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Abstract
For elliptic interface problems in two- and three-dimensions with a possible very low
regularity, this paper establishes a priori error estimates for the Raviart–Thomas and Brezzi–
Douglas–Marini mixed finite element approximations. These estimates are robust with
respect to the diffusion coefficient and optimal with respect to the local regularity of the
solution. Several versions of the robust best approximations of the flux and the potential
approximations are obtained. These robust and local optimal a priori estimates provide guid-
ance for constructing robust a posteriori error estimates and adaptive methods for the mixed
approximations.

Keywords Mixed finite element method · Robust a priori error estimate · Local optimal
error estimate · Low regularity · Interface problems

1 Introduction

As a prototype of problems with interface singularities, this paper studies a priori error
estimates of mixed finite element methods for the following interface problem (i.e., the
diffusion problem with discontinuous coefficients):

− ∇ · (α(x)∇ u) = f in Ω (1.1)

with homogeneous Dirichlet boundary conditions (for simplicity)

u = 0 on ∂Ω, (1.2)

where Ω is a bounded polygonal domain in R
d with d = 2 or 3; f ∈ L2(Ω) is a given

function; and diffusion coefficient α(x) is positive and piecewise constant with possible
large jumps across subdomain boundaries (interfaces):
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α(x) = αi > 0 in Ωi for i = 1, . . . , n.

Here, {Ωi }ni=1 is a partition of the domain Ω with Ωi being an open polygonal domain. It is
well known that the solution u of problem (1.1) belongs to H1+s(Ω)with possibly very small
s > 0, see for example Kellogg [23]. But we should also note that even the global regularity
is low, when a finite element mesh is given, the singularity or those elements whose solution
having a large gradient often only appear near some points, or along a curve. Thus it is not
optimal to use the global regularity and a global uniform mesh-size to do the a priori error
estimate.

In [10], we introduced the idea of robust and local optimal a priori error estimate. The
robustness means that the genetic constants appeared in the estimates are independent of the
parameters of the equation, the coefficient α in our case. The local optimality means that in
the error estimate, the upper bound is optimal with the regularity of each element and local
mesh sizes, instead of using a global uniform mesh size and a global regularity.

The local optimal and robust a priori error estimate is very important for the adaptive
mesh refinement algorithm. Mesh refinements algorithms are often based on the so-called
“error equi-distribution” principle [26], that is, each element has an almost equal size of
the error measured in an appropriate norm. We need to show the “error equi-distribution”
principle is achievable via a priori error estimate. In the ideal case, if we have a known exact
solution u so that the (a priori) error can be computed exactly, we should be able to find
an optimal mesh with a fixed number of degrees of freedom that each element has a very
similar size of the error. Also, in the robust a posteriori error analysis, we always try to find
an equivalence between some intrinsic norm of the error and a computable error estimator,
the so called the reliability and efficiency bounds. When constructing the error estimator, it
is essential to realize that the best the adaptive numerical method can get is restricted by the
robust local a priori estimates with respect to each elements. This is especially important for
the mixed methods, since there are two unknowns, the flux and the potential, and there are
various post-processing methods. It is important to find which is the right quantity and norm
to estimate in the a posteriori error estimates. For example, should we use the a posteriori
estimator related to the weighted L2-norm of the flux, the weighted L2-norm of the potential,
the weighted discrete H1-norm of the potential, or combinations of them? To answer this
question, we need to know what can be derived from the a priori estimates.

The proof of local optimal and robust a priori error estimate often contains two parts:
one is the robust best approximation result (Cea’s lemma type of result), which has its
own importance; the other is the robust local approximation properties of the interpolation
operator.

Before we discuss the robust best approximation result and robust local interpolations
results for the mixed approximations, we first discuss the corresponding results for the
conforming, Crouzeix–Raviart nonconforming, and discontinuous Galerkin results of the
interface problem.

For the interface problem (1.1), the robust best approximation property is well known and
it almost trivial for the H1 conforming approximation:

‖α1/2∇(u − uck)‖0 ≤ inf
vck∈V c

k

‖α1/2∇(u − vck)‖0,

where V c
k is the k-th degree H1

0 -conforming finite element space, and uck is the corresponding
H1 conforming approximation.

On the other hand, the proofs of the robust best approximation for CR nonconforming
and discontinuous Galerkin is not easy. In [10], for the Croueix-Raviart nonconforming
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element approximation, we showed the robust best approximation property (the constant C
independent of α and mesh size):

‖α1/2∇h(u − unc1 )‖0 ≤ C

(
inf

vnc1 ∈V nc
1

‖α1/2∇h(u − vnc1 )‖0 + osc α,nc

)
,

where V nc
1 is the Crouzeix–Raviart non-conforming finite element space, and unc1 is the cor-

responding non-conforming approximation, and osc α,nc is a robust oscillation term. Also in
[10], for the discontinuousGalerkin approximation,we showed the robust best approximation
property (the constant C independent of α and mesh size):

|||u − udgk |||dg ≤ C

(
inf

v
dg
k ∈Dk

|||u − v
dg
k |||dg + osc α,dg

)
,

where Dk is the k-th degree discontinuous finite element space, and udgk is the corresponding
discontinuous Galerkin approximation, ||| · |||dg is the α-weighted H1 discontinuous Galerkin
norm, and osc α,dg is a robust oscillation term.

