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Abstract

We propose and analyze a new mixed finite element method for the problem of steady
double-diffusive convection in a fluid-saturated porous medium. More precisely, the model
is described by the coupling of the Brinkman—Forchheimer and double-diffusion equations,
in which the originally sought variables are the velocity and pressure of the fluid, and the
temperature and concentration of a solute. Our approach is based on the introduction of the
further unknowns given by the fluid pseudostress tensor, and the pseudoheat and pseudod-
iffusive vectors, thus yielding a fully-mixed formulation. Furthermore, since the nonlinear
term in the Brinkman—Forchheimer equation requires the velocity to live in a smaller space
than usual, we partially augment the variational formulation with suitable Galerkin type
terms, which forces both the temperature and concentration scalar fields to live in L* Asa
consequence, the aforementioned pseudoheat and pseudodiffusive vectors live in a suitable
H(div)-type Banach space. The resulting augmented scheme is written equivalently as a fixed
point equation, so that the well-known Schauder and Banach theorems, combined with the
Lax—Milgram and Banach—Necas—Babuska theorems, allow to prove the unique solvability
of the continuous problem. As for the associated Galerkin scheme we utilize Raviart-Thomas
spaces of order k > O for approximating the pseudostress tensor, as well as the pseudoheat
and pseudodiffusive vectors, whereas continuous piecewise polynomials of degree < k + 1
are employed for the velocity, and piecewise polynomials of degree < k for the temperature
and concentration fields. In turn, the existence and uniqueness of the discrete solution is
established similarly to its continuous counterpart, applying in this case the Brouwer and
Banach fixed-point theorems, respectively. Finally, we derive optimal a priori error estimates
and provide several numerical results confirming the theoretical rates of convergence and
illustrating the performance and flexibility of the method.
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1 Introduction

The phenomenon of double-diffusive convection, in which two scalar fields, such as heat and
concentration of a solute, affect the density distribution in a fluid-saturated porous medium,
has a wide range of applications, including processes arising in chemical engineering, energy
technology, geophysics, and oceanography. In particular, some applications include ground-
water system in karst aquifers, chemical processing, convective flow of carbon nanotubes,
propagation of biological fluids, and simulation of bacterial bioconvection and thermoha-
line circulation problems (see, e.g. [1,3,6,21,35] to name a few). In this regard, we remark
that much of the research in porous medium has been focused on the use of Darcy’s law.
However, this constitutive equation becomes unreliable to model the flow of fluids through
highly porous media at higher Reynolds numbers, as in the above applications. To avoid
this inconvenient, a first alternative is to employ the Brinkman model [5], which describes
Stokes flows through array of obstacles, and therefore can be applied precisely to that kind of
media. Another possible option is the Forchheimer law [22], which accounts for faster flows
by including a nonlinear inertial term. According to the above, the Brinkman—Forchheimer
equation (see, e.g. [13,31]), which combines the advantages of both models, has been used
for fast flows in highly porous media. Moreover, this fact has motivated the introduction
of the corresponding coupling with a system of advection-diffusion equations (also called
double-diffusion equations), through convective terms and the body force.

In this context, and up to the authors’ knowledge, one of the first works in analyzing the cou-
pling of the incompressible Brinkman—Forchheimer and double-diffusion equations is [28].
In there, the authors propose a velocity—pressure—temperature-concentration variational for-
mulation and discuss the corresponding analysis of existence, uniqueness, and regularity of
solution. To that end, a Galerkin method was employed to prove that the problem has at least
one solution and that, under a smallness data assumption, a uniqueness result is established.
Later on, the global solvability of a time-dependent double-diffusive convection system cou-
pled with a linearized version of the Brinkman—Forchheimer equations was introduced and
analyzed in [30]. In particular, the authors prove that the global solvability in L2-spaces holds
true for the 3-dimensional case. More recently, in [34] a finite volume method was adopted to
solve the coupling of the unsteady Brinkman—Forchheimer and double-diffusion equations.
The focus of this work was on the validity of the Brinkman—Forchheimer model when various
combinations of the thermal Rayleigh number, inclination angle, permeability ratio, thermal
conductivity and buoyancy ratio are considered. Meanwhile, a H(div)-conforming method for
double-diffusion equations but coupled with the stationary Navier—Stokes—Brinkman model
was analyzed in [6]. Here, the solvability analysis results as a combination of compactness
arguments and fixed-point theory. The corresponding numerical scheme is based on Brezzi—
Douglas—Marini (BDM) elements of order & for the velocity, discontinuous elements of order
k — 1 for the pressure, and Lagrangian finite elements of order k for temperature and the
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concentration of a solute. We observe that this formulation produces exactly divergence-free
velocity approximations.

According to the above bibliographic discussion, the goal of the present paper is to
develop and analyze a new fully-mixed formulation for the coupling of the steady Brinkman—
Forchheimer and double-diffusion equations and study its numerical approximation by a
mixed finite element method. To that end, unlike previous works, we introduce the pseu-
dostress tensor as in [11] and subsequently eliminate the pressure unknown using the
incompressibility condition. In turn, and in order to enforce conservation of momentum
in a physically compatible way, we proceed similarly to [7,9] and introduce the pseudoheat
and pseudodiffusive vectors as additional unknowns. Furthermore, the difficulty given by the
fact that the fluid velocity lives in H! instead of L2 as usual, is resolved as in [11,25] by aug-
menting the variational formulation with residuals arising from the constitutive equation and
the Dirichlet boundary condition on the velocity, which forces both the temperature and con-
centration fields to live in L*, and consequently the pseudoheat and pseudodiffusive vectors
in a suitable H(div)-type Banach space. Then, following [17,25] and [9], we combine classi-
cal fixed-point arguments with the Lax—Milgram and Banach—-Necas—Babuska theorems to
prove the well-posedness of both the continuous and discrete formulations. In particular, for
the continuous formulation, and under a smallness data assumption, we prove existence and
uniqueness of solution by means of a fixed-point strategy where the Schauder (for existence)
and Banach (for uniqueness) fixed-point theorems are employed. Using similar arguments
(but applying Brower’s fixed-point theorem instead of Schauder’s for the existence result) we
prove the well-posedness of the discrete problem for arbitrary conforming discrete spaces.
In addition, applying an ad-hoc Strang-type lemma in Banach spaces, we are able to derive
the corresponding a priori error estimates. Next, employing Raviart—-Thomas spaces of order
k > 0 for approximating the pseudostress tensor, the pseudoheat and pseudodiffusive vectors,
continuous piecewise polynomials of degree k + 1 for velocity, and piecewise polynomials of
degree k for the temperature and concentration fields, we prove that the method is convergent
with optimal rate.

The rest of this work is organized as follows. The remainder of this section describes
standard notation and functional spaces to be employed throughout the paper. In Sect. 2 we
introduce the model problem and derive its augmented fully-mixed variational formulation.
Next, in Sect. 3 we establish the well-posedness of this continuous scheme by means of a fixed-
point strategy and Schauder and Banach fixed-point theorems. The corresponding Galerkin
system is introduced and analyzed in Sect. 4, where the discrete analogue of the theory used
in the continuous case is employed to prove existence and uniqueness of solution. In Sect. 5,
an ad-hoc Strang-type lemma in Banach spaces is utilized to derive the corresponding a priori
error estimate and the consequent rates of convergence. Finally, in Sect. 6 we report some
numerical experiments illustrating the accuracy and flexibility of our augmented fully-mixed
finite element method.

Preliminary Notations

Let @ C R",n € {2,3}, be a bounded domain with polyhedral boundary T", and let n
be the outward unit normal vector on I'. Standard notation will be adopted for Lebesgue
spaces L”(€2) and Sobolev spaces W*?(Q2), with s € R and p > 1, whose correspond-
ing norms, either for the scalar, vectorial, or tensorial case, are denoted by || - |lo,p:0
and | - |y, ;2. respectively. In particular, given a non-negative integer m, W™2(Q) is also
denoted by H” (€2), and the notations of its norm and seminorm are simplified to || - [|,,,, o and

@ Springer



44 Page4of37 Journal of Scientific Computing (2020) 85:44

| - Im.q respectively. By M and M we will denote the corresponding vectorial and tensorial
counterparts of the generic scalar functional space M, and || - ||, with no subscripts, will stand
for the natural norm of either an element or an operator in any product functional space. In
turn, for any vector field v = (v;);=1,,, we let V v and div(v) be its gradient and divergence,
respectively. Furthermore, for any tensor fields T = (7;;); j=1,» and & = (&;j)i, j=1,n, We let
div(7) be the divergence operator div acting along the rows of T, and define the transpose,
the trace, the tensor inner product, and the deviatoric tensor, respectively, as

n

n
1
) ) . d.
= ()i j=i e (7)== E Ti, T:§:= E Tij §ij, and TU =T — ;tr(r)l[,
i=1 i,j=1

where I is the identity matrix in R”*”. In what follows, when no confusion arises, | - | will
denote the Euclidean norm in R” or R"*". Additionally, we recall that

H(div: Q) := {r cLX(Q): div(r) e LQ(Q)},

equipped with the usual norm |7 ||5iv;s2 =T II%’Q + ||div(T) II%’Q, is a standard Hilbert
space in the realm of mixed problems. In addition, H!'/2(I") is the space of traces of functions
of H(Q) and H~Y/2(I") denotes its dual. Also, by (-, -)r we will denote the corresponding
product of duality between H~Y2(I'") and H/2(I") (and also between H~!/2(I") and HY/2(I")).
Finally, throughout the rest of the paper we employ 0 to denote a generic null vector (or tensor),
and use C and ¢, with or without subscripts, bars, tildes or hats, to denote generic constants
independent of the discretization parameters, which may take different values at different
places.

2 The Continuous Formulation

In this section we introduce the model problem and derive the corresponding weak formula-
tion.

