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Abstract
Two higher order time stepping methods for solving subdiffusion problems are studied in
this paper. The Caputo time fractional derivatives are approximated by using the weighted
and shifted Grünwald–Letnikov formulae introduced in Tian et al. (Math Comput 84:2703–
2727, 2015). After correcting a few starting steps, the proposed time stepping methods have
the optimal convergence orders O(k2) and O(k3), respectively for any fixed time t for both
smooth and nonsmooth data. The error estimates are proved by directly bounding the approx-
imation errors of the kernel functions. Moreover, we also present briefly the applicabilities
of our time stepping schemes to various other fractional evolution equations. Finally, some
numerical examples are given to show that the numerical results are consistent with the
proven theoretical results.
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1 Introduction

Two higher order time stepping methods based on the weighted and shifted Grünwald-
Letnikov formulae in Tian et al. [34] are introduced and analyzed for the following
subdiffusion problem, with 0 < α < 1,

C
0 D

α
t u(t) + Au(t) = f (t), for 0 < t ≤ T with u(0) = u0, (1)

where A = −Δ and Δ denotes the Laplacian defined on a regular domain Ω ⊂ R
d , d =

1, 2, 3 with smooth boundary ∂Ω and D(A) = H1
0 (Ω) ∩ H2(Ω). Here the initial value

u0 ∈ L2(Ω) and the smoothness of the source term f is described in Theorems 1, 2 in Sect. 2
and 3, respectively. The time fractional derivative C

0 D
α
t u(t), 0 < α < 1 is defined in the

sense of Caputo, see, e.g., Diethelm [10],

C
0 D

α
t u(t) = 1

Γ (1 − α)

∫ t

0
(t − s)−αut (s) ds.

More generally the operator A in (1) could be any linear, selfadjoint, positive definite operator
with compact inverse, defined in D(A) ⊂ L2(Ω), and satisfies the following resolvent
estimates, with π/2 < θ0 < π , see, e.g., Lubich et al. [23] and Thomée [33],

‖(z I + A)−1‖ ≤ C |z|−1 for z ∈ Σθ0 = {z �= 0 : |arg z| < θ0}. (2)

It is easy to see that for any z ∈ Σθ with θ ∈ (π/2, θ0), we have zα ∈ Σθ0 since, with
0 < α < 1,

| arg(zα)| = |α arg(z)| < αθ < θ < θ0,

which implies that, by (2), see, e.g., Jin et al. [14, (2.3)],

‖(zα I + A)−1‖ ≤ C |z|−α, ∀ z ∈ Σθ = {z �= 0 : |arg z| < θ}. (3)

In Sects. 2 and 3, with some suitable approximation zk of z, we shall choose θ ∈ (π/2, θ0)
sufficiently close to π/2 such that zαk ∈ Σθ0 which guarantees that (zαk I + A)−1 exists.

Recently, Meerschaert et al. [27] and Tian et al. [34] introduced the weighted and shifted
Grünwald-Letnikov difference operators to approximate the Riemann-Liouville fractional
derivative and applied such difference operators to solve space fractional partial differential
equations under the assumptions that the solution is sufficiently smooth and satisfies the
homogeneous boundary conditions. To our knowledge, we have not seen any works in litera-
ture to apply such weighted and shifted Grünwald-Letnikov difference operator to construct
higher order time discretization schemes for solving the subdiffusion equation (1). One of
the possible reasons for lacking such works may be that the solution of (1) is not sufficiently
smooth and it has the singularity near t = 0. For example, in the homogeneous case of (1)
with f = 0, one has the following stability estimate, [29], with ‖ · ‖ the norm in L2(Ω),

‖ C
0 D

α
t u‖ ≤ Ct−α‖u0‖, (4)

which shows that theα-th orderCaputo derivative of the solutionof (1) becomesunbounded as
t → 0. Hence, theC2-regularity assumption, generally, does not hold for the exact solution of
(1). Numerical experiments indicate that the convergence orders of some numerical methods
for solving (1) actually do not hold uniformly in t even for the smooth data u0, see, e.g., Jin
et al. [15], Stynes et al. [31] and Stynes [30]. Therefore, an attempt has been made in this
paper to consider the higher order time discretization schemes for (1), based on the weighted
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and shifted Grünwald-Letnikov schemes developed in Tian et al. [34] and prove the optimal
convergence orders of the proposed schemes with both smooth and nonsmooth data.

There are several approaches to improve the convergence orders of the numerical methods
for solving (1), when the solution is not sufficiently smooth. One approach is to correct some
weights of the numerical methods in order to capture the singularity of the solution. This
idea was first introduced by Lubich et al. [23] for second order time stepping scheme applied
to an evolution equation with positive memory term. After correcting some weights of the
numerical methods, Lubich et al. [23] proved optimal convergence of the corrected numerical
method for both smooth and nonsmooth data. Jin et al. [16] derived some higher order numer-
ical methods in time for the problem (1), where the fractional derivatives are approximated
by using the convolution quadrature generated by using the backward difference formulae.
By correcting some starting steps of the numerical methods, Jin et al. [16] established that
the corrected numerical methods have optimal order of convergence for any fixed time t for
both smooth and nonsmooth data, see also [14,17]. Subsequently, Yan et al. [36] corrected
the starting steps of the L1 scheme for solving (1) and proved that the modified L1 scheme
has the optimal convergence order O(k2−α), 0 < α < 1. More recently, Xing and Yan
[35] analyzed a numerical method for solving (1), where the Caputo fractional derivative is
expressed by using the Hadamard finite-part integral which is then approximated by using the
quadratic interpolation polynomials. After correcting some starting steps and someweights of
the high-order numerical methods, Xing and Yan [35] derived the optimal convergence order
O(k3−α), 0 < α < 1 of the corrected numerical methods for both smooth and nonsmooth
data. For the recent development of the corrections of numerical methods for (1), we refer
the readers to the survey paper [12], see also [37]. For other numerical methods for solving
time fractional diffusion equation, we refer to [3,5–8,11,15,18–22,24,25,28,32,38–40], etc.

The aim of this paper is to prove that the proposed numerical methods have the optimal
convergence orders O(k2) and O(k3), respectively, by correcting a few starting steps of
the numerical methods for both smooth and nonsmooth datas. Compared to other higher
order time stepping methods in the literature for solving time diffusion problem (1), the
proposed methods have two advantages: (i) The weights of our numerical methods are much
simpler than those obtained by approximating the fractional derivative with the quadratic
interpolating polynomials, see, e.g., in Xing and Yan [35] and further, these weights have a
special structure as mentioned in Tian et al. [34], which may be useful for constructing some
fast algorithms and also for proving their stability and error analyses; (ii) The weights of the
proposed numerical schemes are related not only to the order of the fractional derivative, but
also to the shifted numbers, which imply that our methods are more related to the equation
itself, see, e.g., Tian et al. [34].

The main contributions of this paper are as follows.

1. Based on the weighted and shifted Grünwald -Letnikov schemes proposed in Tian et al.
[34], two new corrected higher order time discretization methods are introduced and the
convergence orders are shown to be of O(k2) and O(k3), respectively for both smooth
and nonsmooth data.

2. The error estimates of the corrected numerical methods are proved in both homogeneous
and inhomogeneous cases.

3. With the help of Laplace transform techniques, it is shown that the error estimates are
even suitable for more general elliptic operator A, which satisfies the resolvent estimate
(2).

The paper is organized as follows. In Sect. 2, we consider the error estimates of the
time discretization scheme for (1) with the convergence order O(k2) for both smooth and
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nonsmooth data. In Sect. 3, we derive the error estimates of the time discretization scheme
with the convergence order O(k3) again for both smooth and nonsmooth data. Finally in
Sect. 4, numerical examples are presented to show that numerical results are consistent with
the theoretical results.

By C, we denote a positive constant independent of discretization parameter k, but not
necessarily the same at different occurrences.

2 Second Order Time Stepping Scheme

In this section, we analyze a second order time discretization scheme for approximating the
solution of the problem (1). After correcting some starting steps of the scheme, the optimal
order of convergence is derived for the problem with both smooth and nonsmooth data.

Based on Tian et al. [34], we shall introduce a scheme to approximate the Riemann-
Liouville fractional derivative R

0 D
α
t φ(t). Let 0 = t0 < t1 < · · · < tN = T be a time partition

of [0, T ] and k be the step size. We define the following numerical scheme to approximate
R
0 D

α
t φ(t) at t = tn, n ≥ 1

R
0 D

α
t φ(tn) ≈ L D

α
k,p,qφ(tn) := α − 2q

2(p − q)
Bα
k,pφ(tn) + 2p − α

2(p − q)
Bα
k,qφ(tn), (5)

where

Bα
k,pφ(tn) = k−α

n+p∑
j=0

g(α)
j φ(tn− j+p). (6)

Here g(α)
j , j = 0, 1, 2, . . . , are generated by the generating function δ1(ζ ) = (1 − ζ ), that

is,

(δ1(ζ ))α = (1 − ζ )α =
∞∑
j=0

g(α)
j ζ n with g(α)

j = (−1) j
(

α

j

)
. (7)

When p = 0, q = −1 or q = 0, p = −1, the equation (5) leads to

L D
α
k,p,qφ(tn) = k−α

n∑
j=0

w
(α)
n− jφ(t j ), (8)

where

w
(α)
0 = α + 2

2
g(α)
0 , w

(α)
j = α + 2

2
g(α)
j − α

2
g(α)
j−1, j = 1, 2, . . . , n. (9)

In Table 1, we show the differences numerically between the weights generated by (9) and
by BDF2, i.e., backward difference formula with convergence order 2, in Jin et al. [16] with
n = 5. Here w

(α)
j and b(α)

j , 0 < α < 1, j = 0, 1, 2, . . . , n denote the weights generated by
(9) and by BDF2, respectively with respect to the different 0 < α < 1.

