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Abstract

It is well known that for the second-kind Volterra integral equations (VIEs) with weakly
singular kernel, if we use piecewise polynomial collocation methods of degree m to solve it
numerically, due to the weak singularity of the solution at the initial time r = 0, only 1 — «
global convergence order can be obtained on uniform meshes, comparing with m global
convergence order for VIEs with smooth kernel. However, in this paper, we will see that at
mesh points, the convergence order can be improved, and it is better and better as n increasing.
In particular, 1 order can be recovered for m = 1 at the endpoint. Some superconvergence
results are obtained for iterated collocation methods, and a representative numerical example
is presented to illustrate the obtained theoretical results.
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1 Introducation

We consider the following second-kind Volterra integral equation (VIE) with weakly singular
kernel:

t
u(t) =g() +/ (t—s5)"*K(@,s)u(s)ds, tel:=[0,T],0<a <1, (1)
0

where g and K are continuous functions on their respective domains, and K (t,¢) # 0
fort € I.1In [1], it is shown that on uniform meshes, the convergence order of piecewise
polynomial collocation methods is only 1 — «. In order to improve the convergence order,
graded meshes are employed to overcome the lower regularity at the initial time ¢ = 0.
However, in [2], it is said that “the commonly used graded meshes may cause serious round-
off error problems due to its use of extremely nonuniform partitions and the sensitivity of
such time-dependent equations to round-off errors”, and in order to avoid this problem, a kind
of hybrid collocation methods is presented, but the original singularity has to be considered
for carefully designing the mesh.

In this paper, at the mesh point ¢, a fine error estimation with order £, “h?>=% 4-¢ 1 =m—apm
for piecewise polynomial collocation methods on uniform meshes is obtained, where m is
the degree of the piecewise polynomial. In particular, at the endpoint, the convergence order
is min{2 — o, m}; form = 1 and @ < 0.5, at the collocation point, the convergence order is
always 1, which is not affected by the initial singularity. In order to improve the convergence
order, the general iterated collocation methods are presented for m = 1, and it is shown that
for the k-th iterated collocation method, the convergence order is t,’f"_k"‘hz_"‘ at the mesh
point #,.

The outline of this paper is as follows. In Sect. 2, the classical piecewise polynomial
collocation method on uniform meshes is recalled. In Sect. 3, fine error estimations at mesh
points for VIEs with m = 1 and K (¢, s) = 1 are investigated, and the error estimations for
m > 2 and general kernels are given in Sect. 4. The iterated collocation methods and the
convergence are analyzed in Sect. 5. A typical numerical example is given to illustrate the
obtained theoretical results in Sect. 6.

2 Collocation Methods on Uniform Meshes

Let N > 2 be a positive integer, and I}, := {t, :=nh: n=0,1,...,N (ty:=T)}bea
given mesh on I = [0, T'], with 0, := (¢,, tn+1] and mesh diameter h := T /N.
We seek a collocation solution uj, for (1) in the piecewise polynomial collocation space

SN == {v: vle, € 7w = m(on) O <n<N—1],

where m,, denotes the space of all (real) polynomials of degree not exceeding m. For a
prescribed set of collocation points

Xy ={t=t,+cih: 0<ci<---<cp<10<n<N-1)}, 2)

uy, is defined by the collocation equation

t

up(t) = g() +/ (t—s5)"“K(@t,)up(s)ds, t € Xp,. 3)
0
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In [1], it is shown that the collocation solution uj, converges to the exact solution u, with
order 1 —«,i.e.,
lu = wnlloo == sup lu(®) — up ()] = O~ @
tel

In this paper, we will show that at the mesh points, especially at the endpoint, a better
convergence result can be expected.
The following lemma, coming from [1, Lemma 6.2.10], is useful.

Lemma 1 Let I, be a uniform mesh on I = [0, T]. If {c;} satisfy 0 < c; < --- < ¢y < 1,
then, for0 <l <n < N — 1l andv € Ny,

1
/ mt+c—1l—s)%s"ds<y@mn—-0D"%,i=12,...,m,
0

where y (o) 1= %

3 Fine Error Estimations for m = 1 and Constant Kernels at Mesh Points

In order to obtain the first insight, in this section, we assume thatm = 1 and K (¢, s) = 1.
Let e, := u — uy. On the first mesh interval [tg, t1] = [0, i], by [1, Theorem 6.2.9], we
know that there exists a constant C, which is independent of 2 and N, such that

len(to + vh)| < C1A'™*, 0 <v < 1. )
For1 < n < N—1,the collocation erroron (t,, t,,+1]has thelocal Lagrange representation
en(tn +vh) = en1 + hRy (v), (6)
where €, 1 1= e, (ty,1), th,1 :=1t, +c1h and
Ry(v) = U/ (§4(v)) (v —c1), 1y < E(V) < ty1.
By [2] (see also [1, Theorem 6.1.6]), there exists a constant C», such that
IRy (V)| < Cat,* = Ca (nh)™*. @)
By (1), (3) and (6), we have

1 _
&n,1 =eh(tn,l) :[) ([n’l —S) O[Eh(s) ds
o n—1 1 th1—1 —a
=h1_°‘f (c1 — ) ety +shyds +h'™ Z/ ("T - S) ep(t; + shyds
0 1=0 70
c1 1
:hl_“/ (c1 —95)7 [Sn,l + hRn(S)] ds +h1_°‘/ (n+cp—9)"%eplto +shyds
0 0
n—1 .1
+nl Z/ (n+cy—1—95)7" [81,1 +th(3)} ds
0
=1

c1 n—1 .1
:hl_“/o (c1 —s5)7 ¢ dssn’l—f—hl_“Zfo (n+cyp—1—s5)"%dse 1 +rp(a),
=1
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ie.,
n—1

(1 - hl_aQO)en,l - hl_a Zanflgl,l = ry(a), (8)

