace inequality (19) and the approxima-
tion property (33)

T2 ≤ CK

8

∑

e∈�1
h∪�1

σ1,e

|e| ‖[χ]‖20,e + c
∑

e∈�1
h∪�1

σ1,e

|e| ‖[θ ]‖20,e

≤ CK

8

∑

e∈�1
h∪�1

σ1,e

|e| ‖[χ]‖20,e + ch2k1
1 |u|2k1+1,�1

.

Let Lh(u), defined in �1, stand for the classic Lagrange interpolation of degree k1, and note
that Lh(u) satisfies the optimal approximation, for any E ∈ ε1h

|Lh(u) − u|m,E ≤ chs−m
1 |u|s,E ∀2 ≤ s ≤ k1 + 1, m = 0, 1, 2. (64)

For a fixed e ∈ �1
h ∪ �1, using the Lagrange interpolation in T3, we have

∑

e∈�1
h∪�1

∫

e
{D(θ)ne} · [χ]ds =

∑

e∈�1
h∪�1

∫

e
{D(u − Lh(u))ne} · [χ]ds

+
∑

e∈�1
h∪�1

∫

e
{D(Lh(u) − ũh)ne} · [χ]ds.
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The first part can be bounded by using trace inequality (20) and the approximation property
of the Lagrange interpolation (64)

∑

e∈�1
h∪�1

∫

e
{D(u − Lh(u))ne} · [χ]ds

≤
∑

e∈�1
h∪�1

σ
1/2
1,e

|e|1/2 ‖[χ]‖0,e |e|1/2
σ
1/2
1,e

‖{D(u − Lh(u))ne}‖0,e

≤ CK

8

∑

e∈�1
h∪�1

σ1,e

|e| ‖[χ]‖20,e + c
|e|
σ1,e

(h−1
e |Lh(u) − ũh |21,E12

e
+ he|Lh(u) − ũh |22,E12

e
)

≤ CK

8

∑

e∈�1
h∪�1

σ1,e

|e| ‖[χ]‖20,e + ch2k1
1 |u|2k1+1,�1

,

where E12
e represents the union of E1

e and E2
e (e = E1

e ∩E2
e ). Similarly, by the trace inequality

(21), triangle inequality, and the approximation (33), we have
∑

e∈�1
h∪�1

∫

e
{D(Lh(u) − ũh)ne} · [χ]ds

≤ CK

8

∑

e∈�1
h∪�1

σ1,e

|e| ‖[χ]‖20,e + c
∑

e∈�1
h∪�1

|Lh(u) − ũh |21,E12
e

≤ CK

8

∑

e∈�1
h∪�1

σ1,e

|e| ‖[χ]‖20,e + ch2k1
1 |u|2k1+1,�1

.

Therefore,

T3 ≤ CK

4

∑

e∈�1
h∪�1

σ1,e

|e| ‖[χ]‖20,e + ch2k1
1 |u|2k1+1,�1

.

The fourth term vanishes due to the continuity of u and the property (53) of ũh ,

T4 = 0.

The last term can be estimated by using the trace inequality (19),

T5 ≤ μ

G

d−1∑

j=1

∑

e∈�12

‖θ‖0,e‖χ · τ
j
12‖0,e

≤ μ

2G

d−1∑

j=1

∑

e∈�12

‖χ · τ
j
12‖20,e + C

∑

e∈�12

(h−1
e ‖θ‖0,E + he|θ |1,E )

≤ μ

2G

d−1∑

j=1

∑

e∈�12

‖χ · τ
j
12‖20,e + ch2k1+1

1 |u|2k1+1,�1
.

Let us now estimate as(θ, χ),

as(θ, χ) =
∑

E∈ε2h

∫

E
K−1θ · χdx +

∑

e∈�2
h∪�2

∫

e

σ2,e

|e| [θ · ne][χ · ne]ds.
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Using the Cauchy–Schwarz inequality, Young inequality and the approximation property
(40) to the first part, we have

∑

E∈ε2h

∫

E
K−1θ · χdx ≤ CK

8
‖χ‖20,�2

+ ch2k2+2
2 |u|2k2+1,�2

.

