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Abstract
This paper develops and analyzes a fully discretemixed finite elementmethod for the stochas-
tic Cahn–Hilliard equation with gradient-type multiplicative noise that is white in time and
correlated in space. The stochastic Cahn–Hilliard equation is formally derived as a phase field
formulation of the stochastically perturbed Hele–Shaw flow. The main result of this paper
is to prove strong convergence with optimal rates for the proposed mixed finite element
method. To overcome the difficulty caused by the low regularity in time of the solution to
the stochastic Cahn–Hilliard equation, the Hölder continuity in time with respect to various
norms for the stochastic PDE solution is established, and it plays a crucial role in the error
analysis. Numerical experiments are also provided to validate the theoretical results and to
study the impact of noise on the Hele–Shaw flow as well as the interplay of the geometric
evolution and gradient-type noise.
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1 Introduction

We consider the following stochastic Cahn–Hilliard (SCH) problem:

du =
[
−�

(
ε�u − 1

ε
f (u)

)]
dt + δ∇u · X ◦ dWt in DT := D × (0, T ], (1.1)

∂u

∂n
= ∂

∂n

(
ε�u − 1

ε
f (u)

)
= 0 in ∂DT := ∂D × (0, T ], (1.2)

u = u0 in D × {0}, (1.3)

where D ⊂ R
d (d = 2, 3) is a bounded domain, n stands for the unit outward normal to ∂D,

and T > 0 and δ > 0 are fixed numbers. Wt denotes a standard real-valued Wiener process
on a given filtered probability space (�,F, {Ft : t ≥ 0},P), “◦” refers to the Stratonovich
interpretation of the stochastic integral. X : Rd −→ R

d is a smooth divergence-free vector
field defined on D satisfying X · n = 0 on ∂D.

Moreover, f = F ′, the derivative of a smooth double equal well potential F taking its
global minimum zero at±1. In this paper we focus on the following quartic potential density
function:

F(u) = 1

4
(u2 − 1)2. (1.4)

We note that the Stratonovich SPDE (1.1) can be equivalently rewritten as the following Itô
SPDE:

du =
[
−�

(
ε�u − 1

ε
f (u)

)
+ δ2

2
div(B∇u)

]
dt + δ∇u · XdWt , (1.5)

where B = X ⊗ X ∈ R
d×d with Bi j = Xi X j (i, j = 1, . . . , d).

By introducing the so-called chemical potential w := −ε�u + 1
ε

f (u), the above primal
formulation of the SCH problem can be rewritten as the following mixed formulation:

du =
[
�w + δ2

2
div(B∇u)

]
dt + δ∇u · XdWt in DT , (1.6)

w = −ε�u + 1

ε
f (u) in DT , (1.7)

∂u

∂n
= ∂w

∂n
= 0 on ∂DT , (1.8)

u = u0 on D × {0}, (1.9)

which will be used to develop fully discrete finite element numerical methods in this paper.
The deterministic Cahn–Hilliard equation (i.e., δ = 0) was originally introduced in [7] to

describe complicated phase separation and coarsening phenomena in a melted alloy that is
quenched to a temperature at which only two different concentration phases can exist stably.
In the equation, u represents the concentration of one of twometallic components of the alloy
mixture, the small parameter ε > 0 is called the interaction length. Note that in (1.6)–(1.7),
t is the fast time representing t

ε
in the original Cahn–Hilliard formulation. The existence of

bistable states suggests that nonconvex energy is associated with the equation (cf. [2,7,11]).
The Cahn–Hilliard equation is well-known also because it closely relates to a celebrated
moving interface problem, namely the Hele–Shaw (or Mullins–Sekerka) problem/flow. It
was proved in [2,37] that, as ε ↘ 0, the chemical potential w := −ε�u + ε−1 f (u) tends to
a limit, which, together with a free boundary � := ∪0≤t≤T (�t × {t}), satisfies the following
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Hele–Shaw (or Mullins–Sekerka) problem:

�w = 0 in D\�t , t ∈ (0, T ], (1.10)

∂w

∂n
= 0 on ∂D, t ∈ (0, T ], (1.11)

w = σκ on �t , t ∈ (0, T ], (1.12)

Vn = 1

2

[
∂w

∂n

]

�t

on �t , t ∈ (0, T ], (1.13)

�0 = �00 on t = 0, (1.14)

where σ = ∫ 1
−1

√
F(s)
2 ds, κ and Vn are the mean curvature and the outward normal velocity

of the interface �t , n is the unit outward normal to either ∂D or �t ,
[

∂w
∂n

]
�t

:= ∂w+
∂n − ∂w−

∂n ,

and w+ and w− are respectively the restriction of w in the exterior and interior of �t in D.
More details about the justification of the limit can be found in [2,8,40] and its numerical
approximations in [13–15,29,41] and in [11].

In applications of the Hele–Shaw flow, uncertainty may arise and come from various
sources such as thermal fluctuation, impurities of the materials and the intrinsic instabilities
of the deterministic evolutions. Therefore, the evolution of the flow/interface under influence
of noise is of great importance in applications, it is necessary and interesting to consider
stochastic effects, and to study the impact of noise on its phase field models and solutions,
especially on their long time behaviors. This then leads to considering the stochastic phase
field models. However, how to incorporate noises correctly into phase field models is often
a delicate issue.

In this paper, we consider the following stochastically perturbed Hale–Shaw flow:

Vn = 1

2

[
∂w

∂n

]

�t

+ δ
◦

W t X · n, (1.15)

where a white-in-time noise multiplied by a smooth spatial coefficient function X is added to
the normal velocity of the interface�t , and the parameter δ > 0 represents the noise intensity.
By an heuristic argument (see [39] and [11] for an analogous argument), we can formally
show that equation (1.1) is a phase field formulation of the above stochastic Hele-Shaw flow.

It should be noted that there is another stochastic Cahn–Hilliard equation, called Cahn–
Hilliard–Cook (CHC) equation, which has been extensively studied in the literature,
see [5,10,34] for PDE analysis and [19,25,26,28] and the references therein for its numerical
approximations. However, the noise in the CHC equation is additive and the parameter ε = 1
in those works. Hence, there may have no connection between the CHC equation and the
above stochastic Hele–Shaw flow. We also note that numerical approximations of various
stochastic versions of the following Allen–Cahn equation:

ut = �u − 1

ε2
f (u),

which is a closely related to the Cahn–Hilliard equation, have been extensively investigated
in the literature [17,21,23,24,30,32]. Most of those works focused on either additive noise or
function-type multiplicative noise. Recently, finite element approximations of the stochastic
Allen–Cahn (SAC) equation with gradient-type multiplicative noise had been carried out by
the authors in [16]. This SAC equation was derived as and partially proved to be a phase field
formulation of the stochastic mean curvature flow (cf. [22,39,42]).
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The goal of this paper is to extend thework of [16] to the stochastic Cahn–Hilliard problem
(1.1)–(1.3). Specifically, we shall develop and analyze a fully discrete mixed finite element
method for this problem, and establish strong convergence with rates for the proposed mixed
finite element method, under similar assumptions as those given in [16]. We note that the
divergence-free property of X plays a key role in our analysis, which guarantees the sample-
wisemass conservation for the strong solution to problem (1.1)–(1.3) and the discrete solution
to problem (3.1)–(3.2). As such, the inverse discrete Laplace operator (see (3.6)) defined in
the deterministic case can be employed directly in the error analysis. Another key ingredient
for the error analysis is the Hölder continuity estimates for the strong solution. To the best
of our knowledge, numerical analysis has yet been done for the stochastic Cahn–Hilliard
equation with gradient-type multiplicative noise in the literature.

