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Abstract
A key issue in developing efficient numerical schemes for nonlinear wave equations is the
energy-conserving. Most existing schemes of the energy-conserving are fully implicit and
the schemes require an extra iteration at each time step and considerable computational cost
for a long time simulation, while the widely-used q-stage (implicit) Gauss scheme (method)
only preserves polynomial Hamiltonians up to degree 2q . In this paper, we present a family
of linearly implicit and high-order energy-conserving schemes for solving nonlinear wave
equations. The construction of schemes is based on recently-developed scalar auxiliary vari-
able technique with a combination of classical high-order Gauss methods and extrapolation
approximation. We prove that the proposed schemes are unconditionally energy-conserved
for a general nonlinear wave equation. Numerical results are given to show the energy-
conserving and the effectiveness of schemes.
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1 Introduction

The paper focuses on developing linearly implicit and high-order energy-conserving schemes
for a general nonlinear wave equation defined by

φt t = �φ − F ′(φ), (x, t) ∈ � × (0, T ] (1.1)

subject to homogeneous Dirichlet or homogeneous Neumann boundary conditions and the
following initial conditions

φ(x, 0) = φ0(x), φt (x, 0) = φ1(x), x ∈ �, (1.2)

where � is a bounded domain in Rd (d = 1, 2, 3), φ0(x) and φ1(x) are given initial condi-
tions, and F(u) is a nonlinear smooth potential.

Nonlinear wave equations provide a powerful tool to model complicated natural phe-
nomena in variety of scientific fields, such as solid state physics, nonlinear optics, and
quantum field theory [4,10,18,19,44]. A remarkable feature of the wave Eq. (1.1) is its
energy-conserving

E(t) =
∫

�

φ2
t + |∇φ|2 + 2F(φ)dx = E(0).

For long time simulations, it is highly desirable that numerical algorithms can preserve the
conservative structures of the corresponding systems in discrete analogs.

In the past several decades, numerous effort has been devoted to developing efficient
energy-conserving numerical schemes for nonlinear wave equations. Explicit schemes are
easier to be implemented, but less effective due to their conditional stability. The most pop-
ular numerical schemes for solving nonlinear wave equations in a long time period are
fully implicit in general. Roughly speaking, the construction of implicit energy-conserving
schemes can be divided into two categories. One is based on multi-step energy-conserving
schemes with certain modification of the approximations to nonlinear term F ′(φ), see e.g.,
[24,34,41]. The other one is to reformulate the equations as an abstract Hamiltonian system
and then, apply implicit schemes for the Hamiltonian system, such as the discrete gradi-
ent methods [30,31,42], the boundary-value methods [6,7,9] and the average vector field
methods [14,15,35]. For a more detailed description of the energy-conserving schemes, we
refer readers to the books [21,45] and the references [8,13,20,23,26,27,40,43,46,47]. Fully
implicit schemes have shown their better performance than those explicit ones in the long
time integrations due to the unconditional stability and conservation of schemes. However,
these schemes require an extra iterative algorithm for solving a system of nonlinear equa-
tions at each time step, which leads to a considerable computational cost in the long time
integrations.

Compared with fully nonlinear and implicit schemes, linearly implicit schemes are more
attractive since the schemes only require the solution of a linear systemat each time step.How-
ever, classical linearly implicit schemes may not be energy-conserved in general. Recently
much attention has been paid to developing energy-stable linearly implicit schemes. Shen
et al. [38] first proposed a linearly implicit scheme based on SAV approach for a parabolic
type gradient flow equation with emphasis on the energy stability. Physically, the energy
for this parabolic type equation does not increase as the time increases. In [38], authors
proved that the SAV type scheme is energy-stable in the parabolic sense for the gradient
flow model. Subsequent works can be found in [1,11,16,28,37,39] for some different mod-
els. More recently, Cai and Shen presented a linearly implicit energy-conserving scheme
for a Hamiltonian system of ODEs [12]. The construction is based on the invariant energy
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quadratization and the second-order time discrete approximations were studied. It is noted
that nonlinear wave equations own different analytical properties. Some numerical schemes
may be energy-stable for the gradient flow equation but not energy-conserved for nonlinear
wave equations, e.g., the linearly implicit Euler method, the linearized two-step backward
difference formula and the linearized Radau methods.

