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Abstract
In this work, we use exact solutions of one-dimensional Burgers equation to train an artificial
neuron as a shock wave detector. The expression of the artificial neuron detector is then mod-
ified into a practical form to reflect admissible jump of eigenvalues. We show the working
mechanism of the practical form is consistent with compressing or intersecting of characteris-
tic curves. In addition, we prove there is indeed a discontinuity inside the cell detected by the
practical form, and smooth extrema and large gradient regions are never marked. As a result,
we apply the practical form to numerical schemes as a shock wave indicator with its easy
extension to multi-dimensional conservation laws. Numerical results are present to demon-
strate the robustness of the present indicator under Runge–Kutta Discontinuous Galerkin
framework, its performance is generally compared to TVB-based indicators more efficiently
and accurately. To treat the initial inadmissible jumps, including linear contact discontinuities
and those evolving into rarefaction waves, a preliminary strategy of combining a traditional
indicator in the beginning with the present indicator is suggested. We believe the present
indicator can be applied to unstructured mesh in the future.
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1 Introduction

At present, high order high resolution schemes, such as Discontinuous Galerkin (DG) [3–7],
have beenwidely applied in numerical simulation of hyperbolic conservation laws. Since even
under smooth initial conditions, solutions to conservation laws can develop discontinuities
in a finite time [8], spurious oscillations occur in the regions of discontinuities when such
high order schemes are applied. There are two steps in handling spurious oscillations. The
first one is to detect cells where the solution loses regularity (troubled-cells), the other is to
use correction techniques to eliminate spurious oscillations for the troubled-cells. There are
several correction techniques in literature, such as artificial limiting [5,6,36], reconstruction
techniques [13,24,26,27,31] and artificial viscosity [14,15,34]. Those correction techniques
often lead to inefficiencies of numerical simulation and even deterioration of accuracy. In
other word, the accuracy and regularity of numerical solution depend largely on effectiveness
of the troubled-cell indicator applied. For example, the popular DG methods usually use
minmod function [12] to detect troubled-cells, and simultaneously apply it as a limiter to
eliminate oscillations, that is ũ(mod)

i = minmod (̃ui ,�+u(0)
i ,�−u(0)

i ) =
{

s · min
{

ũi ,�+u(0)
i ,�−u(0)

i

}

i f sign
(

ũi
) = sign

(

�+u(0)
i

) = sign
(

�−u(0)
i

) = s
0 otherwise,

where u(0)
i is the 0th moment degree of freedom(dof), and ũi is the interface collection of

higher moment dofs. As one can observe, cells near extrema are indicated as troubled-cells
with a minmod limiter. This leads to decreasing of scheme accuracy. In order to preserve high
order of the schemes, Total Variation Bounded (TVB) limiter [6] are more popular, that is

ũ(mod)
i =

{

ũi i f |̃ui | ≤ Mh2

minmod (̃ui ,�+u(0)
i ,�−u(0)

i ) otherwise
However, the parameterMwas

found to depend heavily on problems and has a considerable impact on numerical solutions.
In [25], Qiu and Shu shared performance of various TVB limiters under different selection
of M. To improve efficiency, several procedure such as Weighted Essential Non-Oscillating
(WENO) based reconstruction [27], KXRCF shock indicator [16] were proposed to improve
the effectiveness of troubled-cell indication. Those indicators or procedure mentioned above
mainly detect troubled-cells from aspects of numerical oscillations.

Recently, Ray and Hesthaven proposed artificial neural networks to implement troubled-
cell indication under RKDG frameworks [28,29]. They obtained a multi-layer perceptron
(MLP) troubled-cell indicator. Numerical results presented in their paper demonstrated the
MLP indicator performs generally better than TVB-based indicator. In this work, we employ
exact solutions of the Burgers equation to train a concise artificial neuron (AN) with only one
linear hidden layer for shock wave detecting, fortunately obtain a convergent AN detector,
and it can be modified into a practical form to reflect admissible jump of eigenvalues. The
advantage of the practical form is threefold: (a) it has a concise expression involving only
cell-averages; (b) it is explicable, and can theoretically guarantee the only detection of dis-
continuities caused by characteristic curves compressing or intersecting; (c) it can handily
be extended to multi-dimensional conservation laws.

The rest of the paper is structured as follows. In Sect. 2, we briefly summarize the theory
of characteristic curves for one-dimensional scalar and system conservation laws. In Sect. 3,
we illustrate the complete training process of the shock detector and give the expression of
the trained AN detector. In Sect. 4, we modify the AN detector into a practical form and use
the practical form to analyze its working mechanism. The practical form is then applied as
a shock wave indicator and extended to system conservation laws. RKDG frameworks are
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briefly introduced in Sect. 5 and we show how TVB-based indicators and present indicator
detect troubled-cells under RKDG frameworks. Several numerical results are presented in
Sect. 6 to demonstrate the capability of the present shock wave indicator, as compared to
TVB indicators. We make a few concluding remarks in Sect. 7.

