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Abstract
The nonlinear fourth-order reaction–subdiffusion equation whose solutions display a typical
initial weak singularity is considered. A new analytical technique is introduced to analyze
orthogonal spline collocation (OSC) method based on L1 scheme on graded mesh. By intro-
ducing a discrete convolution kernel and discrete fractional Grönwall inequality, convergence
of the scheme is proved rigorously. This novel analytical technique can provide new insights
in analyzing other time fractional fourth-order differential equations with weakly singular
solutions.
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1 Introduction

In the paper, we consider the following nonlinear fourth-order reaction–subdiffusion equation
with initial singularity

⎧
⎨

⎩

∂α
t u + Δ2u = Δu + f (u) + g(x, t), x ∈ Ω, t ∈ (0, T ];
u = u0(x), x ∈ Ω, t = 0;
u = Δu = 0, x ∈ ∂Ω, t ∈ (0, T ].
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Here, Ω ⊂ R
d (d = 1, 2). Its closure is denoted by Ω̄ . We assume that Ω has smooth

boundary ∂Ω or is convex. u0 ∈ C(Ω̄), g is the given function, the nonlinear function f (u)

is smooth, and ∂α
t u denotes the Caputo fractional derivative

∂α
t u(x, t) =

∫ t

0
ω1−α(t − s)

∂u(x, s)
∂s

ds, (1.2)

where ω1−α(t − s) = (t−s)−α

Γ (1−α)
, 0 < α < 1, t > 0.

The nonlinear equation (1.1) possesses the fractional sub-diffusion and fourth-order
derivative terms simultaneously, which makes it distinctive compared to general time-
fractional sub-diffusion equations. For sub-diffusion equations with weakly singular solu-
tions, their accurate numerical simulations have been the topic of much recent research, see
references [1–5]. Yan et al. [6] established an improved L1 method for time fractional PDEs
with nonsmooth data, then Xing and Yan modified this method to get a more higher order
scheme in [7]. More recently, there are certain papers concerned with fourth-order fractional
differential equations [8–13] and nonlinear sub-diffusions [14–19]. Ji et al. [20] proposed a
high order FDM for fourth-order fractional sub-diffusion equations with the Dirichlet bound-
ary conditions. In particular, Qiao et al. [21–23] derived ADI orthogonal spline collocation
method for simulating the solution of multi-term time fractional integro-differential equa-
tion. However, they ignored a detailed issue and made the theoretical results without initial
singularity. This is precisely the starting point of our present work.

We now consider the regularity of the exact solution u of (1.1) by introducing a corre-
sponding linear problem, that is, set f (u) + g(x, t) = f (x, t) in (1.1). According to earlier
work of Luchko [24] and Sakamoto and Yamamoto [25], set {(λ j , Pj ) : j = 1, 2, · · · } be
the eigenvalues and eigenfunctions for the following problem

−ΔPj = λ j Pj , on Ω with the boundary conditions Pj |∂Ω = 0,

with the eigenfunctions normalised by requiring (Pj , Pj ) = 1 for all j , where (·, ·) denotes
the inner product in L2(Ω). It is well known that the eigenvalues satisfy

0 < λ1 < λ2 < · · · < λ j → ∞.

Since {Pj : j = 1, 2, . . .} form an orthogonal basis in L2(Ω), then from the earlier work
of An and Liu [26, Page 3327], Pj , j = 1, 2, . . ., is also an eigenfunction for the following
problem

Δ2Pj − ΔPj = λ̂ j Pj , onΩ with the boundary conditions Pj |∂Ω = ΔPj |∂Ω = 0,

where the eigenvalues λ̂ j = λ j (λ j + 1), j = 1, 2, . . ..
By using a standard separation of variables scheme (see [24, Eq. (4.29)] or [25, Eq. (2.11)],

and imitating the Eq. (2.2) in [27], we can get

u(x, t) =
∞∑

j=1

[(u0, Pj )Eα,1(−λ̂ j t
α) + J j,α(Eα,α; t)]Pj (x), x ∈ Ω̄, t ∈ [0, T ].

(1.3)

where

J j,α(Eα,α; t) =
∫ t

0
sα−1Eα,α(−λ̂ j s

α) f j (t − s)ds,
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where f j (t − s) = ( f (·, t − s), Pj (·)), and the generalized two-parameter Mittag–Leffler
function Eα,β(z) [[28], Section 1.2] is defined by

Eυ,β(z) =
∞∑

i=0

zi

Γ (υi + β)
, υ > 0, β > 0, z ∈ R.

Set LPj = Δ2Pj − ΔPj , by using the framework of sectorial operators [25], we define
following fractional power Lγ (γ ∈ R) of the operator L with domain

D(Lγ ) =
⎧
⎨

⎩
ϕ ∈ L2(Ω) :

∞∑

j=1

λ̂
2γ
j |(ϕ, Pj )|2 < ∞, γ ∈ R

⎫
⎬

⎭
,

and

‖ϕ‖Lγ = (

∞∑

j=1

λ̂
2γ
j |(ϕ, Pj )|2) 1

2 , γ ∈ R.

Similar to [29, Section 6.1] (cf. [27, Section 2]), one can apply (1.3) and the theory of
sectorial operators to get the following regularity of the solution to (1.1).