2.1 The Model Problem

In what follows we consider the model introduced in [28], which is given by a steady double-
diffusive convection system in a fluid saturated porous medium. More precisely, we focus
on solving the coupling of the incompressible Brinkman—Forchheimer and double-diffusion
equations, which reduces to finding a velocity field u, a pressure field p, a temperature field
¢1 and a concentration field ¢, both defining a vector ¢ := (¢1, ¢2), such that

—vAu+K 'u+Fluju+Vp="~(¢) ing,
div(u) =0 in €,

—div(Q; V1) + Rju- Vg =0 inQ,
—div(Q2 V¢) + Rou- Vg = 0 in Q,

2.1)

with parameters v := D, it/ and F := © D, R|, where D, stands for the Darcy number,
& the viscosity, u the effective viscosity, R; the thermal Rayleigh number, R; the solute
Rayleigh number, and ¥ is a real number that can be calculated experimentally. In addition,
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the external force f is defined by

1
t@) = - (1 —d10)g+ 0 (o2 —¢2.0) 8. 22

with g representing the potential type gravitational acceleration, ¢, the reference temper-
ature, ¢, » the reference concentration of a solute, both of them living in L4(), and o is
another parameter experimentally valued that can be assumed to be > 1 (see [28, Sect. 2]
for details). In turn, the permeability, thermal diffusion and concentration diffusion tensors
are denoted, respectively, by K, Q; and Q> living in L°°(£2). Moreover, K and the inverses
of Qp and Q», are uniformly positive definite tensors, which means that there exist positive
constants Ck, Cq,, and Cg,, such that

v-Kx)v > Ck |[v]> and v.Q;‘(x)v > Cq, V> VveR", VxeQ, je{l2h.
(2.3)

Equations (2.1) are complemented with Dirichlet boundary conditions for the velocity, the
temperature, and the concentration fields, that is

u=up, ¢ =¢1p, and ¢ =¢p on T, (2.4)
with given data up € H!/2(I), P1p € H'2(I") and P € HY2(I). Owing to the incom-

pressibility of the fluid and the Dirichlet boundary condition for u, the datum up must satisfy
the compatibility condition

/ up-n = 0. 2.5)
r

In addition, due to the first equation of (2.1), and in order to guarantee uniqueness of the
pressure, this unknown will be sought in the space

L2(Q) = {q cLX(Q): /Qq - 0}.
Next, in order to derive a fully-mixed formulation for (2.1)—(2.4), in which the Dirichlet
boundary conditions become natural ones, we now proceed as in [11] (see similar approaches

in [17,18]), and introduce as further unknowns the pseudostress tensor o, the pseudoheat
vector p, and the pseudodiffusive vector p,, which are defined by

o :=vVu—pl and pj =Q;V¢; —Rjpju, je{l,2}, in Q. (2.6)

In this way, applying the trace operator to ¢ and utilizing the incompressibility condition
div(u) = 0 in €2, one arrives at

p= ! tr(c) in Q. 2.7
n

Hence, replacing back (2.7) in the first equation of (2.6), we find that our model problem
(2.1)—(2.4) can be rewritten, equivalently, as follows: Find (o, u) and (p It i), j € {L,2},
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in suitable spaces to be indicated below such that

1 d .
—0"=Vu inQ,
v

—dive) + K 'u+Fluju=1f(¢) inQ,

Q'p;+R;Q'pju=Ve; inQ,
(2.8)

—div(pj) =0 in €,

u=up and Q:QD onl,

/ tr(o) =0,
Q

where the Dirichlet datum for ¢ is certainly given by QD = (¢1,p, ¢2.p0). At this point we
stress that, as suggested by (2.7), p is eliminated from the present formulation and computed
afterwards in terms of o by using that identity. This fact, justifies the last equation in (2.8),
which aims to ensure that the resulting p does belong to L(ZJ(Q). Notice also that further

variables of interest, such as the velocity gradient Vu, the heat vector p; := Q; V¢, and the
diffusive vector p, := Q, Vs, can be computed, respectively, as follows
1 ~ ~
Vu = ;0‘1, P = p;+Ri¢1u, and p, = pp + Ry u. 2.9

2.2 The Fully-Mixed Variational Formulation

In this section we derive our fully-mixed formulation for the coupled system given by (2.8).
To that end, we multiply the first equation of (2.8) by a tensor T € H(div; €2), integrate
the resulting expression by parts, and use the identity ¢ : 7 = ¢ : 79 and the Dirichlet

boundary condition u = up on I', to get

1
7/ od: r“+/ u-div(z) = (zn,up)r V-t € H(div; Q). (2.10)
vJQ Q

In order to have more flexibility for choosing the finite element subspaces, but at the same
time avoiding the incorporation of new terms in the resulting variational equation, we now
proceed similarly as in [24] (see also [25]), and replace u in the second term of the left-hand
side of (2.10) by the expression arising from the second equation in (2.8), that is

u = K (div(e) - F lulu + () ).

In this way, we arrive at the variational formulation: Find ¢ € H(div; 2) and u (in a suitable
space to be specified below), such that

l/ ad: rd—l—/ Kdiv(a)-div(r)—F/ K |uju - div(t)
Vv Jo Q Q

= (tn,up)r —/ Kf(¢) - div(r), (2.11)
o r

for all T € H(div; ). Since K € L®(Q) and div(z) € L%(Q), the term K|u|u - div(7)
forces the velocity u, and consequently the test function v, to live in L*(£2). In order to deal
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with this fact, we first observe, applying the Cauchy—Schwarz and Holder inequalities, and
then the continuous injection is of H! () into L*(Q) (see, e.g., [32, Theorem 1.3.4]), that

‘/ K |wju - div(t)
Q

(2.12)

. .12
< Koo IWllo.4;2 lallo.4;2 Idiv(T) 0.0 < Kl liall” Wi, ulli.e [ITlldiv:e;

for all w, u € H () and T € H(div; Q). However, we notice from (2.11) that the lack of a
test function in the space where u lives (now in H!(Q)), makes the well-posedness analysis
of (2.11) non-viable. Then, aiming to circumvent this inconvenient, we propose to enrich
our formulation with the following residual terms arising from the constitutive equation (first
equation of (2.8)) and the Dirichlet boundary condition u = up on I':

1
/q/ {Vu— fad} Vv =0,
Q v

Kzfﬂ-VZKz/uD-V,
r r

for all v e H' (), where «1, iy are positive parameters to be specified later. We now recall
(see, e.g., [4,23,26]) that there holds

(2.13)

H(div; ) = Hop(div; Q) & R1,
where

Ho(div: Q) := {r € H(div: Q) : /tr(r) :0}.
Q

Hence, decomposing T € H(div; ) as T = 7o + ¢, with 79 € Hp(div; ) and ¢ € R,
noticing that 4 = ‘l'g and div(t) = div(to), and using the last equation of (2.8) and the
compatibility condition (2.5), we deduce that both o and t can be considered hereafter in
H(div; €2). Therefore, from (2.11) and (2.13), we arrive at the variational problem: Find
(0, u) € Hy(div; ) x H' () such that

A((o, ), (t,V)) + Bu((o, ), (7,V)) = Fp(7,V) + F(T, V), (2.14)

for all (t, v) € Hy(div; 2) x H! (), where given w € H!(S2), A and By are the bilinear
forms defined, respectively, as

A((o,w), (T,V)) = %/Qad:rd—i—/QKdiv(a)div(t)

1
—l—/q/ {Vu—fad}:Vvﬁ-Kg/u-v, (2.15)
Q v r

and
Bw((o,u), (1,V)) = —F/ K|wu - div(t), (2.16)
Q

whereas, given ¢ = (g1, 92) in a suitable space defined next, Fp and F, are the bounded
linear functionals defined by B

Fp(z,v) := (Tn,up)r +K2/

up v, Fy(r,v) = —/ Kf(p) - div(r). (2.17)
r - Q -
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On the other hand, for the double-diffusion equations in (2.8) we proceed as in [9] (see
also [7,15,16]). In fact, multiplying the third and fourth equations of (2.8) by suitable test
functions n; and ¥, j € {1, 2}, respectively, integrating by parts and using the Dirichlet
boundary condition ¢ = QD on I', we get

/Q;]pj'nj‘i'/(z’jdiv(”j)‘f‘Rj/Q;1¢ju'ﬂj:<77j'nv¢j,D>l—w
¢ ¢ ¢ (2.18)

| wsdiviop =o,
Q

for all (y;, ¥;) in spaces to be derived below. In this regard, we begin by noting that for

Q; e L®(Q), j € {1,2},andu € H'(Q), the first and third terms in the first equation of
(2.18) are well defined if pj,Mj€ L2(Q), and if ¢, and consequently the test function v,

are chosen to live in L*(£2), respectively. In this way, since the latter forces both div(p;) and
div(n j) to live in L*/3(Q), we now introduce the Banach space

H(divy3; Q) = {n cL3(Q): div(y) € L4/3(sz)],
equipped with the norm

9lldivy/5:2 = lMllo.e + Idiv(m)llo.4/3:-

Notice that H(div; 2) C H(div4/3; £2). Moreover, as remarked in [9, Eq. (2.5)] (see also [15,
Eq. (3.2)]), the right-hand side of (2.18) is well defined in the sense that n;-n€ H-Y2(I),
J € {1,2}, for all ; € H(diva/3; ). Thus, the weak formulation for the double-diffusion

equations in (2.8) reads: Find (pj, ¢;) € H(divg/3; Q) x L4(Q), j € {1, 2}, such that

aj(pj.n;)+bm;, ¢;)+cju;dj.n;)=Gim;)Vy; € H‘(ldiV4/3; Q),
b(p;, ¥j) =0 Vi e L7(Q),

where, given w € HY(Q),a j»b,and c;(w; -, -) are the forms defined, respectively, as

(2.19)

aj(pj,n;) 3:/;20;1101‘"7]" b(n;, ¥j) = /;ZWjdiV(ﬂj),
(2.20)
ci(wi ;) = Rj/S;Qfl Yiw-n,

for all P M€ H(div4/3; ) and ¢, € L*(Q). In turn, G is the bounded linear functional
defined by

Gj@m)) = {n; m ). Vn; € Hdivaz; ). (221)

Then, the augmented fully-mixed formulation for the coupled problem (2.8) reduces to (2.14)
and (2.19), thatis: Find (o', ) € Ho(div; Q) x H'(Q) and (p, ¢,) € H(divas; 2) xL*(Q),
Jj € {1, 2}, such that

A((o, ), (,V)) + Bu((o, 1), (7,V)) = Fp(7,V) + Fy(7,V),
aj(p;.n;) +bMm;. ¢j) +cjw dj.n;) =G, (222
b(p;,¥j) =0,
for all (t, v) € Ho(div; ) x H'() and for all (n;, ;) € H(diva/3; ) x L*(Q).
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3 Analysis of the Coupled Problem

In this section we combine the Lax—Milgram, Banach—Necas—Babuska, and Babuska—Brezzi
theories, with the classical Schauder and Banach fixed-point theorems, to prove the well-
posedness of (2.22) under suitable smallness assumptions on the data.