2 Preliminaries of Hyperbolic Conservation Laws

2.1 One-Dimensional Scalar Conservation Laws

The one-dimensional scalar conservation law with an initial condition is given by

⎧

⎨

⎩

∂u
∂t + ∂ f (u)

∂x = 0

u(x, 0) = u0(x).
(2.1)

For Eq. (2.1), we summarize the following useful conclusions without proof. Please refer
to [2,35] for more details.

Lemma 2.1 Assuming the initial value function u(x, 0) = u0(x) is smooth, and denoting
λ(u) = f ′(u), then we have following properties for Eq. (2.1):

(1) The characteristic curves in Eq. (2.1) are straight lines with the form of x = x0 +
λ(u0(x0))t , and the slope of characteristic curve is λ(u) = f ′(u). The solution remains
unchanged along each characteristic curve.

(2) The solution can be obtained by solving “u′′ in the following implicit function u =
u0(x − λ(u)t).

(3) The solution can evolve into discontinuities even under a smooth initial condition due
to the intersection of characteristic lines.

(4) Across the discontinuity, the solution satisfies the Rankine–Hugoniot jump relation
s[u] = [ f ], where s = dxs (t)

dt represents the speedof the discontinuity and [u] represents
the jump value of variable u when across the discontinuity.

It is necessary to deal with non-smooth initial conditions. For the Riemann problem of
Eq. (2.1), we list some properties of solution without proof.

Lemma 2.2 The Riemann problem for one-dimensional scalar conservation laws is given as
follows,

⎧

⎨

⎩

∂u
∂t + ∂ f (u)

∂x = 0

u(x, 0) =
{

ul i f x < 0
ur i f x ≥ 0.

(2.2)

We can conclude that, if f (u) is convex,

(1) If λ(ul) > λ(ur ), characteristic curves of two constant regions intersect, and the
solution evolves into a discontinuity.

(2) If λ(ul) < λ(ur ), characteristic curves of two constant regions diverge, and the
solution evolves into a centered rarefaction wave connecting two constant regions.
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2.2 One-Dimensional System Conservation Laws

One-dimensional system conservation laws with an initial condition are given by
⎧

⎨

⎩

∂U
∂t + ∂F(U)

∂x = 0

U(x, 0) = U0(x).
(2.3)

AssumingU ∈ R
m , denotingA(U) = ∂F

∂U , system (2.3) is called hyperbolic ifmatrixA(U)

can be diagonalized, A = R�R−1 with real eigenvalues, here, � = diag(λ1, λ2, ..., λm)

is the eigenvalue matrix, and R = (R1,R2, ...,Rm) is the corresponding right eigenvector
matrix. Each eigenvalue λi ofA(U) defines a characteristic field λi -field, if∇λi (U)·Ri (U) �=
0, the λi -field is genuinely nonlinear; if ∇λi (U) · Ri (U) = 0, the λi -field is linearly degen-
erated.

We summarize some useful conclusions without proof. More details can be found in [35].

Lemma 2.3 The solution, U(x, t) , holds following properties:

(1) The i-characteristic curves in system (2.3) are locally straight lines with the form of
x = x0 + λi (U0(x0)) · t , and the slope of i-characteristic curve is the i-eigenvalue λi .

(2) The solution can evolve into discontinuities even under a smooth initial condition due
to the intersection of a certain i-characteristic curves.

(3) Across the discontinuity, the solution U satisfies the Rankine-Hugoniot jump relation,
s[U] = [F], where s = dxs (t)

dt represents the speed of the discontinuity and [U] repre-
sents the jump value of U across the discontinuity.

In this work, we pay attention to the Euler equation, the Riemann problem for the Euler
equation is given as follows,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂
∂t

⎡

⎣

ρ

ρu
E

⎤

⎦ + ∂
∂x

⎡

⎣

ρu
p + ρu2

(E + p)ρ

⎤

⎦ = 0

(ρ0, u0, p0)T (x) =
{

(ρl , ul , pl)T i f x < 0
(ρr , ur , pr )T i f x ≥ 0,

(2.4)

where ρ, u, p represent the fluid density, velocity, and pressure, respectively. The quantity E

is the total energy per unit volume, which is given as E = ρ(e + u2
2 ), where e is the specific

internal energy given by a caloric equation of state, e = e(ρ, p). We choose the equation
of state for ideal gas given by e = p

(γ−1)ρ , with γ = Cp/CV denoting the ratio of specific
heats. We set γ = 1.4 for all the test cases in this work.
Again we summarize some useful conclusions for system (2.4) as follows.