=1

where

1 cl
rn(e) :=h'"¢ / (n+ci —s) Yep(to+ sh)ds + h> / (c1 —$) ¥ R,(s)ds
0 0

=1 g )
+h*e Z[ (n+ci—1—s5)"“Ri(s)ds,
=170
and
cq 1
ap = ap(cr; a) = / (c1—8)"%ds, ax=a(c1; ) := f (k+c1—s)"%ds
0 0
defined as in [5].
Therefore, for 1 <n < N — 1, (8) can be written as
1-— h17“a0
_hlfa 1_hlfoz &1 ri(a)
i a0 £2,1 ra(a)
S L P B ) a1 =] )
€n,1 (o)
=g, —h'=eq, , . —nl=eg 1- hlfaa()
(10)
e1,1 ri(a)
2,1 ra(a)
Lete, ;= | &1 |andr,(@) = | 3@ | Then
En,1 ()
(1 =17, Jen = ra(@), an

where I,, denotes the identity in L(R") and T, is the lower triangular Toeplitz matrix (see
[5D.

It is easy to prove the following lemma.

Lemma2 Letr € N, and

ai,
a1 azp
A= | a1 a2 a3
ar1 arp2 Aar.r
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be a lower triangular matrix with a; ; # 0 (i = 1,2, ...,r). Then A is invertible, and the
inverse matrix A~ is also a lower triangular matrix, with the elements
1 .
wii=—, i=12,...,r,
aj i
i—j—1
13 o
wi = - Z aj jrwjij, 1<j<i=<r.
1,1
v 1=0

Denote the inverse of the matrix I, — A!9T,, as B,, with the element b j, and ap =
aopler; @) == 1—hl"%ay(cr; @). By Lemma 2, we easily obtain the following corollary.
Corollary1 For1 <n < N — 1, the matrix I,, — h'=®T,, is invertible for sufficiently small

_ -1 . . . .
h, and B,, = (In —h! “T,,) is also a lower triangular matrix, with the elements

1
bt,t=fs i=1,2, , 1,
ap
| i—j—1
b =h1_a{ > aijubju, 1<j<i<n
0 120
Lemma3 Forl <n <N,
n nl—oz
D
P l—«a
and
n—l 220(
Z (n— l)fa 7Y < n172a'
— l—«o

Proof The first part follows from [4, Lemma 5.6], and the second part follows from [3,
Lemma 6.1]. O

Lemma4 For1 <n <N —-1,1<i <n,1 <k <n—1i, biyr has the same value as
bj 1,1, which is independent of k, i.e.,

Ditkk = bit1,1-
In addition, there exists a constant C3, which is independent of h and N, such that
|biik| < C3h' 70,

Proof We use the argument of the mathematical induction. First, fori = 1,1 <k <n — 1,

| Hkk . .

1— 1— 1— 1

biykk=h""— Z Atk—k—tbirik =h " —arbgr =h " —,
w1 ao ag

so the values of b4 x are same, i.e., bi4xx = b2,1.
We assume that for 1 <i <n —1,1 <k < n — i the values of b; x are same, which
implies b4k x = bi+1,1. Then by Corollary 1,

| kL
1_
biviske =h %= Z @it 1+k—k—1 k41,1
w95
1< I «
- -
=h'"" =Y ariabrek = h'T =Y aiyioibi,
a0 125, a0 5

@ Springer



12 Page60of 23 Journal of Scientific Computing (2020) 84:12

which is independent of k with 1 < k < n — (i + 1), i.e., the values of b; 14 x are same,
and b; 414k .k = bi42,1. The proof of the first part is complete.

In addition, for sufficiently small %, there exists a constant Dy, which is independent of &
and N, such that
1

ap

1
1 —hl-« focl (c1 — )% ds

So by Corollary 1 and Lemma 1, we have,

1 i—1
= Zai—zbz+1,1'
a0 15
i—1
< Doy (@h'™ Y (i =D~ |br11]
=0
i—1
< Doy (@h'™* > (i =17 |bry11] + Dyy(@)h' i~
=1

|bis11]| ="

By the discrete Gronwall inequality (see [1, Theorem 6.1.19]), we know that there exists a
constant C3, which is independent of & and N, such that

|bis11] < C3h' e,

[m}

Theorem 1 Assume that g € C'(I), K € CY(D). Let u and uy, € S(gfl)(lh) be the exact
solution and the collocation solution defined by the collocation Eq. (3), respectively, for the
second-kind Volterra integral Eq. (1). Then for sufficiently small h,

lu —upllyoo = sup |u(t) —up(®)| < Ct, “h,
1€(ty, tn+1]

where C is a constant independent of h and N.
In particular, there exist constants C and C, independent of h and N, such that at the
collocation points,
|t 1) = wi(ta, 0| < Cty 7>,

and at the endpoint, i
|u(T) —up(T)| < Ch.

Proof First, by (5), (7), (9), Lemmas 1 and 3, there exists a constant C4, such that

[ (c0) |
170( n—1
< Ciy(n— -y c, 5 e GO CRI 4 Coy(@hP Y (= 1) (th) ™
=1

1—a 20

§C1y(a)n_°‘h2(1_“)+C2 101 e p20- a)+C2 2 y(a)nl 2ap,2(1-a)

5 C4n1—20th2(]—0t)'
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Next, by (10), Lemmas 3 and 4, we have

n
> bpri(a)
1=1

n—1

< C3C4 Zhl—a (I’l _ l)—ot ll—2ah2(l—a) 4 D0C4nl—2ah2(l—a)
=1

2a

rn (o)

ygn,l’ = I
ao

n—1
<> |bua| In(e)] +
=1

<Gy 12 Tl—anl—ZahZ(l—ot)+DOC4n1—20th2(l—a)

— o

A

22
<C3C41 T]—Ot + DOC4> n]—2ah2(]—a)
—

—. (pl-2ep20-a)
In particular, by (6) and (7), there exists a constant C, such thatfor 1 <n < N — 1,
len (t, + vh)| = lu(ty + vh) — uy(t, + vh)|
< |ent| +h IRy (V)|
< Cn'72p20=9) 4 Coh (nh)™
< Cn~%h'~@,
Further, att =ty =T, for N > 2,

[u(T) — up(T)| = lu(ty) — up(ty)] < CN"*h'™% < CT~*h.