3.1 Preliminaries

We begin by recalling the Banach—Necas—Babuska theorem, which is the Banach version of
the generalized Lax—Milgram lemma in Hilbert spaces (see for instance [23, Theorem 1.1]).
More precisely, we have the following result [20, Theorem 2.6].

Theorem 3.1 Let H be a reflexive Banach space, and let a : H x H — R be a bounded
bilinear form. In addition, assume that

(i) there exists a > 0 such that

a(u, v)
su > «alully Yu € H, 3.1
0£ved Ilvlln
(i) there holds
sup a(u,v) > 0 VveH, v#0. (3.2)

ueH

Then, for each F € H' there exists a unique u € H such that a(u,v) = F(v) Yv € H, and
the following a priori estimate holds:

1
lulh = — I1Fllw-
o

Let us now discuss the stability properties of the forms involved in (2.22). In fact, using
(2.12) and performing simple computations, we deduce from (2.15), (2.16), and (2.20) that
the forms A, By, a;, b and c;(w; -, -), j € {1, 2}, are bounded as indicated in what follows

Ao, w), (@, V)| < Calle, W@, (3.3)
|Bu((@.w). (. )| < F Kl IWlosc lullo.ss Ildive)lo.q
< F Kl [Wllo.4:52 lis ] llull 1. ldiv(e) lo.c (3.4)
< FKlloo lli4ll® Wi, lull1.e 1div(t) o .
laj (0. 1) < 1Q7 oo 19 laiveysic2 1 llaivi i (3.5)
b v)] < 10 ldivee 1V l0.a (3.6)

and

) —1

lcj(wi¢j. ;)| < R; 1Q; oo IWllo.4:2 lPjllo,4:2 1 lldivy 3:2 37
- -1 . . (.7
= Rj Q) oo liall Wl 18 ll0.4:22 10 ldiva5:2 -

where C4 is a positive constant depending on v, | K|, ¥1, and «3. In addition, employing
the Cauchy—Schwarz and Young inequalities, and recalling the definition of f (cf. (2.2)), it
is readily seen that Fp, F, and G; (cf. (2.21)) are bounded, which means that there exist
constants Cp, Cr, Cg > 0, such that

|Fo(@.v)| = Co {lulo.r + upliyzr | 1@ VI, (3:8)

|Fo(@. W] = Crliglose (Iglosa + 18 _loae) I I, (3.9)
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and
|G| = Cg, lIgjpllij2r 10 ldivs:: (3.10)

where Cp := max {1, k2 [ll}, Cr := [Kllo, §_ := ($1,r. $2.x) € L*(), and Cg, is a

positive constant depending on ||i4|| (cf. [7, Lemma 3.5]). Next, we let V be the kernel of the
operator induced by the bilinear form b, that is

V= [r]GH(diV4/3;Q): div(p) = 0 in sz]

and observe, thanks to the definition of a; (cf. (2.20)) and the fact that the inverses of Q; are
uniformly positive definite tensors (cf. (2.3)), that a; is elliptic on V, that is

ajnm) = ajlnlg, .o Y0 eV, (3.11)

with a; = CQj. In turn, according to [9, Lemma 2.1] with p = 4/3, we know that there
exists a constant B > 0 such that b verify the following inf-sup condition

b(n, ¥)

> Bl¥lloae Y e LYRQ). (3.12)
0#neH(divy/3;2) ”n”diV4/3;Q

We end this section by recalling, for later use, that there exist positive constants c1 (£2) and
¢2(£2) such that (see [23, Lemma 2.3] and [29, Theorem 5.11.2], respectively, for details)
IT%15.0 + ldiv(D) 5o = c1(@ lITlFq VT € Hoiv; Q) (3.13)
and

IVVI§ o + VI = c2(@) IvIT g Yv e HY(Q). (3.14)

3.2 A Fixed-Point Approach

We now rewrite (2.22) as an equivalent fixed-point equation. To this end, we first let S :
H'(Q) x L*(2) — H!(Q) be the operator defined as

S(w.9) :=u V(w,¢) e H(Q) x LY(Q), (3.15)

where (0, u) € Hy(div; Q) x H (Q) is the unique solution (to be confirmed below) of the
problem:

A((o, ), (,V)) + Bw((o,w), (7,V)) = Fp(T,V) + Fy(z, V), (3.16)

forall (z, v) € Ho(div; ) x H' (). Inturn, foreach j € {1, 2} weletS; : H'(Q) — L*(Q)
be the operator given by

Sjw) = ¢; YweH(Q), (3.17)

where (p i ®j) € H(div4/3; 2) x L*() is the unique solution (to be confirmed below) of
the problem:

aj(pj.n;))+bm;, ¢;)+cjw;dj,n;) =Gj(n;) Vy; € H(divys; Q),

(3.18)
b(p;, ¥j) =0 Vi e LYQ),
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so that we can introduceg(w) = (§1 (w), §2(w)) e L*(Q) forallw € Hl(Q).Consequently,
we can define the operator T : HY(Q) - HY(Q) as

T(w) = S(w,§(w)) vwe H(Q), (3.19)
and realize that solving (2.22) is equivalent to finding u € H! () such that

T() = u. (3.20)

3.3 Well-Definedness of T

We begin by establishing a result that provides sufficient conditions under which the operator
S (cf. (3.15)) is well-defined, or equivalently, the problem (3.16) is well-posed.

Lemma 3.2 Assume that for § € (0, 2v) we choose k1 € (0,268) and ko > 0. Then, there
exists r1 > 0 such that for eachr € (0, r1), and for each (w, @) € H'(Q) x LY(Q) satisfying
Iwllh.@ < r, the problem (3.16) has a unique solution (o,u) € Hy(div; 2) x HL(Q).
Moreover, there exists a constant cs > 0, independent of (W, @), such that there holds

IS, @)ll1a = g < @ W]
< cs {lupllo.r+luplli2.r+lgloss (lelo.se+1g, loss) ]
(3.21)

Proof We proceed asin[11, Lemma 3.2]. In fact, given (w, @) € H! () x L*(Q), we observe
from (2.15) and (2.16) that A + By, is clearly a bilinear form. Then, thanks to (3.3) and (3.4),
we find that there exists a positive constant, which we denote by ||A + By||, only depending
on v, [|Klleo, llisll, x1, k2, F, and [|w]|1,q, such that

[(A+ Bw)((0,0), (z, V)| < IA+ Byll (e, I lI(z, V)],

for all (o, w), (z,v) € Hy(div: Q) x H! (). In turn, from the definition of A (cf. (2.15)),
we have

AT, V), (1,V)) = %||rd||%’9+/;2Kdiv(r)'div(r)—%/gtd:Vv

2 2
+ie 1VVIE g + k2 VIR s

and hence, using (2.3), and Cauchy—Schwarz and Young’s inequalities, we obtain that for
any 6 > 0 and for all (7, v) € Hp(div; ) x H!(Q), there holds

1 K1 dn2 . 2
AT . @) = (1= 50 170 o + Ck iV [
+K1 ) IVvilg.q + <2 IVIG -
v
In this way, applying the inequalities (3.13) and (3.14), we can define the constants

1 C c
@(Q) = min{; (1 - %) , 7"} a(Q) = min{cl(Q)ao(Q), 7‘(}

(3.22)
Olz(Q) = CQ(Q) min {K] (1 - i) 5 Kz} 5
2v
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which are positive thanks to the hypotheses on §, k1, and «3. In this way, it follows that
A(T.v). (T.V) = aa (. V]? Y(zr,v) € Hodiv; Q) x H'(Q),  (3.23)

with a4 := min {a] (), az(Q)}, which shows that A is elliptic on Ho(div; ) x H' ().
Therefore, combining now (3.4) and (3.23), and using the injection i4, we deduce that for all
(z,v) € Hy(div; ) x H!(Q) there holds

(A+ Bo)((#.9), (2. V) = {oa = F Koo llal? W2 ] 1,01

Consequently, requiring [|w|1 o < r1, with
@A

=4 3.24
2F [Klloo lliall? 629

r

we arrive at
(A+ Bw)((T,V), (T,V)) = O%A Iz, vI* ¥ (r,v) € Hydiv; 2) x H'(). (3.25)

Summing up, and owing to the hypotheses on k1 and k2, we have proved that for any (w, @) €

H!(Q) x L*(Q) such that ||w]||; o < ri, the bilinear form A + By, and the functional Fp + F,,
satisfy the hypotheses of the Lax-Milgram theorem (see, e.g., [23, Theorem 1.1]), which
guarantees the well-posedness of (3.16). Finally, using (3.25) with (7, v) = (o, u), (3.16),
and the bounds of Fp and F, (cf. (3.8) and (3.9)), we readily obtain that

oA
> l@, wll < Co(lupllo,r + lupliz,r) + Cr liglo4a (I¢llose + 1$_llo.4e),

which implies (3.21) with cg := 2 max {CD, Cr }/aA, thus completing the proof. ]

__ Now, we establish the well-posedness of problem (3.18), or equivalently, that the operator
S (cf. (3.17)) is well-defined. To that end, let us consider the space H := H(div4/3; £2) x L)
and the bilinear form A; : H x H — R, j € {1, 2}, defined by

Aj (). 8. (). W) = aj(po ;) + b ¢;) +bp;. ¥)), (3.26)

for all 0, ¢)), (n;, ¥;) € H. Then, owing to (3.5), (3.6), (3.11), (3.12), and a direct applica-
tion of [20, Proposition 2.36], we deduce, equivalently, that A ; satisfies the following inf-sup
condition:

Aj((x @), M. ¥j)
0#£(n;.¥)eH I, vl

>yl epll Yx. 90 €eH, (327

where y; > 0 is the constant defined by

- Lk
T B 284 1Q5 o) (o) + Q5 )

In this way, bearing in mind (3.27), we are able to establish the following result.

