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Abstract
In this paper, we shall establish the superconvergence property of the Runge–Kutta discontin-
uous Galerkin (RKDG) method for solving a linear constant-coefficient hyperbolic equation.
The RKDGmethod is made of the discontinuous Galerkin (DG) scheme with upwind-biased
numerical fluxes coupled with the explicit Runge–Kutta algorithm of arbitrary orders and
stages. Superconvergence results for the numerical flux, cell averages as well as the solution
and derivative at some special points are shown, which are based on a systematical study
of the L2-norm stability for the RKDG method and the incomplete correction techniques
for the well-defined reference functions at each time stage. The result demonstrates that the
superconvergence property of the semi-discrete DG method is preserved, and the optimal
order in time is provided under the smoothness assumption that is independent of the number
of stages. As a byproduct of the above superconvergence study, the expected order of the
post-processed solution is obtained when a special initial solution is used. Some numerical
experiments are also given.

Keywords Hyperbolic equation · Runge–Kutta discontinuous Galerkin method · L2-norm
stability · Superconvergence · Post-processing

1 Introduction

In this paper, we shall study the superconvergence property of the explicit Runge–Kutta
discontinuous Galerkin (RKDG) method with the upwind-biased numerical flux for solving
the linear hyperbolic equation

Ut + βUx = 0, x ∈ I = (0, 1), t ∈ (0, T ], (1.1)
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equipped with the initial solution U (x, 0) = U0(x) and the periodic boundary condition.
Here T > 0 is the final time. For simplicity, we assume in this paper that β is a positive
constant. We remark that there is no essential difficulty to extend the above context to multi-
dimensional problems and to variable-coefficient linear problems.

The discontinuous Galerkin (DG) method was first introduced by Reed and Hill [31], and
then developed byCockburn et al. [15,16,18–20] in the framework of explicit RKDGmethods
for solving time-dependent nonlinear hyperbolic conservation laws. Due to its flexibility in
implementation and good numerical performance, especially on high order accuracy for
smooth solutions and high resolution for discontinuities, this method has attracted increased
attention in recent years. For more details, one can refer to [13,21] and the references therein.
However, in contrast to its wide applications, theoretical results are not plenty. Even when
restricted to linear hyperbolic equations,many theoretical works havemainly been carried out
for the semi-discrete DGmethod, for example, the stability and optimal error estimate [14,28,
33], the superconvergence analysis [2–5,7,9,10,25,39], and the post-processing [17,26,32].
In this paper, we continue the work in [37,38] and investigate superconvergence properties
of RKDG methods with arbitrary orders and stages, when solving the model problem (1.1).
Superconvergence orders in space, together with the optimal order in time, will be shown for
the numerical flux, the cell average, as well as the solution and derivative at some discrete
points.

To achieve the above goals, we have to address two key points. One is the L2-norm
stability analysis for the fully-discrete RKDG method. It is well known that this cannot
be directly obtained under the strong stability preserving (SSP) framework [24], since the
DG method combined with forward Euler time-marching is not stable under the standard
CFL condition for piecewise linear or higher degree polynomials. Hence we need to find
another way to recover the stability performance in theory. In [40,41], Zhang and Shu have
derived the optimal error estimate for the second order and third order RKDG methods
when solving the sufficiently smooth solution of nonlinear conservation laws. The L2-norm
stability is implicitly presented in [40,41] for the linear hyperbolic equation. Recently, Xu
et al. [38] have proposed an analysis framework of L2-norm stability for linear hyperbolic
equations, and have made a classification on the different stability performance for many
RKDG methods of time order up to twelve. Specially, it is proved theoretically that the four
stage fourth order RKDG method is actually stable under the standard CFL condition. The
main technique is to rewrite the RKDG scheme into an equivalent representation by using the
temporal differences of the stage solutions, and then carry out a matrix transferring process
with the aid of computer, in order to automatically obtain a delicate energy equation that can
essentially reveal the stability mechanism of the higher order RKDG method. Similar work
has also been given by Sun and Shu [35] for the Runge–Kutta algorithms to solve ordinary
differential equations with semi-negative operators. After that, the authors [37] have found
the relationship between the multiple-steps and the single-step time-marching, which allows
us to avoid a detailed computer-aided calculation on the evolution vector. Hence the matrix
transferring process for multiple-step time-marching is not necessary to be carried out.

Another key point is how to define the reference functions [37,40,41] and the technique
of correction functions [2,7] at each time stage. The purpose of this paper is to verify in
theory that the time discretization does not destroy the superconvergence performance. To
this purpose, we have to overcome two technical difficulties. One is the definition of reference
functions at every time stage, under the almost same regularity assumption as that in the semi-
discrete method. This issue has been addressed in [37], where the optimal error estimate is
obtained for the fourth order RKDG method and the additional regularity assumption solely
depends on the time order, independent of the number of stages. The basic idea is the cutting
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treatment on the original reference functions proposed in [40,41]. The other is the definition
of the correction function without too much regularity requirement on the exact solution. To
that end, we propose in this paper an incomplete correction technique for the above reference
functions.

It is worthy mentioning that the technique of correction functions is important in the
development of superconvergence analysis for DG methods. Below we recall some impor-
tant works related to this issue, mainly restricted to the semi-discrete DG method for one
dimensional problems. Cheng and Shu [10] proved the (k + 3/2)th order supraconvergence
between the numerical solution and a particular projection of the exact solution for the linear
hyperbolic equation, and then Meng et al. [29] extended this result to the nonlinear con-
servation law if the flow speed keeps its sign. Here and below k is the degree of piecewise
polynomials. The word supraconvergence is used to mean the supercloseness of the numer-
ical solution and a special function in the finite element space, in order to distinguish with
the word superconvergence. For the linear hyperbolic equation, Yang and Shu [39] improved
the work of [10] and proved the (k + 2)th order superconvergence at the downwind-biased
Radau points with a suitable initial discretization, when the purely upwind numerical flux is
used. As a milestone in this issue, Cao et al. [7] firstly adopted the technique of correction
functions for the linear hyperbolic equation and proved the (2k + 1)th order supraconver-
gence of the numerical solution towards a particular function in the finite element space. As
an application of this technique, the superconvergence results with respect to the cell average,
the numerical flux, the solution at the right Radau points, and the derivative at the left Radau
points were established in a uniform framework. After that, this correction technique has
been implemented to many problems; see [2–6] for an incomplete list of references.

In this paper we shall investigate the superconvergence property for the fully discrete
RKDG method. Although the technique of correction functions is inherited from [2,7] for
the semi-discrete DG method, some improvements are achieved on several issues. Firstly,
we make a minor modification to the definition of correction functions, such that the super-
convergence property can be correctly reduced for the non-uniformmesh and upwind-biased
parameter. Secondly, the smoothness requirement on the exact solution is weakened, with
the help of the Bramble-Hilbert lemma, instead of the Legendre expansion. In this paper, we
only require the initial solution and its derivatives up to themin(2k+2, r+1)-th order belong
to L2(I ), rather than L∞(I ). Here r is the temporal order of the RKDG method. Thirdly,
some tedious treatments are presented to preserve the optimal order in time under the mild
regularity assumption that is independent of the number of stages of the RKDG methods.
Finally, by making a full use of the superconvergence results and the properties of divided
differences, we are able to avoid the duality arguments [17] and present a new proof of the
accuracy-enhancement of a post-processed solution when a special initial solution is taken.

The rest of the paper is organized as follows. In Sect. 2, we give the definition of the RKDG
scheme and its equivalent representation by the temporal difference of the stage solutions.
In Sect. 3, we recall the matrix transferring process and quickly set up the propositions of
the termination index and the contribution index, which lead to different stability results.
Section 4 is the main part of paper, in which we establish the supraconvergence results for
the solution and its derivative, both (2k + 1)th order in space and r th order in time, if the
initial solution is smooth enough. In Sect. 5, we present the superconvergence results in the
discrete L2-norm, including the numerical flux, the cell average, as well as the solution and
the derivative, respectively, at the roots and the extrema of some Radau-type polynomials. As
a byproduct, in Sect. 6 we give a new proof for the superconvergence result for post-processed
solutions. Some numerical experiments are given in Sect. 7, and the concluding remarks are
given in Sect. 8. Finally, the supplement of three technical issues are given in the appendix.
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There are many notations in this paper. To help the readers better understand this paper,
we list here some main important notations with short descriptions.

s, r , k The RKDG(s, r , k) method
m Number of multiple-steps
α(m) Evolution vector
D�(m)un Temporal difference of stage solutions
ζ(m), ρ(m) The termination index, and the contribution index
m� The minimum of integers m such that ζ(m) = ρ(m)

ψr Quantity to quickly judge stability performance; see (3.17)
q Total number of correction manipulations in time-marching
qnt Total number of correction manipulations for the initial solution
σ Maximal order of derivative in reference functions

U (�)
[σ ](x, t), 	

(�)
[σ ](x, t) Reference function at the �th stage, and the corresponding truncation error in time

Un,� Reference function at each time stage, defined as U (�)
[r ] (x, tn)

Wn,� Truncated reference function at each time stage, defined as U (�)
[min(q,r)](x, tn)

zn,�, zn,�
c , zn,�

d Arbitrary series zn,� and their combinations; see (4.8)
χn,� One stage function in the finite element space
en,�, ξn,�, ηn,� Stage error and its decomposition en,� = ξn,� − ηn,�; see (4.10)
Zn,�(v) Functional to determine the residual of stage error; see (4.12)
Ph ,P⊥

h L2 projection and the projection error
Gh ,G⊥

h GGR projection and the projection error
Fp The pth correction operator; see (4.19)
D

−1
h The antiderivative in each element; see (4.20)

R j,k+1 The parameter-dependent Radau polynomial of degree k + 1 on I j
ri j , n

R
j Roots of R j ,k+1, and the total number of roots on I j

li j , n
L
j Eextrema of R j ,k+1, and the total number of extrema on I j

Ch ,C⊥
h Parameter-dependent local projection and the projection error

|||·|||L2(SBh )
, |||·|||L∞(SBh )

Discrete L2 (resp. L∞) norm at element boundary points

|||·|||L2(SEh )
, |||·|||L∞(SEh )

Discrete L2 (resp. L∞) norm at element midpoints

|||·|||L2(SRh )
, |||·|||L∞(SRh )

Discrete L2 (resp. L∞) norm at roots of every R j,k+1

|||·|||L2(SLh )
, |||·|||L∞(SLh )

Discrete L2 (resp. L∞) norm at extrema of every R j,k+1

∂�
h The �th order divided difference

K 2k+1,k+1
h Kernel function for post-processing

2 The RKDGMethod

In this section, we first present for the model problem (1.1) the RKDG method in the Shu-
Osher form [34], and then write it into the equivalent representation [38] by the help of the
temporal difference of the stage solutions.

2.1 Discontinuous Finite Element Space

LetTh = {I j = (x j−1/2, x j+1/2)}1≤ j≤J be a partition of the spatial domain I = (0, 1), where
J ∈ Z

+ = {1, 2, 3, . . .} is an integer. The length of the element I j is h j = x j+1/2 − x j−1/2

for j = 1, 2, . . . , J . Denote h = hmax = max1≤ j≤J h j and hmin = min1≤ j≤J h j . In this
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paper we assume that the partition is quasi-uniform, namely, the ratio hmax/hmin is upper
bounded by a fixed constant as h goes to zero.

Associated with the partition Th , the discontinuous finite element space is defined as

Vh = V k
h ≡ {v ∈ L2(I ) : v|I j ∈ Pk(I j ), j = 1, . . . , J }, (2.1)

where Pk(I j ) is the space of polynomials in I j of degree atmost k ≥ 1.Note that the functions
in Vh are allowed to have discontinuities at element endpoints. Dropping the subscript j+1/2
for convenience, the jump and the weighted average are respectively denoted by

[[v]] = v+ − v−, {{v}}(θ) = θv− + (1 − θ)v+, (2.2)

where v− and v+, respectively, are the left- and right-limit, and θ is a given constant.
Some inverse inequalities are used in this paper. Namely, for any v ∈ Vh there hold

‖vx‖L2(I ) ≤ μh−1 ‖v‖L2(I ) , ‖v‖L2(Γh)
≤ μh− 1

2 ‖v‖L2(I ) , ‖v‖L∞(I ) ≤ μh− 1
2 ‖v‖L2(I ) ,

(2.3)
where the inverse constant μ > 0 is independent of h and v. Here ‖·‖L2(I ) and ‖·‖L∞(I )

respectively are the usual norms in L2(I ) and L∞(I ), and

‖vx‖L2(I ) =
⎧
⎨

⎩

∑

1≤ j≤J

∫

I j
(vx )

2dx

⎫
⎬

⎭

1
2

, ‖v‖L2(Γh)
=

⎧
⎨

⎩

∑

1≤ j≤J

1

2

[(
v−
j+ 1

2

)2 +
(
v+
j− 1

2

)2]
⎫
⎬

⎭

1
2

,

with Γh being the set of all element endpoints. For more discussions, one can refer to [12,30].

2.2 Semi-discrete DG Scheme

The semi-discrete DGmethod for (1.1) is defined as follows. Find the map u(x, t) : [0, T ] →
Vh , such that

(ut , v) = H(u, v), ∀ v ∈ Vh, (2.4)

holds for any time t ∈ (0, T ], and a suitable initial solution is enforced at t = 0. Here

H(u, v) =
∑

1≤ j≤J

[∫

I j
βuvxdx + β{{u}}(θ)

j+ 1
2
[[v]] j+ 1

2

]

(2.5)

is the DG spatial discretization with respect to the periodic boundary condition, and (·, ·) is
the inner product in L2(I ). In this paper we demand θ > 1/2 such that β{{u}}(θ)

j+1/2 forms
an upwind-biased numerical flux, since β > 0. Actually, when θ = 1 it yields the purely
upwind flux.

The following important propertieswill be repeatedly used later in our analysis. The proofs
are straightforward and hence are omitted. Please refer to [38] for more details.

Lemma 2.1 For the DG spatial discretization H(·, ·), we have the following conclusions.

1. There holds the approximate skew-symmetric property, namely

H(w, v) + H(v,w) = −2β
(
θ − 1

2

) ∑

1≤ j≤J

[[w]] j+ 1
2
[[v]] j+ 1

2
, ∀ w, v ∈ Vh,

which implies H(w,w) = −β
(
θ − 1

2

)
‖[[w]]‖2L2(Γh)

, for any w ∈ Vh;
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2. There holds the nonpositive property, namely
∑

i, j∈G
gi jH(wi , w j ) ≤ 0, wi ∈ Vh,

where {gi j }i, j,∈G forms a symmetric positive semidefinite matrix, and G is an arbitrary
index set for the row number and column number.