Let  be a non-negative integer. For all t ∈ (0, T ], assume that u0 ∈ D(L+2), ∂l f (·,t)
∂tl

∈
D(L) and ‖u0‖L+2 + ‖ ∂l f (·,t)

∂tl
‖L+1 ≤ c0 for l = 1, 2, where c0 is a constant independent

of t . Then we can make the following assumptions about the exact solution u of (1.1).
For p = 1, 2, t ∈ (0, T ],  ∈ N0 = {0, 1, . . .}, and a constant c0, we assume

‖u(·, t)‖ ≤ c0, ‖∂ pu(·, t)
∂t p

‖ ≤ c0(1 + tα−p), (1.4)

where the notation ‖ · ‖ is norm in the standard Sobolev space H (Ω).
The paper is organized as follows. In Sect. 2, inspired by L1 formula, L1-OSC scheme

is presented. A new theoretical technique for our scheme is presented in Sect. 3. In Sect. 4,
some numerical results are given.

2 The Fully Discrete Scheme Based on Orthogonal Spline Collocation

We set δx : a = x0 < x1 < · · · < xNx = b, δ = δx × δy in Ω be quasi-uniform, δy is
similar to δx . Let hxl = xl − xl−1, h

y
k = yk − yk−1, h = max( max

1≤l≤Nx
hxl ,max1≤k≤Ny h

y
k ).

For 1 ≤ k ≤ Nx , denote

Mr (δx ) = {
v|v ∈ C1( Ī ), v|[xk−1,xk ] ∈ Pr , r ≥ 3

}
,

where Ī = [0, 1], and Pr is the set of polynomials of degree ≤ r . Let

M0
r (δx ) = {v|v ∈ Mr (δx ), v(a) = v(b) = 0} ,

with M0
r (δy) defined similarly. Set Mr (δ) = Mr (δx ) ⊗ Mr (δy) and M0

r (δ) = M0
r (δx ) ⊗

M0
r (δy).

We now define collocation points set in Ω: Λr = {ς = (ςx , ςy), ςx ∈ Λx , ςy ∈ Λy},
where Λx = {ς i,k

x }Nx ,r−1
i,k=1 , ς i,k

x = xi−1 + λkhxi , {λk}r−1
k=1 are the nodes of the (r − 1)-point

Legendre quadrature rule. Λy defined similarly.
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Set {ωi }r−1
i=1 be weights of the Legendre quadrature rule and

r−1∑

i=1
ωi = 1, for ∀φ, ϕ on

M0
r (δ), we define the following discrete inner product and norm,

〈φ, ϕ〉 =
Nx∑

i=1

Ny∑

j=1

hxi h
y
j

r−1∑

k=1

r−1∑

l=1

ωkωl(φϕ)(ς i,k
x , ς

j,l
y ), ‖φ‖2Mr

= 〈φ, φ〉. (2.5)

Let ‖·‖ be the usual L2 norm, the norms ‖·‖Mr and ‖·‖ is equivalent onM0
r (δ), see [30].

By introducing an auxiliary variable v = Δu, we split (1.1) into the following equivalent
coupled system:

∂α
t u + Δv = Δu + f (u) + g(x, t), (x, t) ∈ Ω × (0, T ],

and v(x, t) − Δu(x, t) = 0, (x, t) ∈ Ω × (0, T ]. (2.6)

To derive discrete-time L1-OSC schemes, for any K ∈ Z+, grading constant ř ≥ 1 and
1 ≤ n ≤ K , let Tτ = {tn |tn = T (n/K )ř }, τn = tn − tn−1, and τn ≤ C0T K−ř (n − 1)ř−1,
see [27, Eq. (5.1)]. Denote

φn = φ(·, tn), a(n)
n− j = τ−1

j

Γ (1 − α)

∫ t j

t j−1

ds

(tn − s)α
, j = 1, . . . , n,

then, ∂α
t φ on graded mesh can be approximated by L1 scheme

Dα
Kφn =

n∑

i=1

a(n)
n−i (�tφ

i ) = a(n)
0 φn −

n−1∑

i=0

(a(n)
n−i−1 − a(n)

n−i )φ
i , (2.7)

where a(n)
n = 0,�tφ

i = (φi − φi−1).
By the Lemma 5.1 of [27], we know

|Dα
Kφn − ∂α

t φ(tn)| ≤ C0n
−min{řα,2−α}. (2.8)

We now introduce a sequence of discrete convolution kernels as follow

b(n)
0 = τα

n Γ (2 − α), 1 ≤ n ≤ K ,

b(n)
n− j = τα

j Γ (2 − α)

n∑

i= j+1

(a(i)
i− j−1 − a(i)

i− j )b
(n)
n−i , 1 ≤ j ≤ n − 1,

By Lemma 2.1 of [2], we can obtain

0 < b(n)
n− j ≤ τα

j Γ (2 − α),

n∑

j=k

b(n)
n− j a

( j)
j−k = 1, 1 ≤ n ≤ K ,

and
n∑

j=k

b(n)
n− jω1+mα−α(t j ) ≤ ω1+mα(tn), m ≥ 1, 1 ≤ n ≤ K . (2.9)