In the present paper, we present a family of high-order linearly implicit and energy-
conserving schemes for solving the nonlinear wave equations. The main idea is as follows.
First we introduce a scalar auxiliary variable and rewrite the nonlinear wave equation into a
system of nonlinear equations. Then, the linearly implicit schemes are developed by combin-
ing the Gauss methods and some extrapolated techniques for nonlinear terms. The proposed
schemes have the following advantages:

• The schemes are linearly implicit. At each step, the schemes only require the solution of
a linear system.

• The schemes are generated with an arbitrary high-order accuracy in time direction and
can be easily combined with existing approximations in spatial direction.

• The proposed schemes are unconditionally energy-conserved for more general problems,
while some fully implicit schemes ( Gauss methods, Hamiltonian boundary value meth-
ods and line integral methods) are energy-conserved only for polynomial type nonlinear
systems.

The rest of papers are organized as follows. In Sect. 2, we propose a class of time-
discrete schemes and prove the energy-conserving property of schemes for the nonlinear
wave Eq. (1.1). Fully discrete schemes with classical FE approximations in spatial direction
are presented in Sect. 3. In Sect. 4, we present two numerical examples to confirm the
theoretical results. Finally, conclusions are presented in Sect. 5.

2 Discrete Schemes and Energy Conservation

In this section, we present our linearly implicit schemes based on the SAV approach as well
as their energy-conserving property for the nonlinear wave Eq. (1.1).

2.1 Linearly Implicit Schemes

We denote

η(t) = √
G(φ), G(φ) =

∫
�

F(φ)dx + C0,

where C0 is a constant guaranteeing
∫
�
F(φ)dx + C0 > 0 and rewrite (1.1) as

φt = ψ, (2.1)

ψt = �φ − ηw(φ), (2.2)

ηt = 1

2

∫
�

w(φ)ψdx, (2.3)

where w(φ) = F ′(φ)√
G(φ)

. Taking the inner product of Eq. (2.1) with ψt and Eq. (2.2) with −φt ,
multiplying both sides of Eq. (2.3) with respect to −2η, and adding them together, we obtain
immediately
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d

dt
Es(φ, ψ, η) = 0.

Here Es(φ, ψ, η) = ‖ψ‖ + ‖∇φ‖ + 2η2, where || · || denotes the L2-norm. Noting that

ψ = φt and η =
√∫

�
F(φ)dx + C0, the modified and the original energy functional have

the following relation

E(t) = Es(φ, ψ, η) − C0.

Let τ := T /N be the time step with N being a positive integer, tn := nτ, n = 0, . . . , N ,

be a uniform partition of the time interval [0, T ] and tni := tn + ciτ, i = 1, . . . , q, n =
0, . . . , N − 1, be the internal Gauss nodes. Donote by {φn, ψn, ηn, φni , ψni , ηni } numerical
approximations to {φ(tn, x), ψ(tn, x), η(tn, x), φ(tni , x), ψ(tni , x), η(tni , x)}, respectively.
Let φ∗

ni be a numerical approximation to φ(tni , x), which will be given later in terms of some
extrapolation technique.

Based on a q-stage Gauss method, we present a general semi-discrete numerical scheme
for the system (2.1)–(2.3) by

φni = φn + τ

q∑
j=1

ai jψnj , (2.4)

⎧⎨
⎩

ψ̄ni = Δφni − ηniw(φ∗
ni ) in Ω, i = 1, . . . , q,

ψni = ψn + τ
∑q

j=1 ai j ψ̄nj , in Ω, i = 1, . . . , q,

∂nφni = 0, on ∂Ω, i = 1, . . . , q,

(2.5)

ηni = ηn + τ

2

q∑
j=1

ai j

∫
�

w(φ∗
nj )ψnj dx . (2.6)

With φni , ψni , ψni , ηni , (φn+1, ψn+1, ηn+1) can be calculated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φn+1 := φn + τ

q∑
i=1

biψni ,

ψn+1 := ψn + τ

q∑
i=1

bi ψ̄ni ,

ηn+1 := ηn + τ

2

q∑
i=1

bi

∫
�

w(φ∗
ni )ψni dx .