3. There holds the weak boundedness in Vh × Vh, namely

|H(w, v)| ≤ C |β|h−1 ‖w‖L2(I ) ‖v‖L2(I ) , ∀ w, v ∈ Vh,

where the bounding constant C > 0 solely depends on θ and μ.

2.3 Fully-Discrete RKDGMethod

The explicit Runge–Kutta algorithm is widely used to solve (2.4); see, e.g., [22–24] and
the references therein. In this paper this kind of fully-discrete method is named as the
RKDG(s, r , k)method,where s and r are the stage number and time order of theRunge–Kutta
algorithm, and k is the degree of piecewise polynomials in Vh .

For any M ∈ Z
+, let {tn = nτ }0≤n≤M be a uniform partition of the time interval [0, T ],

where τ is the time step. In this paper the time step is taken to be a constant just for simplicity.
For the RKDG(s, r , k) method, each time-marching from tn to tn+1 is generally given in the
Shu-Osher form [34]:

• Let un,0 = un .
• For � = 0, 1, . . . , s−1, successively find the stage solution un,�+1 through the following

variational formula

(un,�+1, v) =
∑

0≤κ≤�

[
c�κ (un,κ , v) + τd�κH(un,κ , v)

]
, ∀v ∈ Vh, (2.6)

where the parameters c�κ and d�κ are given constants, determined by the used Runge–
Kutta algorithm; noting that d�� �= 0 and

∑
0≤κ≤� c�κ = 1.

• Let un+1 = un,s .

The initial solution u0 ∈ Vh is given as the suitable approximation of U0. The detailed
definition will be given for different purposes; see Sects. 4 and 5 below.

2.4 Equivalent Representation of the RKDGMethod

Following [37,38,41], we set up an equivalent representation of the RKDG method by using
the temporal differences of the stage solutions.

Sometimes we need to investigate the numerical performance for multiple-step time-
marching of RKDG methods. To do that, we introduce for any integers n ≥ 0 and κ ≥ 0 the
notations

un+κ,� = un,κs+�, � = 0, 1, . . . , s − 1. (2.7)

Let m ∈ Z
+. The m steps time-marching of an RKDG(s, r , k) method with time step τ can

be looked upon as a single step time-marching of the RKDG(ms, r , k) method with time step
mτ , in which each stage marching can be written in the form

(un,�+1, v) =
∑

0≤κ≤�

[
c�κ (m)(un,κ , v) + mτd�κ (m)H(un,κ , v)

]
, ∀v ∈ Vh, (2.8)
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where � = 0, 1, . . . ,ms − 1. Here the parameters c�κ (m) and d�κ (m) are determined by the
given parameters c�κ (1) = c�κ and d�κ (1) = d�κ .

In this paper, we always denoteD0(m)un = un for simplicity of notation. For 1 ≤ � ≤ ms,
the temporal difference of the stage solution

D�(m)un =
∑

0≤κ≤�

σ�κ(m)un,κ (2.9)

is recursively defined by the variational form

(D�(m)un, v) = mτH(D�−1(m)un, v), ∀ v ∈ Vh . (2.10)

It is easy to see that the combination coefficients satisfyσ��(m) �= 0 and
∑

0≤κ≤� σ�κ(m) = 0.
This process can be implemented by some suitable linear combination of the variational
formulas at different time stages.

In the meanwhile, the above definitions lead to the evolution equation

α0(m)un+m =
∑

0≤i≤ms

αi (m)Di (m)un, (2.11)

which is an equivalent representation of the RKDGmethod. Hereα0(m), α1(m), . . . , αms(m)

are constants, and α0(m) > 0 is used only for scaling such that all components are integers.
It is only needed for easier computer implementation. In the theoretical analysis, we often
take α0(m) = 1. For the convenience of notations, we would like to express (2.11) by the
so-called evolution vector

α(m) = (α0(m), α1(m), . . . , αms(m)). (2.12)

In addition, we define αi (m) = 0 for i > ms.
In the next lemma, we would like to point out that it is not necessary to carry out a tedious

manipulations to write down the detailed formulation of (2.8) and/or (2.11) for multiple-
step time-marching of RKDG methods. To show that, associated with α(m) we define the
generating polynomial

p(m)(z) =
∑

0≤i≤ms

αi (m)

α0(m)
zi , (2.13)

and denote the offsets by α̃i (m) = αi (m)/α0(m) − 1/i ! for i ≥ 0.

Lemma 2.2 Every evolution vector α(m) can be obtained from α(1), due to the following
identity

p(m)(z) =
[
p(1)

( z

m

)]m
.

Furthermore, we have α̃i (m) = 0 for 0 ≤ i ≤ r , and α̃r+1(m) = α̃r+1(1)/mr .

This is a trivial extension of the results in [37], which is given for the fourth order RKDG
method. The proof is almost the same, so it is omitted here.

3 Stability Analysis

In this section we investigate the L2-norm stability of the RKDGmethods, following [37,38].
The main technique is to carry out a matrix transferring process to set up a sufficiently good
energy equation, showing explicitly by the termination index, the contribution index, and the
sign of the central objective.
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3.1 Matrix Transferring Process

Squaring and integrating on both sides of the evolution equation (2.11), we can get the initial
energy equation. However, the stability mechanism of the DG spatial discretization (see
Lemma 2.1) is not well reflected.

To fully explore the positive contribution of the spatial discretization, we would like to
execute the matrix transferring process through a series of energy equations

[α0(m)]2
[ ∥
∥un+m

∥
∥2
L2(I ) − ∥

∥un
∥
∥2
L2(I )

]
= RHS(�) ≡ TM(�) + SP(�), (3.1)

where � ≥ 1 is the sequence number of the matrix transferring, and

TM(�) =
∑

0≤i≤ms

∑

0≤ j≤ms

a(�)
i j (m)(Di (m)un,D j (m)un),

SP(�) = mτ
∑

0≤i≤ms

∑

0≤ j≤ms

b(�)
i j (m)H(Di (m)un,D j (m)un), (3.2)

respectively represent the time discretization information and the spatial discretization infor-
mation. They are equivalently expressed by two symmetric matrices

A
(�)(m) = {

a(�)
i j (m)

}

0≤i, j≤ms and B
(�)(m) = {

b(�)
i j (m)

}

0≤i, j≤ms .

The matrix transferring process is defined as follows. Let � ≥ 1 be the sequence num-
ber, and assume both A

(�−1)(m) and B
(�−1)(m) have been known. If the central objective

a(�−1)
�−1,�−1(m) �= 0, we define the termination index

ζ(m) = � − 1, (3.3)

and stop the process. Otherwise, we make the following manipulation such that the time
discretization information, corresponding to the (� − 1)th row and column of A(�−1)(m),
is completely transformed into the space discretization information. Owing to the symme-
try property of matrices, below we only present the manipulations in the lower triangular
matrices. Assuming i ≥ j , the formulations are given in the form

a(�)
i j (m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, j = � − 1,
a(�−1)
i j (m) − 2a(�−1)

i+1, j−1(m), i = � and j = �,

a(�−1)
i j (m) − a(�−1)

i+1, j−1(m), � + 1 ≤ i ≤ ms − 1 and j = �,

a(�−1)
i j (m), otherwise,

(3.4a)

b(�)
i j (m) =

{
2a(�−1)

i+1, j (m), � − 1 ≤ i ≤ ms − 1 and j = � − 1,

b(�−1)
i j (m), otherwise,

(3.4b)

where the relationship (2.10) is used. See [38] for more discussions.
Recalling the initial energy equation, we define two matrices A(0)(m) and B

(0)(m) with
the entries

a(0)
i j (m) =

{
0, i = j = 0,
αi (m)α j (m), otherwise,

b(0)
i j (m) = 0, (3.5)

in addition. Since a(0)
00 (m) ≡ 0, the transform is done at least once. This implies ζ(m) ≥ 1.

A careful observation on (3.4a) reveals that the kernel information in TM(ζ(m)) can be
explicitly expressed by the evolution vector α(m). The related formulations are collected in
the following lemma; see [37, Propositions 3.1 and 3.2] for more details.
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Lemma 3.1 For 0 ≤ j ≤ ζ(m), we have

a( j)
i j (m) =

∑

0≤κ≤ j

(−1)καi+κ (m)α j−κ (m), j < i ≤ ms. (3.6)

Also we have a(0)
00 (m) = 0 and

a( j)
j j (m) =

∑

− j≤κ≤ j

(−1)κα j+κ (m)α j−κ (m), 1 ≤ j ≤ ζ(m). (3.7)

Furthermore, we have a(ζ(m))
i j (m) = 0 provided min(i, j) < ζ(m).

The results given in [37] can be extended from the fourth order RKDG methods into
arbitrary order RKDG methods, along the same line.

Proposition 3.1 For m ∈ Z
+, we have ζ(m) ≡ ζ ≥ �r/2
+1 and a(ζ )

ζ ζ (m)a(ζ )
ζ ζ (1) > 0. Here

�r/2
 denotes the maximal integer not greater than r/2.
Proof This can be proved by the generating polynomial. If p(m)(z)p(m)(−z) = ∑

0≤i≤ms

g2i (m)z2i , then it follows from (3.7) that

a( j)
j j (m) = (−1) j [α0(m)]2g2 j (m), 1 ≤ j ≤ ζ(m). (3.8)

For 1 ≤ j ≤ �r/2
, using (3.7) again we have

a( j)
j j (m)

[α0(m)]2 = (−1) j

(2 j)!
∑

− j≤κ≤ j

(−1) j+κ (2 j)!
[2 j − ( j + κ)]!( j + κ)! = (−1) j

(2 j)! (1 − 1)2 j = 0,

since Lemma 2.2 clearly states α j±κ (m) = 1/( j ± κ)! for 0 ≤ j ± κ ≤ r . Owing to

the definition of the termination index ζ(m), the central objective a(ζ(m))

ζ(m)ζ(m)(m) is the first
nonzero diagonal entry in the matrix transferring process. Hence ζ(m) ≥ �r/2
 + 1, and

p(m)(z)p(m)(−z) = 1 + (−1)ζ(m)

[α0(m)]2 a
(ζ(m))

ζ(m)ζ(m)(m)z2ζ(m) + · · · . (3.9)

On the other hand, using Lemma 2.2 and (3.9) with m = 1, we have

p(m)(z)p(m)(−z) =
[
p(1)

( z

m

)
p(1)

(
− z

m

)]m =
[
1 + (−1)ζ(1)

[α0(1)]2
a(ζ(1))
ζ(1)ζ(1)(1)

( z

m

)2ζ(1) + · · ·
]m

= 1 + (−1)ζ(1)

[α0(1)]2
(
m

1

)
1

m2ζ(1)
a(ζ(1))
ζ(1)ζ(1)(1)z

2ζ(1) + · · · . (3.10)

Comparing with the order and coefficient of (3.9) and (3.10), we have ζ(m) = ζ(1) = ζ and

a(ζ )
ζ ζ (m) = 1

m2ζ−1

[α0(m)]2
[α0(1)]2 a

(ζ )
ζ ζ (1). (3.11)

That is to say, a(ζ )
ζ ζ (m) and a(ζ )

ζ ζ (1) have the same signs. This completes the proof of this
proposition. ��

By (3.4b) and (3.6) in Lemma 3.1, each entry in the ζ(m)th order leading principal
symmetric submatrix of B(ζ(m))(m) can be explicitly expressed by

b(ζ(m))
i j (m) = 2a( j)

i+1, j (m) = 2
∑

0≤κ≤ j

(−1)καi+1+κ (m)α j−κ (m), (3.12)
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where 0 ≤ j ≤ i ≤ ζ(m) − 1.
The contribution index of the spatial DG discretization is defined by

ρ(m) = min{κ : κ ∈ BI (m) ∪ {ζ(m)}}, (3.13)

where

BI (m) =
{
κ : 0 ≤ κ ≤ ζ(m) − 1 and det

{
b(ζ(m))
i j (m)

}

0≤i, j≤κ
≤ 0

}
.

This index implies that the ρ(m)th order leading principal submatrix of B(ζ(m))(m) is sym-
metric positive definite. If BI (m) = ∅, then ρ(m) = ζ(m).

Proposition 3.2 There holds ρ(m) ≥ �(r + 1)/2
.
Proof Let 0 ≤ i, j ≤ �(r − 1)/2
. Since i + j + 1 ≤ r , each element in the right-hand side
of (3.12) is clearly determined by Lemma 2.2. By the same manipulation as that in [37], we
can obtain

b(ζ(m))
i j (m) = 2[α0(m)]2 1

i ! j !(i + j + 1)
. (3.14)

Please refer to [37] for more details. The �(r + 1)/2
th order leading principal submatrix of
B

(ζ(m))(m) is symmetric positive definite, since it is congruent to a Hilbert matrix with a diag-
onal transform matrix made up of

√
2α0(m)/i !. This completes the proof of this proposition.

��
Proposition 3.3 There exists an integer m� ≥ 1 such that ρ(m) = ζ(m) for m ≥ m�.

Proof Along the same line as that for (3.14) we have

b(ζ(m))
i j (m) = 2[α0(m)]2

[
1

i ! j !(i + j + 1)
+ b̃(ζ(m))

i j (m)

]

, (3.15)

for 0 ≤ j ≤ i ≤ ζ(m) − 1, where

b̃(ζ(m))
i j (m) =

∑

0≤κ≤ j

(−1)κ
[

1

(i + 1 + κ)! α̃ j−κ (m) + α̃i+1+κ (m)
1

( j − κ)! + α̃i+1+κ (m)α̃ j−κ (m)

]

.

We can announce that b̃(ζ(m))
i j (m) goes to zero as m increases, because the offset satisfies

|α̃�(m)| ≤ Cm−r , 0 ≤ � ≤ 2ζ(m) − 1, (3.16)

where the bounding constant C > 0 is independent of m. The detailed proof of (3.16) will
be given in the appendix.

As a result, the ζ(m)th order leading principal submatrix of B(ζ(m))(m) can be looked
upon as a perturbation of a symmetric positive definite matrix, which is also congruent to a
ζ(m)-th order Hilbert matrix. Hence this lemma is proved. ��

For many popular RKDG methods, we do not need to make the above discussion in order
to find out the above important information for each m. The stability performance can be
quickly judged by the following quantity

ψr =
{

α̃r+2(1) − α̃r+1(1) if r is even,

α̃r+1(1), if r is odd,
(3.17)

when it is not equal to zero.
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Remark 3.1 Note that α̃r+1(1) �= 0 for the r th order RKDG methods. Hence ψr �= 0 always
holds for odd r . However, it may happen thatψr = 0 for even r . If so, the matrix transferring
process for m = 1 is needed. In the following we will not pay more attention to this case.