The corresponding generating function δ(ζ ) of the weights w
(α)
j , j = 0, 1, 2, . . . in (9)

satisfies
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Table 1 Comparison of the weights generated by (9) and BDF2 with n = 5

j 1 2 3 4 5 6

b(0.2)
j 1.0845 −0.2892 −0.0819 −0.0463 −0.0323 −0.0247

w
(0.2)
j 1.1000 −0.3200 −0.0680 −0.0448 −0.0322 −0.0247

b(0.4)
j 1.1761 −0.6272 −0.0941 −0.0530 −0.0365 −0.0273

w
(0.4)
j 1.2000 −0.6800 −0.0640 −0.0528 −0.0371 −0.0276

b(0.6)
j 1.2754 −1.0203 −0.0170 −0.0333 −0.0255 −0.0191

w
(0.6)
j 1.3000 −1.0800 0.0240 −0.0368 −0.0269 −0.0196

b(0.8)
j 1.3832 −1.4754 0.1721 −0.0066 −0.0105 −0.0084

w
(0.8)
j 1.4000 −1.5200 0.2080 −0.0128 −0.0118 −0.0087

(δ(ζ ))α =
∞∑
j=0

w
(α)
j ζ j = α + 2

2
g(α)
0 +

(
α + 2

2
g(α)
1 − α

2
g(α)
0

)
ζ

+
(

α + 2

2
g(α)
2 − α

2
g(α)
1

)
ζ 2 +

(
α + 2

2
g(α)
3 − α

2
g(α)
2

)
ζ 3 + · · ·

= α + 2

2

(
g(α)
0 + g(α)

1 ζ + · · · + g(α)
n ζ n) − α

2
ζ
(
g(α)
0 + g(α)

1 ζ + · · · + g(α)
n ζ n)

=
(

α + 2

2
− α

2
ζ

)
(1 − ζ )α. (10)

As in Lubich et al. [23], we denote the discrete Laplace transform of the sequence w
(α)
j , j =

0, 1, 2, . . . by w̃(ζ ) = ∑∞
j=0 w

(α)
j ζ j . We then have, by (10),

w̃(ζ ) =
∞∑
j=0

w
(α)
j ζ j = δ(ζ )α =

(
α + 2

2
− α

2
ζ

)
(1 − ζ )α. (11)

The following lemma gives the series expansion of w̃(ζ ) in (11) in terms of (1− ζ ), see,
the similar argument used in [16, (16)].

Lemma 1 Let w̃(ζ ) be defined by (11). Then, the following expansion holds:

w̃(ζ )1/α =
(
1 + 1

2
(1 − ζ ) + 1 − α

8
(1 − ζ )2 + · · ·

)
(1 − ζ ) as ζ → 1.

Proof From (10), we observe that

w̃(ζ )1/α =
(

α + 2

2
− α

2
ζ

)1/α

(1 − ζ )

=
(
1 + 1

2
(1 − ζ ) + 1 − α

8
(1 − ζ )2 + · · ·

)
(1 − ζ ) as ζ → 1, (12)
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where we have used the following binomial expansion, with β ∈ R,

(1 + z)β = 1 + βz + β(β + 1)

2
z2 + · · · , as z → 0. (13)

This completes the proof of the Lemma 1. �
We now introduce a fully discrete scheme for solving (1). Let Th denote a triangulation

of Ω with h the maximal length of the sides on Th . Let Sh ⊂ H1
0 (Ω) denote the piecewise

continuous linear finite element space.
For any fixed t ∈ (0, T ], the finite element method of (1) is to find uh(t) ∈ Sh such that

C
0 D

α
t uh(t) + Ahuh(t) = fh(t), for 0 < t ≤ T with uh(0) = u0h, (14)

where Ah : Sh → Sh denotes the discrete analogue of A defined with some suitable bilinear
form a(·, ·) defined on H1

0 (Ω) × H1
0 (Ω) associated with the operator A, by

(Ahuh, χ) = a(uh, χ), ∀χ ∈ Sh,

and fh = Ph f , where Ph : L2(Ω) → Sh denotes the L2 project operator given by

(Phv, χ) = (v, χ), ∀χ ∈ Sh .

Here u0h ∈ Sh denotes some approximation of u0 ∈ L2(Ω). When u0 is nonsmooth, we
choose u0h = Phu0 and when u0 is smooth, that is u0 ∈ D(A), we may choose u0h = Rhu0,
where Rh : H1

0 (Ω) → Sh denotes the Ritz projection or elliptic projection defined by

a(Rhv, χ) = a(v, χ), ∀χ ∈ Sh .

Let Vh(t) = uh(t) − u0h . Then, the equation (14) is equivalent to

C
0 D

α
t Vh(t) + AhVh(t) = fh(t) − Ahu0h with Vh(0) = 0. (15)

Since C
0 D

α
t Vh(t) = R

0 D
α
t (Vh(t) − Vh(0)), 0 < α < 1, now (15) is rewritten as

R
0 D

α
t Vh(t) + AhVh(t) = fh(t) − Ahu0h with Vh(0) = 0. (16)

An application of Taylor’s expansion as in Jin et al. [17] yields

fh(t) = fh(0) + Rh(t), Rh(t) = t f ′
h(0) + (

t ∗ f ′′
h

)
(t),

where g ∗ h denotes the convolution of g and h.
By the Laplace transform method, we obtain, with ĝ(z) denoting the Laplace transform

of g(t),

zα V̂ (z) + AhV̂h(z) = ( fh(0) − Ahu0h)z
−1 + R̂h(z).

A use of the inverse Laplace transform shows at t = tn

Vh(tn) = 1

2π i

∫
Γ

ezt (zα + Ah)
−1z−1( fh(0) − Ahu0h) dz

+ 1

2π i

∫
Γ

ezt (zα + Ah)
−1 R̂h(z) dz, (17)

where Γ is defined by, see, e.g., Lubich et al. [23], with some θ ∈ (π/2, θ0),

Γ = Γθ := {z ∈ C : | arg z| = θ}. (18)
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Now we shall consider the time discretization scheme of (1). To improve the accuracy
near t = 0, we follow the approach in Lubich et al. [23] to correct the values of the first step
in the time discretization.

Let V n ≈ Vh(tn) be the approximation of Vh(tn). We define the following time discretiza-
tion scheme for approximating (1)

k−α
n∑
j=0

w
(α)
n− j V

j + AhV
n = an( fh(0) − Ahu0h) + Rh(tn) with V 0 = 0, (19)

where, with c0 = 1/2,

an =
{
1 + c0, n = 1,

1, n ≥ 2.

Applying the discrete Laplace transform in both sides of (19), we obtain

∞∑
n=1

(
k−α

n∑
j=1

w
(α)
n− j V

j
)
ζ n +

∞∑
n=1

(AhV
n)ζ n

=
(

ζ

1 − ζ
+ c0ζ

)
( fh(0) − Ahu0h) +

∞∑
n=1

Rh(tn)ζ
n . (20)

It is easy to see with Ṽ (ζ ) = ∑∞
j=0 V

jζ j

∞∑
n=1

⎛
⎝ n∑

j=1

w
(α)
n− j V

j

⎞
⎠ ζ n =

⎛
⎝ ∞∑

j=0

w
(α)
j ζ j

⎞
⎠ (V 1ζ + V 2ζ 2 + · · · ) = w̃(ζ )Ṽ (ζ ),

which implies by (20) that

Ṽ (ζ ) = (k−αw̃(ζ ) + Ah)
−1

((
ζ

1 − ζ
+ c0ζ

)
( fh(0) − Ahu0h) +

∞∑
n=1

Rh(tn)ζ
n

)
.

Further, with w̃(ζ ) given in (11), we set

zk = k−1w̃(ζ )
1
α , (21)

and

μ(ζ ) = kzk
( ζ

1 − ζ
+ c0ζ

)
= w̃(ζ )

1
α

( ζ

1 − ζ
+ c0ζ

)
. (22)

By the inverse discrete Laplace transform, it follows for n ≥ 1 and using the variable change
ζ = e−zk that

V n = 1

2π i

∫
|ζ |=ρ

ζ−n−1Ṽ (ζ )dζ = k

2π i

∫
Γk

eztn Ṽ (e−zk) dz

= 1

2π i

∫
Γk

eztn (zαk + Ah)
−1z−1

k μ(ζ )
(
fh(0) − Ahu0h

)
dz

+ 1

2π i

∫
Γk

eztn (zαk + Ah)
−1k

( ∞∑
n=1

Rh(tn)ζ
n) dz, (23)
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where, see Lubich et al. [23], with Γ defined in (18),

Γk = {z ∈ Γ : |�z| ≤ π/k}. (24)

Below, we state our main result in this section whose proof will be provided subsequently.

Theorem 1 Let Vh(tn) and V n be defined in (17) and (23), respectively. Assume that u0 ∈
L2(Ω) and f ∈ C1([0, T ]; L2(Ω)) and

∫ tn
0 (tn − s)α−1‖ f ′′(s)‖ ds < ∞ for tn ∈ (0, T ].

Then, there is a positive constant C, independent of k, such that for 0 < α < 1

‖Vh(tn) − V n‖ ≤ Ck2
(
t−2
n ‖u0‖ + tα−2

n ‖ f (0)‖

+ tα−1
n ‖ f ′(0)‖ +

∫ tn

0
(tn − s)α−1‖ f ′′(s)‖ ds

)
.

To prove Theorem 1, the following two lemmas will be useful.