The second part is bounded by using trace inequality (19) and the approximation (40)

∑

e∈�2
h∪�2

∫

e

σ2,e

|e| [θ · ne][χ · ne]ds ≤ CK

8

∑

e∈�2
h∪�2

σ2,e

|e| ‖[χ · ne]‖20,e + c
∑

e∈�2
h∪�2

σ2,e

|e| ‖[θ · ne]‖20,e

≤ CK

8

∑

e∈�2
h∪�2

σ2,e

|e| ‖[χ · ne]‖20,e + ch2k2
2 |u|2k2+1,�2

.

Next, we estimate b f (χ, ζ ), by the trace inequality (19), and properties (24) and (26),

b f (χ, ζ ) = −
∑

E∈ε1h

∫

E
ζ∇ · χdx +

∑

e∈�1∪�1
h

∫

e
[χ · ne]{ζ }ds

=
∑

e∈�1∪�1
h

∫

e
[χ · ne]{ζ }ds

≤ CK

8

∑

e∈�1
h∪�1

σ1,e

|e| ‖[χ]‖20,e + ch2k1
1 |p|2k1,�1

.

Similarly, by the trace inequality (19), and properties (25) and (27),

bs(χ, ζ ) = −
∑

E∈ε2h

∫

E
ζ∇ · χdx +

∑

e∈�2
h∪�2

∫

e
[χ · ne]{ζ }ds

=
∑

e∈�2
h∪�2

∫

e
[χ · ne]{ζ }ds

≤ CK

8

∑

e∈�2
h∪�2

σ2,e

|e| ‖[χ · ne]‖20,e + ch2k2
2 |p|2k2,�2

.

It remains to estimate the last term in (63). Since χ belongs to Vh , we obtain

∑

e∈�12

∫

e
ps(χ f − χs) · n12ds =

∑

e∈�12

∫

e
(ps − p̃s

h)(χ f − χs) · n12ds,

where p̃s
h ∈ 
h is the L2- projection of ps with respect to L2 inner product on the interface.

Thus, from the definition of the Lagrange multiplier space 
h , we have

∑

e∈�12

∫

e
(ps − p̃s

h)χs · n12ds = 0.

For any interface facet e and any piecewise vector-valued constant ce, there holds

∑

e∈�12

∫

e
ps(χ f − χs) · n12ds =

∑

e∈�12

∫

e
(ps − p̃s

h)χ f · n12ds
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=
∑

e∈�12

∫

e
(ps − p̃s

h)(χ f − ce) · n12ds =
∑

e∈�12

∫

e
(ps − p̃s

h)(χ f − ce) · n12ds.

Assume that each interface facet e is shared by the element E2
e ∈ ε2h and parts of the elements

E1
e,i ∈ ε1h , i = 1, ke. Then, by the trace inequality (19) and approximation property of L2-

projection, we have (see [4])
∫

e
(ps − p̃s

h)(χ f − ce) · n12ds ≤ chk2−1/2
2 |p|k2,E2

e

ke∑

i=1

(h−1/2
1 ‖χ f − ce‖0,E1

e,i
+ h1/2

1 ‖∇χ f ‖0,E1
e,i

),

therefore

∑

e∈�12

∫

e
(ps − p̃s

h)(χ f − ce) · n12ds ≤ c
∑

e∈�12

(
hk2−1/2
2 |p|k2,E2

e

ke∑

i=1

h1/2
1 ‖∇χ f ‖0,E1

e,i

)

≤ CK

8
|||∇χ |||20,�1

+ ch2k2−1
2 h1|p|2k2,�2

.

Indeed, we can estimate the interface term by using the discrete PoincarKe inequality [2]
and not introduce the piecewise vector-valued constant ce if p has sufficient smoothness
(p|�2 ∈ Hk2+1(�2)). Then, based on the above estimates we obtain

a(χ, χ) ≤CK

4
|||∇χ |||20,�1

+ CK

2

∑

e∈�1
h∪�1

σ1,e

|e| ‖[χ]‖20,e + μ

2G

d−1∑

j=1

∑

e∈�12

‖χ · τ
j
12‖20,e

+ CK

4
|||χ |||20,�2

+ CK

4

∑

e∈�2
h∪�2

σ2,e

|e| ‖[χ · ne]‖20,e + ch2k1
1 |u|2k1+1,�1

+ ch2k2
2 |u|2k2+1,�2

+ ch2k1
1 |p|2k1,�1

+ ch2k2
2 |p|2k2,�2

+ ch2k2−1
2 h1|p|2k2,�2

.