(2.7)

In the above formulas, ψ̄ni is a temporary variable, which is introduced to simplify the for-
mulations. φ∗

ni is an (explicit) extrapolation approximation to φ(tni , x) of the orderO(τ q+1),
which can be generated in the following way.

We denote by φτ
n−1(t) a Lagrange interpolation polynomial of degree at most q satisfying

φτ
n−1(tn−1,i ) = φn−1,i , i = 1, . . . , q,

and

φτ
n−1(tn−1) = φn−1, or φτ

n−1(tn) = φn .

Then, we define

φ∗
ni := φτ

n−1(tni ) .
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Remark 2.1 The q-stage Gauss method can be viewed as a special class of Runge–Kutta
methods, defined by the Butcher tableau

c1 a11 . . . a1q
...

...
...

cq aq1 . . . aqq
b1 . . . bq

(2.8)

with c1, . . . , cq ∈ (0, 1), satisfying the condition

biai j + b ja ji − bib j = 0, i, j = 1, . . . , q . (2.9)

For the more detailed description, we refer readers to the classical book [22].

Remark 2.2 As proved in [29,33,36], when q-stage fully implicit Gauss methods are applied
to solve the nonlinear partial differential equations with the homogeneous Dirichlet or homo-
geneous Neumann boundary conditions, the attained order of convergence turns out to be
at most q + 1. For this reason, here only the extrapolation with q internal nodes and one
ending point in the previous time interval [tn−1, tn] is used. The extrapolation also provides
the approximation of the order O(τ q+1).

Remark 2.3 The proposed linearly implicit methods require the starting values φ0i , ψ0i , η0i ,
i = 1, 2, · · · , q , which can be obtained by the Gauss methods of the same stage. We shall
show numerically and theoretically the energy-conserving property from n = 1.

Remark 2.4 For a Hamiltonian system of ODEs

q ′(t) = p(t),

p′(t) = −Aq(t) − F ′(q(t)),

where q(t) ∈ Rn, p(t) ∈ Rn and A is a positive definite operator, we can introduce a scalar
auxiliary variable

η(t) = √
G(q(t)), G(q(t)) = 〈F(q(t), e〉 + C0, (2.10)

with which the above system can be rewritten by

q ′(t) = p(t),

p′(t) = −Aq(t) − η(t)w(q(t)),

ηt = 1

2
〈w(q(t)), p(t)〉,

where w(x) = F ′(x)√
G(x)

, 〈·〉 denotes the inner product on [0, T ], e = (1, 1, · · · , 1)T ∈ Rn and

C0 is a constant guaranteeing 〈F(q(t), e〉+C0 > 0. The proposed linearly implicit methods
can be easily extended to the above system. One can show the energy-preserving of methods
by following the proof in the present paper.

2.2 Energy Conservation

In this subsection, we show the unconditional energy-conserving property of the discrete
schemes in (2.4)–(2.7). We define the time discrete energy by

Eτ (φn, ψn, ηn) = ‖ψn‖2 + ‖∇φn‖2 + 2|ηn |2,
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where || · || denotes the L2-nom. Noting that ψ = φt and η =
√∫

�
F(φ)dx + C0, the

discrete energy Eτ (φn, ψn, ηn) − C0 is an approximation to the continuous energy E(t).

Theorem 1 The numerical solution defined in (2.4)–(2.7) preserves the energy

Eτ (φn+1, ψn+1, ηn+1) = Eτ (φn, ψn, ηn), n = 1, 2, . . . , N − 1 . (2.11)

Proof It follows from the first equation of (2.7) that

∇φn+1 = ∇φn + τ

q∑
i=1

bi∇ψni .