Thus, using (2.7) and Newton linearization formula, we can construct following fully
discrete L1-OSC scheme: seek {unh, vnh } ∈ M0

r (δ) ×M0
r (δ), such that, for n = 1, 2, . . . , K

Dα
K u

n
h + Δvnh = Δunh + f ′(un−1

h )(unh − un−1
h ) + f (un−1

h ) + gnh on Λr ,

and vnh = Δunh on Λr , (2.10)
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where gnh is a fitted approximation to g(·, tn). Also, for ∀χ,ψ ∈ M0
r (δ), we have

〈
Dα

K u
n
h, χ

〉 = 〈Δunh − Δvnh , χ〉 + 〈 f ′(un−1
h )(unh − un−1

h ) + f (un−1
h ) + gnh , χ〉,

and 〈vnh , ψ〉 = 〈Δunh, ψ〉, (2.11)

which will be applied to subsequent convergence analysis. (2.10) with the discrete initial
and boundary conditions is a linear elliptic problem for every time level, the existence and
uniqueness of the solution {u j

h}K−1
j=1 can be guaranteed by the Lax–Milgram lemma if h is

sufficiently small or K sufficiently large.

3 Theoretical Analysis

Lemma 1 [2] If the nonnegative sequences { ζ n
1 , ζ n

2 , |1 ≤ n ≤ K } are bounded, set κ̃ be a

positive constant independent of n and the nonnegative constants κ j satisfying 0 <
n−1∑

j=0
κ j <

κ̃ , 1 ≤ n ≤ K. If the nonnegative sequence { υn}Kn=0 satisfies

n∑

i=1

a(n)
n−i�t (υ

i )2 ≤
n∑

j=1

κn− j (υ
j )2 + υnζ n

1 + (ζ n
2 )2, 1 ≤ n ≤ K , (3.12)

then when the maximum temporal step size satisfies τK ≤ (2Γ (2−α)κ̃)−1/α , for 1 ≤ n ≤ K,
it holds

υn ≤ 2Eα(2κ̃tαn )

⎛

⎝υ0 + max
1≤k≤n

k∑

j=1

b(k)
k− jζ

j
1 + √

Γ (1 − α) max
1≤k≤n

{tα/2
k ζ k

2 }
⎞

⎠ .

To derive convergence, first, define {Û , V̂ }: [0, T ] → M0
r (δ) × M0

r (δ) as

〈Δ(u − Û ), χ〉 = 0, 〈Δ (
v − V̂

)
, ψ〉 = 0, ψ, χ ∈ M0

r (δ), (3.13)

where u and v are the solution of (2.6).
Let ρ = v − V̂ and η = u − Û , then from [31], we have the following estimates on ρ and

η and its time derivatives.

Lemma 2 [31] If ∂ i u
∂t i

, ∂ j v
∂t j

∈ L p(Hr+3), for t ∈ [0, T ], i, j = 0, 1, 2, p = 2,∞, then

∥
∥
∥
∥

∂+iη

∂x1∂ y2∂t i

∥
∥
∥
∥Mr

≤ Cuh
r+1−

∥
∥
∥
∥
∂ i u

∂t i

∥
∥
∥
∥
Hr+3

,

and

∥
∥
∥
∥

∂+ jρ

∂x1∂ y2∂t j

∥
∥
∥
∥Mr

≤ Cvh
r+1−

∥
∥
∥
∥
∂ jv

∂t j

∥
∥
∥
∥
Hr+3

, (3.14)

where the constants Cu andCv are independent of h and the time step, and 0 ≤  = 1+2 ≤
4.

Set

u(tn) − unh = (u(tn) − Û n) − (unh − Û n), 1 ≤ n ≤ K ,

ηn = u(tn) − Û n, ξn = (unh − Û n), 1 ≤ n ≤ K , (3.15)
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and

v(tn) − vnh = (v(tn) − V̂ n) − (vnh − V̂ n), 1 ≤ n ≤ K ,

ρn = (v(tn) − V̂ n), θn = (vnh − V̂ n), 1 ≤ n ≤ K . (3.16)

Now we state our main results.

Theorem 1 Suppose u(·, tn) are the solutions of (2.6) with the regularity property (1.4), the
nonlinear function f ∈ C2(R), and u(·, t) ∈ L∞(Rd) for t ∈ (0, T ]. Let unh be the discrete
solutions of (2.11). If the maximum temporal step size satisfies τK ≤ (4Γ (2 − α)κ̂+)−1/α ,
where κ̂+ is defined in (3.27). Then

∥
∥u(tn) − unh

∥
∥ ≤ c0(K

−min{řα,2−α} + hr+1), 1 ≤ n ≤ K , (3.17)

provided u0h is chosen so that
∥
∥u0 − Û 0

∥
∥ ≤ c0hr+1.

Proof Since the estimates of ηn and ρn are known by Lemma 2, thenwe need only to estimate
ξn and θn . First, for 1 ≤ n ≤ K , taking t = tn in (2.6), and using (2.11), (3.13) and (3.15),
we obtain

〈
Dα

K ξn, χ
〉 = 〈

Δξn, χ
〉 − 〈Δθn, χ〉 + 〈

Dα
K ηn, χ

〉 + 〈
φn + Rn, χ

〉
,∀χ ∈ M0

r (δ),

and 〈θn, ψ〉 = 〈Δξn, ψ〉 + 〈ρn, ψ〉, ∀ψ ∈ M0
r (δ),

where

Rn = Dα
K u

n − ∂α
t u(x, tn) + f (un) − ( f ′(un−1)(un − un−1) + f (un−1)),

φn = f (un−1) + (un − un−1) f ′(un−1) − (unh − un−1
h ) f ′(un−1

h ) − f (un−1
h ).