Combing the K-ellipticity, we have

‖χ‖2X ≤ ch2k1
1 |u|2k1+1,�1

+ ch2k2
2 |u|2k2+1,�2

+ ch2k1
1 |p|2k1,�1

+ ch2k2
2 |p|2k2,�2

+ ch2k2−1
2 h1|p|2k2,�2

,

which complete the proof by using (54) and the triangle inequality. �
Theorem 5.2 Under the same assumptions and notions of Theorem 5.1, we obtain

‖ph − p‖0,� ≤ chk1
1 (|u|k1+1,�1 + |p|k1,�1)

+ chk2
2 (|u|k2+1,�2 + |p|k2,�2) + chk2−1/2

2 h1/2
1 |p|k2,�2 .

Proof The error equation (59) can be written as

a(uh − u, vh) + b(vh, ph − p̃h) = b(vh, p − p̃h) +
∑

e∈�12

∫

e
ps(v f ,h − vs,h) · n12ds ∀vh ∈ Vh .

(65)

From the discrete inf-sup condition (46),

‖ph − p̃h‖0,� ≤ 1

β
sup

vh∈Vh

b(vh, ph − p̃h)

‖vh‖X . (66)
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For any vh ∈ Vh , we assume that ph − p̃h and vh satisfy (66). From (65), it holds

b(vh, ph − p̃h) = −a(uh − u, vh) + b(vh, p − p̃h) +
∑

e∈�12

∫

e
ps(v f ,h − vs,h) · n12ds.

(67)

To bound the term a(uh − u, vh) in (67),

a(uh − u, vh) = 2μ
∑

E∈ε1h

∫

E
D(uh − u) : D(vh)dx +

∑

e∈�1
h∪�1

∫

e

σ1,e

|e| [uh − u] · [vh]ds

− 2μ
∑

e∈�1
h∪�1

∫

e
{D(uh − u)ne} · [vh]ds + 2με

∑

e∈�1
h∪�1

∫

e
{D(vh)ne} · [uh − u]ds

+
d−1∑

j=1

∑

e∈�12

∫

e

μ

G
(uh − u) · τ

j
12vh · τ

j
12ds +

∑

E∈ε2h

∫

E
(uh − u) · vhdx

+
∑

e∈�2
h∪�2

∫

e

σ2,e

|e| [(uh − u) · ne][vh · ne]ds

= Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + Q7.

We now estimate each Qi terms for i = 1, 7. The terms Q1, Q2, Q5, Q6 and Q7 are bounded
by Cauchy-Schwarz inequality,

Q1 + Q2 + Q5 + Q6 + Q7 ≤ c‖vh‖X‖uh − u‖X.

Q3 is estimated by utilizing the Lagrange interpolation

Q3 ≤ c
∑

e∈�1
h∪�1

( |e|
σ1,e

)1/2

‖∇(uh − u)‖0,e
(

σ1,e

|e|
)1/2

‖[vh]‖0,e

≤ c‖vh‖X

⎛

⎜⎝
∑

e∈�1
h∪�1

(h1‖∇(uh − ũh)‖20,e + h1‖∇(u − ũh)‖20,e)
⎞

⎟⎠

1/2

≤ c‖vh‖X(‖uh − ũh‖2X + ch2k1
1 |u|2k1+1,�1

)1/2.

By using the trace inequality (21), there holds

Q4 ≤ c
∑

e∈�1
h∪�1

‖{D(vh)ne}‖0,e‖[uh − u]‖0,e

≤ c
∑

e∈�1
h∪�1

h−1/2
1 ‖∇vh‖0,E12

e

(
σ1,e

|e|
)1/2−1/2

‖[uh − u]‖0,e

≤ c‖vh‖X‖uh − u‖X.
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For the term b(vh, p − p̃h) in (67), by the properties (24) and (26), we have

b f (vh, p − p̃h) =
∑

e∈�1
h∪�1

∫

e
{p − p̃h}[vh · ne]ds

≤
∑

e∈�1
h∪�1

(
σ1,e

|e|
)1/2

‖[vh]‖0,e
( |e|

σ1,e

)1/2

‖{p − p̃h}‖0,e

≤ chk1
1 |p|k1,�1‖vh‖X.

Similarly,

bs(vh, p − p̃h) =
∑

e∈�2
h∪�2

∫

e
{p − p̃h}[vh · ne]ds

≤
∑

e∈�2
h∪�2

(
σ2,e

|e|
)1/2

‖[vh · ne]‖0,e
( |e|

σ2,e

)1/2

‖{p − p̃h}‖0,e

≤ chk2
2 |p|k2,�2‖vh‖X.