Proposition 3.4 Assume ψr �= 0. There holds ζ = �(r + 2)/2
 and (−1)ζ ψr · a(ζ )
ζ ζ (1) > 0.

Proof By means of ez = ∑
i≥0

1
i ! z

i , it follows from Lemma 2.2 that

p(1)(z) = ez + α̃r+1(1)z
r+1 + α̃r+2(1)z

r+2 + · · · ,

which also implies

p(1)(z)p(1)(−z) = 1 + [e−z + (−1)r+1ez ]α̃r+1(1)z
r+1 + [e−z + (−1)r+2ez ]α̃r+2(1)z

r+2 + · · ·
= 1 + α̃r+1(1)[(−1)r+1 + 1]zr+1 + [α̃r+1(1) − α̃r+2(1)][(−1)r+1 − 1]zr+2 + · · · .

Comparing this identity with (3.9), we are able to prove this proposition. ��
Proposition 3.5 Let m� ∈ Z

+ be the integer stated in Proposition 3.3, and assume ψr �= 0.
Then for odd r we have m� = 1, and for even r we have

m� = min

{

m ∈ Z
+ : [(r/2)!]2

(r + 1)!r ! + 1

mr
α̃r+1(1)(−1)

r
2 > 0

}

. (3.18)

Proof It follows from Propositions 3.2 and 3.4 that

�(r + 1)/2
 ≤ ρ(m) ≤ ζ(m) = ζ = �(r + 2)/2
.
For odd r , this conclusion impliesm� = 1 since �(r + 1)/2
 = �(r + 2)/2
. For even r , this
also implies that ρ(m) ≥ ζ − 1.

Hence, to achieve ρ(m) = ζ = r/2 + 1 for even r , we only need to ensure
det{b(ζ )

i j (m)}0≤i, j≤ζ−1 > 0. Note that i + j + 1 > r happens only when i = j = ζ − 1.

Therefore, in (3.15) there holds b̃(ζ )
i j (m) = 0 almost everywhere, except

b̃(ζ )
ζ−1,ζ−1(m) = (−1)ζ−1α̃2ζ−1(m) = 1

mr
α̃r+1(1)(−1)

r
2 .

Note that Lemma 2.2 is used at the last step. By the formulation for the determinants of
Hilbert matrices [11], we have

det{b(ζ )
i j }0≤i, j≤ζ = [2α2

0(m)]ζ [1!2! · · · (ζ − 2)!]2
1!2! · · · (2ζ − 3)!

{ [(r/2)!]2
(r + 1)!r ! + 1

mr
α̃r+1(1)(−1)

r
2

}

.

For more details to get this equality, please refer to [37]. We have now completed the proof
of this proposition. ��
Remark 3.2 There holds α̃r+1(1) = −1/(r + 1)! for the RKDG(r , r , k) method. Proposi-
tion 3.5 shows m� = 1 for r �≡ 0 (mod 4), and m� = 2 for r ≡ 0 (mod 4).

3.2 Stability Conclusions

In this subsection we would like to point out three kinds of stability performance for those
RKDG methods satisfying ψr �= 0.

Following the line of analysis in [37,38], we can have the following extending conclusions.
Propositions 3.3 and 3.1 imply ρ(m) = ζ(m) = ζ form ≥ m�. Using the relationship (2.10)
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among the temporal differences of stage solutions, as well as the weak boundedness of the
DG discretization (see Lemma 2.1), we can conclude for any 0 ≤ i ≤ j ≤ ms that

∥
∥D j (m)un

∥
∥
L2(I ) ≤ C(m)λ j−i

∥
∥Di (m)un

∥
∥
L2(I ) , (3.19)

where the bounding constant C(m) > 0 is independent of n, h, τ and u. This, together with
the Cauchy-Schwarz inequality, yields

TM(ζ ) ≤
[
a(ζ )
ζ ζ (m) + Qm(λ)

] ∥
∥Dζ (m)un

∥
∥2
L2(I ) ,

where λ = |β|τh−1 is the CFL number. Here and below Qm(λ) represents a generic poly-
nomial satisfying Qm(0) = 0.

Because the ζ th order leading principal submatrix of B(ζ )(m) is symmetric positive defi-
nite, its smallest eigenvalue, denoted by ε(m), is positive. By the previous two conclusions
in Lemma 2.1, and the second inverse inequality in (2.3), we get

SP(ζ ) ≤ − 1

2
mτβε(m)

(
θ − 1

2

) ∑

0≤�≤ms−1

∥
∥[[D�(m)un ]]∥∥2L2(Γh )

+ ε−1(m)Qm (λ)
∥
∥Dζ (m)un

∥
∥2
L2(I ) ,

where the Cauchy-Schwarz inequality and Young’s inequality are also used. Here the first
term on the right-hand side of SP(ζ ) explicitly shows the stability mechanism of the DG
discretization.

Summing up the above conclusions, we have

[α0(m)]2
[ ∥
∥un+m

∥
∥2
L2(I ) − ∥

∥un
∥
∥2
L2(I )

]
≤

[
a(ζ )
ζ ζ (m) + Qm(λ)

] ∥
∥Dζ (m)un

∥
∥2
L2(I ) , (3.20)

for any m ≥ m�. For more details, please refer to [37,38].

Theorem 3.1 If (−1)�r/2
+1ψr < 0, the RKDG(s, r , k) method has the strong (boundedness)
stability. That is, there exists an integer m� ∈ Z

+, such that
∥
∥un

∥
∥
L2(I ) ≤ ∥

∥u0
∥
∥
L2(I ) , n ≥ m�,

provided the CFL number λ = |β|τh−1 is smaller than a certain constant. Moreover, if
m� = 1 is admitted, the monotonicity stability is achieved, namely,

∥
∥un+1

∥
∥
L2(I ) ≤ ∥

∥un
∥
∥
L2(I ) , n ≥ 0.

Proof Since (−1)�r/2
+1ψr < 0, Proposition 3.4 implies a(ζ )
ζ ζ (m) < 0. It follows from (3.20)

that
∥
∥un+m

∥
∥2
L2(I ) ≤ ∥

∥un
∥
∥2
L2(I )

provided λ ≤ λmax(m). If m� = 1, this obviously implies the monotonicity stability. If
m� > 1, we take m = m�,m� + 1, . . . , 2m� − 1, and get the strong (boundedness) stability.
We have now completed the proof of this theorem. ��
Theorem 3.2 If (−1)�r/2
+1ψr > 0, the RKDG(s, r , k) method has the weak(γ ) stability
with

γ = 2�(r + 2)/2
.
That is, there exists a bounding constantC > 0 depending on the final time T and independent
of u, such that

∥
∥un

∥
∥
L2(I ) ≤ C

∥
∥u0

∥
∥
L2(I ) , n ≥ 0,
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Table 1 Stability results for the RKDG(r , r , k) and RKDG(r + 1, r , k) methods

r (mod 4) 1 2 3 0

Stability for k ≥ 0 Weak(r + 1) Weak(r + 2) Monotonicity Strong, m� = 2

Strong for k ≤ �r/2
 �r/2
 ∞ ∞
Monotonicity for k ≤ �r/2
 �r/2
 ∞ �r/2
 − 1

provided that the time step satisfies a strong restriction τ = O(hγ /(γ−1)).

Proof Since (−1)�r/2
+1ψr > 0, Proposition 3.4 implies a(ζ )
ζ ζ (m�) > 0. It follows from

(3.20) that

[α0(m�)]2
[ ∥
∥un+m�

∥
∥2
L2(I ) − ∥

∥un
∥
∥2
L2(I )

]
≤ C(m�)λ

2ζ
∥
∥un

∥
∥2
L2(I ) ,

where the bounding constant C(m�) > 0 is independent of n, h and τ . An application of
Gronwall’s inequality gives us this theorem for n ≡ 0 (mod m�). Using (3.19) and the
triangle inequality, we can easily see that

∥
∥un+κ

∥
∥
L2(I ) ≤ C(m�)

∥
∥un

∥
∥
L2(I ) , 0 ≤ κ ≤ m� − 1,

where the bounding constant C(m�) > 0 is also independent of n, h, τ and u. We can then
complete the proof of this theorem by collecting the above conclusions. ��

In practice, the studyon the stability under a suitableCFLcondition is extremely important.
For the piecewise polynomials of lower degree, we have the following theorem.

Theorem 3.3 For the RKDG(s, r , k) method, some improved stability holds for the piecewise
polynomials of lower degree.

1. There holds the monotonicity stability provided k ≤ �r/2
 − 1;
2. There holds the strong (boundedness) stability provided k ≤ �r/2
. If m� = 1 is admitted,

the strong (boundedness) stability is improved to be the monotonicity stability.

Proof Recalling the result in [38, Theorem 5.1] that the RKDG(ms, r , k) method has the
monotonicity stability for k ≤ ρ(m)− 1, where the jump’s square on element endpoints (the
stability mechanism of the semi-discrete DGmethod) plays an important role. As a corollary
of Propositions 3.1 through 3.3, we can complete the proof of this theorem. ��

Theorem 3.3 implies that the RKDG(s, r , k) method always has the L2-norm stability
under a suitable CFL condition, if r ≥ 2k + 1. It is good for the superconvergence study
below.

To conclude this section, the L2-norm stability results for the RKDG(s, r , k) method [23]
are listed in Table 1, where s = r or s = r + 1. They are given by Theorems 3.1 through 3.3.

4 Supraconvergence Analysis

In this sectionwe devote to establishing the supraconvergence property of the RKDGmethod,
starting from the stability result in the previous section. The main tools are the reference
functions and the technique of correction functions at different time stages.

For the convenience of notations, in what follows we would like to use the notation C to
denote those generic constants independent of n, h, τ, u, and U .
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4.1 Elemental Analysis Process

Following [37] we set up an elemental analysis process on the error estimate for the fully-
discrete RKDG method.

4.1.1 A General Stability

The stability results in Theorems 3.1 through 3.3 can be extended to the nonhomogeneous
problem. For simplicity of notations, the numerical solution is still denoted by u. Similarly
as (2.6), at each time-marching there holds

(un,�+1, v) =
∑

0≤κ≤�

{
c�κ (un,κ , v) + τd�κ

[
H(un,κ , v) + ( f n,κ , v)

]}
, ∀v ∈ Vh, (4.1)

for � = 0, 1, . . . , s − 1. Here f n,� is the given source term.
Along the same line as the discussion for the homogeneous problem, we can easily obtain

the following lemma. To shorten the length of this paper, the proof is omitted.

Lemma 4.1 Under the temporal-spatial condition as stated in Theorems 3.1 through 3.3,
there holds

∥
∥un

∥
∥2
L2(I ) ≤ C

⎧
⎨

⎩

∥
∥u0

∥
∥2
L2(I ) + τ

∑

0≤κ<n

∑

0≤�<s

∥
∥
∥ f κ,�

∥
∥
∥
2

L2(I )

⎫
⎬

⎭
, (4.2)

where the bounding constant C > 0 is independent of n, h, τ, f , and u.

4.1.2 The Reference Functions

Wenowextend the idea in [37] and define a series of reference functions. Below the arguments
x and t may be dropped if it does not cause confusion.

Given an integer σ satisfying 0 ≤ σ ≤ r , and letU (0)
[σ ] = U be the exact solution of (1.1).

The others are inductively defined. Let us assume for the sake of argument that the previous
reference functions U (κ)

[σ ] , for 0 ≤ κ ≤ �, have been defined well and expanded in the form

U (κ)
[σ ] =

∑

0≤i≤min(σ,κ)

γ
(κ)
i[σ ]τ

i∂ it U , (4.3)

where the parameter γ
(κ)
i[σ ] has been known. Paralleled to the stage marching of the

RKDG(s, r , k) method, we define an auxiliary reference function

Ũ (�+1)
[σ ] =

∑

0≤κ≤�

[
c�κU

(κ)
[σ ] − τd�κβ∂xU

(κ)
[σ ]

]
=

∑

0≤i≤min(σ+1,�+1)

γ
(�+1)
i[σ ] τ i∂ it U , (4.4)

where the expansion results from the simple substitution of (4.3). The detailed formulations
to compute the parameter γ

(�+1)
i[σ ] are omitted here; please refer to [37] for more details. By

cutting off the term involving the (σ + 1)th order time derivative – if it exists – we define the
subsequent reference function

U (�+1)
[σ ] =

∑

0≤i≤min(σ,�+1)

γ
(�+1)
i[σ ] τ i∂ it U . (4.5)

Letting � go through the set {0, 1, . . . , s − 2}, we can define all reference functions.
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Proposition 4.1 For 0 ≤ � ≤ s − 1, there hold γ
(�)
0[σ ] = 1 and γ

(�)
i[σ ] = γ

(�)
i[r ] if 0 ≤ i ≤

min(σ, �).

For the convenience of notations, we denoteU (s)
[σ ](x, t) = U (x, t + τ) in this paper. Since

U0 ∈ Hr+1(I ), the exact solutionU (x, t) = U0(x−βt) is smooth enough such that the above
reference functions are all continuous in space, due to the Sobolev embedding theorem [1].
After somemanipulations that all Taylor expansions in time are only done up to the (σ +1)-th
time derivatives, it is easy to see that

U (�+1)
[σ ] =

∑

0≤κ≤�

[
c�κU

(κ)
[σ ] − τd�κβ∂xU

(κ)
[σ ]

]
+ τ	

(�)
[σ ], 0 ≤ � ≤ s − 1, (4.6)

where 	
(�)
[σ ] are the truncation errors in time, bounded by

∥
∥
∥	

(�)
[σ ]

∥
∥
∥
L∞(Hi (I ))

≤ C
∥
∥∂σ+1

t U
∥
∥
L∞(Hi (I )) τ σ ≤ C ‖U0‖Hi+σ+1(I ) τ σ , i ≥ 0. (4.7)

Here L∞(Hi (I )) denotes the space-time Sobolev space in which the Hi (I )-norm at any time
t ∈ [0, T ] is uniformly bounded. Actually, there holds 	

(�)
[σ ] = 0 for � ≤ min(σ − 1, s − 2).