Lemma 2 Let zk and μ(ζ ) with ζ = e−zk be defined by(21) and (22), respectively. Assume
that

K1(z) = z−1(zα + Ah)
−1Ah, K2(z) = z−1(zα + Ah)

−1. (25)

Then with Γk defined by (24), the following estimates hold:

|μ(e−zk) − 1| ≤ C |zk|2, z ∈ Γk, (26)

C |z| ≤ |zk | ≤ C |z|, z ∈ Γk, (27)∥∥μ(ζ )K1(zk) − K1(z)
∥∥ ≤ Ck2|z|, z ∈ Γk, (28)∥∥μ(ζ )K2(zk) − K2(z)
∥∥ ≤ Ck2|z|1−α, z ∈ Γk . (29)

Proof We first show (26). Now, zk is uniformly bounded for any z ∈ Γk since, with θ ∈
(π/2, θ0),

|zk| = |z|k = |�z|
sin θ

k ≤
π
k

sin θ
k = π

sin θ
= const., for z ∈ Γk .

Further we note that, by (22) and Lemma 1 with c0 = 1/2,

μ(ζ ) − 1 = w̃(z)1/α
( ζ

1 − ζ
+ c0ζ

)
− 1

=
(
1 + 1

2
(1 − ζ ) + 1 − α

8
(1 − ζ )2 + · · ·

)
(1 − ζ )

( ζ

1 − ζ
+ c0ζ

)
− 1

=
(
1 + 1

2
(1 − ζ ) + 1 − α

8
(1 − ζ )2 + · · ·

)(
ζ + c0ζ(1 − ζ )

) − 1

=
(
1 + 1

2
(1 − ζ ) + 1 − α

8
(1 − ζ )2 + · · ·

)(
1 + (c0 − 1)(1 − ζ ) − c0(1 − ζ )2

)
− 1

= O
(
(1 − ζ )2

)
as ζ → 1,

and this implies that

μ(e−zk) − 1 = O
(
(1 − e−zk)2

) = O
(
(zk)2

)
as zk → 0.

Hence, there exists δ0 > 0with 0 < δ0 ≤ π
sin θ

such that (26) holds for 0 ≤ |zk| ≤ δ0, z ∈ Γk .
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For large zk with δ0 ≤ |zk| ≤ π
sin θ

, we now note by (22) that

μ(ζ ) − 1 = w̃(ζ )
1
α

( ζ

1 − ζ
+ c0ζ

)
=

(α + 2

2
− α

2

) 1
α
(1 − ζ )

( ζ

1 − ζ
+ c0ζ

)
.

This is continuous at any ζ �= 1, which implies that μ(e−zk) − 1 is continuous at any z �= 0.
Since every continuous function is bounded on the closed and bounded domain, therefore,
μ(e−zk) − 1 is bounded on δ0 ≤ |zk| ≤ π

sin θ
, z ∈ Γk . Then,

|μ(e−zk) − 1| ≤ C = Cδ−2
0 δ20 ≤ Cδ−2

0 |zk|2 ≤ C |zk|2. (30)

Hence, (26) also holds for δ0 ≤ |zk| ≤ π
sin θ

, z ∈ Γk which completes the estimate (26).
In order to prove the estimate (27), it suffices to show | z

zk
| is bounded for any z ∈ Γk .

Now, a use of (21) yields

|z|
|zk | = |zk|

|w̃(e−zk)
1
α |

, z ∈ Γk .

To show | z
zk

| is bounded for any z ∈ Γk , we consider two cases: one for the small zk and the
other for the large zk.

For the small zk, observe that

lim
x→0

x

w̃(e−x )
1
α

= lim
x→0

x

(
∑∞

j=0 w
(α)
j (e−x ) j )

1
α

= lim
x→0

x

(xα + d1x2+α + d2x3+α + · · · ) 1
α

= lim
x→0

1

(1 + d1x2 + · · · ) 1
α

= 1,

which implies that |z|
|zk | is bounded for 0 ≤ |zk| ≤ δ0, z ∈ Γk with some suitable δ0 > 0, 0 <

δ0 ≤ π
sin θ

.

For the large zk, we note that |z|
|zk | is continuous at any w = zk �= 0, z ∈ Γk which implies

the boundedness of |z|
|zk | for large |zk| with δ0 ≤ |zk| ≤ π

sin θ
, z ∈ Γk . Thus, we complete the

estimate (27). Similarly, it is easy to show that | zkz | is also bounded for any z ∈ Γk .
For (28), we first observe with ζ = e−zk that

zk − z =
(∑∞

j=0 w
(α)
j (e−zk) j

) 1
α − zk

k
= (zk)(1 + d1(zk)2 + · · · ) 1

α − zk

k

= (zk)(1 + d1
α

(zk)2 + · · · ) − zk

k
= k−1O

(
(zk)3

)
, as zk → 0.

This implies that there exists 0 < δ0 ≤ π
sin θ

such that

|zk − z| ≤ Ck2|z3|, for 0 ≤ |zk| ≤ δ0, z ∈ Γk .

For large |zk| with δ0 ≤ |zk| ≤ π
sin θ

, z ∈ Γk , an application of (27) shows

|zk − z| ≤ |zk | + |z| ≤ C |z| ≤ C(k2|z|3) 1

|zk|2 ≤ C(k2|z|3) 1
δ20

≤ C(k2|z|3).

Hence,

|zk − z| ≤ C(k2|z|3), for z ∈ Γk . (31)
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Following the idea of the proof in Lubich et al. [23, (4.6)] and noting that ‖K ′
1(z)‖ ≤

C |z|−2 in [23, (3.12)], we obtain by mean value theorem and using (31),

‖K1(zk) − K1(z)‖ ≤ C |z|−2k2|z|3 ≤ Ck2|z|, for z ∈ Γk . (32)

As in the proof of [36, Lemma 3.12], and noting that |K1(zk)| ≤ C |zk |−1 ≤ C |z|−1, z ∈ Γk ,
we now arrive by (32) and (26) at∥∥μ(ζ )K1(zk) − K1(z)

∥∥ ≤ ∥∥(
μ(ζ ) − 1

)
K1(zk)

∥∥ + ∥∥K1(zk) − K1(z)
∥∥

≤ C |zk|2|z|−1 + Ck2|z| ≤ Ck2|z|, z ∈ Γk,

which completes the proof of (28).
Finally in order to estimate (29), a use of the mean value theorem, (31) with K2(z) =

z−1(zα + Ah)
−1 and ‖K ′

2(z)‖ ≤ C |z|−2−α yields

‖K2(zk) − K2(z)‖ ≤ C |z|−2−αk2|z|3 ≤ Ck2|z|1−α, z ∈ Γk . (33)

Further, noting that |K2(zk)| ≤ C |zk |−1−α ≤ C |z|−1−α, z ∈ Γk , we obtain, by (33) and
(26), ∥∥μ(ζ )K2(zk) − K2(z)

∥∥ ≤ ∥∥(
μ(ζ ) − 1

)
K2(zk)

∥∥ + ∥∥K2(zk) − K2(z)
∥∥

≤ |zk|2C |z|−1−α + Ck2|z|1−α ≤ Ck2|z|1−α, z ∈ Γk,

which shows (29).
Altogether, it concludes the proof of the Lemma 2. �
In the following lemma, with zk defined in (21), we claim that zαk ∈ Σθ0 for some

θ0 ∈ ( π
2 , π).

Lemma 3 Let θ > π/2 be sufficiently close to π/2. Let zk be defined by (21). Then we have,
for some θ0 ∈ (π/2, π), with Γk defined by (24),

zαk ∈ Σθ0 , for z ∈ Γk . (34)

Proof By the definition of zk in (21) and the expression of w̃(ζ ) in Lemma 1, we obtain

zαk = k−α
(α + 2

2
− α

2
ζ
)
(1 − ζ )α = k−α

(α

2
(1 − ζ )α+1 + (1 − ζ )α

)
. (35)

It suffices to show that both α
2 (1 − ζ )α+1 and (1 − ζ )α lie in Σθ0 for all z ∈ Γk . Recall that

z ∈ Γk satisfies �(zk) ∈ (0, π ] and arg(z) = θ with θ > π
2 . Note that zαk depends on z

continuously [14, proof of Lemma 3.6]. It suffices to consider the case for z with arg(z) = π
2

and �(zk) ∈ (0, π]. In other words, suppose that we can prove α
2 (1 − ζ )α+1 ∈ Σθ0 for all

z with arg(z) = π
2 and �(zk) ∈ (0, π ], then since zk depends on z continuously, there exist

θ0 ∈ (0, π) such that α
2 (1− ζ )α+1 ∈ Σθ0 . Note that arg(z) = π

2 with �(zk) ∈ (0, π] implies
that ζ = e−zk = e−iϕ, ϕ ∈ (0, π ]. We next show α

2 (1 − ζ )α+1 ∈ Σθ0 and (1 − ζ )α ∈ Σθ0

for ζ = e−iϕ, ϕ ∈ (0, π]. Write

1 − ζ = 1 − e−iϕ = 1 − cosϕ + i sin ϕ,

then, 0 < �(1 − ζ ) = 1 − cosϕ < 1 and 0 < �(1 − ζ ) = sin ϕ < 1 for ϕ ∈ (0, π].
Thus, we arrive at arg α

2 (1− ζ )α+1 ∈ (0, π) with 0 < α < 1 and arg(1− ζ )α ∈ (0, π
2 ) with

0 < α < 1. Then, there exists θ0 ∈ ( π
2 , π) such that zαk ∈ Σθ0 and this completes the proof.