(3.28)

Lemma 3.3 There exists ry > 0 such that for eachr € (0, ry), for eachw € H'(Q) satisfying
Wl < r, and for each j € {1, 2}, the problem (3.18) has a unique solution (p;, ¢;) €
H(divy/3; Q) x L), J € {1, 2}. Moreover, there exists a constant cg > 0, independent of
w, such that there holds

2
ISWlloae = @1, ¢Dlloae < Y 0, eIl < cgldyliar.  (3.29)
Jj=1
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Proof We proceed as in [7, Theorem 3.6]. In fact, given w € H!(Q) and Jj € {1, 2}, we begin
by defining the bilinear form

Ajw((pj, @), . i) == Aj((pj, @) 0. ¥j)) +cj(W; dj,m;), (3.30)

where A; and c;(w; -, -) are the forms defined in (3.26) and (2.20), respectively. Then, the
problem (3.18) can be rewritten, equivalently, as: Find (p i #j) € H:= H(div4/3; Q) x
L*(R2) such that

Ajwpj, @), (m;, ¥j) = Gim;) Y, ¥;) € H (3.31)

Therefore, in order to conclude the well-definedness of S, in the sequel we use the Banach—
Necas—Babuska theorem (cf. Theoremm 3.1) to prove that problem (3.31) is well-posed.
Indeed, given (x], ®;j), (nj, wj) € H with (17], wj) # 0, we first deduce from (3.30) and
(3.7) that

wp (X500 ¥ A 0. G I e )
0+£(n ;. ¥rj)eH (. WJ)H - G, vl G, vl
R CIRNRCIR
Gy ¥l

-1 .
=R 1Q; lloo Niall Wl [1(x - @)1l

which, together with (3.27) and the fact that (3 It J‘,-) € H is arbitrary, implies

sup
0£(n;.¥j)eH (s ¥l

= (1) = Ry 1Q7 oo sl 1WI.2) 10 901 ¥ (X ¢)) € H.

Consequently, requiring now ||w||1, o < r2, with

. 1.2 J Yi
rp == minry,ry5; and ry = —————, (3.32)
2] 2R; 11Q; oo Ilial)
we find that
Ajw((Xjs ) (M, ¥j)) Vi
sup - > eIl Y(x .)€ H.  (3.33)
0£(n;.1/j)<H ;. vl 2 A s

On the other hand, for a given (x 1% i) € H, we observe that

sup  Ajw((m;, ¥j), (X, 9) = sup

;. ¥j)eH 0.y e Ny ¥l
_ Aj((mj, ), (X 9i) + (W ¥, X )
0#£(n;. 7)€ (s, vl

which, employing again (3.7), yields

sup  Ajw((m;, ¥j), (X, 9))
(nj.yj)eH

> sup
0+£(n;. )l g, ¥l

—Rj ”Q;lnoo liall Wl e 1 @)1
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Therefore, using the symmetry of .4; and the inf-sup condition (3.27), and considering
w1, < r2 (cf. (3.32)), we obtain

sup A w((mj, ¥j), (X, 9)))
(;.¥j)eH

”
> 3’ (X o)l >0 Y(x;,9)) €H, (x;,¢;) #0. (3.34)

In this way, it is clear from (3.33) and (3.34) that A;  satisfies the hypotheses of the Banach—
Necas—Babuska theorem (cf. Theorem 3.1), which guarantees the well-posedness of (3.18).
Finally, using (3.33) with Xj.ei) =P, ¢)), (3.31), and the continuity bound of G (cf.
(3.10)), we get

v,
7’ lpj. 61 < Cq, I$jpliy2r. (3.35)

which gives (3.29) with cg := max {C§1 , cgz} and g, = 2Cgq,;/vj. J € {1, 2}, thus ending
proof. O

Now, concerning the practical choice of the stabilization parameters «1 and «7, and partic-
ularly for sake of the computational implementation of the Galerkin method to be introduced
and analyzed later on, we first select the midpoints of the corresponding feasible intervals
for § and «1, namely § = v and «; = &, respectively. Then, in order to define 7, we aim to
maximize the constant oz (€2) in (3.22), which is attained by taking ko> = « (1 — %) In this
way, we propose to consider:

k1 =v and Ky = (3.36)

v
7"
3.4 Solvability Analysis of the Fixed-Point Equation

Having proved the well-posedness of the uncoupled problems (3.16) and (3.18), which
ensures that the operators S, S and T are well defined, we now aim to establish the exis-
tence of a unique fixed point of the operator T. For this purpose, in what follows we verify

the hypothesis of the Schauder and Banach fixed-point theorems. We begin the analysis with
the following straightforward consequence of Lemmas 3.2 and 3.3.

Lemma3.4 Givenr € (0, rg), with rg := min{r, r2}, r1 as in (3.24) and r> as in (3.32), we
let W, be the closed and convex subset of H' (Q2) defined by

W, = {weHl(Q): Il < r]. (3.37)

In addition, we take the stabilization parameters k1 and k> as in Lemma 3.2 (particularly,
as suggested in (3.36)), and assume that the data satisfy

cT {”uD”O,F + lluplli/2,r + llgllo.4:0 (IIQDlll/z,r + ||9r||0,4;sz)} <r. (3.38)
Then T(W,) C W,.

Proof Given w € W,, we let ¢ = §(w) and observe that certainly (w, @) satisfies the
hypotheses of Lemma 3.2. Hence, employing the corresponding estimate (3.21) in combina-
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tion with (3.29), we get

ITW e = ISW.SW)lLe = ISW. $)l1.0

IA

¢s {llupllo,r + lluplli/2,r + llgllo,4e (c5 1@y h/2,r + |Iﬂrllo,4;9)}

IA

cr {llupllo,r + luplliz,r + lglho4e (19, lh/2,r + ||9r||0,4;sz)} ;
(3.39)

with ¢ 1= cg max { 1, c§} In this way, (3.39) and assumption (3.38) imply that T(w) € W,
which proves that T(W,) € W,.. O

Next, we aim to prove the continuity and compactness properties of T, which basically
will be direct consequences of the following two auxiliary lemmas for the operators S and S,
respectively.

Lemma3.5 Letr € (0, ry) with ry given as in (3.24). Then there exists a positive constant
Cs independent of r, such that

IS(w, @) —S(W, @)ll1.2

=

il ISw, @) ll1. IW—Wlo.4.2 + Cs lIglosa ll¢ —@lloae  (3.40)

for all (w, ¢). (W, @) € H'(Q) x L) such that ||w1.q. [¥]1.e < r.

Proof Given (w, @), (W, $) € H'(Q) x L*(Q), such that wli.o, IWli.a < r, we let
(o,u), (@,0) € Ho(div; Q) x H/(Q) be the corresponding solutions of (3.16), so that
u = S(w, ¢) and U := S(W, @). Then, using the bilinearity of A and By, for any w, it
follows easily from (3.16) that

(A+ By)((0,u) — (@, 1), (z,V)) = (By — By)((0,0), (T, V) + Fp_5(z. V),

forall (7, v) € Ho(div; ) x H' (€2). Hence, taking (7, v) = (¢, u)— (@, 0) in the foregoing
identity, and then employing the ellipticity of A + By (cf. (3.25)), the fact that | |[W| — |[w| | <
|W — w]|, the boundedness property of By, (cf. (3.4)), and the definition and continuity of F,,
(cf. (2.17), (3.9)) in combination with Cauchy—Schwarz and Holder’s inequalities, we readily
get

S w -G DI < (B — Bo) (0.0, (0.w) — @) + Fypp((0,0) — @)
< % 1Kl s Nl 21w = Flos.0 + Cr liglo.salle — Blose ) e, w - G DI,

which, together with the definition of r (cf. (3.24)) and the fact that u = S(w, @), implies
(3.40) with constant Cs := 2 Cr /a4, thus ending the proof. O

Lemma3.6 Letr € (0, rp) with ry given as in (3.32). Then there holds

ISw) = S@)llo.4:0 <

< = ISWllo.4:2 W = Flo.4:0. (3.41)
llia ]l 2

for all w, W € H'(Q) such that |w|1.q, |W|.o <.
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Proof We prooced as in [7, Theorem 3.7]. In fact, given w,w € H'(Q) such that
Iwlli.e, Wl <r, foreach j € {I,2} welet (p;, ¢;), (b;,¢;) € H:= = H(diva/3; €2) x
L4(Q) be the solutlon of f(3.13) (equlvalently of (3.31)), so that (¢, ¢2) = (S1 (w), Sz(W)) =
S(w) and (¢1 ¢2) = (Sl(w) Sz(w)) = S(w) Then, using the linearity of the form A; w
(cf. (3.30)), we deduce after simple computations that

Ajw((pj =B 07 — 6. ;. ¥) = —c;(w—F:¢;.m;) Y. ¥;) €H.

Then, employing (3.33) with (x ;, ¢;) = (pj - 'ﬁj, ¢j — aj) € H and the continuity bound
of cj(w; -, ) (cf. (3.7)), we obtain

—cj(W—W;0;,1;)
sup

0#(n;,¥j)eH (s ¥

IA

2o 80 = 359l

—1 ~
= RjlIQ; oo l19jllo.4: W = Wlo.4:2»

which, together with the definition of r; (cf. (3.32)) and the fact that ¢; = S j (W), implies
(3.41) and conclude the proof. ]

As a consequence of Lemmas 3.5 and 3.6 we establish the following result providing an
estimate needed to derive next the required continuity and compactness properties of the
operator T.

Lemma3.7 Letr € (0, rg), with ro := min{ry, r2}, r1 as in (3.24) and r; as in (3.32). Then,
Sforallw,w € W, (cf. (3.37)), there holds
ITw) = T@lhg = 7o {lunlor + lupl

N (3.42)
+lglosa (2182 + 19 lose) |IW = Flose.

Proof Let w,W € W,, such that u = T(w) and U = T(W). Then, from the definition of T
(cf. (3.19)), and Lemmas 3.5 and 3.6 (cf. (3.40) and (3.41)), we deduce that

ITW) = TW)[1.0 = IIS(W, S(W)) — S(W, SF)l1.0

1 S
< = Tl ITW 1.2 W = Fllo.ae + Cs llglo.e ISW) — S04

1 Cs ~
< < - ITWIi,+ ——— lglo.4o IIS(W)||04 Q) lw—Wlo4q-
llig |l r1 ligll 72

Hence, using (3.29) and the fact that Cg cg is bounded by ct, and then bounding || T(w)|l1,q
by (3.39) instead of by r, we conclude from the foregoing inequality that

cT 1
ITw) —TW e < —— T { (”uD”O r+llupllizr + liglo4e 19 llo4; Q)

| 1 (3.43)
+ <* + *) llgllo,4; % IIQDlll/z,r} lw—Wllo4.q-

r rn
Finally, (3.42) follows from (3.43) by noting that both 1/r; and 1/r; are bounded by 1/r¢. 0

Owing to the above analysis, we establish now the announced properties of the operator
T.
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Lemma3.8 Let r € (0, rg), with ro := min{ry, r2}, r1 as in (3.24) and ry as in (3.32).
Assume that the stabilization parameters k1 and k; are taken as in Lemma 3.2, and that the
data satisfy (3.38). Then T : W, — W, is continuous and T(W,) is compact.