Taking χ = ξn , ψ = θn and adding, we attain
〈
Dα

K ξn, ξn
〉 + 〈θn, θn〉 − 〈

Δξn, ξn
〉

= −〈Δθn, ξn〉 + 〈Δξn, θn〉 + 〈
Dα

K ηn + φn + Rn, ξn
〉 + 〈ρn, θn〉, 1 ≤ n ≤ K .

(3.18)

From [32, Eq. (3.4)] or [33, Eq. (2.3) in Lemma 2.1], for ∀�,σ ∈ M0
r (δ), we have

− 〈Δ�, σ 〉 + 〈Δσ,� 〉 = 0, (3.19)

on using (3.19) with � = θn , σ = ξn , we have

−〈Δθn, ξn〉 + 〈Δξn, θn〉 = 0, 1 ≤ n ≤ K ,

then, (3.18) can be rewritten as
〈
Dα

K ξn, ξn
〉 + 〈θn, θn〉 − 〈

Δξn, ξn
〉

= 〈
Dα

K ηn + φn + Rn, ξn
〉 + 〈ρn, θn〉, 1 ≤ n ≤ K . (3.20)

From [32, Eq. (3.5)] or [33, Eq. (2.4) in Lemma 2.1], for ∀ϑ ∈ M0
r (δ), there exists a

positive constant c such that

− 〈Δϑ, ϑ〉 ≥ c‖∇ϑ‖2 ≥ 0, (3.21)

on using (3.21) with ϑ = ξn , then

− 〈Δξn, ξn〉 ≥ ‖∇ξn‖2 ≥ 0, 1 ≤ n ≤ K . (3.22)
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By the proof of Lemma 4.1 in [34], we obtain

2
〈
Dα

K ξn, ξn
〉 ≥

n∑

i=1

a(n)
n−i�t (‖ξ i‖2Mr

), 1 ≤ n ≤ K . (3.23)

Thus, combining (3.20), (3.22) and (3.23), and usingCauchy–Schwarz andYoung inequal-
ities, we have

1

2

n∑

i=1

a(n)
n−i�t (‖ξ i‖2Mr

) + ‖θn‖2Mr

≤ (‖Dα
K ηn‖Mr + ‖φn‖Mr + ‖Rn‖Mr

) ‖ξn‖Mr + 1

4
‖ρn‖2Mr

+ ‖θn‖2Mr
, 1 ≤ n ≤ K .

(3.24)

By the use of the first condition in (1.4), we obtain

‖(un−1 − un−1
h ) f ′(sun−1 + (1 − s)un−1

h )‖Mr

≤ c0(‖ηn−1‖Mr + ‖ξn−1‖Mr ), 1 ≤ n ≤ K ,

‖ f ′(un−1
h )(un − unh − (un−1 − un−1

h ))‖Mr

≤ c0(‖ηn‖Mr + ‖ξn‖Mr + ‖ηn−1‖Mr + ‖ξn−1‖Mr ), 1 ≤ n ≤ K ,

and

‖(un − un−1)(un−1 − un−1
h ) f ′′(sun−1 + (1 − s)un−1

h )‖Mr

≤ 2K0c0(‖ηn−1‖Mr + ‖ξn−1‖Mr ), 1 ≤ n ≤ K ,

where K0 = max
0≤n≤K

‖un‖L∞ + 1.

Since

‖φn‖Mr = ‖ f (un−1) − f (un−1
h ) + ( f ′(un−1) − f ′(un−1

h ))(un − un−1)

+ f ′(un−1
h )(un − unh − (un−1 − un−1

h ))‖Mr

≤ ‖(un−1 − un−1
h )

∫ 1

0
f ′(sun−1 + (1 − s)un−1

h )ds‖Mr

+‖(un − un−1)(un−1 − un−1
h )

∫ 1

0
f ′′(sun−1 + (1 − s)un−1

h )ds‖Mr

+‖ f ′(un−1
h )(un − unh − (un−1 − un−1

h ))‖Mr , 1 ≤ n ≤ K .

Thus, using Lemma 2, we obtain

‖φn‖Mr ≤ c0‖ξn‖Mr + (2c0 + 2c0K0)‖ξn−1‖Mr

+(3c0 + 2c0K0)h
r+1‖u‖Hr+3 , 1 ≤ n ≤ K . (3.25)

By combining (3.24) and (3.25), we obtain

1

2

n∑

i=1

a(n)
n−i�t (‖ξ i‖2Mr

)

≤ (‖Dα
K ηn‖Mr + ‖Rn‖Mr

) ‖ξn‖Mr + (c0‖ξn‖Mr + (2c0(1 + K0))‖ξn−1‖Mr

+(3c0 + 2c0K0)h
r+1‖u‖Hr+3)‖ξn‖Mr + 1

4
‖ρn‖2Mr

123
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≤ (2c0 + c0K0)‖ξn‖2Mr
+ (c0 + c0K0)‖ξn−1‖2Mr