Corollary 2 If o« < 0.5, the order of the error at the collocation points is always 1; i.e.

max |u(t,,,1) - uh(tn,l)’ = O(h).

4 Fine Error Estimations for m > 1 and General Kernels at Mesh Points

Let ey, := u —uj,. On the first mesh interval [f, #1] = [0, k], by [1, Theorem 6.2.9], we know
that there exists a constant M, such that

len(to + vh)| < MiA'™®, 0 < v < 1. (12)

For1 < n < N—1,thecollocation error on (7, t,,H] has the local Lagrange representation

m

entn +vh) =Y Li()en j + B Ry n(v), (13)
Jj=1

where &, j 1= ep(ty,j), th,j :=t, +c;jh and

Ryn@) =™ ) [ | (v =¢j) s ta < 00@) < tay1.
j=1

By [2] (see also [1, Theorem 6.1.6]), there exists a constant M», such that
|Rinn (V)| < Mot D7 = My (nh)! =% (14)
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By (1), (3) and (13), we have

tn,i _
eni =en(ty;) = / (tni —5)"" K(tn,i, $)en(s) ds
0

Ci
*“/ (ci —$) % K(tni, tn + sh)ep(ty + sh)ds
0

l—a =t Ini—1 -
+ h E A -5 K(tni, t; +sh)ey(t; +sh)ds
0
=0

Cci m
=hpl / (ci — )" K(tni th + sh)[z Li(s)en,j+ h'"Rm,,,(s)] ds
0

j=1

+h'" “Z/ (ntci—1—s5" K(rn,,tl+sh)[ZL (s)er.j + h" mz(s>]

j=1
+ hl_“/ (n+ci—s)"“K(tni,sh)en(to + sh) ds
0
m ci
=pl- Z/ (ci —8) “K(tni ta +sh)Lj(s)dsen
=1 0
n—1 m

+h'" "ZZ/ (4 ci —1—5)"% Kt ty + SWL;(s) dser j + rmn(ci: ),

=1 j=1

where
1
Fmon(Cis @) =pl / (n+ci—s)"“K(tni,sh)en(to + sh) ds
0

¢
+ hm+1—o¢/ (ci = )" K(tn,i, tn + Sh) Ry n(s) ds (15)
0
e
+ pmtl-e Z/ (n+ci —1—$) % K(tni, 17 + sh) Ry (s) ds.
0
Forl <n<N-—-1land1l <[ <n— 1, denote

Ann—Ann(Cl, Oy @) = / (=57 K (tn,i tn +Sh)L (s)ds
(i, j=1,.
/ (n+c—1—s5)" aK(tnzvfl-FSh)L (s)ds
i, j=1,...,m)

An,l = An,l(Clv e, Oy ) =

T T
&, = (8,1,], ...,en,m) s Tm,n :rm,n(clv -~«»Cm;0‘) = (rm,l'l(cl;a)’ » I'm, ”(Cm,O[))
Then
n—1
(Im - hl_aAn,n)en - hl_a ZAn,lsl =Tm,n, (16)

=1
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and
| P 7h17aA1.1
_hlfaAz‘l Im—hlfaszz €] i, 1
€2 Im,2
7h1_aA311 7h1_aA3Y2 Im 7hl_DtA3_3 = m3 . (17)
€n Ym,n
_hliaAn.l _hliaAn,Z _hliaAn,n—l L _hliaAn,n
Denote
Al
Ar1 Agp

Tpn = —h' A3 Aso Az

An,l An,2 An,n—l An,n

Then the coefficient matrix can be written as I, — h'=*T,,,.
It is easy to prove the following lemma.

Lemma5 Letr € NandD,, (1 < q < p <r) be square matrices, and

Dy
Dy Do
D= | P31 D32D33

D,i1D,2 ... ...D,,

B

be alower triangular block matrix with invertible D, , (i = 1,2, ..., r). ThenD isinvertible,
and the inverse matrix D™\ is also a lower triangular block matrix, with the elements

_n-! _
Wp,p_Dpyp,p_l,Z,...,r,
r—q—1

_ —1
Wp,q = —D]”j Z Dp,q_HWq_,_l,q, l<g<p<r.
=0

_ Denote the inverse of the matrix Ly, — h'~%T,, as By, with the element B; j, and
A=A () =L, — hl_“A,‘yi. By Lemma 5, we easily obtain the following corollary.

Corollary 3 The matrix L, — h'=%T,,, is invertible for sufficiently small h, and the inverse

A - —1. . . .
matrixB,,,, = (Imn —h! “Tmn) is also a lower triangular block matrix, with the elements

-1
B,p=A,,.p=12,...n,

p—q—1

l—a px—1
B,y =h'""A Y A, uByig. 1<g<p<n
=0
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Forl <n<N-1,1<p<n,1<k<n-— p,itis easy to see that for non-constant
kernel K (¢, s), the values of B, 4 x are usually different, which is different from the constant
kernel case (see Lemma 4). But the estimation for B, 4 x still holds, which is described in
the following lemma.

Lemma 6 Assume that K € C(D), where D :={(t,s) :0<s <t <T}. Thenfor1 <n <
N—1,1<p<n,1 <k <n— p, there exists a constant M3, which is independent of h
and N, such that

IBpick]y < Msh' = p.