The local approximation properties of the interpolation operators for the DG space and
Crouzeix–Raviart are easy to show. For the conforming finite element approximation, there
are two types of local interpolations: nodal interpolations which require high regularity of
the solution, and the Scott–Zhang or Clément interpolations whose regularity requirement is
very low. For the nodal interpolation, it is completely local in each element, but then it need
very high regularity to exist, especially in three dimensions. For the Scott–Zhang/Clément
interpolations, since they are defined on a local patch, their local robustness depends on a
non-realistic assumption, the quasi-monotonicity assumption, see [5,10,11,13,19]. Thus, the
existence of robust local optimal result for the conforming finite element approximation for
the low regularity interface problem is still open.

For themixedmethods,we have two unknowns, one is the fluxσ , and the other is the poten-
tial u. For the potential u, the discontinuous finite element approximation is used, so the robust
local interpolation property is obvious. We use Raviart–Thomas (RT) or Brezzi–Douglas–
Marini (BDM) elements [6] to approximate the flux variable, a robust local interpolation
property can be proved by the average Taylor series technique developed in [20]. This leaves
the main task of proving the robust local optimal error estimates to the proof of the robust best
approximation properties of the mixed methods. Unlike the conforming, non-conforming,
or DG methods, where the energy norms and approximation spaces are obvious, we have
several choices for the mixed methods.

Our first robust best approximation property is simple, the weighted L2-norm of the flux
error in the equilibrated discrete spaces, see Theorems 3.2 and 3.3.

In the standard a priori analysis of the mixed method [6], the error of the potential u
is estimated in the L2-norm. It turns out that we have difficulties to have a robust inf-sup
condition with the weighted L2 norm for the discrete approximation uh and a modified
H(div) norm. Thus, we use the α- and mesh-dependent norms to do the robust analysis. The
choice of norm for uh is a norm similar to the standard discontinuous Galerkin norm, that
is, a weighted discrete H1 norm. With this α- and mesh-dependent norm analysis, we show
robust best approximation result for the potential approximation in the α-dependent discrete
H1 norm. But since the approximation space for the potential u is not rich enough, the order
of approximation of u in the α-dependent discrete H1 norm is one or two orders lower than
the flux approximation. This order discrepancy suggests that we should not try to do the
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robust estimate of the α weighted discrete H1-norm of the potential approximation in the a
posteriori error analysis, as stated the earlier discussion by Kim [24].

For the flux approximation, with the help of α- and mesh-dependent analysis, we show
the robust best approximation result in the non-equilibrated RT/BDM space with an α and
h weighted H(div) norm for the first time. The corresponding robust and local a priori error
estimates are also given without order loss even for the BDM approximations.

Finally, since the discrete H1 norm of the potential approximation uh is often of a
lower order than the corresponding flux approximation, we use Stenberg’s post-processing
to recover a new approximation with a compatible polynomial degree. We show that for the
recovered potential approximation, the robust local best approximation result is true and a
robust local a priori error estimates of the same order as the flux approximation is obtained.
We also prove a new trace inequality of the normal trace. We also point out in the paper
that any recovery or post-processing should based on the flux approximation since it is more
accurate.

There are many a priori estimates for mixed methods available. The standard analysis can
be found in the books and papers [6,18,21,27]. In these analysis, L2 or H(div) norms are
used for the flux approximation and the L2 norm is used for the potential approximation. No
robust analysis is discussed in these papers or books. The mesh-dependent norm analysis can
be found in [7,25], also, no robust analysis is discussed. In [9,24,29,30], many a priori and a
posteriori error results are presented for the mixed methods, some are robust and some are
non-robust. No robust and local optimal estimates are discussed for mixed methods before.

The paper is organized as follows. Section 2 describes the mixed finite element methods
for the model problem. Various robust best approximations results and robust and local a
priori error estimates are presented in Sect. 3, including the robust best approximation results
for the flux in the weighted L2 norm in the discrete equilibrated space and in the weighted
H(div) norm in the wholemixed approximations spaces, the robust best approximation result
for the potential in weighted discrete H1 norm. In Sect. 4, we discuss Stenberg’s of post-
processing and show its robust and local optimal a priori error estimates in each elements. In
Sect. 5, we make some concluding remarks.

2 Mixed Finite Element Methods

Let the flux be

σ = −α(x)∇u.

The mixed variational formulation for the problem in (1.1) and (1.2) is to find (σ , u) ∈
H(div;Ω) × L2(Ω) such that{

(α−1σ , τ ) − (∇ · τ , u) = 0 ∀ τ ∈ H(div;Ω),

(∇ · σ , v) = ( f , v) ∀ v ∈ L2(Ω).
(2.1)

Let T = {K } be a regular triangulation of the domain Ω (see, e.g., [8,16]). Denote by hK
the diameter of the element K . Assume that interfaces {∂Ωi ∩ ∂Ω j : i, j = 1, . . . , n} do
not cut through any element K ∈ T . For any element K ∈ T , denote by Pk(K ) the space of
polynomials on K with total degree less than or equal to k.

Define the discontinuous piecewise polynomial space of degree k by

Dk = {v ∈ L2(Ω) : v|K ∈ Pk ∀ K ∈ T }.
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Define the H(div) conforming Raviart–Thomas (RT) finite element space and Brezzi–
Douglas–Marini (BDM) finite element space of order k by

RTk = {τ ∈ H(div;Ω) : τ |K ∈ Pk(K )d + xPk(K ) ∀ K ∈ T }.
and

BDMk = {τ ∈ H(div;Ω) : τ |K ∈ Pk(K )d ∀ K ∈ T }.
Formixed problems, RTk×Dk and BDMk+1×Dk are stable pairs. Thus, we use the notation
Σk to denote RTk or BDMk+1.