Lemma 2.4 The solution holds the following properties:

(1) Based on properties in Lemma 2.3, the solution can be divided into 4 constant regions
by 3 λi -characteristic fields as shown in Fig. 1.

• λ1 = u − a, λ1-field is genuinely nonlinear, area I and area II are separated by
1-elementary wave (shock wave or centered rarefaction wave), where u is the fluid

velocity and a =
√

γ p
ρ

represents the sound speed.
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Fig. 1 In the 1-D Euler
equations, the space is devided
into 4 constant regions by 3
characteristic fields

• λ2 = u, λ2-field is linearly degenerated, area II and area III are separated by
2-contact discontinuity, the pressure p and velocity u keep unchanged across the
λ2-field, the density ρ allows a jump across the λ2-field.

• λ3 = u + a, λ3-field is genuinely nonlinear, area III and area IV are separated by
3-elementary wave (shock wave or centered rarefaction wave).

(2) According to (1) and Lemma 2.3(2), we can give a criterion of discontinuity for system
(2.4) as follows,

ul − al > ur − ar , (2.5a)

ul + al > ur + ar . (2.5b)

The inequality Eq. (2.5a) indicates the solution includes either a 1-shock wave or a 2-
contact discontinuity or both. The inequality Eq. (2.5b) indicates the solution consists of
either a 3-shock wave or a 2-contact discontinuity or both.

Remark Although the indicator to be developed is for shock wave detecting in this work,
the Lemma 2.4(2) implies that the shock wave indicator is also capable of detecting contact
discontinuities as shown in Sect. 4.

In Sect. 4, we will analyze mechanism of the shock wave detector is consistent with
compressing or intersecting of characteristic curves mentioned in this section.

3 An Artificial Neuron for ShockWave Indicating

In this section, our target is to explore an approximation of unknown function which can
reflect the characteristics of shock wave discontinuities. Since we have no prior information
about the intrinsic features of the indicator, anArtificialNeuralNetwork (ANN) [11] becomes
a suitable method to learn these undiscovered features. Generally, an ANN is designed to
imitate the learning procedure of the complex biological network.With the rapid development
of computing technology, ANNs have gradually evolved into more matured deep neural
networks (DNNs) [30]. Except for an input layer and an output layer, the structure of an
ANN consists of at least one hidden layer. The nodes of ANN are fully connected linearly,
which means that each node in one layer connects with a certain weight to every node in
the neighboring layer. For approximating a complex nonlinear function, the neurons adopt
nonlinear activation function. Among the activation functions, Rectified Linear Units (ReLU)
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function [19] (ReLU (x) = max(0, x)) is popularly used in hidden layers, logistic sigmoid
function [23] (sigmoid(x) = 1

1+e−x ) is often used as the activation function of output layer.
After an ANN is built, a large amount of tagged data is acquired to train the weights in ANN,
the weights are acceptable if the output of ANN and the label of data are close enough under
the measure of a certain loss function [21]. Cross entropy function [20] is often selected as
the loss function.

In this work, to analyze the working mechanism easily, we initially build an artificial
neuron (an ANN with only one linear hidden layer) as a shock wave indicator in conserva-
tion laws, and train weights via TensorFlow [1]. The complete training process for the AN
model includes generating the training and validation sets, selecting the neuron structure,
and training weights using error back propagation algorithm [22]. In this section, we will
illustrate the whole process of generating the training and validation data set in detail. The
process includes selecting training cases, setting the input stencil of the data, and setting the
label for each data.

3.1 Training andValidation Set

3.1.1 Selection of Training Cases

We provide several functions as initial conditions to include shock wave discontinuities with
various scales of jump values in the one-dimensional nondimensionalized Burgers equation,
so that we can obtain a complete data set as well as possible. Notice for the Burgers equation,
contact discontinuities are not included in the data set.

• Case-1: f (u) = u2
2 , u(x, 0) = sin(πx) + 0.5. x ∈ [0, 2]

• Case-2: f (u) = u2
2 , u(x, 0) =

{

ul i f x < 0
ur i f x ≥ 0.

Solutions to Case-1 consist of smooth extrema, smooth large gradient and discontinuities,
we canuseNewton Iterationmethod to solve “u” in nonlinear implicit equationu = u0(x−ut)
mentioned in Sect. 2. Solutions to Case-2 include a centered rarefaction wave or a shockwave
with different selections of ul , ur .

3.1.2 Input Stencil for Training Data

Since the shock wave detector in this work is to detect discontinuities from perspective of
characteristic curve rather than from the features of spurious oscillations, we only select
the cell-average of the solution ūe and cell-size h as the input for training. For the Burgers

equation (where f (u) = u2
2 ), the input stencil is [ūe−2, ūe−1, ūe, ūe+1, ūe+2, h], where

ūe = 1
�e

∫

Ie
u(x, tn)dx is the cell-average of the exact solution.