4.1.3 The Error Decomposition and Error Estimate

The following compact notations will be used for convenience. Let zn,� form a series of
solutions at every time stage, and denote

zn,�
c = 1

τ

[
zn,�+1 −

∑

0≤κ≤�

c�κ z
n,κ

]
, zn,�

d =
∑

0≤κ≤�

d�κ z
n,κ , (4.8)

for any � = 0, 1, . . . , s − 1, and n under consideration. Also we denote zn,s = zn+1,0.
Denote by en,� = un,� −Un,� the stage error, where

Un,� ≡ Un,�
[r ] = U (�)

[r ] (x, t
n), 0 ≤ � ≤ s − 1, (4.9)

is the reference function at each time stage.
Let χn,� ∈ Vh be arbitrary series of functions defined at time stages. They will be deter-

mined for different purposes. As the standard analysis in the finite element method, we define

ξn,� = un,� − χn,� ∈ Vh, and ηn,� = Un,� − χn,�, (4.10)

which implies the error decomposition en,� = ξn,� − ηn,�.
Letting t = tn in (4.6), we can get a group of variational forms similar as in the RKDG

method. Subtracting them from each other and using the error decomposition, we can achieve
the following error equation

(ξn,�+1, v) =
∑

0≤κ≤�

{
c�κ (ξn,κ , v) + τd�κ

[
H(ξn,κ , v) + (Fn,κ , v)

]}
, ∀v ∈ Vh, (4.11)

for � = 0, 1, . . . , s − 1. Here (Fn,�, v) is the residual functional at every time stage, which
is recursively defined by

d��(F
n,�, v) = (ηn,�

c , v) − H(η
n,�
d , v) − (	

n,�
[r ] , v)

︸ ︷︷ ︸
Zn,�(v)

−
∑

0≤κ≤�−1

d�κ (Fn,κ , v), (4.12)
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where 	
n,�
[r ] = 	

(�)
[r ] (x, tn), and the summation in (4.12) is equal to zero if � = 0.

By employing Lemma 4.1 on (4.11), we have the starting point of our estimate. The proof
is easy, so is omitted here.

Lemma 4.2 Assume that the RKDG(s, r , k) method has the L2-norm stability under suitable
temporal-spatial condition, as stated in Theorems 3.1 through 3.3. Then we have

∥
∥ξn

∥
∥2
L2(I ) ≤ C

{ ∥
∥ξ0

∥
∥2
L2(I ) + τ

∑

0≤κ<n

∑

0≤�<s

∥
∥
∥Zκ,�

∥
∥
∥
2 }

, (4.13)

where
∥
∥Zκ,�

∥
∥ = sup0 �=v∈Vh Z

κ,�(v)/ ‖v‖L2(I ), and the bounding constant C > 0 is inde-
pendent of n, h, τ, u and U.

4.2 The Supraconvergence Property

In this subsection we carefully take χn,� to arrive at the expected order of ‖ξn‖L2(I ) and∥
∥ξnx

∥
∥
L2(I ), in the framework of Lemma 4.2.

4.2.1 Two Projections

In this paperwe employ the L2 projection and the generalizedGauss-Radau (GGR) projection
[8], respectively denoted by Ph = P

k
h and Gh = G

k
h . The first one is locally defined, and the

second one is globally defined except when θ = 1.
If there is no confusion, the superscript k is dropped. For any w ∈ L2(I ), the projection

Phw ∈ Vh satisfies
∫

I j
(P⊥

h w)vdx = 0, ∀v ∈ Pk(I j ), j = 1, 2, . . . , J , (4.14)

where P⊥
h w = w − Phw is the projection error. It is easy to get that [12]

∥
∥
∥P

⊥
h w

∥
∥
∥
L2(I )

+ h
∥
∥
∥P

⊥
h w

∥
∥
∥
H1(I )

≤ ChR ‖w‖HR(I ) , 1 ≤ R ≤ k + 1. (4.15)

For any w ∈ H1(Th), the projection Ghw ∈ Vh is defined by
∫

I j
(G⊥

h w)vdx = 0, ∀v ∈ Pk−1(I j ), {{G⊥
h w}}(θ)

j+ 1
2

= 0, j = 1, 2 . . . , J , (4.16)

whereG⊥
h w = w−Ghw is the projection error. Here H1(Th) denotes the space including all

piecewise H1-functions. The main advantage of the GGR projection is the exact collocation
of the numerical flux on element boundary points. As a result, we have

H(G⊥
h w, v) = 0, v ∈ Vh . (4.17)

Moreover, it is proved in [8] that
∥
∥
∥G

⊥
h w

∥
∥
∥
L2(I )

+ h
∥
∥
∥G

⊥
h w

∥
∥
∥
H1(I )

≤ ChR ‖w‖HR(I ) , 1 ≤ R ≤ k + 1. (4.18)
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4.2.2 The Technique of Correction Functions

Given any integer p ≥ 0, the pth correction function [2] for any function w ∈ H1(Th) is
defined by

Fpw = (−GhD
−1
h )p(Ph − Gh)w ∈ Vh . (4.19)

Here D−1
h is the antiderivative in each element, defined by

D
−1
h z(x) =

∫ x

x j−1/2

z(x ′)dx ′, x ∈ I j . (4.20)

Below we present some elemental properties about (4.19), similar as those in [2].

Lemma 4.3 Let 0 ≤ p ≤ k. There exists a constant C > 0 independent of h andw, such that
∥
∥Fpw

∥
∥
L2(I ) ≤ Chp ‖(Ph − Gh)w‖L2(I ) , w ∈ H1(Th). (4.21)

As a corollary, Fp is a linear and continuous operator from H1(Th) to Vh.

Proof We only need to prove (4.21) for p ≥ 1, since it is trivial for p = 0.
Using the triangle inequality, the approximation property (4.18) of the GGR projection,

and the first inverse inequality in (2.3), we have for any function z ∈ V k+1
h that

‖Ghz‖L2(I ) ≤ ‖z‖L2(I ) +
∥
∥
∥G

⊥
h z

∥
∥
∥
L2(I )

≤ ‖z‖L2(I ) + Ch ‖z‖H1(Th)
≤ C ‖z‖L2(I ) .

This, together with the fact that D−1
h Fp−1w ∈ V k+1

h , yields

∥
∥Fpw

∥
∥
L2(I ) =

∥
∥
∥−GhD

−1
h Fp−1w

∥
∥
∥
L2(I )

≤ C
∥
∥
∥D

−1
h Fp−1w

∥
∥
∥
L2(I )

≤ Ch
∥
∥Fp−1w

∥
∥
L2(I ) ,

where the Holder’s inequality is used element by element at the last step. As a result, we can
complete the proof of this lemma by induction. ��
Lemma 4.4 Let 1 ≤ p ≤ k and w ∈ H1(Th). There holds

1. the exact collocation of the numerical flux, namely, {{Fpw}}(θ)
j+1/2 = 0 for j = 1, 2, . . . , J ;

2. the recurrence relationship, namely, (Fpw, vx ) = (Fp−1w, v) for any v ∈ Vh;

As a corollary of the above results, we have H(Fpw, v) = β(Fp−1w, v) for any v ∈ Vh.

Proof By the definition of antiderivative operator, it is trivial to see (D−1
h Fp−1w)+j+1/2 = 0.

Then an integration by parts yields
∫

I j
Fp−1wdx =

∫

I j
(−GhD

−1
h )Fp−2wdx = −

∫

I j
D

−1
h Fp−2wdx =

∫

I j
(x − x j+ 1

2
)Fp−2wdx .

Successively using this identity we have

(D−1
h Fp−1w)−

j+ 1
2

=
∫

I j
Fp−1wdx = · · · = 1

(p − 1)!
∫

I j
(x − x j+ 1

2
)p−1F0wdx = 0,

where the definitions of the two projections are used at the last step since p − 1 ≤ k − 1.
Now we prove two elemental results by using the above statements (D−1

h Fp−1w)±j+1/2 =
0. The definition of the GGR projection implies

{{Fpw}}(θ)

j+ 1
2

= {{−GhD
−1
h Fp−1w}}(θ)

j+ 1
2

= {{−D
−1
h Fp−1w}}(θ)

j+ 1
2

= 0, (4.22)
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and reduces for any v ∈ Vh that

(Fpw, vx ) = ((−GhD
−1
h )Fp−1w, vx ) = −(D−1

h Fp−1w, vx ) = (Fp−1w, v), (4.23)

where an integration by parts in each element is used. Now we have completed the proof of
this lemma. ��
Lemma 4.5 Let1 ≤ p ≤ k andw ∈ H1(Th). There holds (Fp−1w, v) = 0 for any v ∈ V k−p

h .

Proof Repeatedly applying (4.23), we have (Fp−1w, v) = (Fkw, ∂
k−p+1
x v) = 0 for any

v ∈ V k
h . This completes the proof of this lemma. ��

Remark 4.1 The antiderivative operator in this paper is slightly different from that in [2,7].
The multiplier (h j/2)−1 is dropped in (4.20). This minor modification is very important to
correctly yield Lemma 4.4 no matter whether the mesh is uniform or not.

4.2.3 The Supraconvergence of the Solution

Let q be an integer satisfying 0 ≤ q ≤ k, to denote the total number of correction manipu-
lations. At each time stage, in (4.10) we take

χn,� = GhU
n,� −

∑

1≤p≤q

Fp(−∂x )
pWn,� ∈ Vh, (4.24)

where both Un,� = U (�)
[r ] (x, tn) and Wn,� = U (�)

[min(q,r)](x, tn) are the reference functions.

The detailed definition in Sect. 4.1.2 clearly shows thatWn,� is truncated fromUn,�. If q = 0,
the summation in (4.24) is understood to be zero and there is no correction manipulation. It
is worthy mentioning that the introduction of Wn,� is very important to help us obtain the
superconvergence results under a weak smoothness assumption of the exact solution.

Lemma 4.6 Assume τ/h is upper bounded by a constant. With the choice (4.24), we have
∥
∥
∥Zn,�

∥
∥
∥ ≤ C ‖U0‖Hmax(k+q+2,r+1)(I ) (hk+q+1 + τ r ), (4.25)

for � = 0, 1, . . . , s − 1, where the bounding constant C > 0 is independent of n, �, h, τ, u
and U.

Proof Substituting (4.24) and (4.10) into the definition of Zn,�(v), we have Zn,�(v) =
∑

0≤p≤q Z
n,�
p (v), where

Zn,�
0 (v) =

(
G

⊥
h U

n,�
c , v

)
− H

(
G

⊥
h U

n,�
d , v

)
−

(
	
n,�
[r ] , v

)
,

Zn,�
p (v) =

(
Fp(−∂x )

pWn,�
c , v

)
− H

(
Fp(−∂x )

pWn,�
d , v

)
, 1 ≤ p ≤ q.

Note that the term Zn,�
p (v) does not exist if q = 0. Owing to (4.17), it follows from F0 =

G
⊥
h − P

⊥
h and the definitions of the two projections that

Zn,�
0 (v) =

(
F0U

n,�
c , v

)
−

(
	
n,�
[r ] , v

)
.
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Applying the last conclusion in Lemma 4.4 for the second term in Zn,�
p (v), we get

Zn,�
p (v) =

(
Fp(−∂x )

pWn,�
c , v

)
− β

(
Fp−1(−∂x )

pWn,�
d , v

)

=
(
Fp(−∂x )

pWn,�
c , v

)
−

(
Fp−1(−∂x )

p−1Wn,�
c , v

)
+

(
Fp−1(−∂x )

p−1	
n,�
[min(q,r)], v

)
,

for 1 ≤ p ≤ q , where the equality (4.6) with σ = min(q, r) is used.
Denote V n,�

c = Un,�
c − Wn,�

c . Summing up the above identities we have

Zn,�(v) =
(
Fq (−∂x )

qWn,�
c , v

)
+

(
F0V

n,�
c , v

)
+

∑

0≤p≤q−1

(
Fp(−∂x )

p	
n,�
[min(q,r)], v

)
−

(
	
n,�
[r ] , v

)
,

which implies
∥
∥
∥Zn,�

∥
∥
∥ ≤

∥
∥
∥Fq(−∂x )

qWn,�
c

∥
∥
∥
L2(I )

+
∥
∥
∥F0V

n,�
c

∥
∥
∥
L2(I )

+
∑

0≤p≤q−1

∥
∥
∥Fp(−∂x )

p	
n,�
[min(q,r)]

∥
∥
∥
L2(I )

+
∥
∥
∥	

n,�
[r ]

∥
∥
∥
L2(I )

. (4.26)

Below we are going to separately estimate each term on the right-hand side.
Recalling that γ

(�)
0[σ ] = 1 and

∑
0≤κ≤� c�κ = 1 hold for � = 0, 1, . . . , s − 1. As a result,

Wn,�
c can be split into two kinds of terms, say,

Wn,�
c,1 =

∑

1≤i≤min(q,r)

γ̃
(�)
i τ i−1∂ it U

n, and Wn,�
c,2 = Un+1 −Un

τ
,

where γ̃
(�)
i are some known constants. Note that the term Wn,�

c,2 emerges only for � = s − 1.
Successively applying Lemma 4.3 and the approximation property of the two projections,
we get

∥
∥
∥Fq(−∂x )

qWn,�
c,1

∥
∥
∥
L2(I )

≤ Chq
∑

1≤i≤min(q,r)

τ i−1
∥
∥
∥(Ph − Gh)(−∂x )

q∂ it U
n
∥
∥
∥
L2(I )

≤ Chq
∑

1≤i≤min(q,r)

τ i−1hk+2−i
∥
∥
∥(−∂x )

q∂ it U
n
∥
∥
∥
Hk+2−i (I )

≤ Chk+q+1 ‖U0‖Hk+q+2(I ) , (4.27)

since U (x, t) = U0(x − βt) and τ/h is bounded. Similarly, we have

∥
∥
∥Fq(−∂x )

qWn,�
c,2

∥
∥
∥
L2(I )

≤ Chqτ−1
∫ tn+1

tn

∥
∥(Ph − Gh)(−∂x )

q∂tU (x, t)
∥
∥
L2(I ) dt

≤ Chk+q+1 ‖U0‖Hk+q+2(I ) . (4.28)

Note that V n,�
c comes from the cutting-off manipulation of reference functions. If q ≥ r ,

it is trivial to see that V n,�
c = 0 and hence

∥
∥
∥F0V

n,�
c

∥
∥
∥
L2(I )

= 0. Even if q < r , noticing

Proposition 4.1, along the same line as for (4.27) we can get

123



23 Page 20 of 40 Journal of Scientific Computing (2020) 84 :23

∥
∥
∥F0V

n,�
c

∥
∥
∥
L2(I )

≤ C
∑

q+1≤i≤r

τ i−1
∥
∥
∥(Ph − Gh)∂

i
t U

n
∥
∥
∥
L2(I )

≤ C
∑

q+1≤i≤r

τ i−1hmax(k+q+2−i,1)
∥
∥
∥∂ it U

n
∥
∥
∥
Hmax(k+q+2−i,1)(I )

≤ Chk+q+1 ‖U0‖Hmax(k+q+2,r+1)(I ) . (4.29)

For 0 ≤ p ≤ q − 1, we can similarly get
∥
∥
∥Fp(−∂x )

p	
n,�
[min(q,r)]

∥
∥
∥
L2(I )

≤ Chphk+1−p
∥
∥
∥(−∂x )

p	
n,�
[min(q,r)]

∥
∥
∥
Hk+1−p(I )

≤ Chphk+1−pτmin(q,r) ‖U0‖Hk+min(q,r)+2(I ) ≤ Chk+1(hq + τ r ) ‖U0‖Hk+q+2(I ) ,

(4.30)

where (4.7) is used at the second step. Also (4.7) implies
∥
∥
∥	

n,�
[r ]

∥
∥
∥
L2(I )

≤ Cτ r ‖U0‖Hr+1(I ) . (4.31)

Summing up the above inequalities, we have completed the proof of this lemma. ��
Theorem 4.1 Suppose the time step is taken to ensure the L2-norm stability of the
RKDG(s, r , k) method, as stated in Theorems 3.1 through 3.3. For any integer q satisfy-
ing 0 ≤ q ≤ k, let

u0 = GhU0 −
∑

1≤p≤qnt

Fp(−∂x )
pU0 (4.32)

be the initial solution of the RKDGmethod, where qnt is an integer satisfying q−1 ≤ qnt ≤ k.
Then we have ∥

∥ξn
∥
∥
L2(I ) ≤ C ‖U0‖Hmax(k+q+2,r+1)(I ) (hk+q+1 + τ r ), (4.33)

where the bounding constant C > 0 is independent of n, h, τ, u and U.