The mixed finite element approximation is to find (σ h, uh) ∈ Σk × Dk such that{
(α−1σ h, τ h) − (∇ · τ h, uh) = 0 ∀ τ h ∈ Σk,

(∇ · σ h, vh) = ( f , vh) ∀ vh ∈ Dk .
(2.2)

Difference between (2.1) and (2.2) yields the following error equation:{
(α−1(σ − σ h), τ h) − (∇ · τ h, u − uh) = 0 ∀ τ h ∈ Σk,

(∇ · (σ − σ h), vh) = 0 ∀ vh ∈ Dk .
(2.3)

3 Robust and Local Optimal A Priori Error Estimates

3.1 Mixed Finite Element Interpolations and Approximation Properties

For a fixed r > 0, denote by I rt,kh : H(div; Ω) ∩ [Hr (Ω)]d �→ RTk the standard RT

interpolation operator and I bdm,k
h : H(div; Ω) ∩ [Hr (Ω)]d �→ BDMk the standard BDM

interpolation operator.We have the following local approximation property: for τ ∈ HsK (K ),
sK > 0,

‖τ − IΣ,k
h τ‖0,K ≤ Chmin{k+1,sK }

K |τ |min{k+1,sK },K ∀ K ∈ T , (3.1)

with IΣ,k
h = I rt,kh or I bdm,k

h . The estimate in (3.1) is standard for sK ≥ 1 and can be proved
by the average Taylor series developed in [20] and the standard reference element technique
with Piola transformation for 0 < sK < 1. We also should notice that the interpolations and
approximation properties are completely local.

Denote by Qk
h : L2(Ω) �→ Dk the L2-projection onto Dk . The following commutativity

property is well-known:

∇ · (I rt,kh τ ) = Qk
h ∇ · τ ∀ τ ∈ H(div; Ω) ∩ Hr (Ω)d with r > 0, (3.2)

∇ · (I bdm,k
h τ ) = Qk−1

h ∇ · τ ∀ τ ∈ H(div; Ω) ∩ Hr (Ω)d with r > 0. (3.3)

Remark 1 The requirement r > 0 in H(div; Ω) ∩ [Hr (Ω)]d is to make sure that the mixed
interpolations are well defined. Another choice is {τ ∈ L p(Ω)d and ∇ · τ ∈ L2(Ω)} for
p > 2 or W 1,t (K ) for t > 2d/(d + 2) as in [6]. We use the Hilbert space based choice since
it is more suitable for our analysis.

3.2 Robust Best Approximation in the Discrete Equilibrated Space for the Flux

Define the discrete equilibrated space

Σ
f
k = {τ h ∈ Σk : ∇ · τ h = Qk

h f }.
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Note thatΣ f
k = RT f

k = {τ h ∈ RTk : ∇·τ h = Qk
h f } for theRT case andΣ

f
k = BDM f

k+1 =
{τ h ∈ BDMk+1 : ∇ · τ h = Qk

h f } for the BDM case.
The following theorem is almost standard in the mixed finite element analysis.

Theorem 2 (Robust best approximation in the discrete equilibrated space) Let (σ , u) and
(σ h, uh) ∈ Σk × Dk be the solutions of (2.1) and (2.2), respectively, then the following
robust best approximation result holds:

‖α−1/2(σ − σ h)‖0,Ω ≤ inf
τ
f
h ∈Σ

f
k

‖α−1/2(σ − τ
f
h )‖0,Ω . (3.4)

Proof To establish (3.4), denote by

E = σ − σ h and e = u − uh

the respective errors of the flux and the potential.
Now, let τ

f
h be an arbitrary function in RT f

k , then it follows from the first equation in

(2.3), the fact σ h ∈ Σ
f
k , and the Cauchy–Schwarz inequality that

‖α−1/2E‖20,Ω = (α−1E, σ − τ
f
h ) + (α−1E, τ

f
h − σ h)

= (α−1E, σ − τ
f
h ) + (∇ · (τ

f
h − σ h), e)

= (α−1E, σ − τ
f
h ) ≤ ‖α−1/2E‖0,Ω ‖α−1/2(σ − τ

f
h )‖0,Ω,

which implies the result of the theorem. ��
Theorem 3 (Robust local a priori error estimates) Let (σ , u) and (σ h, uh) ∈ Σk × Dk

(k ≥ 0) be the solutions of (2.1) and (2.2), respectively. Assume that u ∈ H1+r (Ω) with
some r > 0 and that u|K ∈ H1+sK (K ) with an element-wisely defined regularity sK > 0 for
all K ∈ T . Then there exists a constant C > 0 independent α and h for both the two- and
three-dimension such that

‖α−1/2(σ − σ h)‖0 ≤ C
∑
K∈T

hmin{k+1,sK }
K |α1/2∇u|min{k+1,sK },K , RTk case,

‖α−1/2(σ − σ h)‖0 ≤ C
∑
K∈T

hmin{k+2,sK }
K |α1/2∇u|min{k+2,sK },K , BDMk+1 case.

Proof For the RTk × Dk case, the commutativity property in (3.2) and the second equations
in (2.1) and (2.2) lead to

∇ · (I rt,kh σ ) = Qk
h ∇ · σ = Qk

h f = ∇ · σ h .

Thus, the result is a direct consequence of the best approximation property in (3.4) and the
local approximation property in (3.1) by choosing τ

f
h = I rt,kh σ ∈ RT f

k .
Using the same argument, we can get the result for the DBMk+1 × Dk case. ��

Remark 4 For those elements with a low regularity 0 < sK < 1, RT0 is enough and there is
no need to use BDM or higher order RT approximations.