Thus,

b(vh, p − p̃h) ≤ c‖vh‖X(hk1
1 |p|k1,�1 + hk2

2 |p|k2,�2).

Similar to the proof in Theorem 5.1, the last interface integral term in (67) is bounded by

∑

e∈�12

∫

e
ps(v f ,h − vs,h) · n12ds =

∑

e∈�12

∫

e
(ps − p̃s

h)v f ,h · n12ds

≤ chk2−1/2
2 h1/2

1 |p|k2,�2‖vh‖X.

Combing the above bounds and the discrete inf-sup condition (66), we have

‖ph − p̃‖0,� ≤ c(‖uh − u‖X + ‖uh − ũh‖X + hk1
1 |u|k1+1,�1

+ hk1
1 |p|k1,�1 + hk2

2 |p|k2,�2 + hk2−1/2
2 h1/2

1 |p|k2,�2).

In light of Theorem 5.1 and triangle inequality, we complete the proof. �

6 Implementation and Numerical Experiments

6.1 Implementation

In this section, an equivalent discrete scheme (see [19]) is given because it is hard to directly
construct the space of function Vh . Defining the following bilinear forms


 f (η, v f ,h) =
∑

e∈�12

∫

e
ηvs,h · n12ds ∀η ∈ 
h,∀v f ,h ∈ X f

h ,


s(η, vs,h) =
∑

e∈�12

∫

e
ηvs,h · n12ds ∀η ∈ 
h,∀vs,h ∈ Xs

h .
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The numerical scheme (11)-(12) can be rewritten as: Find (uh, ph, λh) ∈ Xh × Mh × 
h

such that u f ,h = uh |�1 , us,h = uh |�2 and p f ,h = ph |�1 , ps,h = ph |�2 satisfy

a f (u f ,h, v f ,h) + b f (v f ,h, p f ,h) + 
 f (λh, v f ,h) = (f, v f ,h)�1 ∀v f ,h ∈ X f
h , (68)

−b f (u f ,h, q f ,h) = 0 ∀q f ,h ∈ M f
h , (69)

as(us,h, vs,h) + b f (vs,h, ps,h) − 
s(λh, vs,h) = 0 ∀vs,h ∈ Xs
h, (70)

−bs(us,h, qs,h) = (g, qs,h)�2 ∀qs,h ∈ Ms
h, (71)


 f (ηh,u f ,h) − 
s(ηh,us,h) = 0 ∀ηh ∈ 
h, (72)
∫

�1

p f ,hdx +
∫

�2

ps,hdx = 0. (73)

We can easily verify that the numerical schemes (11)-(12) and (68)-(73) are equivalent. In
the following numerical examples, the discrete scheme (68)-(73) is applied.

For simplicity, we show how to choose a suitable basis forXs
h such that theAssumption 2.1

always holds true for d = 2. In general, for any element E and for i + j ≤ k2, we use the
following basis

(
span{1 x y xy x2 y2 . . . xi y j }
span{1 x y xy x2 y2 . . . xi y j }

)
.

However, Xs
h · n12 doesn’t contain constant if the interface edge e ⊂ {(x, y) : y = x +

constant}, thus, it doesn’t belong to discontinuous piecewise polynomials of degree k2. To
avoid this problem, let constants a > 0 and b > 0, and a �= b, then the Assumption 2.1
always holds true by taking the following basis

(
span{a x y xy x2 y2 . . . xi y j }
span{b x y xy x2 y2 . . . xi y j }

)
.

This conclusion is trivial, thus we don’t present the concrete proof here. Similarly, let i + j +
m ≤ k2 and let constants a > 0, b > 0, c > 0 and a �= b, a �= c, b �= c, then the Assumption
2.1 always holds true for d = 3 by taking the following basis

⎛

⎝
span{a x y z xy xz yz . . . xi y j zm}
span{b x y z xy xz yz . . . xi y j zm}
span{c x y z xy xz yz . . . xi y j zm}

⎞

⎠ .

6.2 Numerical Experiments

In this section, under uniformly matching mesh, the convergence analysis of the coupled
system shall be reported by some numerical tests. In these numerical examples, the domain
� = [0, 1] × [0, 1], Stokes domain �1 = [0, 1] × [0.5, 1], Darcy domain �2 = [0, 1] ×
[0, 0.5], the interface �12 = [0, 1] × {0.5}. In addition, we consider the stability constants
σ1,e = 30μ, σ2,e = 1 and ε = ±1.