�
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Remark 1 In Jin et al. [14, Lemma 3.7], the authors have proved that for all −π ≤ θ < π ,
there exists θ0 ∈ (π/2, π) such that zαk ∈ Σθ0 for all z ∈ Σθ . Actually in our analysis, we
only need to show zαk ∈ Σθ0 for all z ∈ Γk for some θ > π/2 sufficiently close to π/2.

Lemma 4 Let zk be defined as in (21), then, there is a positive constant C independent of k
such that

∥∥∥(zα + Ah)
−1z−2 − (zαk + Ah)

−1
(
k

∞∑
n=1

tnζ
n
)∥∥∥ ≤ Ck2|z|−α.

Proof Apply Lemmas 2, 3 to arrive at

∥∥∥(zα + Ah)
−1z−2 − (zαk + Ah)

−1
(
k

∞∑
n=1

tnζ
n
)∥∥∥

≤ ‖(zα + Ah)
−1z−2 − (zαk + Ah)

−1z−2
k ‖ +

∥∥∥(zαk + Ah)
−1z−2

k

(
1 − z2kk

∞∑
n=1

tnζ
n
)∥∥∥.

≤ C
(∥∥(zα + Ah)

−2zα−3
∥∥ + ∥∥(zα + Ah)

−1z−3
∥∥)

‖zk − z‖

+ ∥∥(zαk + Ah)
−1

∥∥ |zk |−2
∣∣∣1 − w̃(ζ )

2
α

ζ

(1 − ζ )2

∣∣∣
≤ Ck2|z|−α.

This completes the rest of the proof. �
Now we turn to the proof of Theorem 1.

Proof (Proof of Theorem 1) Subtracting (17) from (23), we arrive at

Vh(tn) − V n = I1 + I2,

where, with K2(z) defined by (25),

I1 = 1

2π i

∫
Γ /Γk

eztn (zα + Ah)
−1z−1( fh(0) − Ahu0h) dz

+ 1

2π i

∫
Γk

eztn
(
K2(z) − μ(e−zk)K2(zk)

)
( fh(0) − Ahu0h) dz

= I11 + I12,

I2 = 1

2π i

∫
Γ

eztn (zα + Ah)
−1 R̂h(z) dz

− 1

2π i

∫
Γk

eztn (zαk + Ah)
−1

(
k

∞∑
n=1

Rh(tn)ζ
n
)
dz = I21 + I22.

For I1, apply the bound ‖(zα + Ah)
−1Ah‖ ≤ C , (3), (28) and (29) to obtain

‖I1‖ ≤ Ck2t−2
n ‖u0h‖ + Ck2tα−2

n ‖ fh(0)‖.
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For I2, we note that

I21 = 1

2π i

∫
Γ

eztn (zα + Ah)
−1 R̂1

h(z) dz

− 1

2π i

∫
Γk

eztn (zαk + Ah)
−1

(
k

∞∑
n=1

R1
h(tn)ζ

n
)
dz,

I22 = 1

2π i

∫
Γ

eztn (zα + Ah)
−1 R̂2

h(z) dz

− 1

2π i

∫
Γk

eztn (zαk + Ah)
−1

(
k

∞∑
n=1

R2
h(tn)ζ

n
)
dz,

where

Rh(t) = t f ′
h(0) + (

t ∗ f ′′
h

)
(t) =: R1

h(t) + R2
h(t).

For I21, we easily bound it as

‖I21‖ =
∥∥∥ 1

2π i

∫
Γ

eztn (zα + Ah)
−1z−2 dz f ′

h(0)

− 1

2π i

∫
Γk

eztn (zαk + Ah)
−1

(
k

∞∑
n=1

R1
h(tn)ζ

n

)
dz

∥∥∥

=
∥∥∥ 1

2π i

∫
Γ /Γk

eztn (zα + Ah)
−1z−2 dz f ′

h(0)

− 1

2π i

∫
Γk

eztn
(
(zα + Ah)

−1z−2 − (zαk + Ah)
−1

(
k

∞∑
n=1

tnζ
n
))

dz f ′
h(0)

∥∥∥.

An application of Lemma 4 yields

‖I21‖ ≤ Ck2tα−1
n ‖ f ′

h(0)‖. (36)

For I22, following the arguments as in Jin et al. [14,17], we arrive at

‖I22‖ ≤ Ck2
∫ tn

0
(tn − s)α−1‖ f ′′

h (s)‖ ds.

Together these estimates complete the proof of Theorem 1. �

3 Third Order Time DiscretizationMethod

In this section, we introduce a third order time discretization scheme for solving (1) based
on the weighted and shifted Grünwald-Letnikov difference operator introduced in Tian et al.
[34].

Let us define the following weighted and shifted Grünwald-Letnikov difference operator
L Dα

k,p,q,r to approximate the Riemann-Liouville fractional derivative operator R
0 D

α
t by

R
0 D

α
t φ(t) ≈ L D

α
k,p,q,rφ(t) := λ1B

α
k,pu(t) + λ2B

α
k,qφ(t) + λ3B

α
k,rφ(t), (37)
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where p, q, r are integers and mutually nonequal, and Bα
k,pφ(tn) are defined by (6) and

λ1 = 12qr − (6q + 6r + 1)α + 3α2

12(qr − pq − pr + p2)
,

λ2 = 12pr − (6p + 6r + 1)α + 3α2

12(pr − pq − qr + q2)
,

λ3 = 12pq − (6p + 6q + 1)α + 3α2

12(pq − pr − qr + r2)
.

When p = 0, q = −1, r = −2, we obtain

λ1 = 24 + 17α + 3α2

24
, λ2 = −22α − 6α2

24
, λ3 = 5α + 3α2

24
, (38)

and we then arrive for n ≥ 2 at

0D
α
t φ(tn) ≈ L D

α
k,p,q,rφ(tn) := λ1B

α
k,0φ(tn) + λ2B

α
k,−1φ(tn) + λ3B

α
k,−2φ(tn). (39)

Thus, we obtain

L D
α
k,p,q,rφ(tn) = λ1k

−α
n∑
j=0

g(α)
j φ(tn− j ) + λ2k

−α
n−1∑
j=0

g(α)
j φ(tn− j−1)

+ λ3k
−α

n−2∑
j=0

g(α)
j φ(tn− j−2)

= k−αλ1g
(α)
0 φ(tn) + k−α(λ1g

(α)
1 + λ2g

(α)
0 )φ(tn−1)

+ k−α(λ1g
(α)
2 + λ2g

(α)
1 + λ3g

(α)
0 )φ(tn−2)

+ k−α(λ1g
(α)
3 + λ2g

(α)
2 + λ3g

(α)
1 )φ(tn−3) + · · ·

= k−α
n∑
j=0

w
(α)
n− jφ(t j ), (40)

where

w
(α)
j =

⎧⎪⎨
⎪⎩

λ1g
(α)
0 , j = 0,

λ1g
(α)
1 + λ2g

(α)
0 , j = 1,

λ1g
(α)
j + λ2g

(α)
j−1 + λ3g

(α)
j−2, j = 2, 3, . . . , n.

The discrete Laplace transform of w
(α)
j , j = 0, 1, 2, . . . is given by

w̃(ζ ) =
∞∑
j=0

w
(α)
j ζ j = λ1g

(α)
0 +

(
λ1g

(α)
1 + λ2g

(α)
0

)
ζ

+
(
λ1g

(α)
2 + λ2g

(α)
1 + λ3g

(α)
0

)
ζ 2 +

(
λ1g

(α)
3 + λ2g

(α)
2 + λ3g

(α)
0

)
ζ 3 + · · ·

= (λ1 + λ2ζ + λ3ζ
2)(1 − ζ )α. (41)

Below, following the idea in Lemma 1, we consider the series expansion of the function
w̃(ζ ) in (41).
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Lemma 5 Let w̃(ζ ) be defined by (41). Then,

w̃(ζ )1/α =
(
1 − λ2 + 2λ3

α
(1 − ζ ) + · · ·

)
(1 − ζ ) as ζ → 1. (42)

Proof From (41), the binomial expansion (13) and λ1 + λ2 + λ3 = 1, it now follows that

w̃(ζ )1/α = (
λ1 + λ2ζ + λ3ζ

2)1/α(1 − ζ )

=
(
1 − (λ2 + 2λ3)(1 − ζ ) + λ3(1 − ζ )2

)1/α
(1 − ζ )

=
{
1 + 1

α

( − (λ2 + 2λ3)(1 − ζ ) + λ3(1 − ζ )2
)

+
1
α

( 1
α

− 1
)

2

(
− (λ2 + 2λ3)(1 − ζ ) + λ3(1 − ζ )2

)2 + · · ·
}
(1 − ζ )

=
(
1 − λ2 + 2λ3

α
(1 − ζ ) + · · ·

)
(1 − ζ ) as ζ → 1. (43)

This concludes the rest of the proof. �
Next, we turn to the solution of (16) when fh(t) is written as

fh(t) = fh(0) + f ′
h(0)t + Rh(t), Rh(t) = t2

2! f
′′
h (0) + (

t2

2! ∗ f ′′′
h )(t), (44)

where g ∗ h denotes the convolution of g and h.
An application of the Laplace transform to (16) with respect to the time variable t yields

V̂h(t) = (zα + Ah)
−1(( fh(0) − Ahu0h)z

−1 + f ′
h(0)z

−2 + R̂h(z)
)
. (45)

By the inverse Laplace transform, the solution of (16) takes the following form at t = tn ,

Vh(tn) = 1

2π i

∫
Γ

ezt (zα + Ah)
−1z−1( fh(0) − Ahu0h) dz

+ 1

2π i

∫
Γ

ezt
(
(zα + Ah)

−1z−2 f ′
h(0) + (zα + Ah)

−1 R̂h(z)
)
dz. (46)