Taking the L2-norm of both sides of the above equation yields

‖∇φn+1‖2 =
(
∇φn + τ

q∑
i=1

bi∇ψni ,∇φn + τ

q∑
j=1

b j∇ψnj

)

= ‖∇φn‖2 + 2τ
q∑

i=1

bi (∇ψni ,∇φn) + τ 2
q∑

i, j=1

bib j (∇ψni ,∇ψnj ).

whee (·, ·) denotes the inner product on L2(�). Substituting φn = φni − τ
∑q

j=1 ai jψnj

(Eq. (2.4)) into the second term on the right-hand side of the last equation, we obtain

‖∇φn+1‖2 = ‖∇φn‖2+2τ
q∑

i=1

bi
(∇ψni ,∇φni −τ

q∑
j=1

ai j∇ψnj
) + τ 2

q∑
i, j=1

bib j(∇ψni ,∇ψnj )

= ‖∇φn‖2 + 2τ
q∑

i=1

bi
(∇ψni ,∇φni

) − τ 2
q∑

i, j=1

mi j (∇ψni ,∇ψnj )

= ‖∇φn‖2 + 2τ
q∑

i=1

bi
(∇ψni ,∇φni

)
, (2.12)

where we have noted (2.9).
Again taking the L2-norms of both sides of the second equation of (2.7) gives

‖ψn+1‖2 = ‖ψn‖2 + 2τ
q∑

i=1

bi
(
ψ̄ni , ψn

) + τ 2
q∑

i, j=1

bib j (ψ̄ni , ψ̄nj ).

Substituting ψn = ψni − τ
∑q

j=1 ai j ψ̄nj (second equation of (2.5)) into the second term on
the right-hand side of the above equation and noting (2.9), we obtain

‖ψn+1‖2 = ‖ψn‖2 + 2τ
q∑

i=1

bi
(
ψ̄ni , ψni

)
. (2.13)

Similarly, we have

2|ηn+1|2 = 2|ηn |2 + 2τ
q∑

i=1

biηni

∫
�

W (I τ
n−1φni )ψni dx . (2.14)
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Moreover, from the first equation of (2.5), we can see that

(ψ̄ni , ψni
) = (�φni , ψni ) − ηni

∫
�

W (I τ
n−1φni )ψni dx

= −(∇φni ,∇ψni ) − ηni

∫
�

W (I τ
n−1φni )ψni dx . (2.15)

Finally, we substitute (2.15) into the last term on the right-hand side of (2.13), and add
(2.12) and (2.13) tegother to get

‖ψn+1‖2 + ‖∇φn+1‖2 + 2|ηn+1|2 = ‖ψn‖2 + ‖∇φn‖2 + 2|ηn |2,

which completes the proof. ��

3 Fully Discrete Schemes

Let Th be a quasi-uniform partition of � into intervals Ti (i = 1, · · · , Nx ) in R, or triangles
in R

2 or tetrahedra in R
3, �x = max1≤i≤Nx {diam Ti } be the mesh size. Let Vh be the

finite-dimensional subspace of H1
0 (�), which consists of continuous piecewise polynomials

of degree r (r ≥ 1) on Th .
For given ψn

h , φn
h ∈ Vh and ηn0 ∈ R, the Finite element solutions ψn

hj , ψ̄
n
hj , φ

n
ji , φ

n
h , ψn

h ∈
Vh , j = 1, 2, . . . , q and ηn+1

h ∈ R, satisfy the system

(ψ̄n
hj , vh) = −(∇φn

hj ,∇vh) − ηnj (w(φn∗
hj ), vh), vh ∈ Vh,

(ψn
hj , vh) = (ψn

h , vh) + τ

q∑
k=1

a jk(ψ̄
n
hk, vh), vh ∈ Vh,

(φn
hj , vh) = (φn

h , vh) + τ

q∑
j=1

a jk(ψ
n
hk, vh), vh ∈ Vh,

ηnj = ηn0 + τ

2

q∑
k=1

a jk(w(φn∗
hk ), ψ

n
hk), j = 1, 2, . . . , q,

(φn+1
h , vh) = (φn

h , vh) + τ

q∑
i=1

bi (ψ
n
hi , vh), vh ∈ Vh,

(ψn+1
h , vh) = (ψn

h , vh) + τ

q∑
i=1

bi (ψ̄
n
hi , vh), vh ∈ Vh,

ηn+1
h = ηnh + τ

2

q∑
i=1

bi

∫
�

w(φ∗
ni )ψni dx

and φn∗
hi is an (explicit) extrapolation approximation to φ(tni , x) (The extrapolation is similar

to that in the previous section).
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Let {αi (x)}Nx
i=1 be a base of Vh and