Proof As a corollary of Lemmas 4.2 and 4.6, we have completed the proof of this theorem
since

∥
∥ξ0

∥
∥
L2(I ) ≤

∑

q≤p≤k

∥
∥Fp(−∂x )

pU0
∥
∥
L2(I ) ≤

∑

q≤p≤k

Ch phk+1+q−p ‖U0‖H p+k+1+q−p(I )

≤ Chk+1+q ‖U0‖Hk+1+q (I ) . (4.34)

At the second step, we have used Lemma 4.3 and the approximation properties of the two
projections. ��
Remark 4.2 Taking q = k in (4.33), the highest supraconvergence order 2k + 1 in space is
achieved for the solution. It will be verified by the numerical experiments.

4.2.4 Supraconvergence with Respect to the Derivative

Directly applying the first inverse inequality in (2.3), we can easily obtain from Theorem 4.1
that

∥
∥ξnx

∥
∥
L2(I ) ≤ C ‖U0‖Hmax(k+q+2,r+1)(I ) (hk+q + h−1τ r ).

It seems that one order of accuracy is lost in both space and time. However, the numerical
results do not show this phenomenon. In the following lemma we give a theoretical support.
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Theorem 4.2 Suppose the time step is taken to ensure the L2-norm stability of the
RKDG(s, r , k) method, as stated in Theorems 3.1 through 3.3. For any integer q satisfy-
ing 0 ≤ q ≤ k, let (4.32) be the initial solution of RKDG method with q ≤ qnt ≤ k. Then we
have ∥

∥ξnx

∥
∥
L2(I ) ≤ C ‖U0‖Hmax(k+q+3,r+2)(I ) (hk+q+1 + τ r ), (4.35)

where the bounding constant C > 0 is independent of n, h, τ, u and U.

Proof Let � = −βUx . Obviously, it satisfies the auxiliary problem

�t + β�x = 0, x ∈ I = (0, 1), t ∈ (0, T ], (4.36)

which is equipped with the periodic boundary condition and the initial solution �(x, 0) =
�0(x).

For any function w ∈ Vh , there exists a unique function w̃ ∈ Vh such that (w̃, v) =
H(w, v) holds for any v ∈ Vh . Define

w̃ = Hhw.

It is easy to see that Hh is a linear map from Vh to itself.
Let ũn,� = Hhun,�. It follows from (2.6) that un,�+1 = ∑

0≤κ≤�[c�κun,κ + τd�κ ũn,κ ].
Making a left-multiplication of Hh yields

(ũn,�+1, v) =
∑

0≤κ≤�

[
c�κ (ũn,κ , v) + τd�κH(ũn,κ , v)

]
, � = 0, 1, . . . , s − 1, (4.37)

for any n under consideration. This can be viewed as the RKDG(s, r , k) method to solve
(4.36), with the initial solution ũ0 = Hhu0. Along the same line as that for Theorem 4.1, we
have

∥
∥
∥ξ̃n

∥
∥
∥
L2(I )

≤ C
∥
∥
∥ξ̃0

∥
∥
∥
L2(I )

+ C ‖�0‖Hmax(k+q+2,r+1)(I ) (hk+q+1 + τ r ). (4.38)

The main difference comes from the initial solution. Here

ξ̃n,� = ũn,� − Gh�
n,�
[r ] +

∑

1≤p≤q

Fp(−∂x )
p�

n,�
[min(q,r)] ∈ Vh, (4.39)

is analogously defined as for ξn,�, and the including reference functions are defined along
the same way as that in Sect. 4.1.2.

Due to the initial setting ũ0 = Hhu0, a tedious manipulation yields
∥
∥
∥ξ̃0

∥
∥
∥
L2(I )

≤ Chk+1+q ‖U0‖Hk+q+2(I ) . (4.40)

The detailed process will be given in the appendix.
To finish the proof of this theorem, we need to set up the relationship between ξnx and ξ̃n .

By the definition of ξn,�, we know that

D1(1)ξ
n = D1(1)u

n − Gh
(
D1(1)U

n[r ]
) +

∑

1≤p≤q

Fp(−∂x )
p
(
D1(1)U

n
[min(q,r)]

)
. (4.41)

By (2.10) there holdsD1(1)un = τHhun = τ ũn . By the definition of the reference functions
(see Sect. 4.1.2) we have D1(1)Un[r ] = −τβUn

x and D1(1)Un
[min(q,r)] = −τβUn

x for q ≥ 1.
A comparison with (4.41) and (4.39) yields for q ≥ 1 that

τ−1
D1(1)ξ

n = ξ̃n . (4.42)
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In fact, this conclusion also holds for q = 0, because both summations in (4.41) and (4.39)
vanish at this status. Substituting the identity (4.42) into the error equation (4.11) with � = 0,
we have

H(ξn, v) = (ξ̃n, v) − d−1
00 Zn,0(v), ∀v ∈ Vh . (4.43)

It follows from [36, Lemma 2.3] that
∥
∥ξnx

∥
∥
L2(I ) ≤ C

∥
∥
∥ξ̃n

∥
∥
∥
L2(I )

+ C
∥
∥Zn,0

∥
∥ . (4.44)

Together with (4.38), (4.40) and Lemma 4.6, this completes the proof of this theorem. ��
Remark 4.3 Taking q = k in (4.35), the highest supraconvergence order 2k + 1 in space is
achieved for the derivative of solutions. It will be verified by the numerical experiments.

5 Superconvergence Analysis at Discrete Points

In this sectionwe devote to establishing the superconvergence results on some discrete points,
based on the supraconvergence analysis in Sect. 4.

5.1 Notations and Conclusions

Let Li (x̂) be the standard Legendre polynomial of degree i on the reference element [−1, 1],
and thus

L j,i (x) = Li (x̂) = Li
(
2(x − x j )/h j

)
, i ≥ 0,

is the Legendre polynomial of degree i in I j , which is scaled from Li (x̂).
Associated with the mesh and the upwind-biased parameter, we are able to seek a group

of parameters {ϑ j }1≤ j≤J by the following system of linear equations

θhk+1
j ϑ j + (−1)k(1 − θ)hk+1

j+1ϑ j+1 = θhk+1
j − (−1)k(1 − θ)hk+1

j+1, (5.1)

where j = 1, 2, . . . , J . The existence and uniqueness can be verified since the determinant
is not equal to zero, due to θ �= 1/2. Similar system has been discussed in [8]. Then the
parameter-dependent Radau polynomial of degree k + 1 is defined element by element,
namely,

R j,k+1(x) = L j,k+1(x) − ϑ j L j,k(x), x ∈ I j . (5.2)

Its roots in I j are denoted by ri j for 1 ≤ i ≤ nRj , and its extrema in I j are denoted by li j for

1 ≤ i ≤ nLj . Almost the same as that in [2, Lemma 3.1], we have nRj = k + 1 if |ϑ j | < 1,

and nRj = k otherwise. By Rolle’s theorem, we know nLj ≥ nRj − 1.

Remark 5.1 When the purely upwind flux (θ = 1) is used, there always holds ϑ j = 1 and
hence R j,k+1(x) is the right Radau polynomial in each element. When the upwind-biased
flux (θ �= 1) is used together with the uniform mesh, we have

ϑ j ≡ θ − (−1)k(1 − θ)

θ + (−1)k(1 − θ)
> 0.

However, it may happen ϑ j ≤ 0 for the upwind-biased flux coupled with the non-uniform
mesh. To show that, we give a numerical example in Table 2, where the non-uniform mesh
is obtained by random perturbations of a uniform mesh with J elements.
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Table 2 The proportion of ϑ j ≤ 0 for the upwind-biased flux coupled with the non-uniform meshes: k = 2
and θ = 0.75

J = 1000 (%) J = 2000 (%) J = 4000 (%) J = 8000 (%) J = 16,000 (%)

10% Perturbation 9.318 9.022 9.199 9.085 9.139

20% Perturbation 25.513 25.477 25.449 25.510 25.471

Four types of discrete point sets are considered in this section. The first two sets are for
the element boundary points and the element midpoints, respectively denoted by

SBh = Γh = {x j+ 1
2
, 1 ≤ j ≤ J }, SEh = {x j , 1 ≤ j ≤ J }, (5.3)

where x j = (x j−1/2 + x j+1/2)/2 is the central point in I j . The other two sets are for the
roots and extrema of the parameter-dependent Radau polynomials (5.2), namely,

SRh = {ri j : 1 ≤ j ≤ J , and 1 ≤ i ≤ nRj }, SLh = {li j : 1 ≤ j ≤ J , and 1 ≤ i ≤ nLj }.
(5.4)

Below the following notations are used. For any given function z, define discrete norms

|||{{z}}(θ)|||L2(SBh ) =
⎡

⎣
1

J

∑

1≤ j≤J

|{{z}}(θ)

j+ 1
2
|2
⎤

⎦

1
2

, |||z̄|||L2(SEh ) =
⎡

⎣
1

J

∑

1≤ j≤J

|z̄ j |2
⎤

⎦

1
2

,

where z̄ j is the cell average of z in I j . Similarly, we define the discrete norm

|||z|||L2(SRh ) =
⎡

⎢
⎣
1

J

∑

1≤ j≤J

⎛

⎜
⎝

1

nRj

∑

1≤i≤nRj

|z(ri j )|2
⎞

⎟
⎠

⎤


⎦

1
2

.

Similarly for |||z|||L2(SLh ). Now we are ready to present the superconvergence property in the
next theorem.

Theorem 5.1 Assume that the RKDG(s, r , k)method has the L2-norm stability under suitable
temporal-spatial condition, as stated in Theorems 3.1 through 3.3. Let en = un(x)−U (x, tn)
be the numerical error at each time level.

1. Let (4.32) be the initial solution with k − 1 ≤ qnt ≤ k, then the numerical fluxes and the
cell averages are superconvergent, namely,

|||{{en}}(θ)|||L2(SBh ) + |||ēn|||L2(SEh ) ≤ C ‖U0‖Hmax(2k+2,r+1)(I ) (h2k+1 + τ r ).

2. Let (4.32) be the initial solution with 0 ≤ qnt ≤ k, then the solution is superconvergent
at the roots of the parameter-dependent Radau polynomial, namely,

|||en |||L2(SRh ) ≤ C ‖U0‖Hmax(k+3,r+1)(I ) (hk+2 + τ r ),

and the derivative is superconvergent at the extrema of the parameter-dependent Radau
polynomial, namely,

|||enx |||L2(SLh ) ≤ C ‖U0‖Hmax(k+3,r+2)(I ) (hk+1 + τ r ).

Note that the above bounding constant C > 0 is independent of n, h, τ, u and U.
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In the next subsections we are going to prove this theorem based on the previous supra-
convergence results. Before that, we give here two remarks to conclude this subsection.

Remark 5.2 Theorem 5.1 indicates that the fully-discrete RKDG scheme preserves the
superconvergence properties of the semi-discrete DG method. In order to not destroy the
superconvergence order in space, we have to use Runge–Kutta time-marching of enough
high order. Numerical experiments in Sect. 7 will verify this statement.

Remark 5.3 Theorem 5.1 shows the superconvergence orders in the discrete L2-norm. How-
ever, numerical experiments indicate the same order in the discrete L∞-norm. How to fill in
this gap is left for the future work.

5.2 Superconvergence Results on the Average and the Numerical Flux

Now we take q = k in (4.24), and get

{{en}}(θ) = {{ξn}}(θ) − {{G⊥
h U

n}}(θ) −
∑

1≤p≤k

{{Fp(−∂x )
pUn}}(θ) = {{ξn}}(θ),

due to the definition of the GGR projection (4.16) and the first property in Lemma 4.4.
Applying the second inverse inequality in (2.3) and Theorem 4.1 we have

|||{{en}}(θ)|||L2(SBh ) ≤ C
∥
∥ξn

∥
∥
L2(I ) ≤ C ‖U0‖Hmax(2k+2,r+1)(I ) (h2k+1 + τ r ). (5.5)

Analogously we have

ēn = ξ̄n − G
⊥
h U

n −
∑

1≤p≤k

Fp(−∂x )pUn = ξ̄n − Fk(−∂x )kUn,

due to (4.16) with v = 1 and Lemma 4.5. Applying the triangle inequality and the Holder’s
inequality, we obtain

|||ēn |||L2(SEh ) ≤ C
∥
∥ξn

∥
∥
L2(I ) +C

∥
∥
∥Fk(−∂x )

kUn
∥
∥
∥
L2(I )

≤ C ‖U0‖Hmax(2k+2,r+1)(I ) (h2k+1+τ r ).

(5.6)
At the last step, Theorem 4.1 is used for ‖ξn‖L2(I ), and Lemma 4.3 and the approximation
properties of the two projections are used for

∥
∥Fk(−∂x )

kUn
∥
∥
L2(I ). We have now proved the

first superconvergence results stated in Theorem 5.1.

5.3 Superconvergence Results on the Solution and Derivative

To do that, we define a local projection with respect to the parameter-dependent Radau
polynomials. This work is almost the same as that in [2], with a minor modification.

