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Abstract

The nonlinear fourth-order reaction—subdiffusion equation whose solutions display a typical
initial weak singularity is considered. A new analytical technique is introduced to analyze
orthogonal spline collocation (OSC) method based on L1 scheme on graded mesh. By intro-
ducing a discrete convolution kernel and discrete fractional Gronwall inequality, convergence
of the scheme is proved rigorously. This novel analytical technique can provide new insights
in analyzing other time fractional fourth-order differential equations with weakly singular
solutions.
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1 Introduction

In the paper, we consider the following nonlinear fourth-order reaction—subdiffusion equation
with initial singularity

U+ A%u = Au+ f(u)+g(x,1), xeR,te,TI;
u = up(x), xe 2, t=0; (1.1)
u=Au=0, xe€dR, te0,T]
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Here, 2 C R? (d = 1,2). Its closure is denoted by 2. We assume that £2 has smooth
boundary 92 or is convex. ug € C(2), g is the given function, the nonlinear function f (u)
is smooth, and 9 u denotes the Caputo fractional derivative

3
wx,$) o (1.2)
as

t
Bf’u(x,t):/ w1_a( —5)
0

where w|_o(t —5) = si(*fl;; O<a<l1,t>0.

The nonlinear equation (1.1) possesses the fractional sub-diffusion and fourth-order
derivative terms simultaneously, which makes it distinctive compared to general time-
fractional sub-diffusion equations. For sub-diffusion equations with weakly singular solu-
tions, their accurate numerical simulations have been the topic of much recent research, see
references [1-5]. Yan et al. [6] established an improved L1 method for time fractional PDEs
with nonsmooth data, then Xing and Yan modified this method to get a more higher order
scheme in [7]. More recently, there are certain papers concerned with fourth-order fractional
differential equations [8—13] and nonlinear sub-diffusions [14—19]. Ji et al. [20] proposed a
high order FDM for fourth-order fractional sub-diffusion equations with the Dirichlet bound-
ary conditions. In particular, Qiao et al. [21-23] derived ADI orthogonal spline collocation
method for simulating the solution of multi-term time fractional integro-differential equa-
tion. However, they ignored a detailed issue and made the theoretical results without initial
singularity. This is precisely the starting point of our present work.

We now consider the regularity of the exact solution u of (1.1) by introducing a corre-
sponding linear problem, that is, set f(«) 4+ g(x,t) = f(x,t) in (1.1). According to earlier
work of Luchko [24] and Sakamoto and Yamamoto [25], set {(A;, P;) : j = 1,2,---} be
the eigenvalues and eigenfunctions for the following problem

—AP; =;Pj, on £ with the boundary conditions P;|ye = 0,

with the eigenfunctions normalised by requiring (P;, P;) = 1 for all j, where (-, -) denotes
the inner product in L>(£2). It is well known that the eigenvalues satisfy

O<Ap <A <---<dj— o0

Since {P; : j = 1,2,...} form an orthogonal basis in LZ(Q), then from the earlier work
of An and Liu [26, Page 3327], P;, j = 1,2, ..., is also an eigenfunction for the following
problem

A*P; — AP; = i;P;, on$2 with the boundary conditions P;|so = APj|ye =0,

where the eigenvalues )A\j =A@ +D,j=12,...
By using a standard separation of variables scheme (see [24, Eq. (4.29)] or [25, Eq. (2.11)],
and imitating the Eq. (2.2) in [27], we can get

(e, t) =Y [0, P))Ea1(=4jt*) + Jj.o(Eaai DIPj(x), x €82, t€[0,T].
j=1
(1.3)

where

t
Jj,Ol(EOt,Ot; t) :/ sailEa,a(_)‘jsa)fj(t _S)dS,
0
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where f;(t —s) = (f(-,t —s), P;j(-)), and the generalized two-parameter Mittag—Leffler
function Ey g(z) [[28], Section 1.2] is defined by