The rest of the paper is organized as follows. In Sect. 2, we define the weak formulation for
problem (1.1)–(1.3) and derive several Hölder continuity estimates for the strong solution of
the SPDE problem. In Sect. 3, a fully discretized mixed finite element method is formulated
and properties of the discrete inverse Laplacian operator are presented, which will be utilized
to establish the well-posedness and stability of the discrete method, and to prove the strong
convergence with rates in Sect. 4. In Sect. 5, we report several numerical experiments to
validate our theoretical results and to examine the interplay of the geometric parameter ε and
the noise intensity δ. Finally, a short conclusion is provided in Sect. 6.

Throughout this paper we shall use C to denote a generic positive constant independent
of the parameters ε, δ, space and time mesh sizes h and τ , which can take different values at
different occurrences.

2 Preliminaries

Standard functional space and function notation in [1] and [6] will be adopted in this paper.
In particular, Hk(D) for k ≥ 0 denotes the Sobolev space of order k, (·, ·) and ‖ · ‖L2(D)

denote the standard inner product and norm of L2(D).
In this section, we shall establish several technical lemmas about Hölder continuity esti-

mates for the strong solution of problem (1.1)–(1.3) that play a key role in error analysis in
Sect. 4. These estimates play the role of the time derivatives of the solution in the deterministic
case.

First, we define the weak formulation for problem (1.1)–(1.3), based on the mixed formu-
lation (1.6)–(1.9), as follows: Seeking an Ft -adapted and H1(D) × H1(D)-valued process
(u(·, t), w(·, t)) such that there hold P-almost surely

(u(t), φ) = (u0, φ) −
∫ t

0
(∇w(s),∇φ) ds − δ2

2

∫ t

0
(∇u(s) · X ,∇φ · X) ds

+ δ

∫ t

0
(∇u(s) · XdWs, φ) ∀ φ ∈ H1(D) ∀ t ∈ (0, T ], (2.1)

(w(t), ϕ) = ε(∇u(t),∇ϕ) + 1

ε
( f (u(t)), ϕ) ∀ ϕ ∈ H1(D) ∀ t ∈ (0, T ]. (2.2)

Let

J (v) :=
∫

D

( ε

2
|∇v|2 + 1

ε
F(v)

)
dx
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denote the Cahn–Hilliard energy functional. We now state an uniform estimate for the expec-
tation of the p-th moment energy. Since its proof is similar to that for [16, Lemma 2.1], we
omit it to save space.

Lemma 1 Let (u, w) be the solution to problem (1.6)–(1.9). We have for any p > 1

sup
t∈[0,T ]

E
[
J (u(t))p] + E

[∫ t

0
pJ (u(s))p−1‖∇w(s)‖2L2(D)

ds

]
≤ C J (u0)

p. (2.3)

Next, we derive aHölder continuity estimate in time of the solution function u with respect
to the spatial H1-seminorm.

Lemma 2 Let (u, w) be the solution to problem (1.6)–(1.9) and assume u is sufficiently
regular in the spatial variable. Then for any t, s ∈ [0, T ] with t < s, we have

E

[
‖∇(u(s) − u(t))‖2L2(D)

]
+ εE

[∫ s

t
‖∇�(u(ζ ) − u(t))‖2L2(D)

dζ

]
≤ C1(s − t),

where

C1 = C sup
t≤ζ≤s

E

[
‖∇�u(ζ )‖2L2(D)

]
+ C sup

t≤ζ≤s
E

[
‖u(ζ )‖6H2(D)

]
.

Proof Apply Itô’s formula to �(u(s)) := ||∇u(s) − ∇u(t)||2
L2(D)

, and notice that

� ′(u)(v) = 2
∫

D
(∇u(s) − ∇u(t)) · ∇v(s)dx, (2.4)

� ′′(u)(m, v) = 2
∫

D
∇m(s) · ∇v(s)dx, (2.5)

then we have

‖∇(u(s) − u(t))‖2L2(D)

= 2
∫ s

t

(∇(u(ζ ) − u(t)),∇(−�(ε�u(ζ ) − 1

ε
f (u(ζ )))

+ δ2

2
div(B∇u(ζ )))

)
dζ + 2

∫ s

t

(∇(u(ζ ) − u(t)),∇(δ∇u(ζ ) · XdWζ )
)

+ δ2
∫ s

t
(∇(∇u(ζ ) · X),∇(∇u(ζ ) · X))dζ. (2.6)

Then we obtain

‖∇(u(s) − u(t))‖2L2(D)
= 2

∫ s

t

(∇�(u(ζ ) − u(t)),−ε∇�(u(ζ ) − u(t))
)
dζ

− 2
∫ s

t

(∇�(u(ζ ) − u(t)), ε∇�u(t)
)
dζ

+ 2
∫ s

t

(∇�(u(ζ ) − u(t)),
1

ε
∇ f (u(ζ ))

)
dζ

− δ2
∫ s

t

(
�(u(ζ ) − u(t)), B : D2u(ζ ) + ∇u(ζ ) · div(B)

)
dζ

+ 2
∫ s

t

(∇(u(ζ ) − u(t)),∇(δ∇u(ζ ) · XdWζ )
)
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+ δ2
∫ s

t

∫

D
|D2u(ζ )X + (∇ X)T ∇u(ζ )|2dxdζ. (2.7)

Taking the expectation on both sides of (2.7) and using the Young’s inequality, we get

E

[
‖∇(u(s) − u(t))‖2L2(D)

]
+ 2εE

[∫ s

t
‖∇�(u(ζ ) − u(t))‖2L2(D)

dζ

]

≤ εE

[∫ s

t
‖∇�(u(ζ ) − u(t))‖2L2(D)

dζ

]
+ C sup

t≤ζ≤s
E

[
‖∇�u(ζ )‖2L2(D)

]
(s − t)

+ C sup
t≤ζ≤s

E

[
‖u(ζ )‖6H2(D)

]
(s − t) + C sup

t≤ζ≤s
E

[
‖∇u(ζ )‖2L2(D)

]
(s − t)

+ C sup
t≤ζ≤s

E

[
‖u(ζ )‖2H2(D)

]
(s − t), (2.8)

where the embedding theorem from H1(D) to L6(D) is used in estimating the nonlinear
term.

The last two terms on the right-hand side of (2.8) can be incorporated into the third term,
then the theorem is proved. ��

It turns out we also need to control the chemical potential w to handle the nonlinear terms
in the error analysis. The following lemma establishes a Hölder continuity estimate in time
for w with respect to the spatial H1-seminorm.