ψn
hj (x) =

Nx∑
i=1

ψn
i jαi (x), φn

hj (x) =
Nx∑
i=1

φn
i jαi (x), ψ̄n

hj (x) =
Nx∑
i=1

ψ̄n
i jαi (x),

φn
h (x) =

Nx∑
i=1

φn
hiαi (x), ψn

h (x) =
Nx∑
i=1

ψn
hiαi (x).

Then in a matrix form, the above system can be rewritten by

(Iq ⊗ M)�̄
n = −(Iq ⊗ S)�n − Dw(ηn ⊗ e), (3.1)

(Iq ⊗ M)�n = Iq ⊗ (M�n
0) + τ(A ⊗ M)�̄

n
, (3.2)

(Iq ⊗ M)�n = Iq ⊗ (M�n
0) + τ(A ⊗ M)�n, (3.3)

ηn = ηn0 + τ

2
(A ⊗ eT )Dw�n, (3.4)

�n+1
0 = �n

0 + τ(bT ⊗ INx )�
n, (3.5)

�n+1
0 = �n

0 + τ(bT ⊗ INx )�̄
n
, (3.6)

ηn+1
h = ηnh + τ

2

q∑
i=1

bi

∫
�

w(φ∗
ni )ψni dx, (3.7)

where ⊗ denotes the kronecker product, A = (ai j )q×q , b = (b1, b2, · · · , bq)T , Ip denotes
the p × p identity matrix with p = q or Nx , M and S define the mass matrix and stiffness
matrix, respectively, �n,�n, �̄

n ∈ R
qNx and ηn ∈ R

q ,

Dw = diag(wn
11, w

n
12, . . . , w

n
1Nx

, wn
21, . . . , w

n
q1, . . . , w

n
qNx

), e = (1, 1, . . . , 1)T ∈ R
Nx ,

�n
0 = (φn

h1, φ
n
h2, . . . , φ

n
hNx

)T , �n
0 = (ψn

h1, ψ
n
h2, . . . , ψ

n
hNx

)T , ηn0 = (ηnh , · · · , ηnh) ∈ R
q

and wn
i j = ((w(φ∗

nj ), αi ).

Remark 3.1 The fully discrete scheme is energy-conserving, i.e., Eτ (φ
n+1
h , ψn+1

h , ηn+1
h ) =

Eτ (φ
n
h , ψn

h , ηnh), where

Eτ (φ
n
h , ψn

h , ηnh) = ‖ψn
h ‖2 + ‖∇φn

h‖2 + 2|ηnh |2 = (�n
0)

T M�n
0 + (�n

0)
T S�n

0 + 2|ηnh |2.
The proof is similar to that in the previous section by multiplying both sides of Eqs. (3.5)
and (3.6) by the matrices S and M , respectively.

From (3.1) and (3.2) and noting A⊗M = (A⊗ I )(Iq ⊗M)where I denotes the Nx ×Nx

identity matrix, we have

(Iq ⊗ M)�n = Iq ⊗ (M�n
0) − τ(A ⊗ I )[(Iq ⊗ S)�n + Dw(ηn ⊗ e)]

= Iq ⊗ (M�n
0) − τ(A ⊗ S)�n − τ(A ⊗ I )Dw(ηn ⊗ e)

and by (3.3),

(Iq ⊗ M)�n = Iq ⊗ (M�n
0) − τ(A ⊗ S)[�n

0 + τ(A ⊗ I )�n] − τ(A ⊗ I )Dw(ηn ⊗ e)

= Iq ⊗ (M�n
0) − τ A ⊗ (S�n

0) − τ 2(A2 ⊗ S)�n − τ(A ⊗ I )Dw(ηn ⊗ e) .
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Moreover, by (3.4),

(Iq ⊗ M)�n = Iq ⊗ (M�n
0) − τ A ⊗ (S�n

0) − τ 2(A2 ⊗ S)�n

−τ(A ⊗ I )Dw[ηn0 ⊗ e + τ

2
((A ⊗ eT )Dw�n) ⊗ e]

= Iq ⊗ (M�n
0) − τ A ⊗ (S�n

0) − τ 2(A2 ⊗ S)�n − τ(A ⊗ I )Dw(ηn0 ⊗ e)

−τ 2

2
(A ⊗ I )Dw(A ⊗ (eT ⊗ e))Dw�n .