Let w ∈ H1(Th) be any given function. The projection Chw ∈ Vh is defined element by
element. It depends on whether ϑ j is equal to zero or not. If ϑ j �= 0, it satisfies [2]
∫

I j
(C⊥

h w)vdx = 0, ∀v ∈ Pk−1(I j ), and θ j (C
⊥
h w)−

j+ 1
2

+ (1 − θ j )(C
⊥
h w)+

j− 1
2

= 0,

(5.7)
where θ j = (ϑ j + 1)/2 for even k, and θ j = (ϑ−1

j + 1)/2 for odd k. If ϑ j = 0, it is just

defined by the standard L2-projection Phw in this element. Here C⊥
h w = w − Chw is the

projection error.
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The projection Chw is well-defined. By the standard scaling argument, together with the
Sobolev embedding theorem and the Bramble-Hilbert lemma, we can easily prove that

∥
∥
∥C

⊥
h w

∥
∥
∥
L2(I )

+ h
∥
∥
∥C

⊥
h w

∥
∥
∥
H1(I )

≤ ChR ‖w‖HR(I ) , 1 ≤ R ≤ k + 1, (5.8)

no matter whether ϑ j = 0 or not.

Lemma 5.1 There exists a bounding constant C > 0 independent of j, h j and w, such that
∣
∣
∣C

⊥
h w(ri j )

∣
∣
∣ + h j

∣
∣
∣(C

⊥
h w)x (li j )

∣
∣
∣ ≤ Ch

k+ 3
2

j ‖w‖Hk+2(I j ) . (5.9)

Proof Along the same line as that for (5.8),we can prove this lemmaby verifyingC⊥
h w(ri j ) =

0 and (C⊥
h w)x (li j ) = 0 for any w ∈ Pk+1(I j ). Since C⊥

h w = 0 holds for any w ∈ Pk(I j ),
we only need to show

Ch L j,k+1 = ϑ j L j,k . (5.10)

If ϑ j = 0, it is obviously true since Ch = Ph . If ϑ j �= 0, it has been clearly proved in [2].
This completes the proof of this lemma. ��
Lemma 5.2 There exists a bounding constant C > 0 independent of h and w, such that

‖Ghw − Chw‖L2(I ) ≤ Chk+2 ‖w‖Hk+2(I ) . (5.11)

Proof The proof is postponed into the appendix. ��
Lemma 5.3 There exists a bounding constant C > 0 independent of h and w, such that

|||G⊥
h w|||L2(SRh ) + h|||(G⊥

h w)x |||L2(SLh ) ≤ Chk+2 ‖w‖Hk+2(I ) . (5.12)

Proof Since the mesh is quasi-uniform, we have J−1 = O(h). Due to the third inverse
inequity in (2.3), there is a bounding constant C > 0 independent of h and w, such that

|||w|||L2(SRh ) ≤ C

⎡

⎣
1

J

∑

1≤ j≤J

‖w‖2L∞(I j )

⎤

⎦

1
2

≤ C ‖w‖L2(I ) , w ∈ Vh . (5.13)

This implies |||Chw − Ghw|||L2(SRh ) ≤ C ‖Chw − Ghw‖L2(I ). An application of the triangle
inequity reduces

|||G⊥
h w|||L2(SRh ) ≤ |||w − Chw|||L2(SRh ) + |||Chw − Ghw|||L2(SRh ) ≤ Chk+2 ‖w‖Hk+2(I ) ,

where Lemmas 5.1 and 5.2 are used for each term at the last step. The remaining part can be
proved similarly, the details are omitted here. ��

Now we turn to prove the second conclusion in Theorem 5.1. Taking q = 1 in (4.24), we
have

|||en|||L2(SRh ) ≤ |||ξn|||L2(SRh ) + |||G⊥
h U

n |||L2(SRh ) + |||F1(−∂x )U
n |||L2(SRh ).

Using the inequality (5.13), together with Theorem 4.1 and Lemma 4.3, we obtain

|||ξn |||L2(SRh ) ≤ C
∥
∥ξn

∥
∥
L2(I ) ≤ C(hk+2 + τ r ) ‖U0‖Hmax(k+3,r+1)(I ) ,

|||F1(−∂x )U
n |||L2(SRh ) ≤ C

∥
∥F1(−∂x )U

n
∥
∥
L2(I ) ≤ Chk+2 ‖U0‖Hk+2(I ) ,
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where the approximation property of the two projections are also used. It follows from
Lemma 5.3 that

|||G⊥
h U

n |||L2(SRh ) ≤ Chk+2
∥
∥Un

∥
∥
Hk+2(I ) ≤ Chk+2 ‖U0‖Hk+2(I ) .

Collecting up the above conclusions, we prove the estimate for |||en|||L2(SRh ) in Theorem 5.1.
Along the similar line as before, we can bound |||enx |||L2(SLh ) by using Theorem 4.2 with

q = 0. We have now completed the proof of Theorem 5.1.

Remark 5.4 Under the stronger smoothness assumption on the exact solution, there holds
∣
∣
∣C

⊥
h w(ri j )

∣
∣
∣ + h j

∣
∣
∣(C

⊥
h w)x (li j )

∣
∣
∣ ≤ Chk+2

j ‖w‖Wk+2,∞(I j ) ,

and so on; see [2] for more details. These are beneficial for obtaining the superconvergence
order in the discrete L∞-norm for the semi-discrete DG method. However, it is difficult to
get the expected order for the RKDG method. If the third inverse inequality in (2.3) is used,
an unsatisfying boundedness like h−1/2τ r will emerge. We plan to address this difficulty in
future work.

6 Byproduct: Accuracy-Enhancement of the Post-processed Solution

In this section, we consider the smoothness-increasing accuracy-conserving (SIAC) filter to
obtain superconvergence of a post-processed solution. Following [17], the filter on a uniform
mesh is implemented by the convolution of the numerical solution with the kernel function

K 2k+1,k+1
h (x) = 1

h

∑

−k≤�≤k

c2k+1,k+1
� ϕ(k+1)

( x

h
− �

)
, (6.1)

where ϕ(k+1) is the B-spline function of order k + 1. The coefficients c2k+1,k+1
� are taken to

ensure that the kernel function reproduces polynomials of degree 2k by convolution.

Theorem 6.1 Assume that the RKDG(s, r , k)method has the L2-norm stability under suitable
temporal-spatial condition, as stated in Theorems 3.1 through 3.3. Furthermore, the mesh is
uniform and Mτ = T . Let (4.32) be the initial solution with k − 1 ≤ qnt ≤ k, then

∥
∥
∥UM − K 2k+1,k+1

h �uM
∥
∥
∥
L2(I )

≤ C ‖U0‖Hmax(2k+2,r+1)(I ) (h2k+1 + τ r ), (6.2)

where the bounding constant C > 0 is independent of h, τ, u and U. Here � denotes the
convolution.

Proof For the obtained numerical solution uM , the post-processed solution satisfies the well-
known conclusion [17]
∥
∥
∥UM − K 2k+1,k+1

h �uM
∥
∥
∥
L2(I )

≤ Ch2k+1
∥
∥
∥UM

∥
∥
∥
H2k+1(I )

+ C
∑

0≤�≤k+1

∥
∥
∥∂�

he
M
∥
∥
∥
H−(k+1)(I )

,

(6.3)
where the bounding constant C > 0 solely depends on k. Here the negative norm is defined
as

‖w‖H−(k+1)(I ) = sup
�∈C∞

0 (I )

(�,w)

‖�‖Hk+1(I )
, (6.4)

and ∂�
he

M is the �th order divided difference of the numerical error.
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In the following analysis, the divided differences will play important roles. To be more
clear, we would like to quickly introduce its definition and recall some essential properties
[27] about it. Let w be any piecewise smooth function on Th . The divided difference is
recursively defined by

∂�
hw(x) = h−1

[
∂�−1
h w(x + h/2) − ∂�−1

h w(x − h/2)
]
,

for � ≥ 1, where ∂0hw(x) = w(x). By Holder’s inequality, one can see that
∥
∥
∥∂�

hw

∥
∥
∥
L2(I )

≤
∥
∥
∥∂�

xw

∥
∥
∥
L2(I )

. (6.5)

If w and v are periodic, there holds

(∂�
hw, v) = (−1)�(w, ∂�

hv), � ≥ 0. (6.6)

Furthermore, it is easy to see that ∂�
h commutes with many operators, like Gh , ∂x , and Fp .

Finally, it is worthy pointing out that the above manipulations in this section should be
understood on the correspondingly shifted meshes.

According to (6.3), it is sufficient to prove this theorem by showing for any � ∈ C∞
0 (I )

that

(∂�
he

M ,�) ≤ C ‖U0‖Hmax(2k+2,r+1)(I ) (h2k+1 + τ r ) ‖�‖Hk+1(I ) , 0 ≤ � ≤ k + 1. (6.7)

For simplicity of notations, the superscript M is dropped below. This purpose can be imple-
mented with the help of the previous superconvergence results. Recalling the definitions
(4.10) and (4.24) with q = k, we have the decomposition (∂�

he,�) = (∂�
hξ,�) − (∂�

hη,�).
By (6.6) and (6.5) we have (∂�

hξ,�) = (−1)�(ξ, ∂�
h�) ≤ ‖ξ‖L2(I ) ‖�‖Hk+1(I ). Hence

(∂�
hξ,�) ≤ C(h2k+1 + τ r ) ‖U0‖Hmax(2k+2,r+1)(I ) ‖�‖Hk+1(I ) , (6.8)

due to Theorem 4.1. By the definition of the correction function, we get the decomposition

(∂�
hη,�) = (∂�

hG
⊥
h U ,�) +

∑

1≤p≤k−1

(
∂�
hFp(−∂x )

pU ,�
) + (

∂�
hFk(−∂x )

kU ,�
)
.

Below we are going to separately estimate the three terms on the right-hand side.
The GGR projection implies (∂�

hG
⊥
h U ,�) = (G⊥

h ∂�
hU ,�) = (G⊥

h ∂�
hU ,� − P

k−1
h �),

where Pk−1
h is the local L2-projection onto V k−1

h . The approximation properties of the two
projections lead to

(∂�
hG

⊥
h U ,�) ≤ Ch2k+1

∥
∥
∥∂�

hU
∥
∥
∥
Hk+1(I )

‖�‖Hk (I ) ≤ Ch2k+1 ‖U‖H2k+2(I ) ‖�‖Hk (I ) . (6.9)

Below we assume k ≥ 2 such that the second term exists; otherwise, it vanishes. Depending
on �, we split the summation index into two sets. There is no harm in assuming 1 ≤ p ≤
min(�, k − 1). By using (6.6), the commutative property, and Lemma 4.5, we have

(∂�
hFp(−∂x )

pU ,�) = (−1)p(∂�−p
h Fp(−∂x )

pU , ∂
p
h �) = (−1)p(Fp(−∂x )

p∂
�−p
h U , ∂

p
h �)

= (−1)p(Fp(−∂x )
p∂

�−p
h U , ∂

p
h � − P

k−1−p
h ∂

p
h �).

Then Lemma 4.3, the approximation property of the two projections, and (6.5) lead to

(∂�
hFp(−∂x )

pU ,�) ≤ Chp · hk+1
∥
∥
∥∂

�−p
h U

∥
∥
∥
Hk+1+p(I )

· hk−p
∥
∥∂

p
h �

∥
∥
Hk−p(I )

≤ Ch2k+1 ‖U‖H2k+2(I ) ‖�‖Hk (I ) .
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Along the same line we can get the same boundedness for � < p ≤ k − 1. Hence
∑

1≤p≤k−1

(
∂�
hFp(−∂x )

pU ,�
) ≤ Ch2k+1 ‖U‖H2k+2(I ) ‖�‖Hk (I ) . (6.10)

Similarly, the third term can be bounded in the form

(∂�
hFk(−∂x )

kU ,�) = (−1)�(Fk(−∂x )
kU , ∂�

h�)

≤ Ch2k+1 ‖U‖H2k+1(I )

∥
∥
∥∂�

h�

∥
∥
∥
L2(I )

≤ Ch2k+1 ‖U‖H2k+1(I ) ‖�‖Hk+1(I ) . (6.11)

Collecting up the above estimates and noticing thatU = U0(x −βT ), we can obtain (6.7)
and then prove this theorem. ��

Remark 6.1 Theorem 6.1 requires a special setting on the initial solution, which is inherited
from the supraconvergence study. In practice, the L2-projection setting (not included in this
theorem) still works well to obtain the accuracy enhancement; see the numerical experiment
below.

Remark 6.2 Theorem 6.1 provides a small relaxation on the regularity assumption of the
exact solution. In this paper we only demand U0 ∈ H2k+2(I ) ∩ Hr+1(I ), which is slightly
weaker than the usual assumption U0 ∈ H2k+3(I ) for the semi-discrete method [17].

7 Numerical Experiments

In this section, we provide some numerical verification. To this end, we carry out the
RKDG(r , r , 2) method with the upwind-biased parameter θ = 0.75, to solve the model
problem (1.1) with β = 1 and T = 1. The non-uniform meshes, obtained by a random per-
turbation of the equidistance nodes by at most 10%, are used except for the post-processed
solutions. The time step is τ = 0.2hmin, where hmin is the minimum of all element lengths.

With different degree k, and/or the different upwind-biased parameter θ , the numerical
experiments are very similar. Limited by the length of this paper, we only present the data
for the case mentioned here.

Example 7.1 We take U0 = sin(2πx), which is infinitely differentiable.

In Table 3, we list the superconvergence results on the solution and derivative at the roots
and extrema of the parameter-dependent Radau polynomials. The error and convergence
order in the discrete L2-norms, |||e|||L2(SRh ) and |||ex |||L2(SLh ), are shown. As a comparison, the

error and convergence order in the discrete L∞-norms, |||e|||L∞(SRh ) and |||ex |||L∞(SLh ), are also

given. The initial solution u0 is taken to be (4.32) with qnt = 1 and qnt = 0, respectively.
The min(k + 2, r)-th order is observed for the solution, and the min(k + 1, r)-th order is
observed for the derivative. This verifies the second conclusion in Theorem 5.1.

In Table 4, we present the superconvergence results on the average and the numerical flux.
Similarly, the discrete L2 norms and the discrete L∞ norms are given. The initial solution u0 is
taken to be (4.32) with qnt = k and qnt = k−1, respectively. The expected min(2k+1, r)-th
order is observed for the two initial settings. This verifies the first conclusion in Theorem 5.1.