Let V n ≈ Vh(tn), n = 0, 1, 2, . . . , N denote the approximate solution of the following
time discretization scheme for solving (16), with V 0 = 0,

k−α
n∑
j=0

w
(α)
n− j V

j + AhV
n = fh(0) − Ahu0h + f ′

h(0)tn + Rh(tn)

+ a1( fh(0) − Ahu0h) + b1k f
′
h(0), n = 1, (47)

k−α
n∑
j=0

w
(α)
n− j V

j + AhV
n = fh(0) − Ahu0h + f ′

h(0)tn + Rh(tn)

+ a2( fh(0) − Ahu0h) + b2k f
′
h(0), n = 2, (48)

k−α
n∑
j=0

w
(α)
n− j V

j + AhV
n = fh(0) − Ahu0h + f ′

h(0)tn + Rh(tn), n ≥ 3, (49)

where w
(α)
j , j = 0, 1, 2, . . . are defined by (40) and the coefficients a1, a2, b1, b2 satisfy

a1 = 11

12
, a2 = − 5

12
, (50)
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and

b1 + b2 = 1

12
. (51)

Now we come to the following main theorem in this section

Theorem 2 Let Vh(tn) and V n be the solutions of (16) and (47)–(49), respectively. Assume
that u0 ∈ L2(Ω) and f ∈ C2([0, T ]; L2(Ω)) and

∫ tn
0 (tn − s)α−1‖ f ′′′(s)‖ ds < ∞ for

tn ∈ (0, T ]. Let u0h = Phu0, then there exists a positive constant C independent of k such
that

‖Vh(tn) − V n‖ ≤ Ck3
(
t−3
n ‖u0‖ + tα−3

n ‖ f (0)‖ + tα−2
n ‖ f ′(0)‖ + tα−1

n ‖ f ′′(0)‖

+
∫ tn

0
(tn − s)α−1‖ f ′′′(s)‖ ds

)
.

To prove Theorem 2, we need the following lemmas.

Lemma 6 With w̃(ζ ) given by (41), let zk and μ(ζ ) with ζ = e−zk be defined by

zk = k−1w̃(ζ )
1
α , (52)

and

μ(ζ ) = kzk
( ζ

1 − ζ
+

2∑
j=1

a jζ
j
)

= w̃(ζ )
1
α

( ζ

1 − ζ
+

2∑
j=1

a jζ
j
)
. (53)

Further, let K1(z) and K2(z) be given by (25). Then,withΓk as in (24), the following estimates
hold:

|μ(e−zk) − 1| ≤ C |zk|3, z ∈ Γk, (54)

C |z| ≤ |zk | ≤ C |z|, z ∈ Γk, (55)∥∥μ(ζ )K1(zk) − K1(z)
∥∥ ≤ Ck3|z|2, z ∈ Γk, (56)∥∥μ(ζ )K2(zk) − K2(z)
∥∥ ≤ Ck3|z|2−α, z ∈ Γk . (57)

Proof The proof is similar to the proof of Lemma 2. For each inequality, again two cases
such as the small zk and the large zk are considered.

For (54), a use of Lemma 5 yields, with a1 = 11/12, a2 = −5/12 by (50),

μ(ζ ) − 1 = w̃(z)1/α
( ζ

1 − ζ
+ a1ζ + a2ζ

2
)

− 1

=
(
1 − λ2 + 2λ3

α
(1 − ζ ) + · · ·

)
(1 − ζ )

( ζ

1 − ζ
+ a1ζ + a2ζ

2
)

− 1

=
(
1 − λ2 + 2λ3

α
(1 − ζ ) + · · ·

)(
ζ + a1ζ(1 − ζ ) + a2ζ

2(1 − ζ )
)

− 1

=
(
1 − λ2 + 2λ3

α
(1 − ζ ) + · · ·

)

·
(
1 + (a1 + a2 − 1)(1 − ζ ) − (a1 + 2a2)(1 − ζ )2 + a2(1 − ζ )3

)
− 1

= O
(
(1 − ζ )3

)
as ζ → 1,

and then this implies that

μ(e−zk) − 1 = O
(
(1 − e−zk)3

) = O
(
(zk)3

)
as zk → 0.
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Hence (54) holds for small zk with 0 ≤ |zk| ≤ δ0 with some positive δ0 > 0, 0 ≤
δ0 < π

sin(θ)
, θ ∈ (π/2, θ0). Note that μ(ζ ) is continuous at any point except ζ �= 1, which

implies that, following the argument as in (30), μ(e−zk) − 1 is bounded for large zk with
δ0 ≤ |zk| ≤ π

sin(θ)
. Hence (54) follows.

We next estimate (55). With w̃(ζ ) defined by (41), we arrive at

|z|
|zk | = |zk|

|w̃(e−zk)
1
α |

.

Hence,

lim
x→0

x

w̃(e−x )
1
α

= lim
x→0

x

(
∑∞

j=0 w
(α)
j (e−x ) j )

1
α

= lim
x→0

x

(xα + d1x3+α + d2x4+α + · · · ) 1
α

= lim
x→0

1

(1 + d1x3 + · · · ) 1
α

= 1,

which implies that |z|
|zk | is bounded for small |zk|with 0 ≤ |zk| ≤ δ0, z ∈ Γk for some suitable

0 < δ0 ≤ π
sin θ

. Note also that |z|
|zk | is continuous at any w = zk �= 0, z ∈ Γk , which implies

that |z|
|zk | is also bounded for large |zk| with δ0 ≤ |zk| ≤ π

sin θ
, z ∈ Γk . Hence, we proved the

boundedness of |z|
|zk | for any z ∈ Γk . Similarly, we may show that |zk ||z| is also bounded for any

z ∈ Γk . Thus, we derive the estimate (55).
To estimate (56), we observe that

zk − z =
( ∑∞

j=0 w j (e−zk) j
) 1

α − zk

k
= (zk)(1 + d1(zk)3 + · · · ) 1

α − zk

k

= (zk)(1 + d1
α

(zk)3 + · · · ) − zk

k
= k−1O

(
(zk)4

)
, as zk → 0,

which implies that there exists 0 < δ0 ≤ π
sin θ

such that

|zk − z| ≤ Ck3|z4| for 0 ≤ |zk| ≤ δ0, z ∈ Γk .

For large |zk|, with δ0 ≤ |zk| ≤ π
sin θ

, z ∈ Γk , we have, by (55),

|zk − z| ≤ |zk | + |z| ≤ C |z| ≤ C(k3|z|4) 1

|zk|3 ≤ C(k3|z|4) 1
δ30

≤ C(k3|z|4).

Thus, we obtain

|zk − z| ≤ C(k3|z|4), z ∈ Γk . (58)

Then an application of the mean-value theorem with (58) and ‖K ′
1(z)‖ ≤ C |z|−2 shows

‖K1(zk) − K1(z)‖ ≤ C |z|−2k3|z|4 ≤ Ck3|z|2, z ∈ Γk . (59)

Following the same line of proof of (28),we arrive from (54), (59), and |K1(zk)| ≤ C |zk |−1 ≤
C |z|−1, z ∈ Γk at
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∥∥μ(ζ )K1(zk) − K1(z)
∥∥ ≤ ∥∥(

μ(ζ ) − 1
)
K1(zk)

∥∥ + ∥∥K1(zk) − K1(z)
∥∥

≤ |zk|3C |z|−1 + Ck3|z|2 ≤ Ck3|z|2, z ∈ Γk,

which shows (56).
Finally in order to show (57), we note that K2(z) = z−1(zα + Ah)

−1 and ‖K ′
2(z)‖ ≤

C |z|−2−α . Then, by mean-value theorem and (58), we obtain

‖K2(zk) − K2(z)‖ = ‖K ′
2(z)‖|zk − z| ≤ C |z|−2−αk3|z|4 ≤ Ck3|z|2−α, z ∈ Γk .

Following the same arguments as the proof of (29), a use of |K2(zk)| ≤ C |zk |−1−α ≤
C |z|−1−α yields

∥∥μ(ζ )K2(zk) − K2(z)
∥∥ ≤ ∥∥(

μ(ζ ) − 1
)
K2(zk)

∥∥ + ∥∥K2(zk) − K2(z)
∥∥

≤ |zk|3C |z|−1−α + Ck3|z|2−α ≤ Ck3|z|2−α, z ∈ Γk .

Hence, we prove (57).
Together with these estimates, we complete the proof of Lemma 6. �
In the following lemma, with zk defined by (52), we will show that zαk ∈ Σθ0 for some

θ0 ∈ (π/2, π).

Lemma 7 Let θ > π/2 be sufficiently close to π/2. Let zk be defined by (52). Then, there
exists θ0 ∈ (π/2, π) such that

zαk ∈ Σθ0 for all z ∈ Γk, (60)

where Γk is defined by (24).