Lemma 3 Let (u, w) be the solution to problem (1.6)–(1.9)which is assumed to be sufficiently
regular in the spatial variable. Then for any t, s ∈ [0, T ] with t < s, we have

E

[
‖∇w(s) − ∇w(t)‖2L2(D)

]
≤ C2(s − t),

where

C2 = C sup
t≤ζ≤s

E

[
‖u(ζ )‖2H7(D)

]
+ C sup

t≤ζ≤s
E

[
‖u(ζ )‖6H6(D)

]
.

Proof Define g(u(s)) := g1(u(s)) + g2(u(s)), where

g1(u(s)) := ‖ε∇�u(s) − ε∇�u(t)‖2L2(D)
,

g2(u(s)) := ‖1
ε
∇ f (u(s)) − 1

ε
∇ f (u(t))‖2L2(D)

.

Notice that

g′
1(u)(v) = 2ε2

∫

D
(∇�u(s) − ∇�u(t)) · ∇�v(s)dx, (2.9)

g′′
1 (u)(m, v) = 2ε2

∫

D
∇�m(s) · ∇�v(s)dx, (2.10)

and

g′
2(u)(v) = 2

ε2

∫

D

[
3u2(s)∇u(s) − ∇u(s) − ∇ f (u(t))

]

· [
6u(s)v(s)∇u(s) + 3u2(s)∇v(s) − ∇v(s)

]
dx, (2.11)

g′′
2 (u)(m, v) = 2

ε2

∫

D

[
3u2(s)∇u(s) − ∇u(s) − ∇ f (u(t))

]

123
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· [
6m(s)v(s)∇u(s) + 6u(s)v(s)∇m(s) + 6u(s)m(s)∇v(s)

]
dx

+ 2

ε2

∫

D

[
6u(s)v(s)∇u(s) + 3u2(s)∇v(s) − ∇v(s)

]

· [
3u2(s)∇m(s) + 6u(s)m(s)∇u(s) − ∇m(s)

]
dx . (2.12)

Applying Itô’s formula to g(w(s)) := ‖∇w(s) − ∇w(t)‖2
L2(D)

, then we have

‖∇w(s) − ∇w(t)‖2L2(D)

= 2ε2
∫ s

t

(∇�(u(ζ ) − u(t)),∇�M1(ζ )
)
dζ

+ 2ε2
∫ s

t

(∇�(u(ζ ) − u(t)),∇�M2(ζ )
)
dWζ + ε2

∫ s

t

∫

D
∇�M2(ζ )

· ∇�M2(ζ )dxdζ + 2

ε2

∫ s

t

∫

D

[
3u2(ζ )∇u(ζ ) − ∇u(ζ ) − ∇ f (u(t))

]

· [
6u(ζ )M1(ζ )∇u(ζ ) + 3u2(ζ )∇M1(ζ ) − ∇M1(ζ )

]
dxdζ

+ 2

ε2

∫ s

t

∫

D

[
3u2(ζ )∇u(ζ ) − ∇u(ζ ) − ∇ f (u(t))

]

· [
6u(ζ )M2(ζ )∇u(ζ ) + 3u2(ζ )∇M2(ζ ) − ∇M2(ζ )

]
dxdWζ

+ δ2

ε2

∫ s

t

∫

D

[
3u2(ζ )∇u(ζ ) − ∇u(ζ ) − ∇ f (u(t))

]

· [
6M2

2 (ζ )∇u(ζ ) + 6u(ζ )M2(ζ )∇M2(ζ ) + 6u(ζ )M2(ζ )∇M2(ζ )
]
dxdζ

+ δ2

ε2

∫ s

t

∫

D

[
6u(ζ )M2(ζ )∇u(ζ ) + 3u2(ζ )∇M2(ζ ) − ∇M2(ζ )

]

· [
3u2(ζ )∇M2(ζ ) + 6u(ζ )M2(ζ )∇u(ζ ) − ∇M2(ζ )

]
dxdζ, (2.13)

where

M1(ζ ) := −�
(
ε�u(ζ ) − 1

ε
f (u(ζ ))

)
+ δ2

2
div(B∇u(ζ )),

M2(ζ ) := δ∇u(ζ ) · X .

Taking the expectation on both sides of (2.13), and using the Young’s inequality and the
embedding theorem, we get

‖∇w(s) − ∇w(t)‖2L2(D)
(2.14)

≤
{

C sup
t≤ζ≤s

E

[
|u(ζ )|2H3(D)

]
+ C sup

t≤ζ≤s
E

[
|u(ζ )|2H7(D)

]
+ C sup

t≤ζ≤s
E

[
‖u(ζ )‖6H6(D)

]

+ C sup
t≤ζ≤s

E

[
|u(ζ )|2H4(D)

]
+ C sup

t≤ζ≤s
E

[
|u(ζ )|2H5(D)

]

+ C sup
t≤ζ≤s

E

[
|u(ζ )|2H2(D)

]
+ C sup

t≤ζ≤s
E

[
|u(ζ )|2H1(D)

] }
(s − t). (2.15)

The terms with lower moments can be absorbed into term C sup
t≤ζ≤s

E

[
‖u(ζ )‖6

H6(D)

]
using

the Young’s inequality, then the theorem is proved. ��

123
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3 Formulation of mixed finite element method

In this sectionwe define ourmixed finite elementmethod for (2.1)–(2.2) and introduce several
auxiliary operators that will be used in Sect. 4.

Let tn = nτ (n = 0, 1, . . . , N ) be a uniform partition of [0, T ] with τ = T /N and Th be
a quasi-uniform triangulation of D. Let Vh be the finite element space given by

Vh := {vh ∈ H1(D) : vh |K ∈ P1(K ) ∀ K ∈ Th},
where P1(K ) denotes the space of polynomials of degree one on K ∈ Th . Our fully discrete
mixed finite element methods for (2.1)–(2.2) is defined as seeking Ftn -adapted and Vh × Vh-
valued process {(un

h, wn
h )} (n = 1, . . . , N ) such that P-almost surely

(un+1
h , ηh) = (un

h, ηh) − τ(∇wn+1
h ,∇ηh) − τ

δ2

2
(∇un+1

h · X ,∇ηh · X)

+ δ(∇un
h · X�̄Wn+1, ηh) ∀ ηh ∈ Vh, (3.1)

(wn+1
h , vh) = ε(∇un+1

h ,∇vh) + 1

ε

(
f n+1, vh

) ∀ vh ∈ Vh, (3.2)

where �̄ denotes the difference operator, �̄Wn+1 := Wtn+1 − Wtn ∼ N (0, τ ) and
f n+1 := (un+1

h )3 − un+1
h . The initial values (u0

h, w0
h) are chosen by solving

(u0
h, vh) = (u0, vh) ∀ vh ∈ Vh,

(w0
h, vh) = ε(∇u0

h,∇vh) + 1

ε
((u0

h)3 − u0
h, vh) ∀ vh ∈ Vh .