3.1.3 Labels for Each Data

Given a cell Ie and its input information [ūe−2, ūe−1, ūe, ūe+1, ūe+2, h], we label Ie
as a troubled-cell if a discontinuity of exact solution exists inside Ie, the label is set to 1.
Otherwise, the label is set to 0 to represent Ie is a good cell.

Based on the process mentioned in Sect. 3.1, the algorithm to generate the training and
validation set for the Burgers equation is given as follows.
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Algorithm 3.1 generate the training and validation data set
Define the training and validation set: R
Select Case-I in Sect. 3.1.1, I =1,2
while the amount of data obtained from Case-I is larger than NI do
Step-1: Set ul , ur (Case − 2), t .
Step-2: Calculate the exact solution u(x, t) under the selection of ul , ur ,and t .
Step-3: Set the cell-size h and discrete space domain [a, b] = ⋃N

e=1 Ie , and calculate the cell-average of
u(x,t) in each Ie .
Step-4: Set the input stencil of each data and label each data by Sects. 3.1.2 and 3.1.3.
Step-5: Add the same amount of data labeled “0′′ and “1′′ into the data set R.

end while
Change the Case-I and repeat steps above until I traversing 1,2
return R

Notice

(1) The reason we choose 5-cell-stencil is a balance for accuracy and compactness. 3-cell-
stencil might not be enough to capture the trend of the solution in cell-averages, and
multi-cell-stencil might increase the computational cost greatly and lose the compact-
ness of the scheme as well. To do so, we can largely maintain the local compactness if
applied to DG scheme.

(2) Although the obtained detector is applied under DG scheme in this work, it can be
applied to high-order finite difference or finite volume schemes.

(3) Contact discontinuities are not included in data set. Theoretically, contact discontinu-
ities might not be detected by the resulting model for the scalar conservation law.

(4) The amount of data labeled “0′′ should be almost equal to that labeled “1′′ in order to
ensure unbiased data set.

3.2 Parameters in ANTraining

In this part, we seek a suitable AN for constructing a shock wave detector and suitable
conditions for AN training. Only one linear hidden layer with 6 neurons lies in the AN, and is
connected with the input layer linearly, the sigmoid activation function is used in the output
layer. The structure is given as follows (Fig. 2):

The weight vectors in AN to be determined include weights W and biases B. Here,
W = {W1,W2} with W1 ∈ R

6×6,W2 ∈ R
6×1 and B = {b1,b2} with b1 ∈ R

6,b2 ∈ R
1.

Following the Algorithm 3.1 in Sect. 3.1, we generate the training and validation data set
with 1600 amounts of supervised data including 400 from Case-1, 1200 from Case-2.

Next, the AN is trained under following conditions. The weight parameters in AN are
initialized based on a normal distribution. We use stochastic gradient descent (SGD) method
for optimizing with a mini-batch size of 16. The learning algorithm converges fast and it
takes only few minutes.

3.3 TrainingWeights Results

The convergent AN result is given as follows,

oute = 1

1 + e−(3.86ūe−2+13.44ūe−1+0.17ūe−11.88ūe+1−5.68ūe+2−9.60h−4.22)
. (3.1)
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Fig. 2 The AN structure

out

Linear Sigmoid

For the Burgers equation, the primitive variable u is precisely the characteristic variable
λ(u). Thus, using the exact solution as input is equivalent to using the exact eigenvalue (slope
of characteristic curve) as input for the Burgers equation. In order to illustrate the mechanism
of the expression (3.1) from the perspective of characteristic curves, we use the characteristic
variable λ(u) for subsequent analysis in Sect. 4.

In the next section, we will show that expression (3.1) implies the information of shock
wave discontinuities.

4 The ShockWave Indicator and Its WorkingMechanism

In this section, we shall analyze the working mechanism of expression (3.1) obtained in
Sect. 3 so that it can be used generally to numerical simulation of conservation laws. Before
analysis, we firstly give two definitions.

Definition 4.1 For cell-average of u inside Ie and its neighbor cells ūe−1, ūe, ūe+1, we call
ūL = ∑1

i=0 wi
L ūe−i is a type of left-side weighted average of variable u in Ie reconstructed

by ūe−1, ūe ifwi
L > 0 and

∑1
i=0 wi

L = 1; we call ū R = ∑1
i=0 wi

R ūe+i is a type of right-side
weighted average of variable u in Ie reconstructed by ūe, ūe+1 ifwi

R > 0 and
∑1

i=0 wi
R = 1.

wi
L , wi

R are called weight coefficient.

In Sect. 4.2, we will show some properties of ūL and ū R .