(o) i

Z
Eu,ﬂ(Z)ZE Twith) v>0,8>0 zeR.
i=0

Set £LP; = A2Pj — APj, by using the framework of sectorial operators [25], we define
following fractional power £ (y € R) of the operator £ with domain

o0
22
D) =3¢el*2):) A7I@, PO <oo, y eR Y,
j=1

and
ad 1
~2 1
leller = QA7 e, PPIHZ, v € R.
j=1
Similar to [29, Section 6.1] (cf. [27, Section 2]), one can apply (1.3) and the theory of

sectorial operators to get the following regularity of the solution to (1.1).
5!
Let ¢ be a non-negative integer. For all ¢ € (0, T'], assume that ug € D(£€+2), % €

1
D(£% and lluoll geyn + I 9 g:l'") ey < coforl =1,2, where cg is a constant independent
of ¢. Then we can make the following assumptions about the exact solution u of (1.1).

Forp=1,2,t€(0,T],¢ € Ngo={0, 1, ...}, and a constant ¢y, we assume

Pu(, 1)
P

app e =cod +1477), (1.4)

luC, D)lle < co, |

where the notation || - ||¢ is norm in the standard Sobolev space H*(£2).

The paper is organized as follows. In Sect. 2, inspired by L1 formula, L1-OSC scheme
is presented. A new theoretical technique for our scheme is presented in Sect. 3. In Sect. 4,
some numerical results are given.

2 The Fully Discrete Scheme Based on Orthogonal Spline Collocation

Wesetd, :a =x9) <xy <--- <xy, =b, 8 =38 x3§in £ be quasi-uniform, Jy is

similar to 8y. Let hf = x; — x;_1, h,: = Yk — Yk—1, h = max( max hj, maxij<i<n, hi).
1<I<Ny -

For 1 < k < Ny, denote
M, (8y) = {vlv e C' (D), vl xq) € Pror >3},
where I = [0, 1], and P, is the set of polynomials of degree < r. Let
MY (8,) = (vlv € M, (8,), v(a) = v(b) =0},

with M?(8,) defined similarly. Set M, (§) = M, (8,) ® M, (8y) and M?(8) = M?(5,) ®
MO(Sy).

We now define collocation points set in £2: A, = {¢ = (Gx, Gy), Gx € Ax, Gy € Ay},
where Ay = {g};’k}?’/’,‘c’ifl, gf;’k = X1 + Ach}, {Ak}z;ll are the nodes of the (r — 1)-point
Legendre quadrature rule. Ay defined similarly.
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r—1
Set {wi};;ll be weights of the Legendre quadrature rule and Y w; = 1, for V¢, ¢ on
i=1
M?(B), we define the following discrete inner product and norm,

Ny Ny —1r—1

r—1
0 =D 3 HRY Y o @e) st . ek, = @.0). 25
k=1 I=1

i=1 j=I

Let || - || be the usual LZ norm, the norms || - | m, and || - || is equivalent on M?((S), see [30].
By introducing an auxiliary variable v = Au, we split (1.1) into the following equivalent
coupled system:
u+ Av=A2Au+ f(u) +gx,1), x,1)e x0TI,
and v(x,1) — Au(x,t) =0, (x,1)€ 2 x(0,T]. (2.6)
To derive discrete-time L1-OSC schemes, for any K € zt, grading constant 7 > 1 and

1<n<K]letT; = {tyltn = T(W/K)'}, 7y =ty — ta_t,and 7, < CoTK " (n — 1)1,
see [27, Eq. (5.1)]. Denote

—1

T; lj ds
"=t @ = . j=L....n,
o =0t 0= mimg | G n
then, 97 ¢ on graded mesh can be approximated by L1 scheme
n ) n—1 )
Dge" =Y a) (V¢ =ag"¢" = (@) — )¢’ @7
i=1 i=0
where a,(,") =0,v;¢' = (¢ — ' 1.
By the Lemma 5.1 of [27], we know
ID§$" — 3 p(ta)] < Con™mntFe2=, (2.8)

We now introduce a sequence of discrete convolution kernels as follow
by =t9r@—a), 1<n<Kk,
b =142 — @) Z @?,_ —a b 1<j<n—1,
i=j+1

By Lemma 2.1 of [2], we can obtain

0<b <T¥rQ2—a), bej”l D=1 1=n<K,
(n)
and Zb (Ol ma—a () < Olima(ty), m>1, 1<n<K. (2.9)