Note that u0
h = Phu0 where Ph : L2(D) −→ Vh is the standard L2-projection operator

satisfying the following error estimates [6,9]

‖v − Phv‖L2(D) + h‖∇(v − Phv)‖L2(D) ≤ Ch2‖v‖H2(D), (3.3)

‖v − Phv‖L∞(D) ≤ Ch2−d/2‖v‖H2(D) (3.4)

for all v ∈ H2(D). Furthermore, the divergence-free property of X and its boundary condition
imply that (∇un

h · X�̄Wn+1, 1) = (div(un
h X)�̄Wn+1, 1) = 0. By taking ηh = 1 in (3.1), we

observe that the numerical solution function un
h satisfies the sample-wise mass conservation

property, i.e., (un
h, 1) = (u0, 1) almost surely for all n = 1, . . . , N .

Let V̊h be the subspace of Vh with zero mean, i.e.,

V̊h := {
vh ∈ Vh : (vh, 1) = 0

}
. (3.5)

We introduce the inverse discrete Laplace operator�−1
h : V̊h → V̊h as follows: given ζ ∈ V̊h ,

define �−1
h ζ ∈ V̊h such that

(∇(−�−1
h ζ ),∇vh

) = (
ζ, vh

) ∀ vh ∈ Vh . (3.6)

For any ζ,� ∈ V̊h , we can define the discrete H−1 inner product by

(ζ,�)−1,h := (∇(−�−1
h ζ ),∇(−�−1

h �)
) = (

ζ,−�−1
h �

) = (−�−1
h ζ,�

)
. (3.7)

The induced mesh-dependent H−1 norm is given by

‖ζ‖−1,h := √
(ζ, ζ )−1,h = sup

�∈V̊h

(ζ,�)

|�|H1(D)

. (3.8)

123
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The following properties can be easily verified [3]:

|(ζ,�)|‖ζ‖−1,h |�|H1(D) ∀ ζ ∈ V̊h, � ∈ V̊h, (3.9)

‖ζ‖−1,h ≤ C‖ζ‖L2(D) ∀ ζ ∈ V̊h, (3.10)

and, if Th is quasi-uniform, we further have

‖ζ‖L2(D) ≤ Ch−1‖ζ‖−1,h ∀ ζ ∈ V̊h . (3.11)

Setting ûn
h = un

h − ū0 and ŵn
h = wn − w̄n

h , where v̄ = |D|−1(v, 1), we can equivalently
formulate (3.1)–(3.2) as: seeking Ftn -adapted and V̊h × V̊h-valued process {(ûn

h, ŵn
h )} (n =

1, . . . , N ) such that P-almost surely

(ûn+1
h , ηh) = (ûn

h, ηh) − τ
(∇ŵn+1

h ,∇ηh
) − τ

δ2

2

(∇ûn+1
h · X ,∇ηh · X

)

+ δ
(∇ûn

h · X�̄Wn+1, ηh
) ∀ ηh ∈ V̊h, (3.12)

(ŵn+1
h , vh) = ε

(∇ûn+1
h ,∇vh

) + 1

ε

(
f̂ n+1, vh

) ∀ vh ∈ V̊h, (3.13)

where f̂ n+1 = (ûn+1
h + ū0)

3 − (ûn+1
h + ū0).

The next theorem establishes the well-posedness for the proposed numerical method.

Theorem 1 The scheme (3.1)–(3.2) (or (3.12)–(3.13)) is uniquely solvable, provided that the
following mesh constraint is satisfied

τ ≤ C(ε−3 + ε−1δ4)−1. (3.14)

Proof For any vh ∈ V̊h , let ηh = −�−1
h vh ∈ V̊h in (3.12), we have

(
ûn+1

h ,−�−1
h vh

)
=

(
ûn

h,−�−1
h vh

)
− τ

(
∇ŵn+1

h ,∇(−�−1
h vh)

)

− τ
δ2

2

(∇ûn+1
h · X ,∇(−�−1

h vh) · X
)

+ δ
(∇ûn

h · X�̄Wn+1,−�−1
h vh

)
. (3.15)

By (3.7), (3.13) and integration by parts, we can rewrite (3.15) as
(

ûn+1
h , vh

)
−1,h

+ τε
(
∇ûn+1

h ,∇vh

)
+ τ

ε

(
(ûn+1

h + ū0)
3, vh

)
− τ

ε
(ûn+1

h , vh)

+ τ
δ2

2

(
∇ûn+1

h · X ,∇(−�−1
h vh) · X

)
− (

ûn
h, vh

)
−1,h

− δ
(
ûn

h X ,∇(−�−1
h vh)

)
�̄Wn+1 = 0 ∀ vh ∈ V̊h . (3.16)

Now we define B : V̊h −→ V̊h by

(B(z), vh)−1,h = (z, vh)−1,h + τε(∇z,∇vh) + τ

ε

(
(z + ū0)

3, vh
)

− τ

ε
(z, vh) + τ

δ2

2

(
∇z · X ,∇(−�−1

h vh) · X
)

− (
ûn

h, vh
)
−1,h

− δ
(
ûn

h X ,∇(−�−1
h vh)

)
�̄Wn+1 ∀ z, vh ∈ V̊h . (3.17)
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For any vh ∈ V̊h , we have

(B(vh), vh)−1,h = ‖vh‖2−1,h + τε‖∇vh‖2L2(D)
+ τ

ε

(
(vh + ū0)

3, vh
)

− τ

ε
‖vh‖2L2(D)

+ τ
δ2

2

(∇vh · X ,∇(−�−1
h vh) · X

)

− (ûn
h, vh)−1,h − δ

(
ûn

h X ,∇(−�−1
h vh)

)
�̄Wn+1. (3.18)

Notice that
τ

ε

(
(vh + ū0)

3, vh
) = τ

ε

(
v3h + 3v2hū0 + 3vhū2

0 + ū3
0, vh

)

= τ

ε
‖vh‖4L4(D)

+ 3τ ū0

ε
‖vh‖3L3(D)

+ 3τ ū2
0

ε
‖vh‖2L2(D)

≥ 3τ ū2
0

4ε
‖vh‖2L2(D)

, (3.19)

where we had used

3τ ū0

ε
‖vh‖3L3(D)

≥ −τ

ε
‖vh‖4L4(D)

− 9τ ū2
0

4ε
‖vh‖2L2(D)

to obtain the last inequality. Moreover, we have

−τ

ε
‖vh‖2L2(D)

≥ −Cτ

ε3
‖vh‖2−1,h − τε

4
‖∇vh‖2L2(D)

(3.20)

by (3.9), and

τ
δ2

2
(∇vh · X ,∇(−�−1

h vh) · X) ≥ −τε

4
‖∇vh‖2L2(D)

− Cτδ4

ε
‖vh‖2−1,h, (3.21)

−δ
(
ûn

h X ,∇(−�−1
h vh)

)
�̄Wn+1 ≥ −C(�̄Wn+1)‖ûn

h‖L2(D)‖vh‖−1,h (3.22)

by the Cauchy–Schwarz inequality, where C(�̄Wn+1) depends on �̄Wn+1. Combining
(3.18)–(3.22) yields

(B(vh), vh)−1,h ≥
{[
1 − Cτ

(
ε−3 + δ4ε−1)]‖vh‖−1,h − ‖ûn

h‖−1,h

− C(�̄Wn+1)‖ûn
h‖L2(D)

}
‖vh‖−1,h + τε

2
‖∇vh‖2L2(D)

. (3.23)

Hence we have

(B(vh), vh)−1,h ≥ 0 ∀ vh ∈ V̊h, (3.24)

‖vh‖−1,h = C‖ûn
h‖−1,h + C(�̄Wn+1)‖ûn

h‖L2(D), (3.25)

provided that the mesh constraint (3.14) holds. It follows from Brouwer’s fixed point theo-
rem [20,38] that there exists ûn+1

h ∈ V̊h such that

B(ûn+1
h ) = 0, ‖ûn+1

h ‖−1,h ≤ C‖ûn
h‖−1,h + C(�̄Wn+1)‖ûn

h‖L2(D), (3.26)

which also implies the existence of the solution to (3.16). This ûn+1
h together with ŵn+1

h
determined by (3.13) solves (3.12)–(3.13).