Proof Denote K := max |K(¢,s)|and L := max ’Lj(s)‘. Then by Lemma 1, we
(t,)€D 1<j<m,s€[0,1]

know that

1
/ (m+ci—1—$)"*K(tni i +sh)L;(s)ds| < KLy(a) (n —1)7%.
0

For sufficiently small 4, A;ylp is uniformly bounded, which implies that there exists a constant
Dy, which is independent of / and N, such that

A
<
|375], =20

So by Corollary 3 and Lemma 1, we have

p—1

Bk Hl =n'"" A;Jlrk,erk Z Ap k1 Biik k
=0 1
— _ — p_]
<DomKLy(@h'™*Y " (p =D [ By
=0

p—1
<DomKLy@h'™ Y " (p =D~ [Brri|, + DgmK Ly ()h'~*p~@.
=1

By the discrete Gronwall inequality (see [1, Theorem 6.1.19]), we know that there exists a
constant M3, which is independent of & and N, such that
IBpsill, < Msh'=*p~e.

Lemma?7 Forl1 <n<N,m=>2and0) <a <1,

n—1

D =D < pan,

=1

_ m—2(1-a)
where 7(@) = 2% (14 b ) + 205

Proof By

n n nZ—m—a_l 1
E [imm—« §1+f sy =14 —— <14 —
= 1 2—-m—a«o m—2+4+a«o
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and together with Lemma 3, we obtain

n—1 n—1
Z (n— l)—oz Jl-m—a Z l)—a Jl-m—« + Z (n— l)—a ll—m—a
= =1 I=|3]+1

N\§

IA
—~
[N
~—

—a 3] nN\l-m—a n-l
S+ (3) > w-n
=1

I=131+1

-«
< (E)fol . # n (E)]fmfot (%)
2 m-—2+4+u«a 2 l—«o
e LN e T
m—2+u«o l—«

1 2m72(lfoz)
<21+ + n=Y.
m-—2+a«a 11—«

Theorem 2 Assume that g € C™(I), K € C™(D), and uy, € S( 1(Ih) is the collocation
solution for the second-kind Volterra integral Eq. (1) defined by the collocation Eq. (3). Then
for sufficiently small h,

lu = tnllpoo = sup |u@) —up(®) < M (t;*h** + 11" "0"™),
' t€(tn, tat1]

m}

where M is a constant independent of h and N.
In particular, there exist constants M and M, independent of h and N, such that at the
collocation points,

t,%fz‘xh, ifm=1
17OR2T ifm > 2,

|t (t,i) — un(tn)| < M {

and at the endpoint, o
u(T) — up(T)| < MAm™nE=em),

Proof We divide into the following two cases.
Casel:m = 1.

First, by (12), (14), (15), Lemmas 1 and 3, there exists a constant M4, which is independent
of h and N, such that

|r1,n(cl;a)|
1 n—1
< M]Ky(a)h2(l —) = 4 M, - 1 - Kn—op2-o 4 Mzk)/(a)hz(l*a) Z n—11e
=1

l—a

_ c B _ 220{
< MKy @n™h*17 4 My — Rn™n*(070 4+ My Ky (@) 7——n' 72207
- — o
< M4n1—2ah2(l—a).

Similar to the case of m = 1 and constant kernels in Sect. 3, it is easy to obtain that there
exist constants M5 and Mg, such that

el < Msn! 2421,
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and

len (ty + vh)| < Mot “h.

In particular, att =ty = T, for N > 2,

lu(T) — up(T)| = lulty) — up(tn)| < Mety®h = MT*h,

which completes the proof.

CaselIl: m > 1.

First, by (12), (14), (15), Lemmas 1 and 7, there exists a constant M4, which is independent

of h and N, such that

|rm,n(ci;a)|

< MKy @n* 1=~ + My

n—1

1—
Ci “ k (nh)l—m—a hm+1—a

— o

+ MRy (@h™ 13" (0 — )= (ny! e

=1

_ M, - _
S Mle(a)n—Dlhz(]—Ol) + 1 2 Knl—m—ahZ(l—oz) +M2Ky(a))7(a)n—ah2(1—0()

< Myn—p20-),

— o

Next, by (17), Lemmas 3 and 6, we have

lenll =

n
Z Bn,lrm,l
=1

n—1

1

<mM3My Yy h'" (n = D717 R* 0 4 Do Myn >~

=1

2
< (mM3M4T1—“1

=:Msn~*h¥1=).

n—1
<Y | Budll, [rma@], + | A h i lrma@]
=1

2u

+ m[_)()M4) n~p20-0
—

By (13) and (14), there exists a constant Mg, such that

len (1, + vh)|

In particular,

IA

< LMsn™h*"=% + Myh™ (nh)' ="~

=

lu(ty +vh) — up(t, + vh)|

m
D Ljenj| + 1" [Run(v)]
j=1

Mg (tn—ahZ—ot + tr}—m—ahm) .

[u(T) — up(T)| = lu(tn) — un(tn)|

which completes the proof.
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Corollary 4 For the general kernel, if m = 1 and o < 0.5, the order of the error at the
collocation points is always 1; i.e.

max [u(ty,1) = (1, 1)| = O(h).

5 Iterated Collocation Methods form = 1

In the following, we investigate the iterated collocation methods for m = 1 to obtain some
further superconvergence results.

5.1 The First Iterated Collocation Method

Let t
(1) = g(t)-i—/ (t=9)""K(t, s)up(s)ds, t €1
0

be the first iterated collocation method. It is obvious that
Wl (1) = up (1), forallr € Xy,

Let .
Sp(t) := —up(t) + g() +/ (t —s) K (t,)up(s)ds, t €1
0

with 8 () = O whenever t € X},. Then
t
Sn(t) = en(t) —/ (t—s5)"“K(t,s)ep(s)ds, t €1.
0
Att =t, + vh, by Lemmas 1, 3, and Theorem 2, there exists a constant Eo, such that

18 (ta + V)| < len(t + vh)| +h' ™%

+h1—“§
=0

v
/ (v—38)"%K(t, + vh,t, +sh)e,(t, + sh) ds
0

1
/ m—=1+v—25)"“K(@t, +vh,t; +sh)e,(t; +sh) ds
0

n—1
+2K My @h' ™Y (n =1t “h
=0

11—«

_ — .. h
<2M1,*h + 2K Mt, "‘h1
— o

< Eotn_ah.