Thus, using (2.7) and Newton linearization formula, we can construct following fully
discrete L1-OSC scheme: seek {uh, vh} € M(,)((S) X ./\/19(6), such that, forn =1,2,..., K

D%ul + Avy = Auj + f’(uz_l)(uz — uZ_l) + f(uz_l) +gjon A,
and v, = Auj on A, (2.10)
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where g} is a fitted approximation to g(-, #,). Also, for Vx, ¢ e M?(S), we have
(Dl x) = (Aufy = Avj, ) + ("G — ™) + £ @l ™D + g ),
and (vj,, ¥) = (Aup, ¥), 2.11)

which will be applied to subsequent convergence analysis. (2.10) with the discrete initial
and boundary conditions is a linear elliptic problem for every time level, the existence and
uniqueness of the solution {u{,} 5{:711 can be guaranteed by the Lax—Milgram lemma if £ is
sufficiently small or K sufficiently large.

3 Theoretical Analysis

Lemma 1 [2] If the nonnegative sequences { ¢{', ¢y, |1 < n < K} are bounded, set k be a

n—1
positive constant independent of n and the nonnegative constants k j satisfying 0 < Y k; <
Jj=0
kK, 1 <n < K. If the nonnegative sequence { u"},[f:0 satisfies
n n
i\2 \2 2
Y al i) <Y k() U+ (A 1 <0 <K, (3.12)
i=1 j=1

then when the maximum temporal step size satisfies tx < (2" (2 —ot)/?)’l/"‘,for l1<n<Kk,
it holds

k
V" < 2E, (k%) | 0 + llllkai(an,ik_) i HVra—a lrgﬁfn{t;‘/zgf}
<ksn = <k=

To derive convergence, first, define { U , 17}: [0, T] — M?(S) X M(,)(S) as
(A —=0),x) =0, (A(v=V),¥) =0, ¥, x € ML), (3.13)

where u and v are the solution of (2.6).
Letp =v—Vand n = u — U, then from [31], we have the following estimates on p and
n and its time derivatives.

Lemma2 [31]1f 2%, v ¢ LP(H'3) fort €[0,T] i, j =0,1,2, p =2, 00, then

o' ot
L+i i
0" 'y ' < Cuhr+l—l 87”[ ;
axel 8y£28zl M, - 3t’ Hr+3
ttip M EL
and ‘ W < thr-‘r] l 7/ , (314)
x19y20t) | oy, ot/ || gr+3

where the constants C,, and Cy, are independent of h and the time step, and(0 < £ = £1+4£; <
4,

Set

ulty) —ul}l = (uty) = 0" — @) = 0", 1<n<K,
N =ulty) — 0", £" = @) —U"), 1<n<K, (3.15)
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and

v(ta) — v = (ta) = V") = (w = V"), 1<n <K,
Pt = ((t) =V, 0" = () = V"), 1<n<K. (3.16)

Now we state our main results.

Theorem 1 Suppose u(-, t,) are the solutions of (2.6) with the regularity property (1.4), the
nonlinear function f € C2(R), and u(-, 1) € LOO(Rd)for t € (0, T]. Let uj, be the discrete
solutions of (2.11). If the maximum temporal step size satisfies Tx < (4I'(2 — a)k4) 1/,
where Ky is defined in (3.27). Then

Juts) —uj| < co(k~mnte2=ed 4ty 1 <n < K, (3.17)
provided u2 is chosen so that ||u0 —po H < coh"H.

Proof Since the estimates of n" and p" are known by Lemma 2, then we need only to estimate
&" and 0". First, for 1 < n < K, taking t = ¢, in (2.6), and using (2.11), (3.13) and (3.15),
we obtain

(DLE", x) = (AE", x) — (40", x) + (Dgn", x) + (" + R", x) . Vx € M2(®),

and (0", ) = (AE". ) + (p". Y1), V¥ € MD(5),
where
R" = Diu" — dfue, 1) + f@") = (f' @' H@" —u"™H + @),
¢" = "D+ @ =Y = = u TG = f .
Taking x = &", ¢ = 6" and adding, we attain

(DLe €") + (0", 0") — (Ag", £")