Proof The required result follows straightforwardly from estimate (3.42), the compactness
of the injection iy : H!(Q) — L*Q) (see, e.g., [32, Theorem 1.3.5]), and the well-known
fact that every bounded sequence in a Hilbert space has a weakly convergent subsequence.
We omit further details and refer to [8, Lemma 3.8]. O

Finally, the main result of this section is stated as follows.

Theorem 3.9 Assume the same hypothesis of Lemma 3.8. Then the operator T has a fixed
pointu € W, (cf. (3.37)). Equivalently, the coupled problem (2.22) has a solution (o, u) €
Ho(div; ) x H'(Q) and (0j, ¢j) € H(div4/3; Q) x L4(Q), j € {1,2}, withu € W,.
Moreover, there holds

(o, W] < cr [”UD”O,I‘ + lluplli/2,r + llgllo.4:0 (IIQD||1/2,F + ||Qr||0,4;9)] (3.44)

and

2
D e o)l < csldylliar. (3.45)
j=1
In addition, if the data satisfy

cr
o [llllDllo,r + lluplli/z,r + lglo.4q (2 léplli2r + IIerloA;Q)} <1, (3.406)

then the aforementioned fixed point (equivalently, the solution of (2.22)) is unique.

Proof The equivalence between (2.22) and the fixed point equation (3.20), together with
Lemmas 3.4 and 3.8, confirm the existence of solution of (2.22) as a direct application of
the Schauder fixed-point theorem [14, Theorem 9.12-1(b)]. In addition, it is clear that the
estimate (3.45) follows from (3.29), whereas combining (3.21) with (3.29) we obtain (3.44)
(cf. (3.39)). On the other hand, using the estimate (3.42) and the continuous injection ig of
H' (Q) into L*(2), we easily obtain

ITw) = TG0
cT ~
< - {lunllor + lup iy + gl s (2 18,120 + 19, lo.s0) [IW = .0

which, thanks to (3.46) and the Banach fixed-point theorem, yields the uniqueness. O

We end this section by remarking that we are able to avoid the augmentation procedure
developed for the Brinkman—Forchheimer equations by proceeding as in [15], that is, intro-
ducing the gradient of the velocity as a new unknown of the system (besides the pseudostress
tensor and the velocity of the fluid), which yields a new three-field Banach mixed formulation.
We are addressing this issue in an ongoing work [10].

4 The Galerkin Scheme

In this section, we introduce and analyze the corresponding Galerkin scheme for the fully-
mixed formulation (2.22). The solvability of this scheme is addressed following analogous
tools to those employed throughout Sect. 3.
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4.1 Preliminaries
We begin by considering arbitrary finite dimensional subspaces
HY C Ho(div: Q). H} CH'(Q), Hf CH(divys: Q). H) CLYQ). @1

whose specific choices are postponed to Sect. 4.3 below. Hereafter, 4 := max {hT : T € Ty}
stands for the size of a regular triangulation 7;, of Q made up of triangles T (when n = 2) or
tetrahedra T (when n = 3) of diameter & 7. In what follows, we set@h = (d1,n, P2.1), @, =

(1.1, 02,1) € Hf = Hf X Hi Then the Galerkin scheme associated with (2.22) reads: Find
(04, up) € HY x Hj and (Pjn>Pjn) € HZ X Hf,j € {1, 2}, such that

A((@p, up), (Th, Vi) + Bu, (04, W), (Th, Vi) = Fp(Th, Vi) + Fg (Th, Vi),
ajPjpMjn) +oMjpdjn)+ci@us@jnnjp) =Gim;), (4.2)

b(pjp ¥jn) =0,

for all (tp,vy) € HZ x Hj} and MjnsVjn) € HZ X Hf We now develop the discrete
analogue of the fixed-point approach utilized in Sect. 3.2. To this end, we first consider the
operator Sy, : Hjj x HZ — Hj} defined by

Si(Wh. @) =W Y (Wh, @) € Hj x Hf, 43)
where (6, u,) € Hf x Hj is the unique solution (to be confirmed below) of the problem:

A((@n, up), (Th, Vi) + Bw, (04, Wp), (Th, Vi) = Fp(Th, Vi) + Fp (T, Vi), (4.4)

for all (zp, vy) € Hf x Hj. In turn, for each j € {1,2} we let §j,h cHy — Hf be the
operator given by

FSVj'h(wh) =¢jn Ywy € H;ll, 4.5)
where (p @ j.h) € Hﬁ X Hf is the unique solution (to be confirmed below) of the problem:

aj(Pjpjn) +bMjn bjn)+cjWnidjnn;p) =Gimjp) ¥, € HY, wo
b(p;pWjm) =0 Vi € HY,

and then we set §h (wy) = ('Svlyh(wh), §27h(wh)) € Hf forall wy, € H;‘l Hence, introducing
the operator T), : Hj — HJ} as

Ty (Wh) := S (Wh, Si(wp)) Vwy, € HY, 4.7)

we realize that solving (4.2) is equivalent to seeking a fixed point of T, that is: Find u, € H}}
such that

T, (up) = uy,. 4.8)
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4.2 Solvability Analysis

We begin by remarking that the same tools employed in the proof of Lemma 3.2 can be used
now to prove the unique solvability of (4.4). In fact, it is straightforward to see that for each
wj, € H}!, the bilinear form A + By, is bounded with a constant depending on v, F, ||K]||,
lliall, k1, k2, and ||wp ||1,. In addition, under the same assumptions from Lemma 3.2 on the
stabilization parameters, we find that for each w;, € Hj}, A + By, is elliptic on Hj x H}} with
the same constant obtained in (3.25). In turn, it is clear that for each @, € Hf, the functional
Fy islinear and bounded as in (3.9). The foregoing discussion and the Lax—Milgram theorem
allow us to conclude the following result.

Lemma4.1 Let7 € (0, ry), with r given as in (3.24), and assume that k| and iy are taken
as in Lemma 3.2. Then, for each (wy,, Qh) e Hj} x Hf: satisfying ||wp|l1.@ <7, the problem

(4.4) has a unique solution (o), uy) € HZ X H;,‘ Moreover, with the same constant cg > 0
from (3.21), which is independent of (wj,, (ph), there holds

ISk (Wr, @ Dll1e = llupllie < [[(on, )l
4.9)
< cs [lupllo.r + lup ]l 2.r + Iglo s (19, loaa + I8 lo.s0) |-
We emphasize here that there is no restriction on ]HI‘,; and H}l‘, and hence they can be chosen
as any finite element subspaces of Ho(div; €2) and HL(Q), respectively.
On the other hand, in order to analyze problem (4.6), we need to incorporate further

hypotheses on the discrete spaces HZ and Hf For this purpose, we now let V;, be the discrete
kernel of b, i.e.,

V), = [nh eH s b(py. yn) =0 Y, er]. (4.10)

Then, we assume that the following discrete inf-sup conditions hold:
(H.1) for each j € {1, 2} there exists a constant & j > 0, independent of &, such that

aj(my, Xpn)

> &j I xplldivaz2 Y Xn € Vi, 4.11)
0£n,eVy, 1Mplldivas3:0

(H.2) there exists a constant E > 0, independent of &, such that
by, ¥n)

L > Bllvnlose Yvn eH). 4.12)
0, H? Ny lldive3; 2

Specific examples of spaces verifying (H.1) and (H.2) are described later on in Sect. 4.3.
Notice that (4.11) is more general, and hence less restrictive, than assuming that the bilinear
forms a; are elliptic in V. In other words, the latter is not necessary but only a sufficient
condition for (4.11), which is precisely what we apply below in Sect. 4.3 for a particular
choice of subspaces. In turn, unless Vj, is contained in V, which occurs in many cases but
not always, the Vj-ellipticity of a; does not follow from its eventual V-ellipticity.

Next, we consider the bilinear form A; (cf. (3.26)) restricted to the discrete space Hj, :=
HZ X Hf Thus, employing (3.5), (4.11), and (4.12), and applying again [20, Proposition 2.36],
we are able to show that A; verifies the following discrete inf-sup condition

sup Aj((X s ®in)s M ¥jn))
0% ) )M, 15 i)l
> Vil jn @il Y (X jns 9j.n) € Hp, (4.13)
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where ¥; (cf. (3.28)), a positive constant independent of £, is defined by
- a;p?
Vi = = —~ — — — .
T B+ B4 1Q5 ) (@ + 1Q o)

We are now in a position to establish the discrete version of Lemma 3.3.

(4.14)

Lemma4.2 There exists 72 > O such that for each ¥ € (0,72), and for each w, € H}

satisfying ||\wyll1. <7, the problem (4.6) has a unique solution (pj,h, djn) € HZ X HZ’
for each j € {1, 2}. Moreover, there exists a constant cg, >0, independent of wy, such that
there holds

2
ISk (wWi)llo.a:2 = (@10, P2.0)ll0.4:2 < le(p,-,h,tbj,h)ll = g, l9plh/2r - (4.15)
j=1

Proof Given w;, € Hj}, we proceed analogously to the proof of Lemma 3.3 and utilize the
continuity bound of c; (cf. (3.7)), and the discrete inf-sup condition of A; (4.13), to deduce
that for each wy, € HE satisfying ||wy 1.0 < 72, with

~ s~ 2 ~Jj )71' ,
ry = mm{rz,rz} and 7, = —————, j € {l,2}, (4.16)
2R; 11Q; Moo lliall
Aj w, (cf. (3.30)) satisfies the discrete inf-sup condition

Ajow, (X s 05.0)s M s Vo))

sup
04 1)) €H) NCjps ¥jn)ll
)’74
szmwwwHWmW%wem. (4.17)

Therefore, owing to the fact that for finite dimensional linear problems, surjectivity and
injectivity are equivalent, we conclude from (4.17) and Theorem 3.1 that for each j € {1, 2}
there exists a unique (o 5, ;1) € HZ X Hf satisfying

Ay (O 5.0 Wy W) = Gimyp) Y ppein) €Hyy  (418)

which means that (4.6) is well-posed. In addition, proceeding similarly to (3.29) we obtain
(4.15), with ¢g, := max {cg, . c5,,} and c5,, = 2Cg,/¥j, j € {1.2}, which ends the
proof. O

We now proceed to analyze the fixed-point equation (4.8). We begin with the discrete
version of Lemma 3.4, whose proof, being a simple translation of the arguments proving that
lemma, is omitted.