Finally, we have the system

B�n = f, (3.8)

where

B = Iq ⊗ M + τ 2A2 ⊗ S + τ 2

2
(A ⊗ I )Dw(A ⊗ (eT ⊗ e))Dw,

f = Iq ⊗ (M�n
0) − τ A ⊗ (S�n

0) − τ(A ⊗ I )Dw(ηn0 ⊗ e).

The eigenvalue of the matrix B can be written by

λB = 1 + τ 2λ2AλM,S + O(τ 2), (3.9)

where λB, λA, λM,S denote the eigenvalue ofB, A, M−1S, respectively. Since both thematri-
ces M and S are symmetric positive definite, λM,S > 0. A straightforward calculation shows
that

|1 + λλ2A| > λ0 > 0, for any λ > 0,

where λ0 is a constant. Then there exists τ0 > 0, |λB| �= 0 when τ ≤ τ0 and the system
(3.8) has a unique solution. Therefore, at each time step, the finite element system defined in
(3.1)–(3.4) has a unique solution �n,�n, ηn .

4 Numerical Simulation

In this section, we present three numerical examples to confirm the theoretical findings.
Numerical computations are performed in Matlab for a 1D problem and by Freefem for a 2D
problem.

To test the energy-conserving property of methods, at each time step we calculate the
discrepancies of the discrete energy

Dn = |Eτ (φ
n
h , ψn

h , ηnh) − Eτ (φ
1
h, ψ

1
h , η1h)|, n = 1, 2, . . . N .

For comparison, we also apply the standard q-stage Gauss method (GM) and the q-stage
linearized Gauss method (LGM) to the problem

φt = ψ,

ψt = �φ − F ′(φ).

The same spatial approximations as in our proposed method are used together with these two
time discrete schemes. The corresponding discrete energy and the energy change are also
calculated. Since the standard GM is fully implicit, the Newton iterative algorithm is applied
for solving the system of nonlinear equations at each time step, in which the convergence
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Table 1 Maximum errors at T = 1 and convergence rates in temporal direction

N q = 2 q = 3 q = 4
Error Order Error Order Error Order

40 1.47E−5 – 5.94E−8 – 8.03E−10 –

60 2.03E−6 2.92 1.21E−8 3.92 1.11E−10 4.88

80 6.20E−7 2.95 3.89E−9 3.95 2.68E−11 4.94

100 2.66E−7 2.96 1.61E−9 3.96 8.87E−12 4.97

Fig. 1 Two-stage methods with M = 20 (left) and M = 40 (right) for Eq. (4.1)

tolerance for the standard Newton algorithm is 10−13. Also the extrapolation technique with
q + 1 points is applied in the approximation to nonlinear terms in the LGM.

Example 1 In the first example, we consider the following 1D Klein-Gordon equation

φt t = φxx − φ + φ3, (x, t) ∈ [0, π] × [0, 100] (4.1)

with homogeneous Dirichlet boundary conditions and the following initial conditions

φ(x, 0) = sin3(x), φt (x, 0) = 0, x ∈ [0, π].
We solve this equation by the proposed method with a piecewise linear finite element

approximation in spatial direction and the energy conserving schemes in time direction,
where we take �x = π/256 and τ = 1/40, 1/60, 1/80, 1/100, respectively. Since no exact
solution is available, we take the numerical solution obtained by using the temporal stepsize
τ = 1/2560 as the reference solution. The maximum numerical errors and convergence
orders for q = 2, 3, 4 are presented in Table 1. It can be seen from Table 1 that the q-stage
SAV GM has the q + 1-order convergence rate in the temporal direction.