= —(A0" E") + (AE",0") + (D¥n" + ¢" + R".E")+ (p",0"),1 <n < K.
(3.18)

From [32, Eq. (3.4)] or [33, Eq. (2.3) in Lemma 2.1], for Vor, 0 € M?((S), we have
—(Aw,0) + (Ao, ) =0, (3.19)
on using (3.19) with @ = 0", 0 = £", we have
—(A0",&") +(A8",0") =0, 1<n=<K,
then, (3.18) can be rewritten as
(DLem €") + (0", 0") — (Ag", £")
= (D§n" +¢" + R" &)+ (p",0"),1 <n < K. (3.20)

From [32, Eq. (3.5)] or [33, Eq. (2.4) in Lemma 2.1], for V& € M(,)(S), there exists a
positive constant ¢ such that

— (A9, 9) > ¢||[VO|* > 0, (3.21)
on using (3.21) with ¥ = £, then
— (AE"E") > |VE"|* > 0,1 <n < K. (3.22)
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By the proof of Lemma 4.1 in [34], we obtain
2(D%&", &) Za(’“ V(g5 1<n<K. (3.23)

Thus, combining (3.20), (3.22) and (3.23), and using Cauchy—Schwarz and Young inequal-
ities, we have

= Za““ Vi(1E 15, + 10" 13,

1
= (D% at, + 16" g, + 1R ag, ) 18" v, + 1" 5, +16"15, .1 <n < K.
(3.24)
By the use of the first condition in (1.4), we obtain
1" —uf =™ fsu ™+ (1= )l D,
< co(nn"*lnM, +1E" ), 1 <n <K,
I @ @™ —ulf = @™ = u ),
< co(n"Ing, + IE I, + 10" Miag, + 1E Iag), 1 <0 < K,
and
" —u" @™ = s (= )l g,
< 2Koco(In" Mag, + 1E" Mag,), 1 <n < K,
where Ko = max ||u"| o + 1.
0<n<K

Since

16"t = I @™ = ™) + (/@™ = ™) " —uh
D" = = " = u ) g

<@ = / Filsu + (= 9yl s g,

" —u" @ —uph / F "™ (1= sulNds|| p,

I D@ = — @ = w1 <0 < KL
Thus, using Lemma 2, we obtain

6™ m, < collE™m, + (2co + 20K IIE" | m,
+(3co + 2coK)h T ull g3, 1 <n < K. (3.25)

By combining (3.24) and (3.25), we obtain

Za(’” Ve (18 15,)

=< (IID‘}én Ity + IR a4, ) 18" L, + (collE" o, + Qeo( + Ko IE" I ag,

1
+@co + 2coKo)h T |ull gre3) 1E™ L ag, + a 10" 15,
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< (2co + coKo)[IE" I3y, + (co + coKo)IE" I3,
1
+(c1(eo +2c0 KR T + IDEN" I, + IR A IE |, + il I3, 1 <n <K,

which has the form of (3.12), then using the discrete fractional Gronwall inequality of
Lemma 1, we obtain

IE" I,
. VI =a) 2
< 4Eq(2k418) (||s°||M, + X max ()

k
k
+ max. 2b,ﬁl,(c1(3co + 200K + DL |, + IR Img,) |1 <n < K,
j:

(3.26)
where
K+ = co(3 + 2Kp). (3.27)

We now proceed to estimate the terms on the RHS of (3.26). By using the definition (2.7)
and (2.9), we have

n

n J
B g = Y b a1V I,
j=1 j=1 k=1

n
=> Vil lm. 1 <n < K. (3.28)
j=1
Moreover, by Lemma 2 and (1.4), we have

iH | - / 2 (5)d
LV g, T ) Y
j=l j=l J

n tj—1
=y
j=1""

M,

an
g(s)

ds < Coh" Nty +1%/a),1 <n < K.
tl Mr
For the term R", 1 < n < K, by using (2.8), we have

n
> b D u = o ux. 1))l
j=1

n k o
| D% u® — dFulx, i)l
< E bfl"_).wl_a(tj) max K !
= J 1<k=<n @1 (k)
< I'(1 —a) max Y| D%u* — 8% (x, ¢t
<I( )15k5nk” K u(x, 1)l