Lemma4.3 Let7 € (0,70), with 7y := min{ry, 72}, r1 as in (3.24) and 7> as in (4.16), and
let W7 be the bounded subset of Hj} defined by

Wi = {wh eHY: willg < 7}. 4.19)
Assume that k1 and k; are taken as in Lemma 3.2, and that the data satisfy
T, {IIUDIIO,F + llupllij2,r + llgllo4:e (IIQDlll/z,r + ||er|0,4;9)} <7 (420

where ct, := cs max {1, C3, } Then T;,(W7) C W5
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Next, we address the discrete counterparts of the auxiliary Lemmas 3.5 and 3.6, whose
proofs, being almost verbatim of the continuous ones, are omitted. We just remark that Lemma
4.5 below is derived using the discrete inf-sup condition (4.13). Thus, we simply state the
corresponding results as follows.

Lemma4.4 Let7 € (0, ry) with r given as in (3.24). Then, with the same constant Csg > 0
from (3.40), which is independent of T, there holds

ISh(Wn. @,) = Sh(Wa, @,)ll1,2

=

. ISh(Wn. @)l IWh = Whllo.s:2 + Cs ligloae e, — @, losq
lligl 7y —h LR

for all (Wi, 9,), (W, $,) € Hi x H}, such that ||wal1.0, |Will.o <.

Lemma4.5 Let7 € (0, 72) with 7 given as in (4.16). Then there holds

- - 1 ~
ISy (Wr) = Sp(W)llo,4:2 < al® 1Sr(Wr)llo,4,2 IWh — Willo,4:0

for all wy,, Wy, € Hy) such that ||wp||1,Q, |Will1,e <7

As a straightforward consequence of Lemmas 4.4 and 4.5, and the continuous injec-
tion is of H' () into L*(Q), we can prove the Lipschitz-continuity of the operator T, (cf.
Lemma 3.7).

Lemma4.6 Let7 € (0, 7y), with7y := min{ry, 72}, r1 as in (3.24) and 7, as in (4.16). Then,
with the same constant ct, > 0 from (4.20), for all wy, Wy, € W5 (cf. (4.19)) there holds

ITh(Wr) — Ta(Wi) 1,

cr, @2
s = [lupllo.r + Iunl2.r + lgloas (2 19,1 /2.r + 18 _llo.s2) | Iws = Falh .

We are now in position of establishing the well-posedness of (4.2).

Theorem 4.7 Assume the same hypothesis of Lemma 4.3 and that the data satisfy
cr
2 {lunlor + lunll2r + gloso g lar +19, lose)| < 1. @22

Then, the operator T}, has a unique fixed point wy, € W5 (cf. (4.19)). Equivalently, the coupled
problem (4.2) has a unique solution (o, u;) € Hj x H}} and PjnPjn) € HZ X Hf,
j € {1, 2}, withuy, € Wz. Moreover, there holds

l(on, up)ll < cry {”“D”O,F + llupllij2,r + lIgllo.4: (IIQDlll/z,r + IIQrIIOA;Q)} (4.23)
and
2
ZII(Pj,h,fbj,h)ll = cg, l¢plh/2r. (4.24)
=1

Proof Ttfollows similarly to the proof of Theorem 3.9. Indeed, we first notice from Lemma 4.3
that Tj, maps the ball W5 into itself. In turn, it is easy to see from (4.21) (cf. Lemma 4.6)
that T;, : Wy — W5 is continuous, and hence the existence result follows from the Brouwer
fixed-point theorem [14, Theorem 9.9-2]. In addition, it is clear that the estimate (4.24)
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follows from (4.15), whereas combining (4.9) with (4.15), we obtain (4.23) (cf. (4.20)). On
the other hand, the estimate (4.21) and the assumption (4.22) show that T}, is a contraction
mapping, which, thanks to the Banach fixed-point theorem, implies the uniqueness result and
concludes the proof. O

4.3 Specific Finite Element Subspaces

In this section, we introduce specific finite element subspaces satisfying (4.1) and the crucial
discrete inf-sup conditions given by hypotheses (H.1) and (H.2). These discrete spaces arise
naturally as consequence of the same analysis developed in [11,25] and [9, Sect. 3] (see also
[15, Sect. 5]). Then, with the same notations from Sect. 4.1, for each T' € 7, we let RTy(T)
be the local Raviart—-Thomas element of order k > 0, i.e., RT(T) := [Px(T)]" & Px(T) x,
where x := (x1, ..., x,)' is a generic vector of R" and Py (T) is the space of polynomials
defined on T of degree < k. Then, the finite element subspaces on 2 are defined as

HY = {‘L’h e Ho(div; Q) : c'tylr e RTi(T) VeeR", VT e ’Z},},

H = [V e C@: wilr e P (DI VT e T},
(4.25)
HY = {nh € H(diva/3; Q) : nlr € RTW(T) VT e 7,,}

HY = v e LY@ yulr e P YT e T}
It is clear from (4.25) that diV(H,’; ) C H¢, and hence (4.10) becomes
V) = {nh eH!: divn) =0 in Q}

This fact together with the uniform positiveness of tensors Q;l (cf. (2.3)), imply that the
bilinear forms a; (cf. (2.20)) are V-¢elliptic with the same constants «; defined in (3.11),
and thus the assumption (H.1) is trivially satisfied. In turn, we know from [15, Lemma 5.5]
(see also [7, Lemma 4.4] or [9, Lemma 3.3] with p = 4/3) that there holds (H.2).

We end this section by collecting next the approximation properties of the finite element
subspaces HY, H};, HZ, and Hf (cf. (4.25)), whose derivations can be found in [23], [26],
and [9, Sect. 3.1] (see also [15, Sect. 5.5]):

(APZ) there exists C > 0, independent of %, such that for each [ € (0, k + 1], and for each
T € H/ () N Hy(div; ) with div () € H (), there holds

dist (7, H]) == _inf |7~ Talae < Ch {Ile + Idiv©lie).
ThEHZ
(AP}l‘) there exists C > 0, independent of %, such that for each / € [0, k + 1], and for each
u € H'T1(Q), there holds

. , I
dist (v, Hp) == inf [Iv—willie < Ch |[Vlli41,0.

inf
vy €H)

(APZ ) there exists C > 0, independent of %, such that for each [ € (0, k + 1], and for each
7 € H () with div(y) € WH4/3(Q), there holds

dist O, HY) i= inf 0 = myllage = CH {Inlg + ldivopliasel-

n,€H,,
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(APZ’) there exists C > 0, independent of /4, such that for each / € [0, k + 1], and for each
/NS W/-4(), there holds

dist (v, H) = inf [y = ¥ulloae < Ch' I@la0.
1///,€Hh

5 A Priori Error Analysis

In this section, we first derive a Céa estimate for our Galerkin scheme with arbitrary finite
element subspaces satisfying the hypothesis stated in Sect. 4.2. Next, using the specific
discrete spaces stated in Sect. 4.3, we establish the corresponding rates of convergence. In
fact, let (o, u) € Hy(div; Q) x H'(Q) and (pj, ;) € H(divasz; Q) x LY(Q), j € {1,2},
with u € W, (cf. (3.37)), be the unique solution of the coupled problem (2.22), and let
(o, up) € HY x H}f and PjnsPjn) € HZ X HZ,j e {1, 2}, withu, € Wy (cf. (4.19)), be
the unique solution of the discrete coupled problem (4.2). Then, we are interested in obtaining
an a priori estimate for the error

2
o, w) = (@mul+ Y 0. ¢)) = (0, 4 ¢j.)ll.

j=1

To this end, we establish next an ad-hoc Strang-type estimate. In what follows, given a
subspace X, of a generic Banach space (X, || - |[x), we set for each x € X

dist (x, Xp) := inf |lx —xpllx.
xpeXy
Lemma 5.1 LetH be a reflexive Banach space, andleta : Hx H — R be a bounded bilinear
form with induced operator A € L(H, H'), such that a satisfies the hypotheses of Theorem
3.1. Furthermore, let {Hp}p~0 be a sequence of finite dimensional subspaces of H, and for
each h > 0, consider a bounded bilinear form aj, : H, x Hy — R with induced operator
Ap € L(Hy, H;l), such that ay|n, xn, satisfies the hypotheses of Theorem 3.1 as well, with
constant & independent of h. In turn, given F € H', and a sequence of functionals {Fj};~0,

with Fy, € Hj, foreachh > 0, we letu € Hand uy, € Hy, be the unique solutions, respectively,
to the problems

a(u,v) = F(v) Vv eH, (GA))
and
ap(up, vp) = Fp(vy) Voup € Hp. (5.2)
Then, there holds
Il = unlla < Cs.ydist (u, H) + Cs2 {IF = Fillg + laue, ) = an e, )l . 5.3)

where Cg 1 and Cs 7 are the positive constants given by

2|l All n [l Al

Cs1 = <l+ — — ) and Cgsa = 5.4)
o o

U =
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Proof We proceed similarly to the proof of [33, Theorem 11.1]. Indeed, employing the inf-sup
condition of the bilinear form aj, (cf. (3.1)), the identities (5.1) and (5.2), and the continuity
of A, Ay, F, and Fj,, we obtain

lu —upln < (1 + @) dist (u, Hp)
o

1 .
= {IF = Full, + inf lla(ws, ) = as i, )l J. - (55)
o wy €Hy, h

where

] a(wp, vp) — ap(wn, vp)
lla(wn, -) — an(wn, g = sup
0£v,€Hy, [lvn la

Then, inspired by [15, Lemma 6.1], we notice that

a(wp, vp) — ap(wp, vy)
lvnlla

_a(wp, vp) —a(u, vy) + a(u, vp) — ap(u, vp) + ap(u, vp) — ap(wp, Vi)

lvnllu

a(u, vy) — ap(u, vy)
llvnlla

)

< (1A + A1) llu — whlln +
which implies
wirgh la(wp, ) = an(wp, My < (1AL + 1Al dist (e, Hy) + lau, ) — ap e, )l -
h d

(5.6)

Hence, replacing (5.6) back into (5.5) we obtain (5.3) and conclude the proof. ]

In order to apply Lemma 5.1, we now observe that the problems (2.22) and (4.2) can be
rewritten as two pairs of corresponding continuous and discrete formulations, namely

(A+ Buw)((a,w), (z,V) = (Fp + Fg)(z,v)  V(z,v) € Ho(div; Q) x H'(Q),
(A+ Bu,)((0n, up), (Th, Vi) = (Fp + Fg )(Th. va) ¥V (Th. va) € Hy x Hj,
(5.7)

and

Aju((p; 6. ). ) = Gim;) Y. ;) € H(divasz: Q) x LY,
(5.8)
Aoy (P b5 W Vi) = G 4) Y (g Wj) € HY x HY,

where the forms A; y and A; y, are defined as in (3.30).
The following lemma provides a preliminary estimate for the error ||(o, u) — (a5, up)].