To test the energy-conserving property of methods, we solve the equation by these three
typemethods, q-stageGM, q-stage LGMand the proposed q-stage SAVGM in the time inter-
val [0, 100] and calculate the discrete energy Eτ (φ

n
h , ψn

h , ηnh) and the energy discrepancies
Dn at each time step. We present in Figs. 1, 2 and 3 the energy discrepancies with different
methods. One can observe that for GM and LGM, the discrepancies Dn of the discrete energy
changes with different temporal stepsizes. While for SAV-GM, the discrepancies Dn are the
order of the machine precision. There results confirm the energy-conserving properties of
the SAV GM methods.
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Fig. 2 Three-stage methods with M = 24 (left) and M = 48 (right) for Eq. (4.1)

Fig. 3 Four-stage methods with M = 10 (left) and M = 20 (right) for Eq. (4.1)

Fig. 4 Two-stage methods with M = 20 (left) and M = 40 (right) for Eq. (4.2)

Example 2 In the second example, we consider the following 1D nonlinear wave equation

φt t = φxx + exp(−φ), [0, π ] × [0, 100] (4.2)

with homogeneous Dirichlet boundary conditions and the following initial conditions

φ(x, 0) = 0.5x(π − x), φt (x, 0) = 0, x ∈ [0, π].
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Fig. 5 Three-stage methods with M = 20 (left) and M = 40 (right) for Eq. (4.2)

Fig. 6 Four-stage methods with M = 10 (left) and M = 20 (right) for Eq. (4.2)

IsoValue
1.49663
1.66978
1.84294
2.01609
2.18925
2.3624
2.53555
2.70871
2.88186
3.05502
3.22817
3.40132
3.57448
3.74763
3.92079
4.09394
4.26709
4.44025
4.6134
4.78655

t = 0

IsoValue
-0.799615
-0.770643
-0.74167
-0.712697
-0.683724
-0.654752
-0.625779
-0.596806
-0.567834
-0.538861
-0.509888
-0.480915
-0.451943
-0.42297
-0.393997
-0.365024
-0.336052
-0.307079
-0.278106
-0.249134

t = 2

IsoValue
-4.45353
-4.30317
-4.15281
-4.00245
-3.85209
-3.70172
-3.55136
-3.401
-3.25064
-3.10027
-2.94991
-2.79955
-2.64919
-2.49883
-2.34846
-2.1981
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t = 4
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1.10406
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1.25264
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1.35169
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1.50028
1.54981
1.59933
1.64886
1.69839
1.74792
1.79744
1.84697
1.8965
1.94603
1.99556
2.04508

t = 6

IsoValue
0.843139
0.965364
1.08759
1.20981
1.33204
1.45426
1.57648
1.69871
1.82093
1.94316
2.06538
2.18761
2.30983
2.43205
2.55428
2.6765
2.79873
2.92095
3.04317
3.1654

t = 8

IsoValue
-2.64865
-2.58883
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-2.46917
-2.40934
-2.34952
-2.28969
-2.22986
-2.17003
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t = 10

Fig. 7 Numerical simulation of the 2D SG Eq. (4.3) with ICs (i)
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IsoValue
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t = 2

IsoValue
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8.66175

t = 4
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5.6759
5.87405
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6.27033
6.46847
6.66661
6.86476
7.0629
7.26104
7.45918
7.65732
7.85547
8.05361
8.25175
8.44989
8.64803
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9.04432
9.24246
9.4406

t = 6

IsoValue
3.56471
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3.83541
3.97076
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4.24145
4.3768
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4.9182
5.05355
5.1889
5.32425
5.45959
5.59494
5.73029
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t = 8
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4.55265
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6.21699
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6.88272
7.21559
7.54846
7.88132
8.21419
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t = 10

Fig. 8 Numerical simulation of the 2D SG Eq. (4.3) with ICs (ii)
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Fig. 9 GMs (left) and SAV-GMs (right) for the 2D SG Eq. (4.3) with ICs (i)

The equation arises from Johnson–Mehl–Avrami–Kolmogorov theory, which character-
izes the growth phenomenon of nuclei and the nucleation [2,25,43].We still solve the equation
by using two-, three- and four-stage GM, LGM and the proposed SAVGM, respectively. The
discrepancies Dn of the discrete energy are shown in Figs. 4, 5 and 6 for various stepsizes.We
can see that the discrepancies of the discrete energy changed for both GMs and LGMs with
different stepsizes. In contrast, the ones for SAVGMswith different stepsizes are sufficiently
small and remain nearly unchanged. The results further confirm the theoretical findings in
the present paper.