By (13) and (14),for 1 <n < N — 1,and 1t € (¢,, tn+1], there exists a constant Ep, such
that

dop.
et + 0D = |R} )] = ‘% [« ) - q)]‘

= | @) @ = e+ 00|
<hMj (nh)™'=% + My (nh)™®

<Et,“.
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Similarly, there exists a constant E;, such that

" — " — d2 !
et + vm)| = [n'RY )] < h7 |5 [ (nn(v»(v—cl)]‘

=h |2 () = ) + 2 (1, )|
<hM; (nh)™>~% 4+ 2M; (nh) ™'~

< Ezln_l_a.
In addition,
1 t

Su(t) =en(t) + —[ K(t,5)ep(s)d(t —s)' @

l—« 0

t
() + |:—K(t, 0)e; (0)r' —f (t — s)l—ai(K(z, s)eh(s)) ds:|
-« 0 as

m; (K(t s)eh(s)>) otzw

2—a
m/( —5) (K(f S)eh(5)>

I
=en(r) - — (K. O)tl*“)eh(O) -

therefore,
1 d ! K, /
8 (1) =e), (1) — ma(K(t,O)tl_“)eh(O) —/ t—s5)" <%eh(s)+1<(t,s)eh(s)> ds

t 2
f(t—s)”‘(8 P g+ D s ))

T l-a o tds
1/ " d 11—« 1 32 9 2—a
50 =)~ = 2(K(z 0)t )eh(O) Toe—w? [ (K(t s)eh(s))‘ L ]
N K( 9, IK (1,
(f— s)~ +2 o5 eh( $) + K (t,5)e) (s)
o [P3K s P2K@,s) IK(t,5)
-5 ( R en(s) #2500 + S e s ))
1 ' rea [3*K (2, $) PK(,s) , 92 K(t 5)
_(l—oz)(Z—a)/()(t_S) ( a2 ) T2 ) )

and by Lemmas 1, 3 and 7, there exist constants E 1 and E"z, such that

K _
|87, (tn 4+ vh)| < |, (tn + vh)| + [1 _1a (tn + V)" + K (ta + vh)*"‘} len (0)]

ty+vh _ _
+/ (1 + vh = )[Ry len(®)] + K [¢f,(5)] ] ds
0

1

th+vh _ _
/0 (1 —{—vh—s)l_“[Kg len(s)| + K }e;(s)|]ds
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and

|8 (1 + vh)|

K>
l -«

< |ej(ta + vh)| + [ (tn +vh)' ™ + 2K (t, + vh) ™ + aK (t, + vh)""’l] len (0)]

K3 len(0)] + K2 |e;, (0)] (s + vh)2 + 2K2 len(0)| + K ]eh(O)\(
I-0)2-a l—«

+ [ 1en(©)1 + & [¢f, )] et + vmy

tn + vh)' 7

ty+vh _ B B
+ /0 (1 + vh = )™ Rz len ()] + 2K [¢f, ()| + K [ef )] ] ds

2 tha+vh _ _ —
+ / (1 + vh =)'~ R len()| + 2Kz [ef ()| + Ko |ef )] | ds
S A
+1/t"+vh(; +vh = )[Ry len(s)] +2Ks |e},)] + Kz [ef ()] ] ds
dI-0C2—a Jo n 4 1€h 3 1én 2 |€p

< EQ (tnflfa + tnfothfa) ,

_ J
where K; := max >~
0<s<t=<T /=)

Denote eil”l =u— u;f’l. Then by [1, Theorem 6.1.2],

3/ K(t,s)
arigsi—i

(j eN).

) t
el :/ Ro(1,5)8,(s) ds, t € 1,
0

o0

where Ry (t,5) := (t —5) ™% Q(t,s: ), Q(t,s; ) == Y (1 — )" DI, (1, 5; ), and
n=1

the functions ®,, are defined recursively by

1
D, (1, 55 @) = / (1 —2) @ DU (¢t s 4 (1 — $)2) Py (s + (t — 5)z, 53 @) dz
0

(n > 2), with ®(¢, s; @) := K(¢t,s) and ®,(-, -; a) € C(D).
Therefore, at the first interval [0, #;], there exists a constant E3, such that

vh
ei,t’l(vh)’ = ‘/o (Wh — )™ Q(vh, 55 )84 (s) ds

:hl—a

/U (v—25)"% Q(vh, sh; a)d,(sh) ds
0

1—a

where Q := max |Q(t, s; ).
0<s<t<T,0<a<l
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Forl<n<N-1,
i 1 ty+vh
ey (tn + vh) = f Ro (1 + vh, )8 (s) ds
0

v
:h““/ (v —5)"" Ot + vh, ty + sh; )8 (tn + sh) ds
0

n—1

1
+pl Z/ n+v—1—5)"%0@, + vh, tj + sh: )8, (t; + sh) ds.
0
=0
Since

1
f m+v—1—5)"%0t, +vh,t; +sh; a)d,(t; + sh) ds
0

1
- f [(n F =1 —$)% Oty + vh, i) + sh: )8, (41 + 5h)
0
— (v =1 = e)™ Oty + vh, 1,05 )8, (1.1 | ds

1 ’
:h/ [(n+v—1—=5)7% QU+ vh, 11 + sh; )8, (t; + sh)] |y=¢, (s — c1) ds
0

r (s —c1)? s

1
+ hz/O [+ v =1 = &) QU+ vh. 1 + ks )8 (1 + E)] ,

where & € (0, 1), so if the orthogonality condition fol (s —c1) ds = 0 holds, by the proof of
[1, Theorem 6.2.13], there exists a constant C i’ , such that

e, + vh). < Cili7on>e,
Therefore, we have proved the following theorem.