Proof By the definition of zk in (52) and the expression of w̃(ζ ) in Lemma 5, we rewrite

zαk = k−α(λ1 + λ2ζ + λ3ζ
2)(1 − ζ )α, (61)

where λ1 = 24+17α+3α2

24 , λ2 = −22α−6α2

24 , λ3 = 5α+3α2

24 . It suffices to show both λ1 + λ2ζ +
λ3ζ

2 and (1 − ζ )α lie in Σθ0 for all z ∈ Γk . Recall that z ∈ Γk satisfies �(zk) ∈ (0, π] and
arg(z) = θ with θ > π

2 . Note that zαk depends on z continuously [14, proof of Lemma 3.6],
and arg(z) = π

2 with �(zk) ∈ (0, π ] implies that ζ = e−zk = e−iϕ, ϕ ∈ (0, π]. Hence, we
only need to show (λ1 + λ2ζ + λ3ζ

2) ∈ Σθ0 for ζ = e−iϕ, ϕ ∈ (0, π]. Observe that
λ1 + λ2ζ + λ3ζ

2 = λ1 + λ2e
−iϕ + λ3e

−i2ϕ

= (λ1 + λ2 cosϕ + λ3 cos 2ϕ) − i(λ2 sin ϕ + λ3 sin 2ϕ),

and therefore, we arrive at

�(λ1 + λ2ζ + λ3ζ
2)

= λ1 + λ2 cosϕ + 2λ3 cos
2 ϕ − λ3

= 5α + 3α2

12
cos2 ϕ − 22α + 6α2

24
cosϕ + 1 + α

2

= α2

4

(
cosϕ − 1

2

)2

+ 5α

12
(cosϕ − 1)2 + α

12
(1 − cosϕ) +

(
1 − α2

16

)
.

Then, �(λ1 + λ2ζ + λ3ζ
2) > 0 for ϕ ∈ (0, π) and 0 < α < 1.

123



40 Page 18 of 29 Journal of Scientific Computing (2020) 83 :40

Similarly,

�(λ1 + λ2ζ + λ3ζ
2) = 11α + 3α2

12
sin ϕ − 5α + 3α2

12
sin ϕ cosϕ

= α2

4
sin ϕ(1 − cosϕ) + 5α

12
sin ϕ(1 − cosϕ) + α

2
sin ϕ > 0. (62)

Thus, arg(λ1 + λ2ζ + λ3ζ
2) ∈ (0, π

2 ) for ϕ ∈ (0, π) and arg(1 − ζ )α ∈ ( π
2 , π) with

0 < α < 1 in Lemma 3. Then, we can infer the existence of θ0 ∈ (0, π
2 ) such that zαk ∈ Σθ0

and this concludes the rest of the proof. �
Lemma 8 Let zk be defined as in (52). Let b1, b2 be defined as in (51). Then, the following
estimate with ζ = e−zk , holds:

∥∥∥z−2
k −

( ∞∑
n=1

nζ n +
2∑
j=1

b jζ
j
)
k2

∥∥∥ ≤ Ck3|z|.

Proof Let ζ = e−zk and x = zk, then by Lemma 5, we have

z2k

( ∞∑
n=1

nζ n +
2∑
j=1

b jζ
j
)
k2 − 1

= (
w̃(e−x )

) 2
α

( ∞∑
n=1

n(e−x )n +
2∑
j=1

b j (e
−x ) j

)
− 1

=
( e−x

(1 − e−x )2
+

2∑
j=1

b j (e
−x ) j

)(
w̃(e−x )

) 2
α − 1

=
( 1

x2
(1 − 1/12x2 + 0x3 + · · · ) + b1 − b1x + 1/2b1x

2 − 1

3!b1x
3

+ b2 − 2b2x + 2b2x
2 − 8

3!b2x
3
)
(xα + d1x

α+3 + d2x
α+4 + · · · ) 2

α − 1

= (b1 + b2 − 1/12)x2 + d1x
3 + d2x

4+α + · · · ,

for some suitable positive constants d1, d2.
Combining this with (51), we obtain

∥∥∥(zk)
−2 −

( ∞∑
n=1

nζ n +
2∑
j=1

b jζ
j
)
k2

∥∥∥ ≤ Ck3|z|.

This completes the proof of Lemma 8. �
Remark 2 Observe that following the arguments as in Jin et al. [16], we can choose suitable
coefficients b1 = 1

12 , b2 = 0.

Lemma 9 Let zk be defined as in (52). Let b1, b2 be defined as in (51). Then, there holds

∥∥∥(zα + A)−1z−2 − (zαk + A)−1
( ∞∑
n=1

nζ n +
2∑
j=1

b jζ
j
)
k2

∥∥∥ ≤ Ck3|z|1−α.
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Proof The proof is similar to the proof of Jin et al. [16, Lemma C.1.] and hence, we omit the
proof here. �
Lemma 10 Let zk be defined as in (52), then, there exists a positive constant C independent
of k such that

∥∥∥(zα + A)−1z−3 − (zαk + A)−1
(
k

∞∑
n=1

t2n
2! ζ

n
)∥∥∥ ≤ Ck3|z|−α.

Proof From Lemma 6, it follows that

∥∥∥(zα + A)−1z−3 − (zαk + A)−1
(
k

∞∑
n=1

t2n
2! ζ

n
)∥∥∥

≤ ‖(zα + A)−1z−3 − (zαk + A)−1z−3
k ‖ +

∥∥∥(zαk + A)−1
(
z−3
k − k

∞∑
n=1

t2n
2! ζ

n
)∥∥∥.

≤
(
C‖(zα + A)−2zα−4‖ + C‖(zα + A)−1z−4‖

)
|zk − z|

+ ‖(zαk + A)−1‖
∣∣∣z−3

k − k
∞∑
n=1

t2n
2! ζ

n
∣∣∣ ≤ Ck3|z|−α.

This concludes the proof. �
We are now ready to prove the main theorem of this section.

Proof (Proof of Theorem 2)We now calculate the approximate solution V n defined in (47)–
(49). Taking the discrete Laplace transform in (47)–(49), we arrive at

∞∑
n=1

(
k−α

n∑
j=1

w
(α)
n− j V

j
)
ζ n +

∞∑
n=1

(AhV
n)ζ n

= ( fh(0) − Ahu0h)
(
a1ζ + a2ζ

2 + ζ

1 − ζ

)

+
∞∑
n=1

tn f
′
h(0)ζ

n + b1kζ f ′
h(0) + b2kζ

2 f ′
h(0) +

∞∑
n=1

Rh(tn)ζ
n .

Note that

∞∑
n=1

⎛
⎝ n∑

j=1

w
(α)
n− j V

j

⎞
⎠ ζ n =

⎛
⎝ ∞∑

j=0

w
(α)
j ζ j

⎞
⎠ (V 1ζ + V 2ζ 2 + · · · ) = w̃(ζ )Ṽ (ζ ),

and hence

Ṽ (ζ ) = (k−αw̃(ζ ) + Ah)
−1

((
fh(0) − Ahu0h

)(
a1ζ + a2ζ

2 + ζ

1 − ζ

)

+
( ∞∑
n=1

nζ n + b1ζ + b2ζ
2

)
k f ′

h(0) +
∞∑
n=1

Rh(tn)ζ
n
)
.

A use of the inverse discrete Laplace transform yields, with μ(ζ ) defined by (53), and Γk

as in (24).
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V n = 1

2π i

∫
|ζ |=ρ

ζ−n−1Ṽ (ζ )dζ = 1

2π i

∫
Γk

eztn ezk Ṽ (e−zk)e−zkkdz

= 1

2π i

∫
Γk

eztn (zαk + Ah)
−1z−1

k μ(ζ )
(
fh(0) − Ahu0h

)
dz

+ 1

2π i

∫
Γk

eztn (zαk + Ah)
−1

( ∞∑
n=1

nζ n + b1ζ + b2ζ
2

)
k2 f ′

h(0) dz

+ 1

2π i

∫
Γk

eztn (zαk + Ah)
−1k

( ∞∑
n=1

Rh(tn)ζ
n) dz. (63)

Now, subtracting (46) from (63), we arrive at

Vh(tn) − V n = I1 + I2 + I3,

where, with K2(z) defined by (25),

I1 = 1

2π i

∫
Γ /Γk

eztn (zα + Ah)
−1z−1( fh(0) − Ahu0h) dz

+ 1

2π i

∫
Γk

eztn
(
K2(z) − μ(e−zk)K2(zk)

)
( fh(0) − Ahu0h) dz = I11 + I12,

and

I2 = 1

2π i

∫
Γ /Γk

eztn (zα + Ah)
−1z−2 f ′

h(0) dz

+ 1

2π i

∫
Γk

eztn
{
(zα + Ah)

−1z−2 f ′
h(0)

− (zαk + Ah)
−1

( ∞∑
n=1

nζ n +
2∑
j=1

b jζ
j
)
k2 f ′

h(0)
}
dz = I21 + I22,

and

I3 = 1

2π i

∫
Γ

eztn (zα + Ah)
−1 R̂h(z) dz

− 1

2π i

∫
Γk

eztn (zαk + Ah)
−1

(
k

∞∑
n=1

Rh(tn)ζ
n
)
dz = I31 + I32.

For I1, apply the bound ‖(zα + Ah)
−1Ah‖ ≤ C , (3), (56) and (57) to obtain

‖I1‖ ≤ Ck3t−3
n ‖u0h‖ + Ck3tα−3

n ‖ fh(0)‖.
For I21, by (3), it follows that

‖I21‖ ≤ C‖
∫

Γ /Γk

eztn (zα + Ah)
−1z−2 f ′

h(0) dz‖

≤ Ck3tα−2
n ‖ f ′

h(0)‖.
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For I22, a use of the Lemma 9 shows

‖I22‖ ≤C
∥∥∥

∫
Γk

eztn (zα + Ah)
−1z−2 f ′

h(0) dz

−
∫

Γk

eztn (zαk + Ah)
−1[( ∞∑

n=1

nζ n +
2∑
j=1

b jζ
j )k2 f ′

h(0)
]
dz

∥∥∥

≤Ck3
∫

Γk

e−ctn |z||z|1−α |dz|‖ f ′
h(0)‖ ≤ Ck3tα−2

n ‖ f ′
h(0)‖.