Next, it suffices to establish the uniqueness of the solution to (3.16). Assume ûn+1
h,1 and

ûn+1
h,2 are two solutions to (3.16). Denote U n+1

h = ûn+1
h,1 − ûn+1

h,2 , we have
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(U n+1
h , vh)−1,h + τε(∇U n+1

h ,∇vh) + τ

ε

(
(ûn+1

h,1 + ū0)
3 − (ûn+1

h,2 + ū0)
3, vh

)

− τ

ε
(U n+1

h , vh) + τ
δ2

2
(∇U n+1

h · X ,∇(−�−1
h vh) · X) = 0 ∀ vh ∈ V̊h . (3.27)

Taking vh = U n+1
h in (3.27), using the fact that

τ

ε

(
(ûn+1

h,1 + ū0)
3 − (ûn+1

h,2 + ū0)
3, U n+1

h

)
≥ 0, (3.28)

and the similar estimates to (3.20) and (3.21), we obtain

[
1 − Cτ

(
ε−3 + δ4ε−1)] ‖U n+1

h ‖2−1,h + τε

2
‖∇U n+1

h ‖2L2(D)
≤ 0. (3.29)

Therefore, under the mesh constraint (3.14), we conclude that U n+1
h = 0. This completes

the proof. ��
Remark 1 Whenever δ = 0, the scheme (3.1)–(3.2) reduces to a fully implicit scheme (cf. [13–
15] and the references therein). In this case (3.14) becomes τ ≤ Cε3, which is consistent with
the mesh constraint for the fully implicit scheme in the deterministic case. For the stochastic
case (i.e., δ > 0), the mesh constraint (3.14) depends on the noise intensity δ. In particular,
if δ � ε−1/2, we need stronger mesh constraint in terms of ε for the time step size τ .

Next theorem derives an a priori estimates for un
h .

Theorem 2 Let (un
h, wn

h ) ∈ Vh × Vh be the unique solution of (3.1)–(3.2) and suppose the
mesh constraint (3.14) is satisfied, there holds

sup
0≤n≤N

E
[‖un

h‖2−1,h

] + E

[
N∑

n=1

τ‖∇un
h‖2L2(D)

]
≤ C(δ, ε−1). (3.30)

Proof It suffices to prove the estimates for the solution to (3.12)–(3.13). Taking ηh =
−�−1

h ûn+1
h in (3.12) and vh = ûn+1

h in (3.13), we have

(ûn+1
h − ûn

h,−�−1
h ûn+1

h ) + τε‖∇ûn+1
h ‖2L2(D)

= −τ
δ2

2

(
∇ûn+1

h · X ,∇
(
−�−1

h ûn+1
h

)
· X

)

+ δ
(
∇ûn

h · X�̄Wn+1,−�−1
h ûn+1

h

)
− τ

ε

(
f̂ n+1, ûn+1

h

)
. (3.31)

Notice that
(

ûn+1
h − ûn

h,−�−1
h ûn+1

h

)
= 1

2
‖ûn+1

h ‖2−1,h − 1

2
‖ûn

h‖2−1,h + 1

2
‖ûn+1

h − ûn
h‖2−1,h, (3.32)

and the right-hand side of (3.31) can be estimated as follows:

− τ
δ2

2
s
(
∇ûn+1

h · X ,∇
(
−�−1

h ûn+1
h

)
· X

)

≤ Cδ4τ

ε
‖ûn+1

h ‖2−1,h + ετ

16
‖∇ûn+1

h ‖2L2(D)
, (3.33)

and
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δ
(
∇ûn

h · X�̄Wn+1,−�−1
h ûn+1

h

)

= −δ
(

ûn
h X�̄Wn+1,∇(−�−1

h (ûn+1
h − ûn

h))
)

− δ
(
ûn

h X�̄Wn+1,∇(−�−1
h ûn

h)
)

≤ Cδ2‖ûn
h‖2L2(D)

(�̄Wn+1)
2 + 1

2
‖ûn+1

h − ûn
h‖2−1,h

− δ
(
ûn

h X�̄Wn+1,∇(−�−1
h ûn

h)
)

≤ ε

16
‖∇ûn

h‖2L2(D)
(�̄Wn+1)

2 + Cδ4

ε
‖ûn

h‖2−1,h(�̄Wn+1)
2 + 1

2
‖ûn+1

h − ûn
h‖2−1,h

− δ
(
ûn

h X�̄Wn+1,∇(−�−1
h ûn

h)
)

(3.34)

by integration by parts and (3.9). Moreover, it follows from (3.9) that

−τ

ε

(
f̂ n+1, ûn+1

h

) ≤ − τ

2ε
‖ûn+1

h ‖4L4(D)
− 3τ

ε
ū2
0‖ûn+1

h ‖2L2(D)
+ Cτ

ε
‖ûn+1

h ‖2L2(D)

≤ ετ

16
‖∇ûn+1

h ‖2L2(D)
+ Cτ

ε3
‖ûn+1

h ‖2−1,h . (3.35)

Taking the expectation on both sides of (3.31), summing over n = 0, 1, . . . , � − 1 with
1 ≤ � ≤ N , using (3.32)–(3.35) and the fact that

E

[
δ(ûn

h X�̄Wn+1,∇(−�−1
h ûn

h))
]

= 0,

we get

[1
2

− Cτ
(
ε−3 + δ4ε−1)]

E

[
‖û�

h‖2−1,h

]
+ ε

16
E

[
�∑

n=1

τ‖∇ûn
h‖2L2(D)

]

≤ C(δ4ε−1 + ε−3)τ

�−1∑
n=1

E
[‖ûn

h‖2−1,h

] + 1

2
E

[‖u0
h‖2−1,h

] + ετ

16
E

[
‖∇û0

h‖2L2(D)

]
.

(3.36)

Finally, (3.30) follows from (3.14) and applying the discrete Gronwall inequality to (3.36).
The proof is complete. ��

4 Strong convergence analysis

The goal of this section is to establish the strong convergence with rates for the fully discrete
mixed finite element method defined in the previous section. To the end, we introduce for
n = 0, 1, 2, . . . , N ,

En = u(tn) − un
h := �n + �n,

�n := u(tn) − Phu(tn), �n := Phu(tn) − un
h,

Gn = w(tn) − wn
h := �n + �n,

�n := w(tn) − Phw(tn), �n := Phw(tn) − wn
h .