Remark 5 For the case that in each element K ∈ T , the diffusion coefficient being a full
symmetric positive definite constant matrix A|K instead of a scalar constant αK , from the
proofs, it is clear the above robust best approximation result is also true:

‖A−1/2(σ − σ h)‖0,Ω ≤ inf
τ
f
h ∈Σ

f
k

‖A−1/2(σ − τ
f
h )‖0,Ω .
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In each element K ∈ T , for the quantity q ∈ Pd
k , A−1/2q is also in Pd

k , and thus

A−1/2 IΣ,k
h q = A−1/2q. Thus for a piecewise constant symmetric positive definite matrix A,

we have

‖A−1/2(τ − IΣ,k
h τ )‖0,K ≤ Chmin{k+1,sK }

K |A−1/2τ |min{k+1,sK },K ∀ K ∈ T .

And we have the robust local a priori error estimates

‖A−1/2(σ − σ h)‖0,Ω ≤ C
∑
K∈T

hmin{k+1,sK }
K |A1/2∇u|min{k+1,sK },K , RTk case,

‖A−1/2(σ − σ h)‖0,Ω ≤ C
∑
K∈T

hmin{k+2,sK }
K |A1/2∇u|min{k+2,sK },K , BDMk+1 case.

The corresponding results for discontinuous Galerkin methods are not proved, since the
robustness of the DG method for the diffusion problem depends on the right choice of the
weights of the averages and penalty coefficients. For the full tensor case, the right weight
is not clear or probably not possible for a full matrix A, see [10]. For the conforming finite
element approximations, due to the lack of the nodal interpolations for the low regularity
cases, such robust local optimal estimates are not available. For averaging operators like
the Scott–Zhang [28] or Clément interpolations [17], the robustness with respect to the
full tensor A is also impossible since even the famous quasi-monotonicity assumption (see
[5]) is not meaningful in the case. For the Crouzeix–Raviart non-conforming finite element
approximation, it is possible we can get a similar result by using the relation between the
RT0 and Crouzeix–Raviart elements.

3.3 Mesh-Dependent Norm Analysis

In this subsection, we use mesh-dependent norm analysis to derive the robust best approx-
imation properties for the flux and the potential in appropriate norms. Earlier analysis on
the mixed methods using mesh-dependent norms can be found in Babuška, Osborn, and
Pitkäranta [3], Braess and Verfürth [7], and [15]. In the mesh-dependent analysis, we need
to restrict ourselves to the scalar case.

First, we discuss the averages of the coefficients on the edge/face F ∈ E . For F =
∂K+

F ∩ ∂K−
F ∈ EI , denote by α+

F and α−
F the restriction of α on the respective K+

F and K−
F .

Denote the harmonic averages of α on F ∈ E by

αF,H =
⎧⎨
⎩

α+
Fα−

F

α+
F + α−

F

, F ∈ EI ,

α−
F , F ∈ ED ∪ EN ,

which is equivalent to the minimum of α:

1

2
min{α+

F , α−
F } ≤ αF,H ≤ min{α+

F , α−
F }. (3.5)

Lemma 6 The bilinear form (∇ · τ , v) for (τ , v) ∈ H(div;Ω) × L2(Ω) has the following
representation:

(∇ · τ , v) = −
∑
K∈T

(∇v, τ )K +
∑
F∈EI

(τ · n, [[v]])F +
∑
F∈ED

(τ · n, v)F (3.6)

Proof The representation (3.6) is a consequence of integration by parts. ��
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Define (α, h)-dependent norms on T by

‖τ‖2α,h := ‖α−1/2τ‖20 +
∑
F∈E

hF

αF,H
‖τ · n‖20,F , ∀τ ∈ Σk

and |||v|||2α,h = ‖α1/2∇hv‖20,T +
∑
F∈EI

αF,H

hF
‖[[v]]‖20,F +

∑
F∈ED

αF

hF
‖v‖20,F , ∀v ∈ Dk .

Note that the ||| · |||α,h norm is the standard α-weighted DG norm used in the discontinuous
Galerkin methods, see [10]. For a v ∈ H1

0 (Ω), |||v|||α,h = ‖α1/2∇v‖0,Ω .

Lemma 7 For all τ h ∈ Σk(K ), there exists a positive constant C > 0 independent of α and
h, such that ∑

F∈EK

hF

αK
‖τ h · n‖20,F ≤ C‖α−1/2τ h‖20,K ,

where EK is the collection of edges (in 2D) or faces (in 3D) of the element K .

Proof The lemma is a simple consequence of the standard scaling argument and the fact that
both RTk(K ) and BDMk+1(K ) are finite dimensional. ��
Theorem 8 The following norm equivalence holds with C > 0 independent of α and h:

‖α−1/2τ h‖0 ≤ ‖τ h‖α,h ≤ C‖α−1/2τ h‖0, ∀τ h ∈ Σk . (3.7)

Proof Since for the harmonic average αF,H , we have 1/αF,H = 1/α+
F +1/α−

F , by Lemma 7,
we immediately get the robust discrete norm equivalence. ��
For τ ∈ H(div;Ω), define the following α and h dependent norm:

‖τ‖α,h,H(div) :=
(

‖α−1/2τ‖20 +
∑
K∈T

h2K ‖α−1/2∇ · τ‖20,K
)1/2

. (3.8)

We also use ‖τ‖α,h,H(div),K to denote the norm on a single element K .
The following trace inequality can be found in Lemma 2.4 and Remark 2.5 of [10].

Lemma 9 Let F be an edge/face of K ∈ T and nF the unit vector normal to F. Assume that
τ is a given function in H(div; K ) ∩ [Hr (K )]d , r > 0 then for any wh ∈ Pk(K ), we have

(τ · n, wh)F ≤ C h−1/2
F ‖wh‖0,F

(‖τ‖0,K + hK ‖∇ · τ‖0,K
)
. (3.9)

The following two continuity results are true.