Definition 4.2 If a certain eigenvalue λ(u) (slope of characteristic curve) has a jump some-
where, and this jump leads to characteristic curve compressing or intersecting, we call this
jump of λ(u) is admissible. Otherwise, this jump is called inadmissible.

Definition 4.2 is well-defined in the physical sense. According to the Lemma 2.1 and
Lemma 2.3(2), the compressing or intersecting of characteristic curves leads to the solution
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evolving into a discontinuity, this discontinuity is admissible in weak solution, while the
divergence of characteristic curves leads to the solution evolving into a rarefaction wave.
Remark The inadmissible jumps include linear contact discontinuities, across which the
characteritic curves are parallel, and those initial jumps, which evolve into rarefaction waves.

In this section, we will construct a shock wave indicator in numerical simulation of con-
servation laws based on the AN model (3.1), and analyze its working mechanism based
on the assumption “step-size h is sufficiently small” and Definitions 4.1, 4.2. This section
consists of three subsections. In Sect. 4.1 we modify expression (3.1) into a more practical
form for shock wave detecting. In Sect. 4.2, we apply the detector to numerical schemes as
a shock wave indicator, and analyze its working mechanism. The indicator is extended to
system conservation laws in Sect. 4.3 by directly applying it to each genuinely nonlinear
characteristic field.

4.1 The ShockWave Indicator

In order to make the output of artificial neuron model campact and explicable, we are going
to modify the initial indicator (3.1) into a practical form on the assumption of small mesh
cell and ignoring certain small terms. The results are presented in the following two lemmas.

Lemma 4.3 Under the assumption that the discontinuity only locates on Ie, if the space
step-size h is sufficiently small, the form (3.1) can be approximately modified as the form of

oute ≈ 1

1 + e−(WL λ̄L−WR λ̄R)+M1h+M2
:= out ′e.

Here, λ̄L = w0
Lλ(ūe) + w1

Lλ(ūe−1) and λ̄R = w0
Rλ(ūe) + w1

Rλ(ūe+1) are the left and right
side weighted averages of eigenvalue λ(u) respectively, and W , M1, M2 are constant.

Proof Based on the assumption and Taylor expansion, we have |ūe−2 − ūe−1| =
O(h), |ūe+2 − ūe+1| = O(h), thus we have

3.86λ(ūe−2) + 13.44λ(ūe−1) + 0.17λ(ūe)

WL
≈ 17.30λ(ūe−1) + 0.17λ(ūe)

WL
=: λ̄L ,

0λ(ūe) + 11.88λ(ūe+1) + 5.68λ(ūe+2)

WR
≈ 0λ(ūe) + 17.56λ(ūe+1)

WR
=: λ̄R .

(4.1)

As a result, the expression (3.1) can be approximately rewritten as

oute
(4.1)≈ 1

1 + e−(WL λ̄L−WR λ̄R)+M1h+M2
=: out ′e, (4.2)

where WL = 3.86 + 13.44 + 0.17 = 17.47, WR = 0 + 11.88 + 5.68 = 17.56, M1 =
9.60, M2 = 4.22, and λ̄L , λ̄R are left and right side weighted averages of eigenvalue λ(u)

defined in (4.1) presented as

λ̄L = w0
Lλ(ūe) + w1

Lλ(ūe−1) = 0.01λ(ūe) + 0.99λ(ūe−1)

λ̄R = w0
Rλ(ūe) + w1

Rλ(ūe+1) = 0.0λ(ūe) + 1.0λ(ūe+1).
(4.3)

	

One may note that WL ≈ WR in (4.2), we find the expression above out ′e can be further

modified into a more practical form, which is convenient for mechanism analyzing. Specif-
ically, replacing WL ,WR by a constant number of W = 17.5 and ignoring the impacts of
small terms �WL := WL − W , �WR := WR − W , we have the following lemma.
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Lemma 4.4 If ignoring the relatively small difference of weight coefficients
O(�WL ) and O(�WR), the form (4.2) can be approximately modified into the following
practical form of

out ′e ≈ 1

1 + e−W (λ̄L−λ̄R)+M1h+M2
:= ˜oute.

Here, λ̄L and λ̄R are the left and right side weighted averages of eigenvalue λ(u) defined in
(4.3), and W = 17.5, M1 = 9.60, M2 = 4.22 remain constant.

Proof Based on the assumption, we have

WL λ̄L − WR λ̄R = W (λ̄L − λ̄R) + �WL λ̄L + �WR λ̄R

= W (λ̄L − λ̄R) + O(�WL) + O(�WR) + O(h),
(4.4)

with W = 17.5, �WL = −0.03 and �WR = 0.06.
Although �WL ,�WR does not scale with h, we regard these as respectively small terms

due to �WL
W , �WR

W ∼ 1e − 3 � 1 and in addition drop the term O(�WL) + O(�WR) in
(4.4) so that the expression (4.4) is convenient to be explicable.