With the help of Hölder continuity estimates derived in Sect. 2, we are able to prove strong
convergence with rates for En , which is stated in the following theorem.
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Theorem 3 Under the mesh constraint (3.14), there holds

sup
0≤n≤N

E
[‖En‖2−1,h

] + E

[
N∑

n=1

τ‖∇En‖2L2(D)

]
≤ C(T , ε−1, δ)

(
τ + h2) . (4.1)

Proof Subtracting (3.1)–(3.2) from (2.1)–(2.2) after substituting 0 by tn , and t by tn+1, we
get P-almost surely

(En+1, ηh) = (En, ηh) −
∫ tn+1

tn
(∇w(s) − ∇wn+1

h ,∇ηh) ds

− δ2

2

∫ tn+1

tn

(
(∇u(s) − ∇un+1

h ) · X ,∇ηh · X
)

ds

+ δ

∫ tn+1

tn

(
(∇u(s) − ∇un

h) · X , ηh
)
dWs ∀ ηh ∈ Vh, (4.2)

(Gn+1, vh) = ε(∇En+1,∇vh) + 1

ε

(
f (u(tn+1)) − f n+1, vh

) ∀ vh ∈ Vh . (4.3)

Since �n+1(ω) ∈ V̊h , setting ηh = −�−1
h �n+1(ω) in (4.2) and vh = τ�n+1(ω) in (4.3),

it follows from the definition of �−1
h (cf. (3.6)) that

(�n+1 − �n,�n+1)−1,h

= (�n+1 − �n,�−1
h �n+1) − τ(�n+1,�n+1)

− τ(�n+1,�n+1) +
∫ tn+1

tn
(∇w(s) − ∇w(tn+1),∇�−1

h �n+1) ds

+ δ2

2

∫ tn+1

tn
(∇(�n+1 + �n+1) · X ,∇�−1

h �n+1 · X) ds

+ δ2

2

∫ tn+1

tn
(∇(u(s) − u(tn+1) · X),∇�−1

h �n+1 · X) ds

− δ

∫ tn+1

tn
(∇(�n + �n) · X ,�−1

h �n+1) dWs

− δ

∫ tn+1

tn
(∇(u(s) − u(tn)) · X ,�−1

h �n+1) dWs, (4.4)

τ(�n+1 + �n+1,�n+1)

= ετ(∇�n+1,∇�n+1) + ετ(∇�n+1,∇�n+1)

+ τ
1

ε

(
f (u(tn+1)) − f n+1,�n+1). (4.5)

Combining (4.4) and (4.5), and taking expectation on both sides, we have

E
[
(�n+1 − �n,�n+1)−1,h

] + ετE
[
(∇�n+1,∇�n+1)

]

= E

[
(�n+1 − �n,�−1

h �n+1)
]

− ετE
[
(∇�n+1,∇�n+1)

] − τ
1

ε
E

[(
f (u(tn+1)) − f n+1,�n+1)]

+ E

[∫ tn+1

tn
(∇w(s) − ∇w(tn+1),∇�−1

h �n+1) ds

]
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+ δ2

2
E

[∫ tn+1

tn
(∇(�n+1 + �n+1) · X ,∇�−1

h �n+1 · X) ds

]

+ δ2

2
E

[∫ tn+1

tn
(∇(u(s) − u(tn+1)) · X ,∇�−1

h �n+1 · X) ds

]

− δE

[∫ tn+1

tn
(∇(�n + �n) · X ,�−1

h �n+1) dWs

]

− δE

[∫ tn+1

tn
(∇(u(s) − u(tn)) · X ,�−1

h �n+1) dWs

]

:=
8∑

i=1

Ti . (4.6)

The left-hand side of (4.6) can be rewritten as

E
[
(�n+1 − �n,�n+1)−1,h

] + ετE
[
(∇�n+1,∇�n+1)

]

= 1

2

(
E

[‖�n+1‖2−1,h

] − E
[‖�n‖2−1,h

]) + 1

2
E

[‖�n+1 − �n‖2−1,h

]

+ ετE
[
‖∇�n+1‖2L2(D)

]
. (4.7)

Now we estimate the right-hand side of (4.6). Since Ph is the L2-projection operator, we
have

T1 = 0. (4.8)

For the second term on the right-hand side of (4.6), we have by (3.3) that

T2 ≤ ε

2
τE

[
‖∇�n+1‖2L2(D)

]
+ ε

2
τE

[
‖∇�n+1‖2L2(D)

]

≤ ε

2
τh2

E

[
|u(tn+1)|2H2(D)

]
+ ε

2
τE

[
‖∇�n+1‖2L2(D)

]
. (4.9)

For the third term on the right-hand side of (4.6), we observe that

T3 = −τ
1

ε
E

[(
f (u(tn+1)) − f (Ph(u(tn+1))),�

n+1)]

− τ
1

ε
E

[(
f (Ph(u(tn+1))) − f n+1,�n+1)] . (4.10)

First of all, we have

−τ
1

ε
E

[(
f (Ph(u(tn+1))) − f n+1,�n+1)] ≤ τ

1

ε
E

[
‖�n+1‖2L2(D)

]
(4.11)

by the monotonicity property of the nonlinearity. Secondly, we can estimate the first term on
the right-hand side of (4.10) by

− τ

ε
E

[(
f (u(tn+1) − f (Phu(tn+1)),�

n+1)]

= −τ

ε
E

[(
�n+1(u(tn+1)

2 + u(tn+1)Phu(tn+1) + Phu(tn+1)
2 − 1),�n+1)]

≤ τ

4ε
E

[
‖u(tn+1)

2 + u(tn+1)Phu(tn+1) + Phu(tn+1)
2 − 1‖2L∞(D)

× ‖�n+1‖2L2(D)

]
+ E

[
‖�n+1‖2L2(D)

]
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≤ Cτ

4ε

(
E

[
‖Phu(tn+1)‖6L∞(D) + ‖u(tn+1)‖6L∞(D) + |D|3

]) 2
3

×
(
E

[
‖�n+1‖6L2(D)

]) 1
3 + τ

ε
E

[
‖�n+1‖2L2(D)

]

≤ Cτ

4ε

(
E

[
‖�n+1‖6L2(D)

]) 1
3 + τ

ε
E

[
‖�n+1‖2L2(D)

]
, (4.12)

where we had applied (3.4). Combining (4.10)–(4.12), (3.3) and (3.9), we obtain

T3 ≤ Cτ

ε3
E

[‖�n+1‖2−1,h

] + ετ

4
E

[
‖∇�n+1‖2L2(D)

]
+ Cτ

ε

(
E

[
‖�n+1‖6L2(D)

]) 1
3

≤ Cτ

ε3
E

[‖�n+1‖2−1,h

] + ετ

4
E

[
‖∇�n+1‖2L2(D)

]

+ Cτh4

ε

(
E

[
|u(tn+1)|6H2(D)

]) 1
3
. (4.13)