Lemma 10 The following continuity results hold with constants Ccon,1 > 0 and Ccon,2 > 0
independent of α and h:

(∇ · τ h, v) ≤ Ccon,1‖α−1/2τ h‖0|||v|||α,h, ∀τ h ∈ Σk, v ∈ H1
0 (Ω) or v ∈ Dk,

(3.10)

(∇ · τ , vh) ≤ Ccon,2‖τ‖α,h,H(div)|||vh |||α,h, ∀τ ∈ H(div;Ω) ∩ [Hr (Ω)]d , vh ∈ Dk .

(3.11)
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Proof The continuity (3.10) is clear from the representation (3.6), Cauchy–Schwarz inequal-
ity, the definition of norms ‖τ‖α,h and |||v|||α,h , and the robust norm equivalent result (3.7).

To show (3.11), we still start from the representation (3.6):

(∇ · τ , vh) = −
∑
K∈T

(∇vh, τ )K +
∑
F∈EI

(τ · n, [[vh]])F +
∑
F∈ED

(τ · n, vh)F .

For the term (τ · n, [[vh]])F , where F ∈ EI , by (3.9),

(τ · n, [[vh]])F ≤ C h−1/2
F ‖[[vh]]‖0,F

(‖τ‖0,K + hK ‖∇ · τ‖0,K
)
,

where K is one of the elements having F as an edge/face. Choosing K to be the element
with the smaller αK . From (3.5), the smaller αK is equivalent to the harmonic average αF,H ,
then

(τ · n, [[vh]])F ≤ C α
1/2
F,Hh

−1/2
F ‖[[vh]]‖0,F

(‖α−1/2τ‖0,K + hK ‖α−1/2∇ · τ‖0,K
)
.

The term (τ · n, vh)F , F ∈ ED , can be handled similarly. Then by the Cauchy–Schwarz
inequality, (3.11) can be easily proved. ��

Lemma 11 The following discrete inf-sup condition

sup
τ h∈Σk

(∇ · τ h, vh)

‖α−1/2τ h‖0 ≥ β|||vh |||α,h ∀ vh ∈ Dk (3.12)

holds with a constant β > 0 independent of α and h.

Proof By the robust norm equivalent result (3.7), we only need to prove the result for τ h in
the norm ‖τ h‖α,h . Since RTk ⊂ BDMk+1, thus

sup
τ h∈BDMk+1

(∇ · τ h, vh)

‖τ h‖α,h
≥ sup

τ h∈RTk

(∇ · τ h, vh)

‖τ h‖α,h
, ∀ vh ∈ Dk,

we only need to prove the RT version.
Choose a τ̃ h ∈ RTk such that

(τ̃ h,∇q)K = −(α∇vh,∇q)K ∀ q ∈ Pk−1(K ) ∀ K ∈ T

and that

τ̃ h · n|F =

⎧⎪⎨
⎪⎩

αF,H

hF
[[vh]] F ∈ EI ,

αF

hF
vh F ∈ ED,

(3.13)

which, together with (3.6), gives

(∇ · τ̃ h, vh) = |||vh |||2α,h . (3.14)

For every K ∈ T , by the standard scaling argument, there exists a constant C > 0
independent of α and the mesh size such that

‖τ̃ h‖20,K ≤C

⎛
⎝‖αK∇vh‖20,K +hK

∑
F∈EK∩EI

‖αF,H

hF
[[vh]]‖20,F + hK

∑
F∈EK∩ED

‖αF

hF
vh‖20,F

⎞
⎠ ,
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which, together with (3.5), gives

‖α−1/2
K τ̃ h‖20,K ≤ C

⎛
⎝‖α1/2

K ∇vh‖20,K +
∑

F∈EK∩EI

αF,H

hF
‖[[vh]]‖20,F+

∑
F∈EK∩ED

αF

hF
‖vh‖20,F

⎞
⎠ ,

Hence, there exists a constant C̃ > 0 independent of α and h such that

‖τ̃ h‖α,h ≤ C̃ |||vh |||α,h .

which, together with (3.14), leads to the discrete inf-sup condition of the lemma. ��
Define the following discrete divergence-free subspace of Σk :

Σ0
k = {τ h ∈ Σk : ∇ · τ h = 0}.

Its orthogonal complement is

(Σ0
k )⊥ = {τ h ∈ Σk : (τ h, ρh) = 0,∀ρh ∈ Σ0

k }.
Note that the inf-sup condition (3.12) is also equivalent to the following inf-sup condition
with β > 0 independent of α and h (see Lemma I.4.1 of [22]):

sup
vh∈Dk

(∇ · τ h, vh)

|||vh |||α,h
≥ β‖τ h‖α,h ≥ β‖α−1/2τ h‖0 ∀ τ h ∈ (Σ0

k )⊥. (3.15)

The condition (3.12) also guarantees that for each g ∈ L2(Ω), there exists a unique solution
τ h ∈ (Σ0

k )⊥ such that
(∇ · τ h, vh) = (g, vh), ∀vh ∈ Dk . (3.16)

Now let us prove the following robust best approximation property for |||u − uh |||α,h .