+(c1(3c0 + 2c0K0)h
r+1 + ‖Dα

Kηn‖Mr + ‖Rn‖Mr )‖ξn‖Mr + 1

4
‖ρn‖2Mr

, 1 ≤ n ≤ K ,

which has the form of (3.12), then using the discrete fractional Grönwall inequality of
Lemma 1, we obtain

‖ξn‖Mr

≤ 4Eα(2κ̂+tαn )

(

‖ξ0‖Mr +
√

Γ (1 − α)

4
max
1≤k≤n

{tα/2
k ‖ρk‖Mr }

+ max
1≤k≤n

k∑

j=1

b(k)
k− j (c1(3c0 + 2c0K0)h

r+1 + ‖Dα
K ηn‖Mr + ‖Rn‖Mr )

⎞

⎠ , 1 ≤ n ≤ K ,

(3.26)

where

κ̂+ = c0(3 + 2K0). (3.27)

We now proceed to estimate the terms on the RHS of (3.26). By using the definition (2.7)
and (2.9), we have

n∑

j=1

b(n)
n− j‖Dα

K η j‖Mr ≤
n∑

j=1

b(n)
n− j

j∑

k=1

a( j)
j−k‖�tη

k‖Mr

=
n∑

j=1

‖�tη
j‖Mr , 1 ≤ n ≤ K . (3.28)

Moreover, by Lemma 2 and (1.4), we have

n∑

j=1

∥
∥
∥�tη

j
∥
∥
∥Mr

=
n∑

j=1

∥
∥
∥
∥
∥

∫ t j−1

t j

∂η

∂s
(s)ds

∥
∥
∥
∥
∥Mr

≤
n∑

j=1

∫ t j−1

t j

∥
∥
∥
∥
∂η

∂s
(s)

∥
∥
∥
∥Mr

ds ≤ C0h
r+1(tn + tαn /α), 1 ≤ n ≤ K .

For the term Rn , 1 ≤ n ≤ K , by using (2.8), we have
n∑

j=1

b(n)
n− j‖Dα

K u
j − ∂α

t u(x, t j )‖

≤
n∑

j=1

b(n)
n− jω1−α(t j ) max

1≤k≤n

‖Dα
K u

k − ∂α
t u(x, tk)‖

ω1−α(tk)

≤ Γ (1 − α) max
1≤k≤n

tαk ‖Dα
K u

k − ∂α
t u(x, tk)‖

≤ c0Γ (1 − α)T αN−min{řα,2−α}, 1 ≤ n ≤ K . (3.29)

Set R̃n = f (un) − f (un−1) − f ′(un−1)(un − un−1), 1 ≤ n ≤ K , it follows from the
Taylor expansion with integral remainder

R̃ j = (u j − u j−1)2
∫ 1

0
f ′′(s(u j − u j−1) + u j−1)(1 − s)ds, j ≥ 1.
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By the regularity conditions (1.4), we have

|R̃1| ≤ c0(
∫ t1

t0
|u′(t)|dt)2 ≤ C(τ 21 + τ 2α1 /α2),

and |R̃ j | ≤ c0(
∫ t j

t j−1

|u′(t)|dt)2 ≤ C(τ 2j + t2α−2
j−1 τ 2j ), 2 ≤ j ≤ K .

By (2.12) of [14], for 1 ≤ n ≤ K , the expression
n∑

j=1
b(n)
n− j ≤ tαn

Γ (1+α)
is true, then,

n∑

j=1

b(n)
n− j‖R̃ j‖ ≤ b(n)

n−1‖R̃1‖ +
n∑

j=2

b(n)
n− j‖R̃ j‖

≤ c0τ
α
1 ‖R̃1‖ + c0t

α
n max

2≤ j≤n
‖R̃ j‖

≤ c0τ
α
1 (τ 21 + τ 2α1 /α2) + c0t

α
n max

2≤ j≤n
(τ 2j + t2α−2

j−1 τ 2j ), 1 ≤ n ≤ K ,

thus,

n∑

j=1

b(n)
n− j‖R̃ j‖ ≤ c0τ

3α
1 + c0t

α
n max

2≤ j≤n
(τ 2j + t2α−2

j−1 τ 2j )

≤ c0τ
3α
1 + c0τ

2
n

≤ c0K
−min{3řα,2}, 1 ≤ n ≤ K . (3.30)

Notice that the conditions of theorem about ξ0, then, with the help of Lemma 2, for
1 ≤ n ≤ K , we obtains

‖ξn‖Mr ≤ 4Eα(2κ̂+tαn )((c1Γ (1 − α)tα/2
n /4 + Γ (1 − α)T α(3c0 + 2c0K0))h

r+1

+(tn + tαn /α)hr+1 + c0Γ (1 − α)T αK−min{řα,2−α} + c0K
−min{3řα,2}).