<col (1 — )TN~ mntFa2—a} | — ) < g (3.29)

Set R = f(u") — f@"™ Y — /@ Hw" —u"",1 < n < K, it follows from the
Taylor expansion with integral remainder

RI = ! — uH)2/ F s —u ™Y +ulHA = s)ds, j > 1.
0
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By the regularity conditions (1.4), we have
R < Co(/ W (0)ldr? < C? + 12 ja?),
and RV < co f W ldn? = C? + 12722, 22 =K.
i

t
n]—F(1+)

By (2.12) of [14], for 1 < n < K, the expression Z H™
j_

is true, then,

IA

n
b IR + Zb,i”_)jan I

n
Y b IR
j=1

IA

coti' IRl + coty! Jmax, IR/

20:2

IA

corf‘(rl+r1"‘/a)+cot max (r + 152 T),lfnf](,
<j<

thus,

Zb(”) IR < cori® + cot® max (r + 7% d)
Jj=1 ==
Co‘E}a + C()f,%

< cok~minBre2l 1 < < K. (3.30)

IA

Notice that the conditions of theorem about & 0. then, with the help of Lemma 2, for
1 <n < K, we obtains

IE I, < 4Eq R4t (T (1 — )i /4 + T (1 — )T Beg + 2c0K o)) !

+(tn +tg/a)hr+l +eol (1 — a)Toszm‘m{Foz,Zfa} +COK7min{3?a,2})'

Therefore, using triangle inequality, Lemma 2, and the equivalence of norms on M?(S)
complete the proof. O

Remark 1 The hypothesis u(-, ) € L®(R?) for t € (0, T] means there exists a constant
Cp > O such that ||u| L~ < Cp. This hypothesis is proper because the value of u is bounded
in the real applications. For example, for the nonlinear term f(u) = u(l — u) in problem
(4.32), we have f'(u) = 1 —2u, f"(u) = =2, and ||[1 —2u| < 1+ 2|ullz~ < Co,
Il f” ()| =2 < Cop.Forthenonlinearterm f () = u(1—u)(u—1)inproblem (3.33), we have
) = —1+4u—3u?, () = 4—6u, and || —1+4u—3u?|| < (143l o) A+|ull L) <
Co, |14 — 6u|| < 4+ 6|ju||r~ < Cp. This indicates the proposed L.1-OSC method is able
to ensure the unconditionally stable and convergence for problem (4.32) and problem (3.33)
according to the proof of Theorem 1.

4 Numerical Experiments

We employ the space of piecewise Hermite cubics, Mg(&), to present our numerical results
with graded mesh t, = T(n/K ).
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Table 1 Convergent results in time with 2 = 1/100 for Example 1 in the case « =

a, B K L2 Rate L>® Rate
a=p=0.38 64 1.2993e—05 1.8371e—07
128 5.9036e—06 1.1381 8.3478e—07 1.1380
256 2.6312e—06 1.1659 3.7208e—08 1.1658
512 1.1555e—06 1.1872 1.6340e—08 1.1872
1024 5.0669e—07 1.1893 7.1656e—09 1.1892
2048 2.2134e—07 1.1948 3.1302e—09 1.1948
a=8=0.6 64 1.9921e—06 2.8124e—06
128 8.7801e—07 1.1820 1.2405e—06 1.1809
256 3.6697e—07 1.2586 5.1867e—07 1.2580
512 1.4775e—07 1.3125 2.0887e—07 1.3122
1024 5.8164e—08 1.3450 8.2239e—08 1.3447
2048 2.2758e—08 1.3538 3.2179e—08 1.3537

Example 1 We consider the following fourth-order nonlinear subdiffusion equation with
(x,1) € (0, 1) x (0, 1],

1
u+ A'u = Au+ ——— 1), 4.31
Fut A= Aut oo s 80D “.31)
subject to zero-valued boundary, and initial data and the source function g(x, ) are given
from the exact solution u(x, t) = (w144(t) + w24 4(t)) sin(wx), B € (0, 1) is the regularity
parameter.