Lemma 5.2 There exists a positive constant c s,1, independent of h, such that

I, w = (@ w)ll = Cs.i {dist (o, H) + dist (w, HJ) |
(5.9)
+ o [alliella—wslli e+ Cslglo4elld — ¢, losa.

where r1 and Cs are defined in (3.24) and (3.40), respectively.
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Proof From (3.25) we know that the bounded bilinear forms A + By and A + By, are elliptic
with the same constant “TA. In addition, it is clear that Fp + Fg and Fp + F¢h are bounded

linear functionals in Ho (div; Q) x H! (2) and H x H}}, respectively. Then, applying Lemma
5.1 to the context given by (5.7), we find that

I w = @h un)l = Cs.1 {dist (o F) + dist (u, ) |
~ (5.10)
+Cs2 {IIFQ = Fp llg xmyy + [|1Bu((0, 1), ) — By, (0, 0), -)II(ngH;;)/},

where, according to (5.4), the estimates (3.3), (3.4), and the fact thatu € W, u, € Wy (cf.
(3.37), (4.19)), there holds

2

5S,l =14+ —
aa

- ~ 2
(3 Ca + F IKlloo lliall (27 + r)) and Cspi=—. (5.1
A
Next, using the definition of F, (cf. (2.17)) and its continuity bound (cf. (3.9)), and applying
Holder’s inequality, we readily get
1Fp — Fp, lleg xupy < Crligloaall¢ — @, llo.4.q- (5.12)

In turn, from the continuity bound of By, (cf. (3.4)) and the fact that ||u| — |y |‘ < |lu—uyl,
it follows that

1Bu((@, ), ) — Buy (0, w), )l ae xpey < FIKlloo liall” Julli.q lu—wslio. (5.13)

Thus, replacing (5.12) and (5.13) back into (5.10), and using the explicit expression of 55,2
(cf. (5.11)), we find that

I w = @nup)l = Cs,y {dist (o F7) + dist (u, H}) |

2F || Klloo lliall® 2CF
+————ulliellu—wll o+ I ligllo.4: ||Q_ Qh”OA;Q,

which, together with the definition of r; and Cg (cf. (3.24) and (3.40)), implies (5.9) and
concludes the proof. O

Next, we have the following result concerning [[(p . ;) — (0 4. ®j.n)ll-

Lemma 5.3 There exists a positive constant Cs. 1, independent of h, such that

2 2
> 0589 = (04 S50l = Cot Y (dist (o, HY) + dist 8, H]) )
j=I

j=1
s
+= o2 rla—upl . (5.14)
)

where cg is defined at the end of the proof of Lemma 3.3, and 75 is given by (4.16).
Proof We first recall from Sects. 3.3 and 4.2 that the forms A;y and A; y,, j € {1,2},
satisfy the hypotheses of Lemma 5.1 on H := H(div4/3; Q) x L*(Q) and H, := H}} x HZ,

respectively, the latter with constant & = % (cf. (4.14)). Therefore, applying Lemma 5.1 to
the context (5.8), we arrive at

1628 = (01 6301 = CF, (dist (o, HP) + dist (8, HY)) 515,

+Ch 1A (P 6. ) = Aju, (0. 87 )l
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where, according to (5.4), the definition of the form A; w (cf. (3.30)), the estimates (3.5),
(3.6), and (3.7), and the fact thatu € W,., u, € W5 (cf. (3.37), (4.19)), there holds

. 2 . _ . 2
i, ::1+?(6+||Qj1||00(3+3,» ligh @27 +7))) and Cf, = = Jella)
J J

(5.16)

Next, in order to bound the last term on the right-hand side of (5.15), we notice that the
definition of the form A; v (cf. (3.30)) and the continuity bound of ¢; (cf. (3.7)), give

|Aj,u((,0j, i) M Vi) — Aju, (0, D), (0 4o vin| = |ej—w; ;. ﬂj,h)|
< Rj ||Q;l||oo ligll 1@jllo.4:e e —wplli,@ 1(W; 5, ¥l Y @j 5, ¥jn) € Hy,
which, together with (5.15), the explicit expression of C é,z (cf. (5.16)) and the bound of
I ll0.4;0 (cf. (3.35)), yields
16085 = (0 i)l = Ty (dist (o, HY) + dist (¢, HY))

1 .
2R 11Q; oo [ligll

e, lgjpllizr lla—ul .

Vi

(5.17)

Ihen, recalling the definitions of cg and 72, it is easy to see that (5.17) implies (5.14) with

T~

Cs.1 := max {Cé’l, (/J\_%,1 }. thus concluding the proof. ]

The required Céa estimate will now follow from (5.9) and (5.14). In fact, we first bound
¢ — Qh llo,4:@ in (5.9) by the right hand side of (5.14). Next, in order to obtain an explicit
expression in terms of data, we bound |[u]|1, ¢ as in (3.44) instead of directly by r, that is

lulie < er {lupllo.r + unlzr + lgloss (16,120 + 19, loas) |

which, together with the fact that Cscg and 1/r1, 1/7; are bounded by ¢t and 1/7, respec-
tively, allows us to deduce from (5.9) that

I, w = @n )l = Cs,y {dist (o F) + dist (u, )|

2
+Cs.1 Csllgloae Y (dist (o), HP) + dist (¢, H))) (5.18)
j=1

cr
+5 [ lor +lupllyzr + lglose 21y lyar +19, lose)| lu—wile.

Thus, imposing the term that multiplies |[u — uy|[1 o in (5.18) to be sufficiently small, say
< 1/2, we derive the a priori error estimate for || (¢, u) — (65, up)||, which, employed then to
bound the last term on the right-hand side of (5.14), provides the corresponding upper bound
for Z%:] [| (pj, o) — 0;.ns @ ;1) |l. More precisely, we have proved the following result.
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Theorem 5.4 Assume that the data up, ¢D, and Qr satisfy

cT { } 1
~ o (2 o)t < =.
= luplio,r + lluplli/2,r + ligho.a;e (219, ll/2r + ¢ _llo4e) | < 3

Then, there exists a positive constant C, independent of h, but depending on v, F, R;, |li4]],
-1 ~ .
Koo, 1Q; " lloos lIgllo.4;2: @a. vj. ¥j» J € {1, 2}, and the datum @, such that

2
o, w) = (@nw)ll + Y 0. 6)) = (0 4 bj)
=1 ) (5.19)
<C {dist (o, H7) + dist (w, H}) + > (dist (p;. Hy) + dist (¢;, Hf)) }
j=1

Now, in order to approximate the pressure, the velocity gradient, and the heat and diffusive
vectors, we propose, motivated by (2.7) and (2.9), the expressions

1 1 ~ .
pn=—- ), (Vu), = ;ai, and B, =p;;+Rjdjnw, je{l,2},

(5.20)
respectively, with (o, u;) € Hj x H}} and PjnsPjn) € HZ X H¢,j e {1, 2}, being

the unique solution of the discrete problem (4.2). The corresponding error estimates are
established in the following lemma.

Lemma 5.5 Assume that the hypotheses of Theorem 5.4 hold. Let p, Vu, and ﬁj, jef{l,2},
be given by (2.7)-(2.9). In addition, let pp, (Vu)h, and 5j,hr j € {1,2}, be the discrete
counterparts introduced in (5.20). Then, there exists a positive constant C, independent of h,
but depending on v, F, R;, |lia]l, [IK]lco, IIQ;]IIoo, Iglo.4:. @a. v, ¥, j € {1,2}, and
the datum QD, such that

2

lp = pallo.e + [Va—= (Vu), oo+ D 15; — B, alloc
Jj=1

2
<C {dist (o, H) + dist (u, H})) + Z (dist s HZ) + dist (¢, Hf)) }
j=1

Proof It follows from (2.9) and (5.20), adding and subtracting R; ¢ ; uy, that

Pi—=Pjn=p;—pjp) +Rj¢;@—w) +R; (@ —¢;nw, Jje({l,2}

Next, employing the triangle and Holder inequalities, and the continuous injection is of
H'(Q) into L*(€2), we find that

16, —Bjnlloe <llp;—p;nlloe

+R; liall (116 lo.4:0 I8 = wallig + 1wl 2 I6; = 67.4l0.40).

which, together with the estimate (3.35) bounding [|¢;llo,4.2 and the fact that uw, €
W; (cf. (4.19)), implies that there exists a positive constant C, depending only on
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v, F, Rj, lli4ll, IKloco, ||Q;]||oo, a4, Vi, j € {1,2}, and the datum QD, all of them inde-
pendent of %, such that

2

lp = pullog+ [Vu— (Vu), oo + D 15; =B alloe
j=1

2
<C {n(a,u) —@n )+ D ;. b)) — (0} . ¢,,-,h)||}.
j=1
Then, the resultis a straightforward consequence of the foregoing inequality and Theorem 5.4.
O

Finally we complete our a priori error analysis with the corresponding rates of convergence
of our Galerkin scheme (4.2), for which we supose in the sequel that the finite element
subspaces specified in Sect. 4.3 are employed.