Theorem 12 (Robust best approximation in the weighted discrete H1 norm) Let (σ , u) and
(σ h, uh) ∈ Σk × Dk be the solutions of (2.1) and (2.2), respectively. Assume that u ∈
H1+r (Ω) with r > 0 and that u|K ∈ H1+sK (K ) with element-wisely defined sK > 0 for all
K ∈ T . Then there exists a constant C > 0 independent of α and h for both the two- and
three-dimension such that

|||u − uh |||α,h ≤ C

(
inf

τ
f
h ∈Σ

f
k

‖α−1/2(σ − τ
f
h )‖0,Ω + inf

vh∈Dk
|||u − vh |||α,h

)
. (3.17)

Proof By the inf-sup condition, for each vh ∈ Dk we have

|||uh − vh |||α,h ≤ 1

β
sup

τ h∈Σk

(∇ · τ h, uh − vh)

‖α−1/2τ h‖0 . (3.18)

By the first equation in the error equations (2.3),

(∇ · τ h, uh − vh) = (∇ · τ h, u − vh) + (∇ · τ h, uh − u)

= (∇ · τ h, u − vh) − (α−1(σ − σ h), τ h).

Then, by the continuity result (3.11) and the Cauchy–Schwarz inequality,

(∇ · τ h, uh − vh) ≤ C‖τ h‖α,h |||u − vh |||α,h + ‖α−1/2(σ − σ h)‖0‖α−1/2τ h‖0.
Thus by (3.18) and the equivalence of ‖τ h‖α,h and ‖α−1/2τ h‖0,

|||uh − vh |||α,h ≤ C(|||u − vh |||α,h + ‖α−1/2(σ − σ h)‖0).
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A simple application of the triangle inequality yields

|||u − uh |||α,h ≤ |||u − vh |||α,h + |||uh − vh |||α,h ≤ C
(‖α−1/2(σ − σ h)‖0 + |||u − vh |||α,h

)
.

By the optimal convergence results of σ h , we have the robust best approximation result of
the theorem. ��
Remark 13 Even though we have the robust best approximation result (3.17), due to the fact
that the approximation orders of Σk and Dk are different for the corresponding norms, the
order of convergence for u−uh in the discrete H1 norm ||| · |||α,h is one or two order lower than
the corresponding weighted L2 RT or BDM approximation errors in Theorem 3, respectively.

Due to this order difference, in the a posteriori error analysis, we should only construct
the error estimator related to ‖α−1/2(σ − σ h)‖0.

Now, let us show the robust best approximation property in Σk .

Theorem 14 (Robust best approximation in the mixed approximation space) The following
robust best approximation properties are true with a constant C independent of α and h:

‖α−1/2(σ − σ h)‖0 ≤ C inf
τ∈Σk

‖σ − τ h‖α,h,H(div), (3.19)

‖σ − σ h‖α,h,H(div) ≤ C inf
τ∈Σk

‖σ − τ h‖α,h,H(div). (3.20)

Proof For an arbitrary τ h ∈ Σk , by (3.16), there exists a unique ζ h ∈ (Σ0
k )⊥, such that

(∇ · ζ h, vh) = (∇ · (σ − τ h), vh), ∀vh ∈ Dk,

and

β‖α−1/2ζ h‖0 ≤ sup
vh∈Dk

(∇ · ζ h, vh)

|||vh |||α,h
= sup

vh∈Dk

(∇ · (σ − τ h), vh)

|||vh |||α,h
. (3.21)

By the continuity (3.11),

(∇ · (σ − τ h), vh) ≤ C |||vh |||α,h‖σ − τ h‖α,h,H(div).

Thus,

‖α−1/2ζ h‖0 ≤ C‖σ − τ h‖α,h,H(div).

Setting τ
f
h := ζ h + τ h , it is clear that τ

f
h ∈ Σ

f
k . Then by the best approximation (3.4),

‖α−1/2(σ − σ h)‖0 ≤ ‖α−1/2(σ − τ
f
h )‖0 ≤ ‖α−1/2(σ − τ h)‖0 + ‖α−1/2ζ h‖0

≤ C‖σ − τ h‖α,h,H(div).

On the other hand, since on each element K ∈ T ,

(∇ · ζ h, vh)K = (∇ · (σ − τ h), vh)K , ∀vh ∈ Pk(K ),

and ∇ · ζ h ∈ Pk(K ), we have

‖∇ · ζ h‖0,K ≤ ‖∇ · (σ − τ h)‖0,K .

Since ∇ · (σ h − τ
f
h ) = 0, we have

‖α−1/2∇ · (σ − σ h)‖0,K ≤ ‖α−1/2∇ · (σ − τ
f
h )‖0,K + ‖α−1/2∇ · (σ h − τ

f
h )‖0,K

= ‖α−1/2∇ · (σ − τ
f
h )‖0,K

≤ ‖α−1/2∇ · (σ − τ h)‖0,K + ‖α−1/2∇ · ζ h‖0,K
≤ 2‖α−1/2∇ · (σ − τ h)‖0,K .
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With this, the robust best approximation property (3.20) in ‖ · ‖α,h,H(div) can proved. ��
We classify the elements in the mesh into two sets:

Tlow = {K ∈ T : 0 < sK < 1} and Thigh = {K ∈ T : 1 ≤ sK }. (3.22)

Theorem 15 (Robust local a priori error estimates in weighted H(div) norm) Let (σ , u) and
(σ h, uh) ∈ Σk × Dk (k ≥ 0) be the solutions of (2.1) and (2.2), respectively. Assume that
u ∈ H1+r (Ω) with some r > 0 and that u|K ∈ H1+sK (K ) with an element-wisely defined
regularity sK > 0 for all K ∈ T . Then there exists a constant C > 0 independent α and h
for both the two- and three-dimension such that

‖σ − σ h‖α,h,H(div) ≤ C
∑

K∈Tlow

(
hsKK |α1/2∇u|sK ,K + hK ‖α−1/2 f ‖0,K

)

+C
∑

K∈Thigh

(
hmin{k+1,sK }
K |α1/2∇u|min{k+1,sK },K

+ hmin{k+2,sK }
K ‖α−1/2 f ‖min{k+1,sK−1},K

)
, RTk case.