Theorem 3 Assume that g € CX(I), K € CHD), and uy € S(()fl)(lh) is the collocation
solution for the second-kind Volterra integral Eq. (1) de{ined by the collocation Eq. (3), with
;

the corresponding first iterated collocation solution u;l . The collocation parameter satisfies

1
1
Jo = / (s—cp)ds=0(.e,c1 ==).
0 2
Then for sufficiently small h,

i
u uh

= sup ’u(t) — u’ht’l(t)‘ < Citgop?~,
1,00 1€(n, tn+l]

where C ‘1" is a constant independent of h and N.
In particular, there exists a constant C ’1’, which is independent of h and N, such that

‘u(T) - u;,”l(T)‘ < Citp?e,

5.2 The Second Iterated Collocation Method

Let t
W2 (1) = g(1) +/ (t =) K@ uy () ds, el
0
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be the second iterated collocation method.
Denote e;:’z =u— u’ht’z. Then

e;lt’z(t):/ (t — )" K(1,5)e}" (5) ds
0
t s
= / (t—5)"“K(t,s) [/ (s —v)"%Q(s, v; a)8x (V) dv:| ds
0 0
t
=/(r—s)l‘z“Q(z,s;a)shmds,
0

where O(t, s; &) 1= fol (1 —=x)"*x"*K(@t,s +x(t —s5)Q(s +x( — ), s; a) dx.
Therefore, at the first interval [0, #;], there exists a constant E3, such that

) vh ~
el h)| = Vo Wh = )72 Q(vh, 5: )8y (s) ds

— p20-0)

/v (v — )7 O(vh, sh; @)y (sh) ds
0

< E3p3d-o),
Forl<n<N -1,
el (1, + vh)

ty+vh B
= / (tn + vh — )" 722 Q(t, + vh, s; )8, (s) ds
0

= p*1-o) / (W =)0ty + vh, 1, + sh; Q)8 (t, + sh) ds
0

n—1 .1
+ R0 Z/ (n+v—1—5)"220(t, + vh, t; + sh; &)8y(1; + sh) ds,
0
1=0
since

1
/ n+v—10—"220(t, + vh, t; + sh; )8 (1 + sh) ds
0

1

- / [(n +v—1—5)""220(t, + vh, t; + sh; &)Su(t; + sh)
0

= (14 v— 1= )7 Oty + vht+ ek @S| ds

1 ~ I
= h/ [(n +v—1-— s)l_zo‘Q(tn + vh, t; + sh; a)dp (4 +sh)] ls=c; (s —c1) ds
0

1 " _ 2
+ h2/ [0 40 = 1= €)' Ot + vh, 1+ 713 08t + &) | % ds.
O .
where £/ € (0, 1), so if the orthogonality condition fol (s — c1) ds = 0 holds, by the proof of
[1, Theorem 6.2.13], there exists a constant Ci!, such that

€ (0 + vh)| = CYt) 2R,

Therefore, we have proved the following theorem.
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Theorem 4 Assume that g € C*(1), K € C*(D), and uj, € Sé_l)(lh) is the collocation
solution for the second-kind Volterra integral Eq. (1) defined by the collocation Eq. (3),
with the corresponding second iterated collocation solution u’htz. The collocation parameter
satisfies

1
1
Jo = / (s—=c1)ds=0(G.e,cp ==).
0 2
Then for sufficiently small h,

it,2 o
u—u, = sup

n,00 t€(tn, tht1l

u(t) — u;"z(t)‘ < Ciiyl-2p2a,

where Cé’ is a constant independent of h and N.
In particular, there exists a constant CY!, which is independent of h and N, such that

’u(T) - uZ’z(T)‘ < Cirp2e,

Corollary 5 If o < 0.5, the order of the error for the second iterated collocation solution is
always 2 — a; i.e.

e

= 0(h*™®).
n,oo

5.3 The k-th Iterated Collocation Method

Let ,
it,k . —a it,k—1
u, " (1) :=g() +/ @t —s5)"" K1, s)uy, (s)ds, tel
0

be the k-th iterated collocation method.
Similarly, we have the following theorem.

Theorem 5 Assume that g € C*(I), K € C*(D), and uj, € S(()_l)(lh) is the collocation
solution for the second-kind Volterra integral Eq. (1) dekﬁned by the collocation Eq. (3), with
1,

the corresponding k-th iterated collocation solution u;l . The collocation parameter satisfies

1
1
Jo ::/ (s—c1)ds=0(.e,cp==).
0 2

Then for sufficiently small h,

itk
u Mh

‘= sup ‘u(t) — u;f’k(t)‘ < C,itt,/:_l_kah2_a,
100 te(ty, thy1]

where C ,i’ is a constant independent of h and N.
In particular, there exists a constant C', which is independent of h and N, such that

’u(T) - uZ’k(T)‘ < Clitp2e.
Corollary 6 Ifa < kk;l, the order of the error for the k-iterated collocation solution is always

2—a;le.
lu—ui*| =ow>.
n,00
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Table 1 The maximum error at the mesh points with m = 1 and « = 0.3

N c; =0.1 =1 c1 = 0.49 c1 =05 c; =08 =1

29 1.1193e—03  7.5029e—04  5.4960e—04  5.3751le—04  2.0186e—04 1.2989e—05
210 6.8871e—04  4.6165e—04  3.3818¢—04  3.3074e—04 1.2429¢—04  6.5079e—06
211 4.2384e—04  2.8410e—04  2.0812e—04  2.0355e—04  7.6520e—05 3.2581e—06
212 2.6086e—04 1.7485¢—04 1.2810e—04 1.2528e—04  4.7108e—05 1.6304e—06
Order  0.70 0.70 0.70 0.70 0.70 1.00