Thus, we obtain

‖I2‖ ≤ Ck3tα−2
n ‖ f ′

h(0)‖.
For I3, we observe that

I31 = 1

2π i

∫
Γ

eztn (zα + Ah)
−1 R̂1

h(z) dz

− 1

2π i

∫
Γk

eztn (zαk + Ah)
−1

(
k

∞∑
n=1

R1
h(tn)ζ

n
)
dz,

and

I32 = 1

2π i

∫
Γ

eztn (zα + Ah)
−1 R̂2

h(z) dz

− 1

2π i

∫
Γk

eztn (zαk + Ah)
−1

(
k

∞∑
n=1

R2
h(tn)ζ

n
)
dz,

where

Rh(t) = t2

2! f
′′
h (0) + ( t2

2! ∗ f ′′′
h

)
(t) =: R1

h(t) + R2
h(t).

For I31, we easily bound it as

‖I31‖ =
∥∥∥ 1

2π i

∫
Γ

eztn (zα + Ah)
−1z−3 dz f ′′

h (0)

− 1

2π i

∫
Γk

eztn (zαk + Ah)
−1

(
k

∞∑
n=1

R1
h(tn)ζ

n
)
dz

∥∥∥

=
∥∥∥ 1

2π i

∫
Γ /Γk

eztn (zα + Ah)
−1z−3 dz f ′′

h (0)

− 1

2π i

∫
Γk

eztn
(
(zα + Ah)

−1z−3 − (zαk + Ah)
−1

(
k

∞∑
n=1

t2n
2! ζ

n
))

dz f ′′
h (0)

∥∥∥.

An application of Lemma 10 yields

‖I31‖ ≤ Ck3tα−1
n ‖ f ′′

h (0)‖. (64)

For I32, following the arguments as in Jin et al. [14,17], we now arrive at

‖I32‖ ≤ Ck3
∫ tn

0
(tn − s)α−1‖ f ′′′

h (s)‖ ds.
Together these estimates complete the proof of Theorem 2. �

123



40 Page 22 of 29 Journal of Scientific Computing (2020) 83 :40

In order to prove the error analysis in the completely discrete schemes, we now recall
the error estimates of the semidiscrete scheme as is developed in [13] for the problem with
f = 0,

‖u(tn) − uh(tn)‖ ≤ C t−α h2‖u0‖. (65)

DenoteUn = V n + Phu0 with V n defined by (19) or (47)–(49), respectively. Using (65),
we then have the following fully discrete error estimate

‖u(tn) −Un‖ ≤ C
(
t−α
n h2 + t−m

n km
)

‖u0‖,
where m = 2 or 3, respectively, for second order and third order time stepping schemes.

Since our main objective in this article is to derive higher order time stepping schemes,
therefore, wemay generalize our present results to includemass lumping scheme as discussed
in [13].

4 Some Generalizations

This section is devoted to some generalization of the present methods to various other prob-
lems, which includes evolution equations with positive memory.

For instance, our generalizations include the following type of problems:

1. Evolution equations with positive memory called time diffusion-wave equation, as in
[23],

u′(x, t) + R
0 D

−α
t Au(x, t) = 0, α ∈ (0, 1), (66)

where R
0 D

−α
t denotes the Riemann-Liouville fractional integral operator.

2. The parabolic integro-differential equation with singular kernel, see, [26]

u′(x, t) + (
I + R

0 D
−α
t

)
Au(x, t) = 0, α ∈ (0, 1). (67)

3. The Rayleigh-Stokes problem described by the time-fractional differential equation as
in [4]

u′(x, t) + (
I + γ R

0 D
−α
t

)
Au(x, t) = 0, α ∈ (0, 1), (68)

where γ is a positive constant. In order to unify problems (66)–(68), we define J α

denoting a time integral/differential operator and consider the unified problem by

u′(x, t) + J αAu(x, t) = 0. (69)

Now, a use of Laplace transforms in (69) yields

zû + h(z)Aû = v,

with some function h(z) depending on α. Hence, with β(z) = h(z)−1 we formally write
the representation of solution as û = β(z)(zβ(z)I + A)−1v =: Êh(z)v. Here, for the
problem (66), note that β(z) = zα, for the problem (67), β(z) = zα/(1 + zα), and for (68),
β(z) = 1/(1 + γ zα).

Assume that one can properly choose θ in (π/2, θ0) with θ0 ∈ (π/2, π) such that
zkβ(zk) ∈ Σθ0 , where zk is an approximation of z ∈ Σθ . This is indeed possible in all
given examples. With this, the resolvent estimate yields

‖(zβ(z)I + A)−1‖ ≤ Mθ0

|zβ(z)| ∀z ∈ Σθ, (70)
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where Mθ0 = 1/ sin(π − θ0).
With corresponding Ah as semidiscrete approximationof A ( as inSect. 2), the semidiscrete

method becomes: find ūh(t) ∈ Vh such that

ū′
h + J αAhūh = 0 t ∈ (0, T ], ūh(0) = vh . (71)

Following the arguments of [9,23], one easily deduces property (70), when A is replaced
by Ah .

Therefore, our two time stepping methods can be appropriately applied and the desired
estimates can be easily derived.

Other generalizations also include the fractional cable equations with mass lumping by
Al-Maskari andKaraa [2] and references therein. Further, it may include Fokker-Plank spatial
discretization as our analysis does not depend on selfadjointness of the operator A and for
complete discrete scheme, we may use the proposed time stepping schemes.

Finally, the present schemes can be applied to the Eq. (1), when A is a fractional Laplacian
like A = (−Δ)s, s ∈ (0, 1), that is, with 0 < α, β < 1 and some positive constant δ > 0,

u′ + R
0 D

α
t

( − Δ
)s

u + δ R
0 D

β
t u = f in Ω × (0, T ], (72)

u = 0 in Ωc × (0, T ], (73)

u(0) = u0 in Ω. (74)

An appropriatemodification of the arguments in [1], we obtain the semidiscrete error estimate
as:

‖u(t) − uh(t)‖ ≤ Ct−α hs+min{s,1/2−ε} ‖u0‖,
with ε > 0 small. Therefore, when it is combined with our proposed time stepping schemes,
the final error estimate reads as: with Un ≈ uh(tn),

‖u(tn) −Un‖ ≤ C
(
t−α
n hs+min{s,1/2−ε} + t−m

n km
)

‖u0‖, m = 2, 3.

5 Numerical Simulations

In this section, we present five numerical examples to show that the numerical results are con-
sistent with the theoretical results obtained in this paper. The first three examples are solved
by using the numerical method (19) for both homogeneous and inhomogeneous problems in
one- and two-dimensional cases. The last two examples are computed by using the numerical
method (47)–(49) for both homogeneous and inhomogeneous problems in one-dimensional
case.

Example 1 Consider, with 0 < α < 1,

C
0 D

α
t u(x, t) − ∂2u(x, t)

∂x2
= 0, 0 < x < 1, 0 < t ≤ T ,

u(0, t) = u(1, t) = 0,

u(x, 0) = u0(x),

where (a) u0(x) = x(1 − x) (smooth data) and (b) u0(x) = χ[0,1/2] (nonsmooth data).
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Table 2 Time convergence orders for the corrected scheme (19) in Example 1 at T = 1

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)

0.2 (a) 8.37e−8 3.55e−7 1.46e−6 6.21e−6 2.66e−5 2.07

(b) 2.15e−7 9.13e−7 3.77e−6 1.57e−5 6.84e−5 2.07

0.4 (a) 1.85e−7 7.86e−7 3.25e−6 1.36e−5 5.92e−5 2.08

(b) 4.74e−7 2.01e−6 8.33e−6 3.49e−5 1.51e−4 2.08

0.6 (a) 2.96e−7 1.26e−6 5.23e−6 2.20e−5 9.54e−5 2.08

(b) 7.53e−7 3.20e−6 1.32e−5 5.58e−5 2.42e−4 2.08

0.8 (a) 3.79e−7 1.61e−6 6.74e−6 2.85e−5 1.14e−4 2.06

(b) 9.49e−7 4.04e−6 1.68e−5 7.14e−5 2.87e−4 2.06

Table 3 Time convergence orders for the uncorrected scheme (19) with c0 = 0 in Example 1 at T = 1

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)

0.2 (a) 7.97e−6 1.86e−5 3.99e−5 8.28e−5 1.68e−4 1.10

(b) 2.04e−5 4.77e−5 1.02e−4 2.12e−4 4.33e−4 1.10

0.4 (a) 1.34e−5 3.14e−5 6.73e−5 1.38e−4 2.79e−4 1.09

(b) 3.44e−5 8.04e−5 1.72e−4 3.54e−4 7.12e−4 1.09

0.6 (a) 1.55e−5 3.60e−5 7.68e−5 1.56e−4 3.02e−4 1.07

(b) 3.93e−5 9.16e−5 1.95e−4 3.97e−4 7.68e−4 1.07

0.8 (a) 1.22e−5 2.82e−5 5.93e−5 1.15e−4 1.92e−4 0.99

(b) 3.08e−5 7.12e−5 1.49e−4 2.92e−4 4.86e−4 0.99

Let Nh be a positive integer. Let 0 = x0 < x1 < x2 < · · · < xNh = 1 be the space
partition and h the space step size. We shall use the piecewise linear finite element method
to consider the space discretization.

Let 0 < t0 < t1 < · · · < tN = T be the time partition and k the time step size.
To observe the convergence order of the numerical method, we first need to calculate the
reference solution ure f (t) at some fixed time T with very small step sizes hre f = 2−6 and
kre f = 2−10.

By Theorem 1, we see that the numerical method (19) has the second order convergence.
To see this convergence order, we shall calculate the approximate solution of u(T ) at T = 1
with the space step size h = 2−6 and the different time step sizes k = κ ∗ kre f with
κ = [22, 23, 24, 25, 26]. In Table 2, we observe the convergence orders O(k2) of the corrected
scheme (19), where the rows with (a) denote the errors and the experimentally determined
convergence orders in the smooth data case and the rows with (b) denote the errors and the
orders in the nonsmooth data case. For each α, we choose the average convergence order of
the computed orders obtained by using the different time step sizes.