6.2.1 Rates of Convergence

In this part, some tests are given to verify the rates of convergence. Let the permeability
tensor K = k̃I, we consider the coupled system with the following exact solution [1]

u1, f = −sin(πx)exp(y/2)/(2π2), u2, f = cos(πx)exp(y/2)/π,
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Table 1 The convergence rates under k1 = k2 = 1, μ = k̃ = 1 and ε = −1

h1 = h2
1
8

1
16

1
32

1
64

1
128

‖u f − u f ,h‖L2(�1)
1.6245e-03 4.1008e-04 1.0351e-04 2.5944e-05 6.4860e-06

Rate – 1.986 1.986 1.996 2.000

‖u f − u f ,h‖X f 8.4094e-02 4.1871e-02 2.0896e-02 1.0442e-02 5.2204e-03

Rate – 1.006 1.003 1.001 1.000

‖p f − p f ,h‖M f 1.2953e-01 7.0904e-02 3.7000e-02 1.8874e-02 9.5285e-03

Rate – 0.869 0.938 0.971 0.986

‖us − us,h‖L2(�2)
1.1541e-02 2.9438e-03 7.4116e-04 1.8583e-04 4.6517e-05

Rate – 1.971 1.990 1.996 1.998

‖us − us,h‖Xs 3.2648e-01 1.6340e-01 8.1717e-02 4.0861e-02 2.0431e-02

Rate – 0.998 0.999 0.999 1.000

‖ps − ps,h‖Ms 3.3935e-02 1.6985e-02 8.4948e-03 4.2477e-03 2.1239e-03

Rate – 0.998 0.999 0.999 1.000

Table 2 The convergence rates under k1 = k2 = 1, μ = k̃ = 1 and ε = 1

h1 = h2
1
8

1
16

1
32

1
64

1
128

‖u f − u f ,h‖L2(�1)
1.6239e-03 4.0591e-04 1.0183e-04 2.5475e-05 6.3664e-06

Rate – 2.000 1.995 1.999 2.001

‖u f − u f ,h‖X f 8.4114e-02 4.1873e-02 2.0897e-02 1.0442e-02 5.2205e-03

Rate – 1.006 1.003 1.001 1.000

‖p f − p f ,h‖M f 1.3053e-01 7.1144e-02 3.7049e-02 1.8885e-02 9.5308e-03

Rate – 0.875 0.941 0.972 0.986

‖us − us,h‖L2(�2)
1.1533e-02 2.9412e-03 7.4036e-04 1.8560e-04 4.6456e-05

Rate – 1.971 1.990 1.996 1.998

‖us − us,h‖Xs 3.2648e-01 1.6340e-01 8.1717e-02 4.0861e-02 2.0431e-02

Rate – 0.998 0.999 0.999 1.000

‖ps − ps,h‖Ms 3.3935e-02 1.6985e-02 8.4948e-03 4.2477e-03 2.1239e-03

Rate – 0.998 0.999 0.999 1.000

p f = k̃μ − 2

k̃π
cos(πx)exp(y/2),

u1,s = −2sin(πx)exp(y/2), u2,s = cos(πx)exp(y/2)/π,

ps = − 2

k̃π
cos(πx)exp(y/2),

withG = 2/(1+4π2). Then, using the exact solution, the source terms f and g are determined
by the coupled Stokes-Darcy system (1) and (4), respectively, and the boundary conditions
are obtained by restricting the corresponding true solution to boundary ∂�. To fully verify
our analysis, we consider the coupled system with different μ and k̃ in the following tests.

Letμ = 1 and k̃ = 1, we report the numerical results given in Tables 1, 2, 3, 4 for different
ε and finite element spaces, which are optimal and predicted by the analysis. To adequately
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Table 3 The convergence rates under k1 = k2 = 2, μ = k̃ = 1 and ε = −1