Table 2 The errors at the endpoint with m = 1 and @ = 0.3

N c1 =0.1 =1 c1 = 0.49 c1 =05 c1 =08 =1

29 1.6749e—04  1.2064e—04  8.9217e—05  8.7211e—05  2.7077e—05  1.2989e—05
210 8.3740e—05  6.0325¢—05  4.4612e—05  4.3610e—05  1.3535e—05  6.5079e—06
ol 4.1869e—05  3.0164e—05  2.2307e—05  2.1806e—05  6.7662e—06  3.2581e—06
212 2.0934e—05  1.5082¢—05  1.1154e—05  1.0903e—05  3.3827e—06  1.6304e—06
Order  1.00 1.00 1.00 1.00 1.00 1.00

Table 3 The maximum error at the mesh points withm = 1 and @ = 0.5

N ¢ =0.1 =1 ¢] = 0.49 ¢ =05 ¢ =0.8 =1

29 34269¢—03  2.1189e—03  1.5034e—03  1.4677e—03  5.2608¢—04  1.1997¢—05
210 24197¢—03  1.4960e—03  1.0615e—03  1.0364e—03  3.7208¢—04  6.0418¢—06
211 1.7092e—03  1.0566e—03  7.4986e—04  7.3207e—04  2.6314e—04  3.0363e—06
212 1.2077e—03  7.4658¢—04  52985¢—04  5.1729e—04  1.8609e—04  1.5236e—06
Order  0.50 0.50 0.50 0.50 0.50 0.99

6 Numerical Results

Example1 In (1)letT =1, K(¢,s5) = m and g(¢) = 1 such that the exact solution
u(t) = E1—q1 (’ll;oa), where the Mittag-Leffler function E, ¢ is defined by

o0 k
z
Eu o(z):= E ———forpu, 0,z € Rwithu > 0.
= Tk +6)

In Tables 1, 2,3, 4,5, 6 and 7, we take m = 1 for @ = 0.3, 0.5, 0.7, respectively. From
these tables, we observe that the numerical results agree with our theoretical analysis.

At the mesh points, in Tables 1, 3 and 6, we observe that the order is min{2(1 — «), 1} for
¢y = 1. The reason is that for this case, the mesh point t, = 1,1 + ¢/ is also a collocation
point. In Tables 8 and 10, the similar phenomena appear for Rauda IIA , (%, 1) form = 2,
and Rauda IIA , (%, % 1) for m = 3. At collocation points, in Table 5, we observe that the
order fora =0.5andm = 1is 1.

In Tables 8, 9, 10 and11, we take @ = 0.5 and m = 2, 3, respectively. From these tables,
we observe that the numerical results also agree with our theoretical analysis.
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Table 4 The errors at the endpoint withm = 1 and @ = 0.5

N c; =0.1 =1 c1 = 0.49 c1 =05 c; =08 =1

29 1.2875e—04  9.2080e—05  6.7558¢—05  6.5995e—05  1.9162e—05  1.1997e—05
210 6.4374e—05  4.6054e—05  3.3789e—05  3.3007e—05  9.5645¢—06  6.0418¢—06
ol 32187e—05  2.3033e—05  1.6899e—05  1.6507e—05  4.7765¢—06  3.0363e—06
212 1.6094e—05  1.1518e—05  8.4508¢—06  8.2550e—06  2.3862e—06  1.5236e—06
Order  1.00 1.00 1.00 1.00 1.00 0.99

Table 5 The maximum error at the collocation points with m = 1 and & = 0.5

N c1 =0.1 cl = % c1 =0.49 c1 =0.5 c1 =0.8 cp1 =1

29 9.7860e—06  3.9639e—06  2.6354e—06  2.6893e—06  7.2682¢—06  1.1997e—05
210 49006e—06  2.0017e—06  13147¢—06  1.3416e—06  3.6499¢—06  6.0418¢—06
2l 24529e—06  1.0078¢—06  6.5629¢—07  6.6971e—07  1.8306e—06  3.0363e—06
212 1.2273¢—06  5.0637e—07  3.2777e—07  3.3447¢—07  9.1728¢—07  1.5236e—06
Order  1.00 0.99 1.00 1.00 0.97 0.95

Table 6 The maximum error at the mesh points withm = 1 and @ = 0.7

N c; =0.1 =1 c1 = 0.49 ¢ =05 c; =08 =1

29 8.7477e—03  4.9295¢—03  3.3781e—03  3.2916e—03  1.1178¢—03  3.0268e—05
210 70753e—03  3.9862e—03  2.7324e—03  2.6624e—03  9.0687¢—04  1.9806e—05
ol 57272e—03  3.2262e—03  2.2118¢—03  2.1553e—03  7.3586e—04  1.2980e—05
212 4.6390e—03  2.6128¢—03  1.7916e—03  1.7458e—03  5.972le—04  8.5177e—06
Order  0.30 0.30 0.30 0.30 0.30 0.61

Table 7 The errors at the endpoint with m = 1 and o = 0.7

N c; =0.1 =13 c1 = 0.49 c1 =05 c1 =08 =1

29 79096e—05  5.6201e—05  4.1042e—05  4.0078e—05  1.1261e—05  7.8540e—06
210 3.9572¢—05  2.8131e—05  2.0535e—05  2.0052e—05  5.5905¢—06  4.0117e—06
ol 1.9797e—05  1.4079e—05  1.0274e—05  1.003le—05  2.7792e—06  2.0402e—06
212 9.9038e—06  7.0450e—06  5.1395¢e—06  5.0181e—06  1.3831e—06  1.0341e—06
Order  1.00 1.00 1.00 1.00 1.01 0.97