Example 3 We consider the 2D Sine-Gorden(SG) equation

φt t = �φ − sin(φ), � × [0, 100] (4.3)
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Fig. 10 GMs (left) and SAV-GMs (right) for the 2D SG Eq. (4.3) with ICs (ii)

with homogeneous Neumann boundary conditions, where � is a unit circle. The following
two type initial conditions (ICs) will be tested.

(i) φ(x, y, 0) = 4 arctan
(
exp

(
1 − 2

√
x2 + y2

))
, φt (x, y, t) = 0; (4.4)

(ii) φ(x, y, 0) = 4 arctan
(
exp(6x) + exp(6y)

)
, φt (x, y, t) = 0. (4.5)

The SG equation with the initial conditions (4.4)–(4.5) was investigated by many authors,
e.g., see [3,5,17], to study the behavior of ring solitons and the superposition of line solitons.
Here, we solve the SG equation by the proposed energy-conserving method and the 2-stage
GM, respectively, with a quadratic finite element approximation in spatial direction. A quasi-
uniform triangulation is made by FreeFEM++ with M nodes uniformly distributed on the
boundary of the circular domain and a uniform partition with τ = 1/N is made in time
direction. We solve numerically the problem two different initial solutions defined in (4.4-
(4.5) by setting M = N = 20 . The numerical results are presented in Figs. 7 and 8,
respectively. From Fig. 7, we can see that with ring solitons at the beginning, the solitons
shrink (t = 2) and expand (t = 4) as the time increases. At the meanwhile, some oscillations
at the boundary occur at t = 4 and t = 6 and then, disappear at t = 8. Finally. two ring
solitons can be observed at t = 10. With the initial condition (4.5), we can see from Fig. 8
that the numerical solutions behave like line solitons at the beginning (t = 0) and then,
more line type solitons appear around the boundary (t = 2). These line solitons move from
lower-left to upper-right and change their shapes as the time increases (t = 4, t = 6, t = 8
and t = 10).

Moreover, we present in Figs. 9 and 10 the discrete energy discrepancies Dn for the
problem with different stepsizes and initial conditions given in (4.4) and (4.5). It can be
observed clearly that the energy discrepancies Dn of the GM increases dramatically for the
problem with the initial condition (i) for both τ = 0.1, 0.05, while for the second initial
condition the energy change increase quickly for τ = 0.1 and is stably around 0.1−−0.2 for
τ = 0.05. Generally speaking, GM is not energy-conserved for the SG equation since it is not
a polynomial type Hamiltonian.Meanwhile, the SAVGM show extremely good performance
in the energy conserving. The energy discrepancies Dn is constantly in the scale of 10−12,
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which shows that the proposed SAV GM schemes own the energy-conserving property for
more general cases and which further confirms our theoretical results.

5 Conclusions

We have proposed a family of linearly implicit numerical schemes for solving the nonlinear
wave equations. It is shown theoretically and numerically that the proposed schemes are
unconditionally energy-conserved for more general models and the schemes are of arbitrarily
high-order accuracy. Numerical results on nonlinear wave equations are given to confirm the
effectiveness of the methods. The present paper brings a navel way to find high-order energy-
conserving numerical methods, while based on the SAV approach, we believe more linearly
implicit and energy-conserving numericalmethods can be developed for solving the nonlinear
wave equations. At present, there are some convergence results on SAV time discretization
for parabolic problems, e.g, [1,37]. It is possible to extend the analysis to the nonlinear
wave equations. However, spatial discretization of the partial differential equations yields a
stiff ODE system. As pointed out in [29,32,33,48], the coefficients of the asymptotic error
expansions of Runge–Kuttamethods or other higher-ordermethods depend on stiffness of the
problems and order reduction may appear. Therefore, a careful analysis is highly required.
We leave the problem to the future work.
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