h1 = h2
1
4

1
8

1
16

1
32

1
64

‖u f − u f ,h‖L2(�1)
4.9203e-04 6.3048e-05 8.0006e-06 1.0088e-06 1.2668e-07

Rate – 2.964 2.978 2.987 2.993

‖u f − u f ,h‖X f 1.6032e-02 4.0749e-03 1.0265e-03 2.5756e-04 6.4507e-05

Rate – 1.976 1.989 1.995 1.997

‖p f − p f ,h‖M f 9.7501e-03 2.2329e-03 5.1498e-04 1.2210e-04 2.9611e-05

Rate – 2.126 2.116 2.076 2.044

‖us − us,h‖L(�2)
3.6081e-03 4.8556e-04 6.2704e-05 7.9554e-06 1.1052e-06

Rate – 2.894 2.953 2.979 2.848

‖us − us,h‖Xs 6.5739e-02 1.6737e-02 4.2161e-03 1.0576e-03 2.6480e-04

Rate – 1.974 1.989 1.995 1.998

‖ps − ps,h‖Ms 6.5463e-03 1.6453e-03 4.1188e-04 1.0301e-04 2.5754e-05

Rate – 1.992 1.998 1.999 2.000

Table 4 The convergence rates under k1 = k2 = 2, μ = k̃ = 1 and ε = 1

h1 = h2
1
4

1
8

1
16

1
32

1
64

‖u f − u f ,h‖L2(�1)
4.7673e-04 6.2237e-05 7.9996e-06 1.0463e-06 1.4900e-07

Rate – 2.937 2.960 2.935 2.812

‖u f − u f ,h‖X f 1.5778e-02 4.0073e-03 1.0089e-03 2.5307e-04 6.3373e-05

Rate – 1.977 1.990 1.995 1.998

‖p f − p f ,h‖M f 8.9027e-03 2.0009e-03 4.5569e-04 1.0734e-04 2.5950e-05

Rate – 2.154 2.135 2.086 2.048

‖us − us,h‖L(�2)
3.6132e-03 4.8574e-04 6.2714e-05 7.9575e-06 1.1116e-06

Rate – 2.895 2.953 2.978 2.840

‖us − us,h‖Xs 6.5740e-02 1.6737e-02 4.2161e-03 1.0576e-03 2.6480e-04

Rate – 1.974 1.989 1.995 1.998

‖ps − ps,h‖Ms 6.5463e-03 1.6453e-03 4.1188e-04 1.0301e-04 2.5754e-05

Rate – 1.992 1.998 1.999 2.000

Table 5 The convergence rates under k1 = k2 = 1, μ = 10−3, k̃ = 1 and ε = −1

h1 = h2
1
8

1
16

1
32

1
64

1
128

‖u f − u f ,h‖L2(�1)
1.1216e-01 2.8021e-02 7.0724e-03 1.7824e-03 4.4776e-04

Rate – 2.001 1.986 1.988 1.993

‖p f − p f ,h‖M f 4.4457e-02 2.2164e-02 1.1062e-02 5.5249e-03 2.7609e-03

Rate – 1.004 1.003 1.002 1.001

‖us − us,h‖L2(�2)
2.1723e-02 4.6953e-03 1.0542e-03 2.4882e-04 6.0536e-05

Rate – 2.210 2.155 2.083 2.039

‖ps − ps,h‖Ms 3.3944e-02 1.6986e-02 8.4949e-03 4.2477e-03 2.1239e-03

Rate – 0.998 0.997 0.999 1.000
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Table 6 The convergence rates under k1 = k2 = 1, μ = 1, k̃ = 103 and ε = −1