Therefore, using triangle inequality, Lemma 2, and the equivalence of norms on M0
r (δ)

complete the proof. ��

Remark 1 The hypothesis u(·, t) ∈ L∞(Rd) for t ∈ (0, T ] means there exists a constant
C0 > 0 such that ‖u‖L∞ ≤ C0. This hypothesis is proper because the value of u is bounded
in the real applications. For example, for the nonlinear term f (u) = u(1 − u) in problem
(4.32), we have f ′(u) = 1 − 2u, f ′′(u) = −2, and ‖1 − 2u‖ ≤ 1 + 2‖u‖L∞ ≤ C0,
‖ f ′′(u)‖ = 2 ≤ C0. For the nonlinear term f (u) = u(1−u)(u−1) in problem (3.33),wehave
f ′(u) = −1+4u−3u2, f ′′(u) = 4−6u, and‖−1+4u−3u2‖ ≤ (1+3‖u‖L∞)(1+‖u‖L∞) ≤
C0, ‖4 − 6u‖ ≤ 4 + 6‖u‖L∞ ≤ C0. This indicates the proposed L1-OSC method is able
to ensure the unconditionally stable and convergence for problem (4.32) and problem (3.33)
according to the proof of Theorem 1.

4 Numerical Experiments

We employ the space of piecewise Hermite cubics, M0
3(δ), to present our numerical results

with graded mesh tn = T (n/K )ř .
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Table 1 Convergent results in time with h = 1/100 for Example 1 in the case α = β

α, β K L2 Rate L∞ Rate

α = β = 0.8 64 1.2993e−05 1.8371e−07

128 5.9036e−06 1.1381 8.3478e−07 1.1380

256 2.6312e−06 1.1659 3.7208e−08 1.1658

512 1.1555e−06 1.1872 1.6340e−08 1.1872

1024 5.0669e−07 1.1893 7.1656e−09 1.1892

2048 2.2134e−07 1.1948 3.1302e−09 1.1948

α = β = 0.6 64 1.9921e−06 2.8124e−06

128 8.7801e−07 1.1820 1.2405e−06 1.1809

256 3.6697e−07 1.2586 5.1867e−07 1.2580

512 1.4775e−07 1.3125 2.0887e−07 1.3122

1024 5.8164e−08 1.3450 8.2239e−08 1.3447

2048 2.2758e−08 1.3538 3.2179e−08 1.3537

Example 1 We consider the following fourth-order nonlinear subdiffusion equation with
(x, t) ∈ (0, 1) × (0, 1],

∂α
t u + Δ2u = Δu + 1

2 + cos(u)
+ g(x, t), (4.31)

subject to zero-valued boundary, and initial data and the source function g(x, t) are given
from the exact solution u(x, t) = (ω1+β(t) + ω2+β(t)) sin(πx), β ∈ (0, 1) is the regularity
parameter.

First, the temporal errors and rate of convergence are shown in Tables 1, 2 and 3 for
1/h = 100 and ř = 2 − α/α. Table 1 considers the case of β = α = 0.6, 0.8; Table 2
considers the case of α = 0.8 fixed and β changing; Table 3 considers the case of β = 0.8
fixed and α changing. The orders of convergence displayed in Tables 1, 2 and 3 indicate that
the rate of convergence is K−(2−α), whichmatch with our theoretical analysis in convergence
Theorem.

Taking K = �h 4
α−2 � and ř = 2−α/α, we show the spatial errors and rate of convergence

in Table 4. The O(h4) convergence are observed, again as predicted by convergenceTheorem.

Example 2 We consider the following fourth-order fractional Fisher-type equation with
(x, t) ∈ (0, 1) × (0, 1],

∂α
t u + Δ2u = Δu + u(1 − u) + g(x, t), (4.32)

subject to zero-valued boundary, and initial data and the source function g(x, t) are given
from the exact solution u(x, t) = sin(πx)ω1+β(t), β ∈ (0, 1) ∪ (1, 2) is the regularity
parameter.

The computational parameters are listed as follows.

– Table 5: K = �h 4
α−2 �, ř = 2 − α/α, β = α = 0.4, 0.6, 0.8.

– Table 6: 1/h = 100, ř = 2 − α/α, β = α = 0.4, 0.6, 0.8.

– Figure 1: 1/h = 32, K = �h 4
α−2 �, ř = 2 − α/α, β = α = 0.4.
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Table 2 Convergent results in time with h = 1/100 for Example 1 in the case of α fixed

α = 0.8 β K L2 Rate L∞ Rate

β = 0.6 64 7.1847e−06 1.0157e−05

128 3.3258e−06 1.1112 4.7024e−06 1.1110

256 1.4965e−06 1.1521 2.1161e−06 1.1520

512 6.6019e−07 1.1806 9.3360e−07 1.1805

1024 2.9012e−07 1.1862 4.1029e−07 1.1862

2048 1.2686e−07 1.1934 1.7940e−07 1.1935

β = 0.4 64 2.4744e−06 3.4964e−06

128 1.2008e−06 1.0431 1.6975e−06 1.0425

256 5.4324e−07 1.1443 7.6807e−07 1.1441

512 2.3416e−07 1.2141 3.3111e−07 1.2139

1024 9.8478e−08 1.2496 1.3926e−07 1.2495

2048 4.0251e−08 1.2908 5.6920e−08 1.2908

Table 3 Convergent results in time with h = 1/100 for Example 1 in the case of β fixed

β = 0.8 α K L2 Rate L∞ Rate

α = 0.6 64 4.0712e−06 5.7522e−06

128 1.6718e−06 1.2841 2.3629e−06 1.2836

256 6.7197e−07 1.3149 9.4996e−07 1.3146

512 2.6428e−07 1.3463 3.7366e−07 1.3461

1024 1.0243e−08 1.3674 1.4484e−07 1.3673

2048 3.9568e−08 1.3722 5.5953e−08 1.3722

α = 0.4 64 5.3417e−07 7.5059e−07

128 2.4928e−07 1.0995 3.5132e−07 1.0952

256 1.0173e−07 1.2930 1.4356e−07 1.2911

512 3.8632e−08 1.3969 5.4557e−08 1.3958

1024 1.4161e−08 1.4479 2.0007e−08 1.4473

2048 5.1729e−09 1.4529 7.3106e−09 1.4524

– Figure 2: For the fixed K = 8, 16, 32, 64, N = 16, 32, 64, 128, 256, ř = 2 − α/α,
β = α = 0.4.