For the fourth term on the right-hand side of (4.6), we have

T4 ≤ E

[∫ tn+1

tn
2‖∇w(s) − ∇w(tn+1)‖2L2(D)

+ 1

8
‖∇�−1

h �n+1‖2L2(D)
ds

]

≤ Cτ 2 + 1

8
τE

[‖�n+1‖2−1,h

]
(4.14)

by the Hölder continuity for ∇w (cf. Lemma 3). Similarly, we have

T6 ≤ Cδ2τ 2 + 1

8
τE

[‖�n+1‖2−1,h

]
(4.15)

by the Hölder continuity for ∇u (cf. Lemma 2).
For the fifth term on the right-hand side of (4.6), we have

T5 ≤ Cδ4τh2 + ετ

8
E

[
‖∇�n+1‖2L2(D)

]
+

(
1

8
+ Cδ4

ε

)
τE

[‖�n+1‖2−1,h

]
. (4.16)

For the seventh term on the right-hand side of (4.6), we have by the integration by parts,
the martingale property, the Itô isometry and (3.9) that

T7 = −δE

[∫ tn+1

tn

(
(�n + �n)X ,∇�−1

h (�n+1 − �n)
)

dWs

]

≤ Cδ2τh4
E

[
‖u(tn)‖2H2(D)

]
+ Cδ2τE

[
‖�n X‖2L2(D)

]

+ 1

4
E

[‖�n+1 − �n‖2−1,h

]

≤ Cδ2τh4
E

[
‖u(tn)‖2H2(D)

]
+ 1

4
E

[‖�n+1 − �n‖2−1,h

]

+ ετ

16
E

[
‖∇�n‖2L2(D)

]
+ Cδ4τ

ε
E

[‖�n‖2−1,h

]
.5 (4.17)
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Similarly, we have

T8 = −δE

[∫ tn+1

tn

(∇(u(s) − u(tn)) · X ,�−1
h (�n+1 − �n)

)
dWs

]

≤ Cδ2τ 2 + 1

4
E

[‖�n+1 − �n‖2−1,h

]
, (4.18)

where we have used Lemma 2 and the following Poincaré’s inequality:

‖�−1
h (�n+1 − �n)

)‖2L2(D)
≤ C‖∇�−1

h (�n+1 − �n)
)‖2L2(D)

= C‖�n+1 − �n‖2−1,h .

Combining (4.6)–(4.9) and (4.13)–(4.18), summing over n = 0, 1, . . . , � − 1 with 1 ≤
� ≤ N , we have

(
1

8
− Cτ

ε3
− Cδ4τ

ε

)
E

[
‖��‖2−1,h

]
+ ε

16
E

[
τ

�∑
n=1

‖∇�n‖2L2(D)

]

≤ 1

2
E

[‖�0‖2−1,h

] + ε

16
τE

[
‖∇�0‖2L2(D)

]

+ C(ε−1, δ)T (τ + h2 + h4)

+ C

(
1 + 1

ε3
+ δ4

ε

)
τ

�−1∑
n=1

E
[‖�n‖2−1,h

]
. (4.19)

Therefore, under the mesh constraint (3.14), we have by the discrete Gronwall inequality
that

E

[
‖��‖2−1,h

]
+ E

[
τ

�∑
n=1

‖∇�n‖2L2(D)

]

≤ C
(
E

[‖�0‖2−1,h

] + ε

16
τE

[
‖∇�0‖2L2(D)

]
+ τ + h2

)
eCT (1+ε−3+δ4ε−1). (4.20)

Finally, the estimate (4.1) follows from (4.20), (3.14), the triangle inequality, and the fact
that �0 = 0. The proof is complete. ��

Remark 2 The error estimates in Theorem 3 is sub-optimal with respect to h in the ‖ · ‖−1,h-
seminorm, this is essentially due to the existence of the gradient-type noise (see the estimates
of T5 and T7 in the proof), hence, the estimate is sharp in general. Numerical results in Sect. 5
indeed confirm the sub-optimal convergence whenever the noise is relatively large. However,
the error is optimal with respect to h in the H1-seminorm which is also confirmed by the
numerical experiments.

Remark 3 Because the discrete Gronwall inequality was employed near the end of the proof,
the error estimate in Theorem 3 depends on 1

ε
exponentially. We note that a polynomial order

dependence on 1
ε
of the errors was achieved in the deterministic case [13–15] by using a

PDE spectrum estimate result, however, such a spectrum estimate is yet proved to hold in the
stochastic setting.
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5 Numerical experiments

In this section,we report several numerical examples to check theperformanceof the proposed
fully discrete mixed finite element method and numerically study the impact of noise on the
evolution of the solution and the stochastic Hele-Shaw flow.

We consider the SPDE (1.6)–(1.9) on the square domain D = [−1, 1]2 and choose

X = ϕ(r)[x2,−x1]T , ϕ(r) =
{

e
− 0.001

0.64−r2 , if r < 0.8,

0, if r ≥ 0.8,

where r = |x |. It is clear that divX = 0 in D and X · n = 0 on ∂D.
Let Nh = dimVh and {ψi }Nh

i=1 be the nodal basis of Vh . Denote by un+1 (resp., wn+1)

the coefficient vector of the discrete solution un+1
h = ∑Nh

i=0 un+1
i ψi (resp., wn+1

h =∑Nh
i=0 wn+1

i ψi ) at time tn+1 = (n + 1)τ , n = 0, . . . , N − 1. Then (3.1)–(3.2) are equivalent
to

[
M + τ

δ2

2
AX

]
un+1 + τAwn+1 = Mun + δ�̄Wn+1CXun, (5.1)

Mwn+1 − εAun+1 = 1

ε
N(un+1), (5.2)

where M and A denote respectively the mass and stiffness matrices, AX is the weighted
stiffness matrix with (AX)i j = (∇ψ j · X ,∇ψi · X), N(un+1) is the nonlinear contribution
corresponding to the nonlinear term ( f n+1, vh), (CX)i j = (∇ψ j · X , ψi ) and W is the
discrete Brownian motion with increments �̄Wn+1 = Wn+1 − Wn .

In all our tests, we use the Brownian motion generated by using step size τref = 5× 10−5

and compute at least M = 1000 Monte Carlo realizations. The first test concerns a smooth
initial function, aiming to verify the rates of convergence of the proposed method with
respect to the temporal mesh size τ and the spatial mesh size h. The second and third tests
are designed to investigate the influence of the noise intensity δ and the parameter ε on the
stochastic evolutions for two different non-smooth initial functions.

5.1 Test 1

In this test we check the rates of convergence of the method (3.1)–(3.2) with a smooth initial
function

u0(x) = x21 (1 − x1)
2x22 (1 − x22 ).