In Table 5 we investigate the supraconvergence results with different initial settings. To
do that, we take u0 to be (4.32) with three parameters qnt.
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Table 3 Example 7.1: superconvergence results on the solution and derivative

J |||e|||
L2

(
SRh

) |||e|||
L∞(

SRh

) |||ex |||L2
(
SLh

) |||ex |||L∞(
SLh

)

qnt = 1

r = 3 1000 1.89E−10 2.79E−10 1.20E−08 7.30E−08

2000 2.45E−11 2.95 3.53E−11 2.98 1.41E−09 3.09 7.97E−09 3.19

4000 2.98E−12 3.04 4.23E−12 3.06 1.71E−10 3.04 1.12E−09 2.83

8000 3.73E−13 3.00 5.30E−13 3.00 2.11E−11 3.01 1.33E−10 3.07

16,000 4.62E−14 3.01 6.54E−14 3.02 2.68E−12 2.98 1.83E−11 2.87

r = 4 1000 1.83E−12 8.22E−12 1.05E−08 5.02E−08

2000 1.20E−13 3.94 6.85E−13 3.59 1.39E−09 2.91 7.76E−09 2.69

4000 7.31E−15 4.04 5.48E−14 3.64 1.69E−10 3.05 1.14E−09 2.77

8000 4.60E−16 3.99 3.38E−15 4.02 2.12E−11 2.99 1.43E−10 2.99

16,000 2.90E−17 3.99 2.17E−16 3.96 2.68E−12 2.98 1.79E−11 3.00

r = 5 1000 1.90E−12 8.44E−12 1.10E−08 5.10E−08

2000 1.16E−13 4.03 6.26E−13 3.75 1.33E−09 3.05 7.25E−09 2.81

4000 7.35E−15 3.98 4.03E−14 3.96 1.70E−10 2.97 9.23E−10 2.97

8000 4.63E−16 3.99 3.28E−15 3.62 2.14E−11 2.99 1.38E−10 2.74

16,000 2.92E−17 3.98 2.51E−16 3.71 2.72E−12 2.98 2.12E−11 2.70

r = 6 1000 1.91E−12 1.00E−11 1.11E−08 5.84E−08

2000 1.18E−13 4.02 7.79E−13 3.69 1.36E−09 3.03 8.65E−09 2.75

4000 7.29E−15 4.01 4.17E−14 4.22 1.68E−10 3.01 9.12E−10 3.25

8000 4.60E−16 3.99 3.51E−15 3.57 2.12E−11 2.99 1.49E−10 2.62

16,000 2.88E−17 4.00 2.35E−16 3.90 2.66E−12 3.00 1.94E−11 2.94

qnt = 0

r = 3 1000 1.96E−10 2.89E−10 1.12E−08 6.70E−08

2000 2.40E−11 3.03 3.48E−11 3.06 1.39E−09 3.02 8.61E−09 2.96

4000 2.98E−12 3.01 4.24E−12 3.03 1.74E−10 2.99 1.14E−09 2.91

8000 3.71E−13 3.01 5.27E−13 3.01 2.16E−11 3.01 1.53E−10 2.90

16,000 4.61E−14 3.01 6.54E−14 3.01 2.70E−12 3.00 1.87E−11 3.04

r = 4 1000 1.96E−12 1.16E−11 1.14E−08 6.00E−08

2000 1.19E−13 4.03 7.46E−13 3.96 1.39E−09 3.04 8.18E−09 2.88

4000 7.27E−15 4.04 4.85E−14 3.94 1.67E−10 3.06 9.84E−10 3.06

8000 4.62E−16 3.98 3.84E−15 3.66 2.13E−11 2.97 1.57E−10 2.65

16,000 2.88E−17 4.00 2.19E−16 4.13 2.66E−12 3.00 2.03E−11 2.95

r = 5 1000 1.93E−12 8.61E−12 1.13E−08 5.24E−08

2000 1.14E−13 4.08 6.47E−13 3.73 1.30E−09 3.12 7.42E−09 2.82

4000 7.52E−15 3.92 5.59E−14 3.53 1.75E−10 2.90 1.13E−09 2.72

8000 4.58E−16 4.04 2.74E−15 4.35 2.11E−11 3.05 1.48E−10 2.94

16,000 2.87E−17 4.00 2.53E−16 3.44 2.65E−12 3.00 2.04E−11 2.86
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Table 3 continued

J |||e|||
L2

(
SRh

) |||e|||
L∞(

SRh

) |||ex |||L2
(
SLh

) |||ex |||L∞(
SLh

)

r = 6 1000 1.91E−12 1.34E−11 1.11E−08 7.20E−08

2000 1.18E−13 4.02 8.20E−13 4.03 1.35E−09 3.03 8.81E−09 3.03

4000 7.37E−15 4.00 4.81E−14 4.09 1.70E−10 2.99 1.06E−09 3.05

8000 4.55E−16 4.02 3.80E−15 3.66 2.09E−11 3.02 1.53E−10 2.79

16,000 2.88E−17 3.98 2.35E−16 4.01 2.66E−12 2.98 1.95E−11 2.98

Table 4 Example 7.1: Superconvergence results on the numerical flux and average

J |||{{e}}(θ)|||
L2

(
SBh

) |||{{e}}(θ)|||
L∞(

SBh

) |||ē|||
L2

(
SEh

) |||ē|||
L∞(

SEh

)

qnt = k

r = 3 1000 1.92E−10 2.71E−10 1.92E−10 2.71E−10

2000 2.44E−11 2.97 3.45E−11 2.97 2.44E−11 2.97 3.45E−11 2.97

4000 2.98E−12 3.03 4.21E−12 3.03 2.98E−12 3.03 4.21E−12 3.03

8000 3.72E−13 3.00 5.27E−13 3.00 3.72E−13 3.00 5.27E−13 3.00

16,000 4.60E−14 3.02 6.51E−14 3.02 4.60E−14 3.02 6.51E−14 3.02

r = 4 1000 3.90E−14 5.51E−14 3.95E−14 5.77E−14

2000 2.40E−15 4.02 3.39E−15 4.02 2.42E−15 4.03 3.48E−15 4.05

4000 1.53E−16 3.97 2.17E−16 3.97 1.54E−16 3.97 2.19E−16 3.99

8000 9.35E−18 4.03 1.32E−17 4.03 9.37E−18 4.04 1.33E−17 4.04

16,000 5.85E−19 4.00 8.27E−19 4.00 5.85E−19 4.00 8.30E−19 4.00

r = 5 1000 3.62E−15 5.12E−15 3.69E−15 5.63E−15

2000 1.13E−16 5.00 1.60E−16 5.00 1.15E−16 5.00 1.79E−16 4.97

4000 3.51E−18 5.01 4.97E−18 5.01 3.58E−18 5.00 5.66E−18 4.99

8000 1.11E−19 4.99 1.57E−19 4.99 1.13E−19 4.99 1.79E−19 4.98

16,000 3.45E−21 5.00 4.88E−21 5.00 3.52E−21 5.00 5.64E−21 4.99

r = 6 1000 3.65E−15 5.16E−15 3.72E−15 5.79E−15

2000 1.14E−16 5.00 1.61E−16 5.00 1.16E−16 5.00 1.87E−16 4.96

4000 3.54E−18 5.01 5.01E−18 5.01 3.61E−18 5.01 5.79E−18 5.01

8000 1.11E−19 5.00 1.57E−19 5.00 1.13E−19 5.00 1.80E−19 5.01

16,000 3.47E−21 5.00 4.91E−21 5.00 3.54E−21 5.00 5.57E−21 5.02

qnt = k − 1

r = 3 1000 1.89E−10 2.67E−10 1.89E−10 2.67E−10

2000 2.45E−11 2.94 3.47E−11 2.94 2.45E−11 2.94 3.47E−11 2.94

4000 2.98E−12 3.04 4.21E−12 3.04 2.98E−12 3.04 4.21E−12 3.04

8000 3.73E−13 3.00 5.27E−13 3.00 3.73E−13 3.00 5.27E−13 3.00

16,000 4.62E−14 3.01 6.53E−14 3.01 4.62E−14 3.01 6.53E−14 3.01
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Table 4 continued

J |||{{e}}(θ)|||
L2

(
SBh

) |||{{e}}(θ)|||
L∞(

SBh

) |||ē|||
L2

(
SEh

) |||ē|||
L∞(

SEh

)

r = 4 1000 3.95E−14 5.62E−14 4.01E−14 5.77E−14

2000 2.41E−15 4.04 3.41E−15 4.04 2.42E−15 4.05 3.47E−15 4.06

4000 1.49E−16 4.02 2.11E−16 4.02 1.49E−16 4.02 2.12E−16 4.03

8000 9.29E−18 4.00 1.31E−17 4.00 9.31E−18 4.00 1.32E−17 4.01

16,000 5.81E−19 4.00 8.22E−19 4.00 5.82E−19 4.00 8.24E−19 4.00

r = 5 1000 3.70E−15 5.26E−15 3.67E−15 5.33E−15

2000 1.14E−16 5.01 1.64E−16 5.00 1.14E−16 5.02 1.66E−16 5.00

4000 3.61E−18 4.99 5.21E−18 4.98 3.59E−18 4.98 5.29E−18 4.97

8000 1.12E−19 5.01 1.61E−19 5.01 1.12E−19 5.01 1.65E−19 5.00

16,000 3.52E−21 5.00 5.07E−21 4.99 3.50E−21 4.99 5.19E−21 4.99

r = 6 1000 3.73E−15 5.34E−15 3.71E−15 5.41E−15

2000 1.15E−16 5.02 1.66E−16 5.01 1.14E−16 5.02 1.69E−16 5.00

4000 3.58E−18 5.00 5.12E−18 5.02 3.56E−18 5.00 5.24E−18 5.01

8000 1.12E−19 4.99 1.62E−19 4.99 1.12E−19 4.99 1.65E−19 4.98

16,000 3.51E−21 5.00 5.05E−21 5.00 3.49E−21 5.00 5.19E−21 5.00

Table 5 Example 7.1: Supraconvergence results

J ‖ξ‖L2(I ) ‖ξx‖L2(I ) ‖ξxx‖L2(I )
qnt = k

r = 3 1000 1.92E−10 1.20E−09 7.57E−09

2000 2.44E−11 2.97 1.53E−10 2.97 9.63E−10 2.97

4000 2.98E−12 3.03 1.87E−11 3.03 1.18E−10 3.03

8000 3.72E−13 3.00 2.34E−12 3.00 1.47E−11 3.00

16,000 4.60E−14 3.02 2.89E−13 3.02 1.82E−12 3.02

r = 4 1000 3.90E−14 2.45E−13 7.97E−12

2000 2.40E−15 4.02 1.51E−14 4.02 4.79E−13 4.06

4000 1.53E−16 3.97 9.63E−16 3.97 3.02E−14 3.99

8000 9.35E−18 4.03 5.88E−17 4.03 1.93E−15 3.96

16,000 5.85E−19 4.00 3.67E−18 4.00 1.19E−16 4.02

r = 5 1000 3.62E−15 2.30E−14 7.62E−12

2000 1.13E−16 5.00 7.18E−16 5.00 4.78E−13 3.99

4000 3.51E−18 5.01 2.23E−17 5.01 2.95E−14 4.02

8000 1.11E−19 4.99 7.06E−19 4.98 1.92E−15 3.95

16,000 3.45E−21 5.00 2.20E−20 5.01 1.17E−16 4.04
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Table 5 continued

J ‖ξ‖L2(I ) ‖ξx‖L2(I ) ‖ξxx‖L2(I )
r = 6 1000 3.65E−15 2.32E−14 7.90E−12

2000 1.14E−16 5.00 7.24E−16 5.00 4.77E−13 4.05

4000 3.54E−18 5.01 2.25E−17 5.01 3.00E−14 3.99

8000 1.11E−19 5.00 7.06E−19 4.99 1.89E−15 3.99

16,000 3.47E−21 5.00 2.21E−20 5.00 1.18E−16 4.00

qnt = k − 1

r = 3 1000 1.89E−10 1.19E−09 7.45E−09

2000 2.45E−11 2.94 1.54E−10 2.94 9.68E−10 2.94

4000 2.98E−12 3.04 1.87E−11 3.04 1.17E−10 3.04

8000 3.73E−13 3.00 2.34E−12 3.00 1.47E−11 3.00

16,000 4.62E−14 3.01 2.90E−13 3.01 1.82E−12 3.01

r = 4 1000 3.95E−14 2.77E−13 1.34E−10

2000 2.41E−15 4.04 1.61E−14 4.11 1.04E−11 3.69

4000 1.49E−16 4.02 9.72E−16 4.05 9.38E−13 3.47

8000 9.29E−18 4.00 5.98E−17 4.02 8.10E−14 3.53

16,000 5.81E−19 4.00 3.72E−18 4.01 7.53E−15 3.43

r = 5 1000 3.70E−15 9.76E−14 1.05E−10

2000 1.14E−16 5.01 4.91E−15 4.31 9.65E−12 3.44

4000 3.61E−18 4.99 2.72E−16 4.17 9.42E−13 3.36

8000 1.12E−19 5.01 1.33E−17 4.36 8.24E−14 3.51

16,000 3.52E−21 5.00 6.96E−19 4.25 7.70E−15 3.42

r = 6 1000 3.73E−15 1.08E−13 1.14E−10

2000 1.15E−16 5.02 5.20E−15 4.38 1.03E−11 3.47

4000 3.58E−18 5.00 2.71E−16 4.26 9.57E−13 3.43

8000 1.12E−19 4.99 1.38E−17 4.30 8.54E−14 3.49

16,000 3.51E−21 5.00 6.64E−19 4.37 7.38E−15 3.53

qnt = k − 2

r = 3 1000 1.96E−10 1.23E−09 1.70E−08

2000 2.40E−11 3.03 1.51E−10 3.03 2.22E−09 2.94

4000 2.98E−12 3.01 1.87E−11 3.01 3.10E−10 2.84

8000 3.71E−13 3.01 2.33E−12 3.01 4.44E−11 2.81

16,000 4.61E−14 3.01 2.90E−13 3.01 5.93E−12 2.90

r = 4 1000 4.22E−14 1.95E−11 2.36E−08

2000 2.48E−15 4.09 1.64E−12 3.57 3.58E−09 2.72

4000 1.53E−16 4.02 1.39E−13 3.56 5.46E−10 2.71

8000 9.51E−18 4.01 1.31E−14 3.40 9.11E−11 2.58

16,000 5.96E−19 4.00 1.18E−15 3.48 1.45E−11 2.65
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Table 5 continued

J ‖ξ‖L2(I ) ‖ξx‖L2(I ) ‖ξxx‖L2(I )
r = 5 1000 1.63E−14 1.80E−11 2.18E−08

2000 8.42E−16 4.27 1.72E−12 3.39 3.76E−09 2.53

4000 4.11E−17 4.36 1.44E−13 3.57 5.53E−10 2.76

8000 2.05E−18 4.32 1.29E−14 3.48 8.95E−11 2.63

16,000 1.04E−19 4.31 1.16E−15 3.48 1.43E−11 2.64

r = 6 1000 1.66E−14 1.80E−11 2.15E−08

2000 8.05E−16 4.37 1.60E−12 3.49 3.48E−09 2.62

4000 3.95E−17 4.35 1.41E−13 3.50 5.47E−10 2.67

8000 2.00E−18 4.31 1.27E−14 3.47 8.82E−11 2.63

16,000 1.10E−19 4.19 1.23E−15 3.36 1.51E−11 2.55

• For qnt = k, the expected min(2k+1, r)-th order is observed for ‖ξ‖L2(I ) and ‖ξx‖L2(I ),
which verifies Theorems 4.1 and 4.2. Note that ‖ξxx‖L2(I ) does not keep the same order.
When r becomes large enough, the reduction of one order is observed for ‖ξxx‖L2(I ),
which can be explained by the inverse inequality.