‖σ − σ h‖α,h,H(div) ≤ C
∑

K∈Tlow

(
hsKK |α1/2∇u|sK ,K + hK ‖α−1/2 f ‖0,K

)

+C
∑

K∈Thigh

hmin{k+2,sK }
K

(|α1/2∇u|min{k+2,sK },K

+ ‖α−1/2 f ‖min{k+1,sK−1},K
)
, BDMk+1 case.

Proof By the definition of the norm ‖ · ‖α,h,H(div), we only need to discuss the term

hK ‖α−1/2∇ · (σ − σ h)‖0,K = hK ‖α−1/2( f − Qk
h f )‖0,K

for each element K ∈ T .
The first case is that the regularity is low in the element K ∈ Tlow , with 0 < sK < 1. In

this case, notice that f ∈ L2(K ), thus

hK ‖α−1/2( f − Qk
h f )‖0,K ≤ hK ‖α−1/2 f ‖0,K .

Compared to the error hsKK |α1/2∇u|sK ,K from the weighted L2 approximation, it is of high
order.

The other case is that sK ≥ 1 in the element K . Note that αK is assumed to be a constant
in K , thus f = ∇ · (αK∇u) = αKΔu ∈ HsK−1(K ), thus

hK ‖α−1/2( f − Qk
h f )‖0,K ≤ Chmin{sK ,k+2}

K ‖α−1/2 f ‖min{sK−1,k+1},K .

Compared with the weighted L2 error, this term is of the same order for the BDMk+1

approximation and one order high for the RTk approximation. ��
Remark 16 One may want to use the Brezzi’s theory directly as in [25] to get the following
a priori error estimate

|||u − uh |||α,h + ‖σ − σ h‖α,h ≤ C

(
inf

v∈Dk
|||u − vh |||α,h + inf

τ∈Σk
‖σ − τ h‖α,h

)
.

This is not right, since for problems with a low regularity, the L2 norm of the trace ‖σ ·n‖0,F
is not defined and thus ‖σ‖α,h is not well-defined. Also, the result obtained by this is sub-
optimal for the flux approximation.
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Remark 17 In the standard mixed method analysis, the L2 norm of u − uh is analyzed and
it has the same order convergence as the RT approximation. In the case of the robust local a
priori error estimate, we cannot get a robust local estimate for ‖α1/2(u − uh)‖0 since robust
an inf-sup condition

sup
τ h∈Σk

(∇ · τ h, vh)

‖τ h‖α,h,H(div)
≥ β‖α1/2vh‖0 ∀ vh ∈ Dk,

with a constant β independent of h and α is not available.

4 Stenberg’s Post-processing

Since in the mixed methods, the approximation uh measured in the weighted discrete H1

energy norm is lower than that of the approximation of the flux, we introduce the Stenberg’s
post-processing to get a same order approximation.

On each element K ∈ T , if (σ h, uh) ∈ RTk × Dk (k ≥ 0) or (σ h, uh) ∈ BDMk × Dk−1

(k ≥ 1), i.e., the index of the flux approximation space is k, we find a u∗
h,K ∈ Pk+1(K ), such

that
(α∇u∗

h,K ,∇vh)K = ( f , vh)K − (σ h · n, vh)∂K , ∀vh ∈ Pk+1(K )/R, (4.1)

and ∫
K
u∗
h,K dx =

∫
K
uhdx . (4.2)

We first prove the following trace theorem by using techniques in [4,12].

Theorem 18 For an element K ∈ T with the mesh size hK , we have

‖τ · n‖−1/2,∂K ≤ C(‖τ‖0,K + hK ‖∇ · τ‖0,K ), ∀τ ∈ H(div; K ). (4.3)

Proof For any τ ∈ H(div; K ) and v ∈ H1(K ), we have the following identity:

〈v, τ · n〉∂K = (τ ,∇v)K + (∇ · τ , v)K , (4.4)

where 〈v, τ ·n〉∂K should be viewed as the duality pair between H1/2(∂K ) and H−1/2(∂K ).
Thus

‖τ · n‖−1/2,∂K = sup
v∈H1/2(∂K )

(τ ,∇v)K + (∇ · τ , v)K

‖v‖1/2,∂K .

On a reference element K̂ , given g ∈ H1/2(∂ K̂ ), consider the following equation

−Δz + z = 0 ∈ K̂ , z = g on ∂ K̂ .

By the elliptic stability theory, we have

‖∇z‖0,K̂ + ‖z‖0,K̂ ≤ C‖g‖1/2,∂ K̂ .

Mapping back to the physical element K we have that given a g ∈ H1/2(∂K ), there exits a
wg ∈ H1(K ) and w = g on ∂K , such that

‖∇wg‖0,K + h−1
K ‖wg‖0,K ≤ C‖g‖1/2,∂K .

Thus
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‖τ · n‖−1/2,∂K ≤ (τ ,∇wg)K + (∇ · τ , wg)K

‖g‖1/2,∂K ≤ C(‖τ‖0,K + hK ‖∇ · τ‖0,K ).

��
Theorem 19 In each element K ∈ T , the following robust best approximation property
holds:

‖α1/2
K ∇(u − u∗

h,K )‖0,K ≤ C

(
inf

wh∈Pk+1(K )
‖α1/2

K ∇(u − wh)‖0,K + ‖σ − σ h‖α,h,H(div),K

)
.