Weexamine the errors sup0≤n≤N E

[
‖En‖2

L2(D)

]
andE

[∑N
n=1 τ‖∇En‖2

L2(D)

]
, where En =

u(tn) − un
h . Since the exact solution is unknown, we approximate the errors by

E

[
‖En‖2L2(D)

]
≈ 1

M

M∑
n=1

‖un
h − un

ref‖2L2(D)
,

E

[
‖∇En‖2L2(D)

]
≈ 1

M

M∑
n=1

‖∇(un
h − un

ref)‖2L2(D)
.
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Table 1 Test 1: Temporal errors
and convergence rates with
ε = 0.1, δ = 5

τ L∞(L2) error Order L2(H1) error Order

1.6000E−03 1.52E−02 8.25E−03

8.0000E−04 9.56E−03 0.67 5.01E−03 0.72

4.0000E−04 6.59E−03 0.54 3.27E−03 0.61

2.0000E−04 4.77E−03 0.47 2.27E−03 0.52

1.0000E−04 3.28E−03 0.54 1.59E−03 0.52

Table 2 Test 1: Spatial errors and
convergence rates with ε = 0.1,
δ = 25

h L∞(L2) error Order L2(H1) error Order

2.5000E−01 3.47E−02 1.94E−02

1.2500E−01 1.10E−02 1.66 9.38E−03 1.05

6.2500E−02 3.66E−03 1.58 4.63E−03 1.02

3.1250E−02 1.11E−03 1.72 2.29E−03 1.01

Here un
ref refers to a reference solution, which will be specified later. For simplicity, we use

L∞(L2) (resp., L2(H1)) to denote the norm (resp., seminorm) corresponding to the square

root of the approximating errors sup0≤n≤N E

[
‖En‖2

L2(D)

]
(resp.,E

[∑N
n=1 τ‖∇En‖2

L2(D)

]
).

In Table 1, we first examine the convergence rates in the time discretization by varying τ

with the fixed parameters ε = 0.1, δ = 5 and h = 2/26. For each τ , the reference solution
un
ref is chosen to be the numerical solution with the time step size τ/2 (i.e., we approximate

the error by comparing the numerical solutions in two consecutive time discretizations). We
observe the half order convergence rate for the L2(H1)-error as predicted in Theorem 3.
Note that the L∞(L2) error estimate is not available in Theorem 3, however it still provides
us useful information about the accuracy of the numerical method.

Next we investigate convergence in the space discretization by varying h with the fixed
parameters ε = 0.1, δ = 25 and τ = 5 × 10−5. For each h, the reference solution un

ref is
chosen to be the numerical solution with the space size h/2. Since δ is relatively large, we
compute M = 104 realizations. From Table 2, we see that the L2(H1)-error converges with
order 1 which is consistent with the theoretical estimate of Theorem 3. Also, the L∞(L2)-
error converges with order less than 2, indicating a sub-optimal convergence in the lower
order norm as predicted by Theorem 3.

5.2 Test 2

In this test, we take the initial function to be

u0(x) = tanh

(
d0(x)√

2ε

)
,

where d0(x) represents the signed distance function to the ellipse

x21
0.36

+ x22
0.04

= 1.

First, we investigate the evolution of the zero-level set with respect to the noise intensity
δ with fixed ε = 0.01. Figure 1 plots snapshots at several time points of the zero-level set of
ūh for δ = 1, 5, 10, where
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Fig. 1 Test 2: Snapshots of the zero-level set of ūh at several time points with δ = 1, 5, 10 and ε = 0.01

ūh = 1

M

M∑
i=1

uh(ωi ).

We observe that when the noise is relatively small (δ = 1), the zero-level set is close to
the deterministic interface (δ = 0). However, for relatively large noises (δ = 5, 10), the
zero-level sets rotate and evolve faster.

Next, we fix δ = 1 and study the influence of the parameter ε on the evolution of the
numerical interfaces. In Fig. 2, snapshots at four fixed time points of the zero-level set of
ūh are depicted for three different ε = 0.01, 0.015, 0.04. Numerical results suggest the
convergence of the numerical interface to the stochastic Hele-Shaw flow as ε → 0 at each
of four time points. In addition, the numerical interface evolves faster in time for larger ε.

Notice that in Figs. 1 and 2, we only plot the evolutions on the subdomain [−0.6, 0.6]2
for a better resolution.

In Fig. 3, we plot the change of the expected value of the discrete energy

E
[
J (un

h)
] ≈ 1

M

m∑
i=1

J (un
h(ωi ))

in time with fixed ε = 0.01. It indicates that the decay property still holds for δ = 1, 5, 10.
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Fig. 2 Test 2: Snapshots of the zero-level set of ūh at several time points with ε = 0.01, 0.015, 0.04 and δ = 1

Fig. 3 Test 2: Decay of the expectation of numerical energy with ε = 0.01
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Fig. 4 Test 3: Snapshots of the zero-level set of ūh at several time points with δ = 1, 5, 10 and ε = 0.01

5.3 Test 3

In this test, we consider the case with

u0(x) = tanh

(
d0(x)√

2ε

)
,

where d0(x) = min{d1(x), d2(x)}, and d1(x) and d2(x) denotes respectively the signed
distance function to the ellipses

(x1 + 0.2)2

0.152
+ x22

0.452
= 1 and

(x1 − 0.2)2

0.152
+ x22

0.452
= 1.

In Fig. 4, we depict snapshots at several time points of the zero-level set of ūh for δ =
1, 5, 10 with fixed parameter ε = 0.01. For all cases, the two separated zero-level sets
eventually merge and evolve to a circular shape. For larger noise intensity (δ = 5, 10), the
two interfaces merge faster and develop two concentric interfaces where the outer interface
evolves to a circular shape and the inner interface shrinks and eventually vanishes.

Next, we plot a few snapshots of the zero-level set of ūh for ε = 0.01, 0.015, 0.04 with
fixed δ = 1 in Fig. 5. Again, the numerical interface evolves faster in time for larger ε, and
the numerical interfaces stay close for ε = 0.01 and ε = 0.015.

The decay of the expected value of the discrete energy is shown in Fig. 6, where we
consider three noise intensity levels δ = 1, 5, 10 with fixed ε = 0.01.
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Fig. 5 Test 3: Snapshots of the zero-level set of ūh at several time points with ε = 0.01, 0.015, 0.04 and δ = 1

Fig. 6 Test 3: Decay of the expectation of numerical energy with ε = 0.01
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6 Conclusion

In this paperwe studied a stochastic Cahn–Hilliard equationwith gradient-typemultiplicative
noise, which is motivated by and proposed as a phase field model for the stochastically
perturbed Hele-Shaw flow. We proposed a fully discrete mixed finite element method for
solving the stochastic Cahn–Hilliard equation, and established its well-posedness and the
‖ · ‖−1,h-norm stability of the numerical solution. Strong convergence with optimal rates
were also proved with the help of various Hölder continuity estimates in time for the strong
solution of the stochastic Cahn-Hillard equation.

Similar to [16], the energy-stability of the numerical solution is expected although a
rigorous proof is yet be obtained. Such a stability is observed fromour numerical experiments.
Itwould be interesting to considermore general cases such as the diffusion operator depending
on∇u nonlinearly and the noise intensity δ depending on ε polynomially. It is also possible to
extend the work of this paper to other types of fully discrete numerical methods (such as DG
methods) for the stochastic Cahn–Hilliard equation. Furthermore, a performance comparison
between different numerical methods should be interesting, which we intend to study in a
future work.
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