– Figure 3: For the fixed K = 32, 64, 128, 256, N = 16, 32, 64, 128, 256, ř = 2 − α/α,
β = α = 0.6.

From Tables 5 and 6, we find that the numerical results match with our theoretical analysis
of convergence Theorem. In Fig. 1 we draw the error figure in max1≤k≤K ‖ukh − uk‖L∞ for

1/h = 32, K = �h 4
α−2 �, ř = 2 − α/α, β = α = 0.4. We can conclude that our proposed

L1-OSC method can approximate well for the solution.
Further, we confirm the unconditional convergence of our proposed method for different

α. The L2 errors are given in Figs. 2 and 3 for α = 0.4, 0.6. We find that for a fixed K , the L2

errors asymptotically tend to a constant, that is to say that, there is no time-step restrictions
for our scheme dependent on the spatial mesh size h.
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Table 4 Errors and convergence
results in spatial direction for
Example 1

α, β K L2 Rate L∞ Rate

α = 0.4 4 1.6739e−04 2.3670e−04

β = 0.4 8 9.4310e−06 4.1497 1.3337e−05 4.1496

16 5.7592e−07 4.0335 8.1443e−07 4.0335

32 3.5838e−08 4.0063 5.0681e−08 4.0063

α = 0.3 4 1.5694e−04 2.2193e−04

β = 0.6 8 8.8537e−06 4.1478 1.2520e−05 4.1478

16 5.4223e−07 4.0293 7.6678e−07 4.0293

32 3.3822e−08 4.0029 4.7829e−08 4.0029

α = 0.6 4 1.6229e−04 2.2950e−04

β = 0.6 8 9.1480e−06 4.1490 1.2937e−05 4.1489

16 5.5729e−07 4.0370 7.8810e−07 4.0370

32 3.4660e−08 4.0071 4.9014e−08 4.0071

α = 0.4 4 1.4785e−04 2.0907e−04

β = 0.8 8 8.3808e−06 4.1409 1.1851e−05 4.1409

16 5.1315e−07 4.0296 7.2567e−07 4.0296

32 3.1969e−08 4.0046 4.5209e−08 4.0046

Table 5 L2 norm convergent results in space with K = �h 4
α−2 � for Example 2

1/h = 4 1/h = 8 1/h = 16 1/h = 32 1/h = 64

α = 0.4 1.0015e−04 5.5854e−06 3.3866e−07 2.0994e−08 1.3110e−09

order 4.1644 4.0438 4.0118 4.0012

α = 0.6 9.9112e−05 5.4893e−06 3.3245e−07 2.0611e−08 1.2874e−09

order 4.1744 4.0454 4.0117 4.0009

α = 0.8 9.4815e−05 1.2753e−06 3.2025e−07 1.9872e−08 1.2417e−09

order 4.1678 4.0420 4.0104 4.0004

Example 3 In the example, we consider the following fourth-order fractional Huxley-type
equation (2.6) with x = (x1, x2) ∈ (0, 1) × (0, 1), t ∈ (0, 1].

∂α
t u + Δ2u = Δu + u(1 − u)(u − 1) + g(x, t), (3.33)

subject to zero-valued boundary, and initial data and the function g(x, t) are determined by
the exact solution u(x, t) = sin(πx1) sin(πx2)ω1+β(t), β ∈ (0, 1) ∪ (1, 2) is the regularity
parameter.

The computational parameters are listed as follows.

– Table 7: K = �h 4
α−2 �, ř = 2 − α/α for different α and β.

– Table 8: 1/h = 100, ř = 2 − α/α for different α and β.
– Figure 4: For the fixed K = 32, 64, 128, 256, N = 16, 32, 64, 128, 256, ř = 2 − α/α,

β = α = 0.6.
– Figure 5: For the fixed K = 32, 64, 128, 256, N = 16, 32, 64, 128, 256, ř = 2 − α/α,

β = α = 0.8.
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Table 6 Convergent results in
time with h = 1/100 for
Example 2