For the numerical method (19) with c0 = 0, that is, for the uncorrected scheme, we
observe that, in Table 3, the experimentally determined convergence order is only O(k) with
both smooth and nonsmooth data.

The second example is an inhomogeneous problem with zero initial value and the source
term f which is smooth in time.
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Table 4 Time convergence orders for the corrected scheme (19) in Example 2 at T = 1

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)

0.2 1.84e−7 7.78e−7 3.17e−6 1.29e−5 5.31e−5 2.04

0.4 3.80e−7 1.60e−6 6.57e−6 2.68e−5 1.12e−4 2.05

0.6 5.40e−7 2.28e−6 9.40e−6 3.89e−5 1.65e−4 2.06

0.8 5.54e−7 2.36e−6 9.82e−6 4.15e−5 1.80e−4 2.08

Table 5 Time convergence orders for the uncorrected scheme (19) with c0 = 0 in Example 2 at T = 1

α k = 2−7 k = 2−6 k = 2−5 k = 2−4 k = 2−3 Order (average)

0.2 5.39e−6 1.25e−5 2.65e−5 5.38e−5 1.08e−4 1.08

0.4 8.64e−6 1.99e−5 4.20e−5 8.45e−5 1.70e−4 1.07

0.6 9.05e−6 2.07e−5 4.33e−5 8.59e−5 1.79e−4 1.07

0.8 6.16e−6 1.39e−5 2.85e−5 5.64e−5 1.46e−4 1.14

Example 2 Consider, with 0 < α < 1,

C
0 D

α
t u(x, t) − ∂2u(x, t)

∂x2
= f (x, t), 0 < x < 1, 0 < t ≤ T ,

u(0, t) = u(1, t) = 0,

u(x, 0) = 0,

where f (x, t) = (cos(t) + sin(t))(1 + χ(0,1/2)(x)).

We use the same parameters as in the numerical simulations in Example 1. In Table 4, we
observe that the experimentally determined convergence order of the corrected scheme (19)
indeed is O(k2) for all 0 < α < 1 (Table 5).

The third example is a two-dimensional example andwe shall consider an inhomogeneous
problem with nonsmooth initial data and the source term f which is smooth in time.

Example 3 Consider

C
0 D

α
t u(x, y, t) − Δu(x, y, t) = f (x, y, t), t ∈ (0, T ], (x, y) ∈ Ω, (75)

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, (76)

u(x, y, t) = 0, t ∈ (0, T ], (x, y) ∈ ∂Ω, (77)

where Ω = (0, 1) × (0, 1), u0(x, y) = χ[0,1/2](x)χ[0,1/2](y) and f (x, y, t) = (cos(t) +
sin(t))(1 + χ(0,1/2)(x))(1 + χ(0,1/2)(y)). Note that f is smooth with respect to the time
variable t .

Let Nh be a positive integer. Let 0 = x0 < x1 < x2 < · · · < xNh = 1 and 0 = y0 < y1 <

y2 < · · · < yNh = 1 be the partition of Ω . We divide Ω into some triangles with the same
sizes and let h be the maximal length of the sides of the triangle. We shall use the piecewise
linear finite element method to consider the space discretization on the triangulation of Ω .

Let 0 < t0 < t1 < · · · < tN = T be the time partition and k the time step size. We shall
use the very small space step size hre f = 2−6 and the time step size kre f = 2−10 to calculate
the reference solution at time T .
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Table 6 Time convergence orders for the corrected scheme (19) in Example 3 at T = 1

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)

0.2 1.01e−7 4.25e−7 1.74e−6 7.16e−6 3.02e−5 2.05

0.4 2.46v7 1.04e−6 4.28e−6 1.76e−5 7.47e−5 2.06

0.6 4.35e−7 1.84e−6 7.57v6 3.13e−5 1.33e−4 2.06

0.8 6.74e−7 2.86e−6 1.18e−5 4.95e−5 2.16e−4 2.08

Table 7 Time convergence orders for the uncorrected scheme (19) with c0 = 0 in Example 3 at T = 1

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)

0.2 6.19e−6 1.44e−5 3.08e−5 6.32e−5 1.26e−4 1.08

0.4 1.14e−5 2.65e−5 5.64e−5 1.14e−4 2.25e−4 1.07

0.6 1.40e−5 3.24e−5 6.83e−5 1.36e−4 2.56e−4 1.04

0.8 1.17e−5 2.68e−5 5.50e−5 1.04e−4 1.88e−4 1.00

Table 8 Time convergence orders for the corrected scheme (47)–(49) in Example 4 at T = 1

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)

0.2 (a) 1.32e−9 1.10e−8 9.33e−8 8.36e−7 8.62e−6 3.16

(b) 3.40e−9 2.83e−8 2.40e−7 2.15e−6 2.22e−5 3.16

0.4 (a) 3.10e−09 2.59e−8 2.19e−7 1.98e−6 2.16e−5 3.19

(b) 7.96e−9 6.64e−8 5.64e−7 5.09e−6 5.54v5 3.19

0.6 (a) 6.43e−9 4.54e−8 3.87e−7 3.54e−6 6.23e−5 3.37

(b) 1.37e−8 1.15e−7 9.84e−7 8.99e−6 1.55e−4 2.36

0.8 (a) 8.30e−9 6.98e−8 6.04e−7 5.78e−6 6.12e−5 3.21

(b) 2.07e−8 1.74e−7 1.51e−6 1.44e−5 1.62e−4 3.23

We shall choose T = 1 in our simulation. We calculate the approximate solutions with
the space step size h = 2−6 and the time step sizes k = κ ∗kre f with κ = [22, 23, 24, 25, 26].
In Table 6, the experimentally determined convergence orders O(k2) are observed as we
expected.

In Table 7, we observe the experimentally determined convergence orders O(k) for the
uncorrected scheme (19) with c0 = 0 as we expected.

In the next two examples, we shall consider the experimentally determined convergence
orders of the numerical method (47)–(49).

Example 4 In this example, we shall use the numerical method (47)–(49) to solve Example 1.
We use the same parameters as in the numerical simulation in Example 1. In Table 8, we
observe that the corrected scheme (47)–(49) has the convergence orders O(k3) with both
smooth and nonsmooth data as expected.

For the uncorrected scheme (47)–(49), that is, a1 = a2 = b1 = b2 = 0 in (47)–(49), we
observe that, in Table 9, the experimentally determined convergence order is only O(k) with
both smooth and nonsmooth data.
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Table 9 Time convergence orders for the uncorrected scheme (47)–(49) with a1 = a2 = b1 = b2 = 0 in
Example 4 at T = 1

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)

0.2 (a) 7.98e−6 1.86e−5 4.01e−5 8.34e−5 1.72e−4 1.10

(b) 2.04e−5 4.78v5 1.02e−4 2.14e−4 4.41e−4 1.10

0.4 (a) 1.35v5 3.16e−5 6.80e−5 1.41e−4 2.94e−4 1.11

(b) 3.45e−5 8.07e−5 1.73e−4 3.62e−4 7.53e−4 1.11

0.6 (a) 1.55e−5 3.64e−5 7.85e−5 1.64e−4 3.44e−4 1.11

(b) 3.96e−5 9.26e−5 1.99e−4 4.17e−4 8.75e−4 1.11

0.8 (a) 1.24e−5 2.90e−5 6.28e−5 1.33e−4 2.61e−4 1.09

(b) 3.12e−5 7.32e−5 1.58e−4 3.35e−4 6.64e−4 1.10

Table 10 Time convergence orders for the corrected scheme (47)–(49) in Example 5 at T = 1

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)

0.2 2.30e−9 1.93e−8 1.66e−7 1.53e−6 1.65e−5 3.20

0.4 3.07e−9 4.15e−8 3.59e−7 3.37e−6 3.97e−5 3.24

0.6 7.80e−9 6.61e−8 5.79e−7 5.57e−6 1.19e−4 3.47

0.8 1.09e−8 9.35e−8 8.39e−7 8.64e−6 1.02e−4 3.29

Table 11 Time convergence orders for the uncorrected scheme (47)–(49) with a1 = a2 = b1 = b2 = 0 in
Example 5 at T = 1

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)

0.2 1.79e−5 4.21e−5 9.07e−5 1.89e−4 3.93e−4 1.11

0.4 3.04e−5 7.13e−5 1.53e−4 3.21e−4 6.70e−4 1.11

0.6 3.51e−5 8.23e−5 1.77e−4 3.72e−4 7.73e−4 1.11

0.8 2.79e−5 6.55e−5 1.41e−4 2.99e−4 5.72e−4 1.08

Example 5 In this example, we shall use the numerical method (47)–(49) to solve Example
2. We use the same parameters as in the numerical simulation in Example 1. In Table 10,
we also observe the convergence orders O(k3) of the corrected scheme (47)–(49) in the
inhomogeneous case.

In Table 11, the experimentally determined convergence order of the uncorrected scheme
(47)–(49) with a1 = a2 = b1 = b2 = 0 has only convergence order O(k).

Remark 3 In Tables 8 and 10, we observe that the experimentally determined convergence
orders are slightly better than the theoretical orders. The possible reason may be that the
proposed numerical methods involve both fractional orders and the shifted numbers. These
combinations which are more related to the equation may be instrumental in helping us to
provide possibly more accurate computational results. But, we do not have a theory yet to
establish it. Therefore, in future, we shall continue to investigate this interesting observation.
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