• The expected order is not achieved for ‖ξ‖L2(I ) when qnt = k − 2, and for ‖ξx‖L2(I )
when qnt ≤ k−1. This verifies that it is sharp for the requirement on qnt in Theorems 4.1
and 4.2.

In Table 6, we give the numerical results on the accuracy enhancement of the post-
processed solutions, where u0 is taken to be (4.32) with qnt = k. As an example out of
the assumption of Theorem 6.1, we also take u0 to be (4.32) with qnt = 0 (i.e., the GGR
projection) or the L2 projection ofU0. The convergence order min{2k + 1, r} is observed for
all cases, indicating that the result in Theorem 6.1 is correct but not sharp.

Example 7.2 To investigate the sharpness of regularity assumption, we take U0 =
sinε+2/3(2πx), where ε is a positive integer. This function belongs to H ε+1(I ) but not
H ε+2(I ).

The superconvergence results are shown in Table 7, the supraconvergence results are
shown in Table 8, and the accuracy enhancements of the post-processed solution are shown
in Table 9. In each group, the regularity parameter is ε −1 for the left column, and is ε for the
right column. When the regularity parameter satisfies the requirement in the theorems, the
expected orders are observed. However, when the regularity parameter drops, the expected
orders are lost. These results indicate that the regularity assumptions in the theorems appear
to be sharp.

8 Concluding Remarks

In this paper we establish the superconvergence results for the fully-discrete RKDGmethods
with arbitrary stages, time order and degree of piecewise polynomials, when the upwind-
biased flux is used. To complete this task, many analysis techniques are involved. Firstly
we are able to avoid the computer-aided manipulation on the matrix transferring process,
and set up the relationship between the single-step and multiple-steps time-marching. As a
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Table 6 Example 7.1: Accuracy enhancement of the post-processed solution with three different initial solu-
tions

J qnt = k qnt = 0 (GGR) L2 projection

r = 3 1000 3.67E−10 3.67E−10 3.67E−10

2000 4.59E−11 3.00 4.59E−11 3.00 4.59E−11 3.00

4000 5.74E−12 3.00 5.74E−12 3.00 5.74E−12 3.00

8000 7.17E−13 3.00 7.17E−13 3.00 7.17E−13 3.00

16,000 8.97E−14 3.00 8.97E−14 3.00 8.97E−14 3.00

r = 4 1000 9.38E−14 9.29E−14 9.24E−14

2000 5.82E−15 4.01 5.79E−15 4.00 5.77E−15 4.00

4000 3.62E−16 4.01 3.61E−16 4.00 3.61E−16 4.00

8000 2.26E−17 4.00 2.26E−17 4.00 2.25E−17 4.00

16,000 1.41E−18 4.00 1.41E−18 4.00 1.41E−18 4.00

r = 5 1000 3.46E−15 3.18E−15 3.15E−15

2000 1.06E−16 5.03 9.73E−17 5.03 9.61E−17 5.03

4000 3.28E−18 5.01 3.00E−18 5.02 2.97E−18 5.02

8000 1.02E−19 5.01 9.33E−20 5.01 9.22E−20 5.01

16,000 3.18E−21 5.00 2.91E−21 5.00 2.87E−21 5.00

r = 6 1000 3.48E−15 3.20E−15 3.17E−15

2000 1.07E−16 5.03 9.79E−17 5.03 9.67E−17 5.03

4000 3.30E−18 5.01 3.02E−18 5.02 2.99E−18 5.02

8000 1.03E−19 5.01 9.39E−20 5.01 9.28E−20 5.01

16,000 3.20E−21 5.00 2.93E−21 5.00 2.89E−21 5.00

Table 7 Example 7.2: Superconvergence results

J |||e|||L2(SRh )
, qnt = 0, r = 4, ε = 4 |||ex |||L2(SLh )

, qnt = 0, r = 3, ε = 4

1000 6.53E−10 8.42E−11 1.42E−06 4.92E−07

2000 5.65E−11 3.53 4.96E−12 4.09 2.57E−07 2.46 6.35E−08 2.95

4000 4.91E−12 3.52 3.10E−13 4.00 4.52E−08 2.51 7.76E−09 3.03

8000 4.31E−13 3.51 1.91E−14 4.02 8.29E−09 2.45 9.87E−10 2.98

16,000 3.84E−14 3.49 1.21E−15 3.98 1.54E−09 2.43 1.22E−10 3.02

J |||{{e}}(θ)|||L2(SBh )
, qnt = k, r = 5, ε = 5 |||ē|||L2(SEh )

, qnt = k, r = 5, ε = 5

1000 1.72E−11 5.12E−12 1.64E−11 5.12E−12

2000 8.20E−13 4.39 1.61E−13 4.99 7.88E−13 4.38 1.61E−13 4.99

4000 4.11E−14 4.32 5.06E−15 4.99 3.97E−14 4.31 5.07E−15 4.99

8000 2.02E−15 4.34 1.57E−16 5.01 1.97E−15 4.33 1.57E−16 5.01

16,000 9.99E−17 4.34 4.94E−18 4.99 9.80E−17 4.33 4.94E−18 4.99

In each group, the regularity parameter is ε − 1 for the left column, and is ε for the right column
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Table 8 Example 7.2: Supraconvergence results

J ‖ξ‖L2(I ) , qnt = k, r = 5, ε = 5 ‖ξx‖L2(I ) , qnt = k, r = 5, ε = 6

1000 1.72E−11 5.12E−12 6.38E−10 2.99E−10

2000 8.32E−13 4.37 1.61E−13 4.99 3.04E−11 4.39 9.39E−12 4.99

4000 4.08E−14 4.35 5.06E−15 4.99 1.48E−12 4.36 2.95E−13 4.99

8000 2.01E−15 4.34 1.57E−16 5.01 7.23E−14 4.35 9.15E−15 5.01

16,000 9.96E−17 4.33 4.94E−18 4.99 3.58E−15 4.34 2.87E−16 4.99

In each group, the regularity parameter is ε − 1 for the left column, and is ε for the right column

Table 9 Example 7.2: Accuracy
enhancement of the
post-processed solution

J qnt = k, r = 5, ε = 5

1000 1.59E−11 4.50E−12

2000 7.59E−13 4.39 1.38E−13 5.03

4000 3.67E−14 4.37 4.25E−15 5.02

8000 1.79E−15 4.36 1.32E−16 5.01

16,000 8.82E−17 4.35 4.12E−18 5.00

The regularity parameter is ε − 1 for the left column, and is ε for the
right column

result, the stability results can be directly concluded by an equivalent representation of the
RKDG methods. Secondly, we present a uniform strategy on the reference functions and the
incomplete correction functions at every time stage. Then many superconvergence results
are rigorously given under different regularity assumptions, and the optimal time order is
achieved as expected. Thirdly, we obtain two interesting results in addition. With the help
of the discrete derivative operator according to the DG spatial discretization, as well as the
transform between the spatial derivative and temporal difference, we are able to prove that the
first order spatial derivative of the solution has the same supraconvergence order as that for
the solution.We also present a new proof for the accuracy enhancement of the post-processed
solution, as an application of the obtained supraconvergence result and the properties of the
divided differences of the numerical error.

In future work, we shall extend the above techniques and analyses to non-periodic
boundary conditions and to nonlinear equations and/or systems. The extensions to other
time-marching methods are also on the plan. Furthermore, we plan to explore the proof of
piecewise-point superconvergence results that have been shown in the numerical experiments
for the RKDG methods.

Appendix

In this section, the supplement proofs of three technical results are given.

Proof of (3.16)

Substituting the offset into the relationship in Lemma 2.2, we have

ez +
∞∑

i=r+1

α̃i (m)zi =
[
e

z
m +

∞∑

i=r+1

α̃i (1)
( z

m

)i]m =
[
e

z
m + zr+1

mr+1 q(z)
]m

, (9.1)
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where q(z) = ∑∞
i=0 qi z

i = ∑∞
i=0

α̃i+r+1(1)
mi zi . Denote α̃max = max∀κ

|α̃κ (1)|. By a direct

calculation, the coefficient of [q(z)] j = ∑∞
i=0 qi, j z

i satisfies

|qi, j | ≤ C(α̃max)
j , 0 ≤ i, j ≤ 2ζ − 1,

where the bounding constant C > 0 solely depends on the termination index ζ .
Subtracting ez from both sides of (9.1) we have

∞∑

i=r+1

α̃i (m)zi =
∑

1≤ j≤m

(
m

j

)(
e

z
m

)m− j( zr+1q(z)

mr+1

) j

=
∑

1≤ j≤m

(
m

j

)
z j(r+1)

m j(r+1)

[ ∞∑

i=0

1

i !
(m − j

m

)i
zi
][ ∞∑

i=0

qi, j z
i
]
.

and get

α̃i (m) =
∑

1≤ j≤m

⎡

⎣

(
m

j

)
1

m j(r+1)

∑

0≤�≤σi j

q�, j

(m − j

m

)σi j−� 1

(σi j − �)!

⎤

⎦ ,

where σi j = i − j(r + 1). Hence

|α̃i (m)| ≤ C
∑

1≤ j≤m

[ α̃max

mr

] j ≤ C α̃max

mr
,

provided mr ≥ 2α̃max. This completes the proof of this inequality.

Proof of (4.40)

It is no harm in assuming that q ≥ 1. Substituting (4.32) into the definition of ξ̃0 yields

ξ̃0 = Hh

(
GhU0 −

∑

1≤p≤qinit

Fp(−∂x )
pU0

)
−

(
Gh�0 −

∑

1≤p≤q

Fp(−∂x )
p�0

)

= HhGhU0 −
∑

1≤p≤qinit

HhFp(−∂x )
pU0 + βGh(U0)x − β

∑

1≤p≤q

Fp(−∂x )
p(U0)x ,

(9.2)

since �0 = −β(U0)x . Because U0 ∈ H1(I ) is continuous in I , for any v ∈ Vh we have

(HhGhU0, v) = H(GhU0, v) = H(U0, v) = −β((U0)x , v) = −β(Ph(U0)x , v),

where the definitions of the two projections are used. Similarly, due to Lemma 4.4, each term
in the first summation of (9.2) satisfies

(HhFp(−∂x )
pU0, v) = H(Fp(−∂x )

pU0, v) = β(Fp−1(−∂x )
pU0, v), ∀v ∈ Vh .

Hence, HhGhU0 = −βPh(U0)x and HhFp(−∂x )
pU0 = βFp−1(−∂x )

pU0. Substituting
them into (9.2), we arrive at

ξ̃0 = −β
∑

1≤p≤qnt−1

Fp(−∂x )
p+1U0 + β

∑

1≤p≤q

Fp(−∂x )
p+1U0. (9.3)

Since q ≤ qnt ≤ k, we can get (4.40), along the same line as for (4.34).
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A supplement is given for q = 0. Since the summation is equal to zero if the index set
is empty, the formula (9.3) also holds for q = 0 and qnt ≥ 1. If q = qnt = 0, the two
summations in (9.2) vanish such that ξ̃0 = −βF0(U0)x . For these special cases, it is easy to
see that (4.40) holds.

Proof of Lemma 5.2

By the definitions of the two projections we have

(Ghw − Chw)|I j = w̃ j L j,k, j = 1, 2, . . . , J ,

and the undetermined constants w̃ j satisfy the following system of linear equations

θw̃ j + (1 − θ)(−1)kw̃ j+1 = {{C⊥
h w}}(θ)

j+ 1
2
, j = 1, 2, . . . , J . (9.4)

It is proved in [8] that this linear system has a unique solution since θ �= 1/2, and

‖Ghw − Chw‖2L2(I ) ≤ Ch
∑

1≤ j≤J

|w̃ j |2 ≤ Ch
∑

1≤ j≤J

|{{C⊥
h w}}(θ)

j+ 1
2
|2. (9.5)

Hence, it is sufficient to prove this lemma by showing

|{{C⊥
h w}}(θ)

j+ 1
2
| ≤ Chk+

3
2 ‖w‖Hk+2(I j∪I j+1)

, j = 1, 2, . . . , J . (9.6)

To this end, let us consider the decomposition

{{C⊥
h w}}(θ)

j+ 1
2

= {{C⊥
h (Pk+1

h )⊥w}}(θ)

j+ 1
2

+ {{C⊥
h P

k+1
h w}}(θ)

j+ 1
2

= b j1 + b j2,

where Pk+1
h denotes the local L2-projection on V k+1

h . By using the approximation property
of the projections Ch and P

k+1
h , we get

|b j1| ≤ Ch
1
2

∥
∥
∥(Pk+1

h )⊥w

∥
∥
∥
H1(I j∪I j+1)

≤ Chk+
3
2 ‖w‖Hk+2(I j∪I j+1)

. (9.7)

Using (5.10), we know that C⊥
h P

k+1
h w(x) = w j,k+1(L j,k+1(x) − ϑ j L j,k(x)) for x ∈ I j ,

where

w j,k+1 = 2k + 3

2

∫ 1

−1
w
(
x j + h j x̂

2

)
Lk+1(x̂)dx̂ = hk+1

j

∫ 1

−1
∂k+1
x w

(
x j + h j x̂

2

)
�(x̂)dx̂,

and the kernel function �(x̂) = (−1)k+1(2k+3)
22k+3(k+1)! (x̂2 − 1)k+1 is independent of j . In the above

manipulations the Rodrigue’s formula of the Legendre polynomials and integration by parts
are used. Using (5.1), we get

b j2 = θ(1 − ϑ j )w j,k+1 + (1 − θ)[(−1)k+1 − ϑ j+1(−1)k]w j+1,k+1

= θ(1 − ϑ j )h
k+1
j

∫ 1

−1

[
∂k+1
x w

(
x j + h j x̂

2

)
− ∂k+1

x w
(
x j+1 + h j+1 x̂

2

)]
�(x̂)dx̂

≤ Chk+
3
2 ‖w‖Hk+2(I j∪I j+1)

. (9.8)

where the Holder’s inequality is used at the last step. We have now proved (9.6) and hence
completed the proof of this lemma.
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