Theorem 5.6 In addition to the hypotheses of Theorems 3.9, 4.7 and 5.4, assume that there
exists I € (0, k + 1] such that ¢ € H' () N Hoy(div; Q), div(e) € H(Q), u € H'T1(Q),
and such that for each j € {1,2}, p; € H(Q), div(p;) € W'Y3(Q), and ¢; € W'4(Q).
Then, there exists C > 0, independent of h, such that

2
o, w) — (@n w)l + Y 1o, ¢)) = (0 1r b0
j=1
2

<ch {nanm + 14iv@)lie + lulis1e + Y (I0le + Idivee Dlrame + ||¢,,-\|1,4;Q)}.
j=1

Proof 1t follows from the Céa estimate (5.19) and the approximation properties (AP}),
(AP}), (APz) and (APZ)) specified in Sect. 4.3. ]

Consequently, from Lemma 5.5 and Theorem 5.6 we obtain the optimal convergence of
the post-processed unknowns introduced in (5.20).

Lemma5.7 Let (o, u) € Ho(div; Q) x H'(Q) and (p;.¢;) € H(divys3; Q) x LY(Q),
Jj € {1,2}, be the unique solution of the continuous problem (2.22), and let p, Vu, and
ﬁj given by (2.71)—(2.9). In addition, let py, (Vu)h, and ﬁj,h be the discrete counterparts
introduced in (5.20). Assume that the hypotheses of Theorem 5.6 hold. Then, there exists
C > 0, independent of h, such that

2

Ilp = pallo.a + [ Vu = (Vu), oo + D15, =5 4ll0.0
j=1
2

<ch {nanm +ldiv(o) e + lulipro+ Y (||pj e + Idiv(p )llr.a/3:0 + ||¢,~u1,4;9)}.
j=1

6 Numerical Results

In this section we present some examples illustrating the performance of our augmented
fully-mixed finite element scheme (4.2), and confirming the rates of convergence provided
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by Theorem 5.6 and Lemma 5.7. Our implementation is based on a FreeFem++ code [27],
in conjunction with the direct linear solver UMFPACK [19]. A Newton—Raphson algorithm
with a fixed tolerance tol = 1E — 6 is used for the resolution of the nonlinear problem (4.2).
As usual, the iterative method is finished when the relative error between two consecutive
iterations of the complete coefficient vector, namely coeff”+! and coeff”, is sufficiently
small, i.e.,

[|coeff™ ! — coeff” || ,»

< tol
[|coeff” 1| 2

where || - ||,z is the standard £2-norm in R°°F with DOF denoting the total number of degrees
of freedom generated by the finite element subspaces. The condition of zero-average pressure
(translated in terms of the trace of o) is imposed through a real Lagrange multiplier.

Errors between exact and approximate solutions are denoted as

e(0) = |lo —onldiv:ie, e =lu—wyliq, e(p)=Ip— prloa
e(vu) = ”Vu - (vu)h“(),Q’ e(p/) = ”p/ - pj,h ||diV4/3;Qv

e(¢)) = llgj — ¢jnlloaa, e®@;) = 1p; —P;plloe J {2}
In turn, we let r(-) be their corresponding rates of convergence, that is

log(e(0)/€(0))

"= gt/

, foreacho € {a,u, p, Vu, pj,¢>j,’ﬁj},

where h and i’ denote two consecutive meshsizes with errors e(¢) and €'(¢), respectively.
The examples to be considered in this section are described next. In all of them, for the sake

of simplicity, we choose the parameters v = 1,0 = 1,R; = 1,Ry = 1, and ¢ = (0,0). In

turn, and according to (3.36), the stabilization parameters are taken as k1 = v and Ky =Vv/2.

In addition, in the first two examples the tensors K, Qq, and Q; are taken as the identity

matrix I, which satisfy (2.3).

Example 1: 2D Domain with Different Values of the Parameter F

In this first example, we corroborate the rates of convergence in a two dimensional domain
and also study the performance of the numerical method with respect to the number of Newton
iterations required to achieve certain tolerance when different values of the parameter F are
given. The domain is the square = (—1, 1)2. We consider the potential type gravitational
acceleration g = (0, —1)*, and the data f(¢) given in (2.2) is adjusted so that the exact
solution is given by the smooth functions

sin(rx1) cos(mwxy)
—cos(mwxy) sin(mwxy)

u(xy, xp) = ( ) , p(x1,x2) = cos(wxy) exp(x2),

¢1(x1,x2) =0.540.5 cos(x1x2), ¢a(x1, x2) = 0.1+ 0.3 exp(x1x2).

The model problem is then complemented with the appropriate Dirichlet boundary condi-
tions. Tables 1 and 2 show the convergence history for a sequence of quasi-uniform mesh
refinements, including the number of Newton iterations when F = 10. Notice that we are
able not only to approximate the original unknowns but also the pressure field, the velocity
gradient, and the heat and diffusive vectors through the formulae (5.20). The results confirm
that the optimal rates of convergence O (h¥*1), provided by Theorem 5.6 and Lemma 5.7 are
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Fig.1 Example I, Computed magnitude of the pseudostress tensor component, velocity, and pseudoheat vector,
and temperature field (top plots); magnitude of the pseudodiffusive vector, concentration field, magnitude of

the heat vector and pressure field (bottom plots)

Table 3 Example 1, performance L

of the iterative method (number 07454 03667 0.1971 0.1036 _ 0.0554  0.0284
of iterations) upon variations of

the parameter F with polynomial 100 4 4 4 4 4 4
degree k =0
10! 5 5 5 5 5 5
102 6 7 7 7 7 7
103 8 8 8 8 8 8
104 10 30 30 8 8 8
105 12 30 30 30 30 8

attained for k = 0, 1. The Newton method exhibits a behavior independent of the meshsize,
converging in five iterations in all cases. In Fig. 1 we display the solution obtained with the
fully-mixed RT; — P, —RT;| — P‘ljIC —RT,; — P‘lle approximation with 1, 176, 134 DOF, where
P‘fc denotes the piecewise linear discontinuous finite element.

On the other hand, in Table 3 we show the behaviour of the iterative method with poly-
nomial degree k = 0, as a function of the parameter F € {100, 101,102, 103, 10%, 105},
considering different meshsizes %, and a tolerance tol = 1E — 06. Here we observe that the
higher the parameter F the higher the number of Newton iterations required.

Example 2: Convergence Against Smooth Exact Solutions in a 3D Domain

In our second example, we consider the cube domain € = (0, 1)3. The solution is given by
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Fig.2 Example 2, Computed magnitude of the pseudostress tensor component, velocity, and pseudoheat vector,
and temperature field (top plots); magnitude of the pseudodiffusive vector, concentration field, magnitude of
the diffusive vector and pressure field (bottom plots)

sin(mrxy) cos(mwxp) cos(mwxs)
u(xy, x2,x3) = | —2cos(mwxy) sin(;wxy) cos(mxs) |,
cos(xy) cos(mwxy) sin(mwxs)

p(x1, x2,x3) = cos(wxy) exp(xz + x3),

d1(x1, x2,x3) = 0.5+ 0.5 cos(x1x2x3), ¢a(xy, x2, x3) = 0.1 4+ 0.3 exp(x1x2x3).

Similarly to the first example, we consider F = 10 and the potential type gravitational
acceleration g = (0, 0, —1)*, whereas the data f(¢) is computed from (2.2) using the above
solution. The numerical solutions are shown in Fig. 2, which were built using the fully-mixed
RToy —P; — RTy — Py — RT(y — Py approximation with 2, 497, 827 DOF. The convergence
history for a set of quasi-uniform mesh refinements using £k = 0 is shown in Table 4. Again,
the mixed finite element method converges optimally with order O(h), as it was proved by
Theorem 5.6 and Lemma 5.7.

Example 3: Flow Through Porous Media with Channel Network

In our last example, inspired by [2, Sect. 5.2.4], we focus on flow through porous media with
channel network. We consider the square domain Q2 = (—1, 1)2 with an internal channel
network denoted as 2., which is described in the first plot of Fig. 3. We consider the coupling
of the Brinkman—Forchheimer and double-diffusion equations (2.8) in the whole domain €2
with Q; = 0.51, Q2 = 0.1251, but with different values of the parameters F and K = oI
for the interior and the exterior of the channel, that is,

- 10 in
11 in Q\ Qe

1 in Q¢

and o = {0.001 in Q\Q
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Fig.3 Example 3, Domain configuration, computed magnitude of the pseudostress tensor component, velocity,
and velocity gradient component (top plots); magnitude of the pseudoheat vector, temperature field, magnitude
of the pseudodiffusive vector, and concentration field (bottom plots)

The parameter choice corresponds to increased inertial effect (F = 10) in the channel and a
high permeability (o« = 1), compared to reduced inertial effect (F = 1) in the porous media
and low permeability (¢ = 0.001). In addition, the boundaries conditions are

u-n=02, u-t=0 on T, on=0 on 9N\ [ef,
$1 =03 on T, ¢1 =0 on Tign, p;-n=0 on Tp U Cpotiom,
¢2=02 on T, ¢2=0 on l—‘righh Py N = 0 on l-‘lop U Tpottom -

In particular, the first row of boundary equations corresponds to inflow on the left boundary
and zero stress outflow on the rest of the boundary. We stress here that, using similar arguments
to those employed in [12], we are able to extended our analysis to the present case of mixed
boundary conditions for the double-diffusion equations. In Fig. 3 we display the computed
magnitude of the pseudostress tensor component, velocity, velocity gradient component,
pseudoheat and pseudodiffusive vectors, and the temperature and concentration fields, which
were built using the fully-mixed RTo — P; — RTo — Py — RTy — Py approximation on a
mesh with 27, 287 triangle elements (actually representing 257, 284 DOF). As expected, we
observe faster flow through the channel network, with a significant velocity gradient across
the interface between the channel and the porous media. The pseudostress is more diffused,
since it includes the pressure field. The temperature is higher on the left of the boundary and
goes decaying to the right of the domain. Notice that both the pseudoheat and pseudodiffusive
vectors are higher in the channel. This example illustrates the ability of the coupling of the
Brinkman—Forchheimer and double-diffusion equations to handle heterogeneous media using
spatially varying parameters. The example is particularly challenging, due to the strong jump
discontinuity of the parameters across the two regions, which are handled very well by our
numerical method.
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