As a result, the expression (3.1) can be further approximately modified as

oute
(4.1)≈ out ′e

(4.4)≈ 1

1 + e−W (λ̄L−λ̄R)+M1h+M2
=: ˜oute. (4.5)

	

Thus, according to the Lemmas 4.3 and 4.4, the indicator (3.1) can be approximately rewritten
as the concise and universal form of

˜oute = 1

1 + e−W (λ̄L−λ̄R)+M1h+M2
. (4.6)

Note that the approximationmade in (4.1) is to recover the “local” property of DG scheme,
the approximation made in (4.4) is for the convenience of using characteristic compressing
to analyze the working mechanism of (4.6). With the above modifications, we are able to
discover the properties of the practical form (4.6) when applied to be a shock wave indicator
in the next subsection.

4.2 WorkingMechanism of the ShockWave Indicator

In this subsection we will prove the practical form (4.6) can be used to detect shock wave
discontinuities in numerical simulation of conservation laws.

We give the following assumption for discontinuity indicating in numerical simulation.

Assumption 4.1 Assuming h is sufficiently small, we consider the O(1) jump between ūL
and ū R is a discontinuity in numerical simulation of variable “u”, where ūL and ū R are side
weighted averages of u defined in Definition 4.1.

All analysis below is done under the Assumption 4.1.
By denoting the local region IE = ⋃e+1

i=e−1 Ii , we obtain the following lemma to explain
the role λ̄L and λ̄R playing in numerical simulation of conservation laws.

Lemma 4.5 If the solution in region IE is differentiable, |λ̄L − λ̄R | ≤ Meh ∼ O(h). If
there exists a discontinuity in Ie, λ̄L and λ̄R satisfy λ̄R − λ̄L = C[λ(u)] + O(h) ∼ O(1),
where C < 1 and depends on the weight coefficients w0

L , w0
R. Specially, if w0

L , w0
R → 0,

λ̄R − λ̄L → [λ(u)] + O(h), where [λ(u)] represents jump of a certain eigenvalue.
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Proof (1) If solution u is differentiable in region IE , denoting λ̄e = λ(ūe), by Taylor expan-
sion we can conclude λ̄L = λ̄e−1 + w0

L(λ̄e − λ̄e−1) = λ̄e−1 + w0
Lλ′(ξ1)O(h)

= λ̄e−1 + O(h), similarly λ̄R = λ̄e+1 + O(h). Then λ̄L and λ̄R satisfy |λ̄L − λ̄R | ≤ Meh ∼
O(h).

(2) If the solution consists of a discontinuity inside Ie, λ̄R−λ̄L = w0
R λ̄e+(1−w0

R)λ̄e+1−
w0

L λ̄e − (1−w0
L )λ̄e−1 = (1−w0

L −w0
R)(λ̄e+1− λ̄e−1)+w0

L(λ̄e+1− λ̄e)+w0
R(λ̄e − λ̄e−1)+

O(h)
�= w1(λ̄e+1 − λ̄e−1) + w2(λ̄e+1 − λ̄e) + w3(λ̄e − λ̄e−1) with w1 + w2 + w3 = 1.

Note that on the left side of the discontinuity located in Ie, we haveλ(u(x)) = λ̄e−1+O(h).
Similarly, on the right side of the discontinuity we have λ(u(x)) = λ̄e+1 + O(h). Thus, we
have

λ̄e+1 − λ̄e−1 = [λ(u)] + O(h). (4.7)

Futhermore, we can always find a 0 ≤ μ ≤ 1 which only depends on the cell-size h and the
location of the discontinuity in Ie, such that

λ̄e = μλ̄e−1 + (1 − μ)λ̄e+1 + O(h). (4.8)

Using (4.7) and (4.8), we have
λ̄e+1 − λ̄e = μ[λ(u(x))] + O(h), λ̄e − λ̄e−1 = (1 − μ)[λ(u(x))] + O(h).
Therefore, λ̄R − λ̄L = C[λ(u)]+O(h) ∼ O(1), whereC = w1+μw2+ (1−μ)w3 < 1.

Specially, if w0
L , w0

R → 0, C → 1, we can obtain λ̄R − λ̄L → [λ(u)] + O(h). 	

The following lemma show a relationship between ˜oute and λ̄L − λ̄R .

Lemma 4.6 In Ie,
(1) ˜oute < 0.0145 � 0.5 ⇐⇒ λ̄L − λ̄R < 0 or |λ̄L − λ̄R | ∼ 1.0e−3

W + O(h).