h1 = h2
1
8

1
16

1
32

1
64

1
128

‖u f − u f ,h‖L2(�1)
1.6367e-03 4.1382e-04 1.0463e-04 2.6244e-05 6.5623e-06

Rate – 1.984 1.984 1.995 2.000

‖p f − p f ,h‖M f 1.3493e-01 7.3963e-02 3.8597e-02 1.9688e-02 9.9388e-03

Rate – 0.867 0.938 0.971 0.986

‖us − us,h‖L2(�2)
8.1755e-03 2.0626e-03 5.1700e-04 1.2937e-04 3.3390e-05

Rate – 1.987 1.996 1.999 1.954

‖ps − ps,h‖Ms 3.3924e-05 1.6984e-05 8.4946e-06 4.2476e-06 2.1239e-06

Rate – 0.998 0.995 0.999 1.000

Table 7 The convergence rates under k1 = k2 = 1, μ = 10−6, k̃ = 103 and ε = −1

h1 = h2
1
8

1
16

1
32

1
64

1
128

‖u f − u f ,h‖L2(�1)
1.3558e-01 3.0981e-02 7.4113e-03 1.8150e-03 4.4933e-04

Rate – 2.130 2.064 2.030 2.014

‖p f − p f ,h‖M f 4.4156e-05 2.2086e-05 1.1041e-05 5.5196e-06 2.7596e-06

Rate – 0.995 1.000 1.000 1.000

‖us − us,h‖L2(�2)
1.9495e-02 4.1853e-03 9.3404e-04 2.1850e-04 5.3370e-05

Rate – 2.220 2.164 2.096 2.034

‖ps − ps,h‖Ms 3.3939e-05 1.6986e-05 8.4948e-06 4.2477e-06 2.1239e-06

Rate – 0.998 0.999 0.999 1.000

Table 8 The convergence rates under k1 = k2 = 1, μ = 10−3, k̃ = 10−3 and ε = −1

h1 = h2
1
8

1
16

1
32

1
64

1
128

‖u f − u f ,h‖L2(�1)
1.3837e+02 3.2181e+01 7.7913e+00 1.9209e+00 4.7704e-01

Rate – 2.104 2.046 2.020 2.010

‖p f − p f ,h‖M f 7.3498e+01 4.0756e+01 1.8081e+01 6.9980e+00 2.9806e+00

Rate – 0.850 1.172 1.369 1.231

‖us − us,h‖L2(�2)
8.9480e-01 5.5280e-01 2.3239e-01 7.5284e-02 2.0777e-02

Rate – 0.694 1.250 1.626 1.857

‖ps − ps,h‖Ms 4.3590e+01 2.4334e+01 1.1530e+01 4.9014e+00 2.2213e+00

Rate – 0.841 1.087 1.234 1.142

verify our analysis, let k1 = k2 = 1 and ε = −1, some numerical results with different μ

and k̃ are presented in Tables 5, 6, 7, 8. Note that the exact solution pressure changes with
different viscosity μ and permeability k̃, the errors of the pressure and velocity will also
change since the pressure depends on the permeability k̃ and the velocity error is related
to the pressure (see Theorem 5.1). Particularly, it is obvious when k̃ is relatively small and
pressure is relatively large (see Table 8). However, these numerical results with different μ

and k̃ are consistent with our convergence analysis. From Tables 1, 2, 3, 4,5, 6, 7, 8, we can
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Fig. 1 The numerical result of Sect. 6.2.2 including the permeability, velocity field and pressure field

conclude that the numerical results support the theoretical analysis derived in Theorems 5.1
and 5.2. In addition, the L2 error of velocity in both Stokes and Darcy regions are optimal,
even though the L2 optimal convergence can not be proved in this paper.

6.2.2 Coupled Surface and Subsurface Flow

In this part, we consider an example proposed in [1, Example 6.2]. This example is repre-
sentative of surface flow coupled to subsurface flow. Let the boundary of Darcy region be
partitioned as �2 = �a

2 ∪ �b
2 , where �a

2 = {x = 0 or x = 1} and �b
2 = {y = 0}. Similarly,

let the boundary of Stokes region �1 = �a
1 ∪ �b

1 ∪ �c
1, where �a

1 = {x = 0}, �b
1 = {x = 1}

and �c
1 = {y = 1}. Then, we consider the following boundary conditions:

u f = (y(1.5 − y)/5, 0), on �a
1 ,

T(u f , p f ) = 0, on �b
1 ,

u f · n = 0, and T(u f , p f )
t = 0, on �c

1,

us · n = 0, on �a
2 ,
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ps = −0.05, on �b
2 ,

where T(u f , p f )
t stands for tangential stress (see [1, Example 6.2] and [7, Example 7.2]).

Let ε = −1, k1 = k2 = 1, μ = 0.1, 5G = K−1/2, f = 0, g = 0 and the permeability

k̃ = 700(1 + 0.5(sin(10πx) cos(20π y2) + cos2(6.4πx) sin(9.2π y))) + 100.

Based on these choices we numerically solve this coupled system on a mesh with h1 = h2 =
1/128.

The numerical results are given in Fig. 1, which shows the permeability field, velocity
field and pressure field. As shown in Fig. 1b, the fluid flow from inlet into interface and then
Darcy region, which is similar with the one presented in [1, Example 6.2] and [7, Example
7.2]. The tangential velocity of flow is discontinuous along the interface and the flow field
has relatively small velocity at low permeability in the Darcy region �2. The pressure field
given in Fig. 1c is highest at the entrance (around the inlet �a

1 ) and discontinuous across the
interface. In summary, the proposed scheme can deal with the physical problem and capture
the discontinuity of velocity field and pressure field on the interface.
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