In Tables 12, 13, 14, 15, 16 and 17, we take m = 1,¢; = 0.5 and @ = 0.3,0.5,0.7,
respectively, for the first, second and third iterated collocation methods. From these tables,
we see that the numerical results are again consistent with our theoretical analysis.
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Table 8 The maximum error at the mesh points withm =2 and @ = 0.5

N Gauss Rauda ITA . D 9 &b

20 22342e—04  1.0355e—07  4.8491e—07  1.5357e—04  2.7748e—04  7.7443e—04
210 1.5805e—04  5.1477e—08  2.4187e—07  1.0863e—04  1.9621e—04  5.4771e—04
211 1.1179e—04  2.5634e—08  1.2073e—07  7.6833e—05  1.3874e—04  3.8734e—04
212 7.9067¢e—05  1.2780e—08  6.0293e—08  5.4339e—05  9.8104e—05  2.7392e—04
Order 050 1.00 1.00 0.50 0.50 0.50

Table 9 The errors at the endpoint with m =2 and @ = 0.5

N Gauss Rauda ITA G.n D ) G&hH

20 1.3561e—08  1.1453¢—08  3.9962¢—08  1.3557¢—08  4.0495¢—08  6.1779¢—08
210 3.8874e—09  4.0491e—09  1.4148e—08  4.1129e—09  1.3121e—08  1.9598¢—08
211 1.1478e—09  1.4314e—09  5.0063e—09  1.2841e—09  4.3404e—09  6.3683e—09
212 3.4921e—10  5.0596e—10  1.7710e—09  4.1153e—10  1.4597e—09  2.1113e—09
Order  1.72 1.50 1.50 1.64 1.57 1.59

Table 10 The maximum error at the mesh points with m = 3 and @ = 0.5

N Gauss Rauda [TA (3. 5.1 4.4 H (AR G0 DH
26 2.1494e—04  5.2426e—07  1.9630e—06  3.6193e—04  9.7979e—05  2.4986e—03
27 1.5228¢—04  2.6073e—07  9.7666e—07  2.564le—04  6.9713e—05  1.7679¢—03
28 1.0783e—04  1.2987e—07  4.8662¢—07  1.8155¢—04  4.9508¢—05  1.2506e—03
20 7.6317e—05  6.4763e—08  2.4271e—07  1.2849e—04  3.5113e—05  8.8458e—04
Order  0.50 1.00 1.00 0.50 0.50 0.50

Table 11 The errors at the endpoint with m = 3 and & = 0.5

N Gauss Rauda ITA .5 G5 H (AR @D
26 3.6194e—08  6.3288e—08  2.5907e—07  1.4641e—07  22744e—07  4.5403e—07
27 13101e—08  2.2369e—08  9.1542e—08  5.2467e—08  8.0605e—08  1.5839e—07
28 4.6687¢—09  7.9060e—09  3.2359¢—08  1.8623¢—08  2.8522¢—08  5.5743e—08
29 1.6556e—09  2.7967e—09  1.1433e—08  6.5593e—09  1.0078¢—08  1.9649¢—08
Order 150 1.50 1.50 1.50 1.50 1.50
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Table 12 The maximum error of
the first iterated collocation at the
mesh points with m = 1 and

c1 =05

Table 13 The errors of the first
iterated collocation at the
endpoint with m = 1 and

c1 =05

Table 14 The maximum error of
the second iterated collocation at
the mesh points with m = 1 and

c1 =05

Table 15 The errors of the
second iterated collocation at the
endpoint with m = 1 and

c1 =05

Table 16 The maximum error of
the third iterated collocation at
the mesh points with m = 1 and
c1 =05

@ Springer

N a=0.3 a=0.5 a=0.7

29 9.5670e—08 1.9498¢—06 2.6693e—05
210 3.6267e—08 9.7450e—07 1.7552e—05
211 1.3746e—08 4.8710e—07 1.1549¢—05
212 5.2096e—09 2.4350e—07 7.6029¢—06
Order 1.40 1.00 0.60

N a=0.3 a=0.5 a=0.7

29 1.8779e—08 8.9168e—08 3.1320e—07
210 5.8439e—09 3.1549e—08 1.2712e—07
21l 1.8146e—09 1.1160e—08 5.1610e—08
212 5.6251e—10 3.9472¢—09 2.0956e—08
Order 1.69 1.50 1.30

N a=0.3 a=0.5 a=0.7

29 2.2481e—09 7.3781e—09 9.7275¢—08
210 6.8104e—10 2.6177e—09 5.2193e—08
211 2.0683¢—10 9.2778¢—10 2.7996e—08
212 6.2949¢—11 3.2859¢—10 1.5014e—08
Order 1.72 1.50 0.90

N a=0.3 a=0.5 a=0.7

29 2.2481e—09 7.3781e—09 1.2837¢—08
210 6.8104e—10 2.6177e—09 5.4974e—09
p 2.0683e—10 9.2778e—10 2.3263e—09
212 6.2949¢—11 3.2859¢—10 9.7567e—10
Order 1.72 1.50 1.25

N a=0.3 a=0.5 a=0.7

29 1.8592¢—10 8.2199e—10 2.4401e—09
210 5.6098e—11 2.8863e—10 1.0475e—09
2l 1.6987e—11 1.0155e—10 4.5096e—10
212 5.1559e—12 3.5773e—11 1.9456e—10
Order 1.72 1.51 1.21
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Table 17 The errors of the third

iterated collocation at the N «=03 «=05 «=07
endpomnt with m = 1 and 2 1.8592¢—10 8.2199%—10 2.1776e—09
a=" 210 5.6098¢—11 2.8863¢—10 8.8774e—10
211 1.6987e—11 1.0155e—10 3.6145¢—10
212 5.1554e—12 3.5773e—11 1.4705¢—10
Order 1.72 1.51 1.30
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