(2) ˜oute ≥ 0.5 ⇐⇒ λ̄L − λ̄R ≥ 0 and λ̄L − λ̄R ≥ M1h+M2
W ∼ O(1), and ˜oute →

1 ⇐⇒ λ̄L − λ̄R → +∞.

Proof According to (4.6), we can derive,

˜oute ≥ s ⇐⇒ e−W (λ̄L−λ̄R)+M1h+M2 ≤ 1

s
− 1 ⇐⇒ λ̄L − λ̄R ≥ C0. (4.9)

Here, s is a number belonging to (0, 1], and C0 = 1
W (M1h + M2 − ln( 1s − 1)).

(1) If λ̄L − λ̄R < 0, ˜oute < 1
1+eM1h+M2

≈ 0.0145 � 0.5.

If λ̄L − λ̄R > 0 and λ̄L − λ̄R ∼ 1.0e−3
W + O(h), ˜oute ≈ 0.0145 � 0.5.

Conversely, if ˜oute < 0.0145, λ̄L , λ̄R should satisfy λ̄L − λ̄R < 0 or |λ̄L − λ̄R | ∼ 1.0e−3
W +

O(h).
(2) Denoting s = 0.5 in (4.9), we can obtain C0 = M2

W + O(h) ∼ O(1). Therefore,

λ̄L − λ̄R ≥ M1h+M2
W ∼ O(1) ⇐⇒ ˜oute ≥ 0.5.

As ˜oute increases from 0.5 to 1, λ̄L − λ̄R also increases from M1h+M2
W to +∞. Therefore,

˜oute → 1 ⇐⇒ λ̄L − λ̄R → +∞. 	

Remark In numerical simulation, h is generally much larger than 1.0e−3

W ∼ 10−5, therefore
we can assume |λ̄L − λ̄R | ∼ 1.0e−3

W +O(h) in Lemma 4.6 is equivalent to |λ̄L − λ̄R | ∼ O(h)

in subsequent analysis.

Theorem 4.7 The output of (4.6) in Ie ˜oute satisfies ˜oute < 0.0145 � 0.5 if Ie is a cell near
a smooth extrema or an inadmissible large-gradient/jump.
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Proof (1) For a smooth extrema. If Ie is a cell near a smooth extrema, under the
smooth assumption, the derivative of u at the extreme point is 0, then we can obtain
|λ̄L − λ̄R | < d0|λ′(ξ)u′(η)|h < D0h2 by Taylor expansion. Immediately by Lemma 4.6,
˜oute = 1

1+eM2+O(h) ≈ 0.0145 � 0.5.
(2) For a inadmissible large gradient/jump. If Ie is a cell near an inadmissible large-

gradient/jump, λ̄L−λ̄R < 0byDefinition 4.2, immediatelywe canobtain directly˜oute � 0.5
by Lemma 4.6. 	


Therefore, the indicator (4.6) can never indicate cells near a smooth extrema or an inad-
missible large-gradient/jump as troubled-cells.

In theory, a solution discontinuity occurs only inside one cell. In numerical simulation,
due to numerical dissipation, a discontinuity might span a few cells of the numerical solution.
Therefore, these cells will be detected as the troubled-cells by the indicator (4.6), due to their
O(1) magnitude admissible jump value of λ(u).

Theorem 4.8 In the numerical simulation of system (2.1), a discontinuity of numerical solu-
tion caused by compressing of characteristic curves exists indeed inside Ie if ˜oute ≥ 0.5.

Proof Asone can obtain inLemma4.6,˜oute ≥ 0.5 ⇐⇒ λ̄L−λ̄R ≥ M1h+M2
W ∼ O(1). By the

Definition 4.2 there exists an admissible jump value ofλ(u) and the admissible jump value has
a magnitude of O(1). Under the Assumption 4.1 there exists an occurrence of characteristic
curves intersection inside Ie, consequently a discontinuity of numerical solution exists indeed
inside Ie.

Therefore, ˜oute ≥ 0.5 ⇐⇒ λ̄L − λ̄R ≥ M1h+M2
W ∼ O(1) �⇒ a discontinuity of

numerical solution occurs inside Ie. 	

Remark

(1) Since Ie is detected as a troubled-cell if ˜oute ≥ 0.5, this correspondingly results in
λ̄L − λ̄R ≥ 0.241+ 0.549h. Therefore, if the jump strength of the discontinuity is less
than 0.241, the present indicator would not treat it.

(2) The scalar indicator (4.6) would not detect the initial inadmissible jumps (such as the
initial linear contact discontinuities and those evolving into rarefaction waves). As a
remedy, we suggest a simple strategy to treat the initial inadmissible jumps as for the
1-2-3 case to be given in the section of numerical simulation.

Next, we will extend the indicator (4.6) to one-dimensional system conservation laws.