First, the temporal errors and rate of convergence are shown in Tables 1, 2 and 3 for
1/h = 100 and ¥ = 2 — a/«. Table 1 considers the case of 8 = a = 0.6, 0.8; Table 2
considers the case of @ = 0.8 fixed and B changing; Table 3 considers the case of 8 = 0.8
fixed and « changing. The orders of convergence displayed in Tables 1, 2 and 3 indicate that
the rate of convergence is K ~>~®, which match with our theoretical analysis in convergence
Theorem. .

Taking K = |ho2] and ¥ = 2 — «/r, we show the spatial errors and rate of convergence
in Table 4. The O (h*) convergence are observed, again as predicted by convergence Theorem.

Example2 We consider the following fourth-order fractional Fisher-type equation with
(x,1) € (0, 1) x (0, 1],

3%u + A%u = Au+u(l —u) + g(x, 1), (4.32)

subject to zero-valued boundary, and initial data and the source function g(x, ) are given
from the exact solution u(x,t) = sin(wrx)wi1+g(t), B € (0, 1) U (1,2) is the regularity
parameter.

The computational parameters are listed as follows.

~ Table5: K = [ha2 |, =2 — a/a, f = a = 0.4, 0.6, 0.8.
~ Table 6: 1/h = 100, 7 =2 — a/a, = a = 0.4, 0.6, 0.8.

— Figure 1: 1/h =32, K = LhéJ,F =2—-a/a,f=a =04
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Table 2 Convergent results in time with 2 = 1/100 for Example 1 in the case of « fixed

=038 B K L? Rate L® Rate
B =0.6 64 7.1847e—06 1.0157e—05
128 3.3258e—06 1.1112 4.7024e—06 1.1110
256 1.4965e—06 1.1521 2.1161e—06 1.1520
512 6.6019e—07 1.1806 9.3360e—07 1.1805
1024 2.9012e—07 1.1862 4.1029e—07 1.1862
2048 1.2686e—07 1.1934 1.7940e—07 1.1935
B =04 64 2.4744e—06 3.4964e—06
128 1.2008e—06 1.0431 1.6975e—06 1.0425
256 5.4324e—07 1.1443 7.6807e—07 1.1441
512 2.3416e—07 1.2141 3.3111e—-07 1.2139
1024 9.8478e—08 1.2496 1.3926e—07 1.2495
2048 4.0251e—08 1.2908 5.6920e—08 1.2908
Table 3 Convergent results in time with 2z = 1/100 for Example 1 in the case of § fixed
g =08 o K ) Rate L™ Rate
a=0.6 64 4.0712e—06 5.7522e—06
128 1.6718e—06 1.2841 2.3629e—06 1.2836
256 6.7197e—07 1.3149 9.4996e—07 1.3146
512 2.6428e—07 1.3463 3.7366e—07 1.3461
1024 1.0243e—08 1.3674 1.4484e—07 1.3673
2048 3.9568e—08 1.3722 5.5953e—08 1.3722
a=04 64 5.3417e—07 7.5059e—07
128 2.4928e—07 1.0995 3.5132e—07 1.0952
256 1.0173e—07 1.2930 1.4356e—07 1.2911
512 3.8632e—08 1.3969 5.4557e—08 1.3958
1024 1.4161e—08 1.4479 2.0007e—08 1.4473
2048 5.1729e—09 1.4529 7.3106e—09 1.4524

— Figure 2: For the fixed K = 8,16,32,64, N = 16, 32,64, 128,256, F = 2 — o/«,

B=a=04

— Figure 3: For the fixed K = 32, 64, 128,256, N = 16, 32, 64, 128,256, 7 = 2 — o/ «,

B=a=06

From Tables 5 and 6, we find that the numerical results match with our theoretical analysis
of convergence Theorem. In Fig. 1 we draw the error figure in max|<x<k ||ulz — uk||p for

1/h =32, K = Lha%ZJ, F=2-—a/a, B =a = 0.4. We can conclude that our proposed

L1-OSC method can approximate well for the solution.