α = β K L2 Rate L∞ Rate

0.4 64 4.6475e−07 5.7092e−07

128 1.4953e−07 1.4366 2.1110e−07 1.4354

256 5.3216e−08 1.4905 7.5164e−08 1.4898

512 1.8456e−08 1.5278 2.6077e−08 1.5273

1024 6.2145e−09 1.5704 8.7826e−09 1.5701

2048 2.0506e−09 1.5996 2.8992e−09 1.5990

0.6 64 1.1713e−06 1.6527e−06

128 5.5454e−07 1.0787 7.8330e−07 1.0772

256 2.3922e−07 1.2130 3.3807e−07 1.2122

512 9.7865e−08 1.2893 1.3834e−07 1.2891

1024 3.8713e−08 1.3380 5.4732e−08 1.3378

2048 1.4814e−08 1.3859 2.0945e−08 1.3858

0.8 64 2.4747e−06 3.4902e−06

128 1.2233e−06 1.0165 1.7286e−06 1.0137

256 5.9747e−07 1.0338 8.4459e−07 1.0333

512 2.7537e−07 1.1175 3.8934e−07 1.1172

1024 1.2387e−07 1.1525 1.7515e−07 1.1524

2048 5.4761e−08 1.1776 7.7437e−08 1.1775

Fig. 1 The global error at α = 0.4 in time and space for Example 2

The numerical errors and convergence orders are given in Tables 7 and 8, we find that
the numerical results match with our theoretical analysis of convergence Theorem. Again, to
further confirm the unconditional convergence of our proposed method for different α, the
L2 errors are shown in Figs. 4 and 5 for α = 0.6, 0.8. The figures results present that for a
fixed K , the errors in L2-norm asymptotically tend to a constant, which implies that there
is no time-step restrictions for our proposed scheme dependent on the spatial mesh size h.
Those results further confirm our theoretical analysis.
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Fig. 2 The L2 error at α = 0.4 for Example 2
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Fig. 3 The L2 error at α = 0.6 for Example 2

5 Conclusion

In order to effectively solve nonlinear fourth-order reaction–subdiffusion equation whose
solutions display a typical initial weak singularity, we introduce the orthogonal spline col-
location method to discrete the spatial variable and the L1-scheme on graded meshes to
discrete the time-fractional Caputa derivative, the Newton linearized scheme to approxi-
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Table 7 Errors and convergence
results in spatial direction for
Example 3

α, β K L2 Rate L∞ Rate

α = 0.4 4 9.8035e−05 1.3867e−04

β = 0.4 8 5.4502e−06 4.1689 7.7089e−06 4.1690

16 3.3019e−07 4.0449 4.6701e−07 4.0450

32 2.0465e−08 4.0121 2.8945e−08 4.0121

α = 0.3 4 7.9017e−05 1.1182e−04

β = 1.3 8 4.4268e−06 4.1578 6.2636e−06 4.1580

16 2.6684e−07 4.0522 3.7750e−07 4.0524

32 1.6456e−08 4.0193 2.3277e−08 4.0195

α = 0.4 4 6.9021e−05 9.7654e−05

β = 1.5 8 3.9285e−06 4.1350 5.5571e−06 4.1353

16 2.3952e−07 4.0358 3.3878e−07 4.0359

32 1.4880e−08 4.0087 2.1045e−08 4.0088

α = 0.3 4 9.9835e−05 1.4123e−04

β = 0.5 8 5.5455e−06 4.1702 7.8445e−06 4.1702

16 3.3520e−07 4.0482 4.7413e−07 4.0483

32 2.0689e−08 4.0181 2.9263e−08 4.0181

Table 8 Convergent results in
time with h = 1/100 for
Example 3

α, β K L2 Rate L∞ Rate

α = 0.4 64 4.2999e−07 6.0365e−07

β = 0.4 128 1.5543e−07 1.4680 2.1870e−07 1.4648

256 5.4725e−08 1.5060 7.7112e−08 1.5039

512 1.8869e−08 1.5362 2.6614e−08 1.5348

1024 6.3337e−09 1.5749 8.9395e−09 1.5739

α = 0.3 64 7.9131e−07 1.1323e−06

β = 1.3 128 2.2979e−07 1.7839 3.2839e−07 1.7858

256 6.4867e−08 1.8248 9.2597e−08 1.8264

512 1.8380e−08 1.8193 2.6210e−08 1.8208

1024 5.3147e−09 1.7901 7.5704e−09 1.7917

α = 0.8 64 2.5202e−06 3.5502e−06

β = 0.8 128 1.2978e−06 0.9575 1.8318e−06 0.9547

256 6.1807e−07 1.0702 8.7315e−07 1.0690

512 2.8146e−07 1.1348 3.9781e−07 1.1341

1024 1.2583e−07 1.1615 1.7789e−07 1.1611

α = 0.6 64 1.6530e−06 2.3297e−06

β = 0.5 128 6.9077e−07 1.2588 9.7491e−07 1.2568

256 2.8008e−07 1.3024 3.9559e−07 1.3013

512 1.1066e−07 1.3397 1.5637e−07 1.3390

1024 4.2888e−08 1.3675 6.0620e−08 1.3671

mate the nonlinear term. Based on the discrete fractional Grönwall inequality, the discrete
fractional convolution kernel and the temporal–spatial OSC error splitting technology, the
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Fig. 4 The L2 error at α = 0.6 for Example 3
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Fig. 5 The L2 error at α = 0.8 for Example 3

optimal convergence rate of the Newton linearized L1-OSC method are gained. Moreover
the unconditional convergence results of our proposed L1-OSCmethod are proved with con-
sidering the initial singularity. Especially, there is no time step restrictions that depends on
the size of the spatial mesh. Our analytical technique can provide new insights in analyzing
other fourth-order fractional differential equations with weakly singular solutions.
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