(4.5)

Proof Let wh be an arbitrary function in Pk+1(K ), and vh = u∗
h,K − wh . Let vh =∫

K vhdx/|K | be the average of vh on K , then vh − vh belongs to the test space Pk+1(K )/IR.
Then

‖α1/2
K ∇(u∗

h,K − wh)‖20,K = ‖α1/2
K ∇vh‖20,K = (α∇(u∗

h,K − wh),∇vh)K

= (αK∇u∗
h,K ,∇(vh − vh))K − (α∇wh,∇vh)K

= ( f , vh − vh)K − (σ h · n, vh − vh)∂K − (αK∇wh,∇vh)K

= (αK∇(u − wh),∇vh)K + ((σ − σ h) · n, vh − vh)∂K ,

wherewe use the fact that (αK∇u,∇v)K = ( f , v)K −(σ ·n, v)∂K is true for any v ∈ H1(K ).
By the Cauchy–Schwarz inequality,

(αK∇(u − wh),∇vh)K ≤ ‖α1/2
K ∇(u − wh)‖0,K ‖α1/2

K ∇vh‖0,K
By the definition of the dual norm, the trace inequality (4.3), and the fact ‖vh − vh‖0,K ≤
ChK ‖∇vh‖0,K , we have

((σ − σ h) · n, vh − vh)∂K ≤ ‖α−1/2(σ − σ h) · n‖−1/2,∂K ‖α1/2(vh − vh)‖1/2,∂K
≤ Ch−1

K ‖α1/2(vh − vh)‖0,K ‖α−1/2(σ − σ h) · n‖−1/2,∂K

≤ C‖α1/2∇vh‖0,K (‖α−1/2(σ − σ h)‖0,K + hK ‖α−1/2∇ · (σ − σ h)‖0,K ).

Thus

‖α1/2∇(u∗
h,K − wh)‖0,K

≤ C(‖α1/2∇(u − wh)‖0,K + ‖α−1/2(σ − σ h)‖0,K + hK ‖α−1/2∇ · (σ − σ h)‖0,K ).

By the triangle inequality,

‖α1/2∇(u − u∗
h,K )‖0,K ≤ ‖α1/2∇(u − wh)‖0,K + ‖α1/2∇(u∗

h,K − wh)‖0,K .

The theorem is proved. ��
By the approximation property of Pk+1(K ), and the robust local optimal error estimate of

σ h , we immediately have the following robust local optimal error estimate for the Stenberg’s
post-processing.

Theorem 20 For both the (σ h, uh) ∈ RTk × Dk (k ≥ 0) or (σ h, uh) ∈ BDMk × Dk−1

(k ≥ 1) case, the Stenberg’s recovery u∗
h,K ∈ Pk+1(K ) has the following robust local a

priori error estimate in the low regularity elements K ∈ Tlow with 0 ≤ sK < 1:

‖α1/2
K ∇(u − u∗

h,K )‖0,K ≤ ChsKK |α1/2∇u|sK ,K + hK ‖α−1/2 f ‖0,K , K ∈ Tlow.

123



Journal of Scientific Computing (2020) 84 :40 Page 15 of 16 40

For those elements K ∈ Thigh with 1 ≤ sK , the following robust local a priori error estimate
holds:

‖α1/2
K ∇(u − u∗

h,K )‖0,K ≤ C
(
hmin{k+1,sK }
K |α1/2∇u|min{k+1,sK },K

+ hmin{k+2,sK }
K ‖α−1/2 f ‖min{k+1,sK−1},K

)
, RTk × Dk case.

‖α1/2
K ∇(u − u∗

h,K )‖0,K ≤ Chmin{k+1,sK }
K

(|α1/2∇u|min{k+1,sK },K
+ ‖α−1/2 f ‖min{k,sK−1},K

)
, BDMk × Dk−1 case.

Remark 21 There are other post-processing methods available, such as the one proposed in
[2] and analyzed in [30]. The recovered potential is also mainly from the numerical flux σ h ,
a similar robust and local optimal a priori error estimate can also be derived.

It is also well known if the mixed method is implemented by hybridization, the Lagrange
multiplier is also a better approximation of u than uh , and is a good source for post-processing
or solution reconstruction. With careful analysis, it should not be hard to derive robust and
local optimal result for the Lagrangemultiplier and its post-processed solution under a similar
weighted discrete H1 norm.

5 Final Comments

In this paper, for elliptic interface problems in two- and three-dimensions with a possible
very low regularity, we establish robust and local optimal a priori error estimates for the
Raviart–Thomas and Brezzi–Douglas–Marini mixed finite element approximations. For the
flux approximation, we show the robust best approximation in the discrete equilibrated space
and the whole mixed approximation space with appropriated norms, an α-weighted L2 norm
or an (α, h)-weighted H(div) norms. We show the robust local optimal error estimates for
the flux approximation in these norms. For the potential approximation, we show a robust
best approximation result in a weighted discrete H1 norm and show that the convergence
order is sub-optimal compared to the flux approximation. We then show that with the flux as
the main source of post-processing, the Stenberg’s post-processing can recover a potential
with the robust local optimal error estimate.

These robust and local optimal a priori estimates provide guidance for constructing robust
a posteriori error estimates and adaptive methods for the mixed approximations. For robust
a posteriori error for the mixed methods of the interface problem, we should focus on
‖α−1/2(σ − σ h)‖0, like the approaches in [1,14,24,30]. The approaches in [7,25] are not
optimal since they are all try to put uh into the estimator. If any post-processing is going to
be used to construct the a posteriori error estimator, the main source of information should
be the numerical flux σ h , not the numerical potential uh itself.
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