Further, we confirm the unconditional convergence of our proposed method for different
. The L? errors are given in Figs. 2 and 3 for @ = 0.4, 0.6. We find that for a fixed K, the L?
errors asymptotically tend to a constant, that is to say that, there is no time-step restrictions

for our scheme dependent on the spatial mesh size /.
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Table4 Errors and convergence

results in spatial direction for « B K L? Rate L= Rate
Example | «=04 1.6739%—04 2.3670e—04
p=04 8 9.4310e—06  4.1497 1.3337e—05  4.1496
16 5.7592e—07  4.0335  8.1443e—07  4.0335
32 3.5838¢—08  4.0063  5.0681e—08  4.0063
a=03 1.5694e—04 2.2193e—04
p=06 8 8.8537e—06  4.1478 1.2520e—05  4.1478
16 5.4223e—07  4.0293  7.6678¢e—07  4.0293
32 3.3822e—08  4.0029  4.7829¢e—08  4.0029
a=0.6 1.6229e—04 2.2950e—04
p=06 8 9.1480e—06  4.1490  1.2937e—05  4.1489
16 5.5729¢—07  4.0370  7.8810e—07  4.0370
32 3.4660e—08  4.0071 4.9014e—08  4.0071
a=04 1.4785e—04 2.0907e—04
p=08 8 8.3808e—06  4.1409  1.1851e—05  4.1409
16  5.1315e—07  4.0296  7.2567e—07  4.0296
32 3.1969¢e—08  4.0046  4.5209e—08  4.0046
Table5 L2 norm convergent results in space with K = A ﬁj for Example 2
1/h=4 1/h =38 1/h =16 1/h =32 1/h =64
a=04 1.0015e—04 5.5854e—06 3.3866e—07 2.0994e—08 1.3110e—09
order 4.1644 4.0438 4.0118 4.0012
a=0.6 9.9112e—05 5.4893e—06 3.3245e—-07 2.0611e—08 1.2874e—09
order 4.1744 4.0454 4.0117 4.0009
a=0.8 9.4815e—05 1.2753e—06 3.2025e—07 1.9872e—08 1.2417e—09
order 4.1678 4.0420 4.0104 4.0004

Example 3 In the example, we consider the following fourth-order fractional Huxley-type

equation (2.6) with x = (x1,x2) € (0,1) x (0, 1),7 € (0, 1].

3%u + A%u = Au+u(l —u)(u — 1)+ g(x, 1),

(3.33)

subject to zero-valued boundary, and initial data and the function g(x, t) are determined by
the exact solution u(x, t) = sin(wx1) sin(wx2)wi44(), B € (0, 1) U (1, 2) is the regularity

par: ameter.

The computational parameters are listed as follows.

— Table 7: K = Lhﬁj, F =2 — a/a for different o and B.
— Table 8: 1/h = 100, ¥ = 2 — a/« for different « and .

— Figure 4: For the fixed K = 32, 64, 128,256, N = 16, 32, 64, 128,256, 7 = 2 — a/«,

B=a=0.06.

— Figure 5: For the fixed K = 32, 64, 128,256, N = 16, 32, 64, 128,256, F =2 — o/«,

B=a=0S8.
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Table 6 Convergent results in

time with h = 1,100 for a=p K L? Rae L% Rate
Example 2 0.4 64 4.6475¢—07 5.7092¢—07
128 14953¢—07 14366 2.1110e—07  1.4354
256 53216e—08 14905 7.5164e—08  1.4898
512 1.8456e—08  1.5278  2.6077e—08  1.5273
1024 62145¢—09  1.5704  8.7826e—09  1.5701
2048 2.0506e—09 15996  2.8992¢—09  1.5990
0.6 64 1.1713e—06 1.6527e—06
128 5.5454e—07  1.0787  7.8330e—07  1.0772
256 23922e—07 12130  33807e—07 12122
512 9.7865¢—08 12893  1.3834e—07  1.2891
1024 3.8713e—08  1.3380  5.4732e—08  1.3378
2048 1.4814e—08 13859  2.0945¢—08 13858
0.8 64 2.4747e—06 3.4902¢—06
128 12233e-06 10165 1.7286e—06  1.0137
256 59747e—07  1.0338  8.4459e—07  1.0333
512 27537e—07 11175  3.8934e—07  1.1172
1024 12387e—07 11525  1.7515¢—07  1.1524
2048 5.4761e—08  1.1776  7.7437e—08  1.1775

x107®
25

15

Error

0

0.2

Fig.1 The global error at « = 0.4 in time and space for Example 2

The numerical errors and convergence orders are given in Tables 7 and 8, we find that
the numerical results match with our theoretical analysis of convergence Theorem. Again, to
further confirm the unconditional convergence of our proposed method for different «, the
L? errors are shown in Figs. 4 and 5 for @ = 0.6, 0.8. The figures results present that for a
fixed K, the errors in L?-norm asymptotically tend to a constant, which implies that there
is no time-step restrictions for our proposed scheme dependent on the spatial mesh size /.
Those results further confirm our theoretical analysis.
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Fig.3 The L error at o = 0.6 for Example 2

5 Conclusion

In order to effectively solve nonlinear fourth-order reaction—subdiffusion equation whose
solutions display a typical initial weak singularity, we introduce the orthogonal spline col-
location method to discrete the spatial variable and the L1-scheme on graded meshes to
discrete the time-fractional Caputa derivative, the Newton linearized scheme to approxi-
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Table 7 Errors and convergence

results in spatial direction for « B K L? Rate L= Rate
Example 3 a=04 4 9803505 1.3867e—04
B=04 8  54502e—06 41689  7.7089e—06  4.1690
16 3.3019e—07 40449  4.6701e—07  4.0450
32 2.0465e—08 40121  2.8945¢—08  4.0121
«=03 4  7.9017e—05 1.1182e—04
B=13 8  44268c—06 4.1578  6.2636e—06  4.1580
16 2.6684e—07 40522  3.7750e—07  4.0524
32 1.6456e—08  4.0193  23277e—08  4.0195
«=04 6.9021e—05 9.7654¢—05
B=15 3.9285¢—06 41350  5.5571e—06  4.1353
16 2.3952¢—07 40358  3.3878¢—07  4.0359
32 1.4880e—08  4.0087  2.1045¢—08  4.0088
«=03 4  9.9835¢—05 1.4123e—04
B=05 8 5545506 4.1702  7.8445e—06  4.1702
16 3.35200—07 40482  4.7413e—07  4.0483
32 20689%—08 40181 29263e—08  4.0181
e Comcmeneen Ly 5 e v e
Example 3 «=04 64 4299907 6.0365¢—07
B=04 128  1.5543e—07 14680 2.1870e—07  1.4648
256 5.4725¢—08 15060 7.7112e—08  1.5039
512 1.8869e—08 15362 2.6614e—08  1.5348
1024 63337e—09 15749  8.9395¢—09  1.5739
a= 64 7.9131e—07 1.1323e—06
B 128 22979%e—07 1.7839  3.2839e—07  1.7858
256 6.4867c—08  1.8248 9.2597¢—08  1.8264
512 1.8380e—08 1.8193 2.6210e—08  1.8208
1024 53147¢—09 17901  7.5704e—09  1.7917
@=08 64  2.5202e—06 3.5502e—06
B=08 128 1297806 09575 1.8318e—06 0.9547
256 6.1807e—07 1.0702 8731507  1.0690
512 28146607 1.1348  3.9781e—07  1.1341
1024 12583e—07  1.1615 1.7789e—07  1.1611
«a=06 64  1.6530e—06 2.3297e—06
B=05 128  69077e—07 12588 9.7491e—07  1.2568
256 2.8008e—07 13024 3.9559e—07  1.3013
512 1.1066e—07 13397  1.5637e—07  1.3390
1024 4.2888¢—08 13675 6.0620e—08  1.3671

mate the nonlinear term. Based on the discrete fractional Gronwall inequality, the discrete
fractional convolution kernel and the temporal-spatial OSC error splitting technology, the
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Fig.5 The L2 error at = 0.8 for Example 3

optimal convergence rate of the Newton linearized L1-OSC method are gained. Moreover
the unconditional convergence results of our proposed L1-OSC method are proved with con-
sidering the initial singularity. Especially, there is no time step restrictions that depends on
the size of the spatial mesh. Our analytical technique can provide new insights in analyzing
other fourth-order fractional differential equations with weakly singular solutions.
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