4.3 Extension to System Conservation Laws

For system (2.3), according to Lemma 2.3(2), the solution can evolve into shock waves due
to the intersection of a certain i-characteristic curves in genuinely nonlinear characteristic
field, therefore, we only consider the eigenvalues in genuinely nonlinear characteristic field.
By the Entropy Condition which is shown in [35], the intersection of a certain i-characteristic
curves implies λ−

i > λ+
i , where λ±

i = limε→0+λi (u(x ± ε)).
For system conservation laws, we do not need to retrain the shock wave indicator, and

can directly apply the indicator (4.6) to each genuinely nonlinear λi -characteristic field.
Following the idea, we can extend indicator (4.6) to system conservation laws by two steps,
the first one is to calculate the outputs of indicator (4.6) for each eigenvalue λi ; the other is
to select the maximum outputs among them.
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The expression of indicator for the system is then given as follows,

̂oute = maxi {˜oute(�̄i , h)}. (4.10)

Here, �̄i = (λ̄i,e−1, λ̄i,e, λ̄i,e+1), ˜oute(�̄i , h) is defined by the expression (4.6).

Lemma 4.9 For the 1-D Euler equations, the indicator (4.10) becomes

̂oute = max{˜oute(ū − ā, h); ˜oute(ū + ā, h)}. (4.11)

Here, ū ± ā = (ūe−1 ± āe−1, ūe ± āe, ūe+1 ± āe+1).

For system (2.3), indicator (4.10) possesses similar indicating properties as indicator (4.6).
Therefore, we give the following two conclusions without proof.

Theorem 4.10 The output of (4.10) in Ie satisfies ̂oute � 0.5 if Ie is a cell near a smooth
extrema or an inadmissible large-gradient/jump.

Theorem 4.11 A discontinuity with admissible eigenvalue jump value exists indeed inside
the Ie if ̂oute ≥ 0.5 .

Corollary 4.12 For the Euler equations, a shock wave discontinuity or a contact discontinuity
exists indeed inside the Ie if ̂oute ≥ 0.5.

Proof According to the Lemma 2.4, an admissible jump occurs to one of the non-linear
eigenvalues if there is a shock wave. In addition, across the 2-contact discontinuity, u, p
remain unchanged while ρ has a jump, leading to a jump occurrence for the sound speed a
and the satisfaction of either ul − al > ur − ar or ul + al > ur + ar across the contact
discontinuity. As a result, additionally there is always an admissible jump occurring to the
1- or 3- eigenvalue when across the 2-contact discontinuity. According to Theorem 4.8, if
̂oute ≥ 0.5 , a shock wave discontinuity or a contact discontinuity exists inside the Ie. 	

Remark TheLemma4.9 andCorollary 4.12 imply that besides the shockwave discontinuities,
the present indicator (4.11) is able to detect the 2-contact discontinuities, althought the 2-
characteristic is never be traced. The present indicator maintains the mathematical property
shown in Lemma 2.4.

5 Runge–Kutta Discontinuous Galerkin (RKDG) Framework

In this section we take system (2.1) as an example to review the RKDG framework, and the
indicator (4.6) will be applied to RKDG framework compared to TVB-based indicator.

To approximate the solution of system (2.1), the computational domain [a, b] is discretized
into N non-overlapping cells, [a, b] = ⋃N

e=1 Ie, Ie = [xe− 1
2
, xe+ 1

2
], where a = x 1

2
< x 3

2
<

· · · < xN+ 1
2

= b, xe is the center of Ie, h is the cell-size of each cell. The approximate solution

uh is an element in the space of broken polynomials V k
h = {u ∈ L2[a, b] : u|Ie ∈ Pk(Ie)},

where Pk(Ie) is the space of polynomials with degree d ≤ k in the cell Ie. In each Ie, the
approximate solution uh can be represented by uh = ∑k

i=0 u
(i)
e (t) ·φe,i (x), where {φe,i (x)}i

is a basis of Pk(Ie). The semi-discrete DG scheme can be formulated as follow,

(∫

e
φe,iφe,i dx

)

· d

dt
u(i)
e =

∫

e
f (uh)

dφe,i

dx
dx −

[

̂f
e+ 1

2
(u) · φe,i

(

x−
e+ 1

2

)

− ̂f
e− 1

2
(u) · φe,i

(

x+
e− 1

2

)]

(5.1)
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Here, ̂fe+ 1
2
(u) = 1

2 [ f (u−
e+ 1

2
) + f (u+

e+ 1
2
) − α(u+

e+ 1
2

− u−
e+ 1

2
)] is the Local-Lax Friedrichs

numerical flux and u(x±) = limε→0+u(x ± ε). We use SSP-RK3 [10] scheme to discretize
time derivative.

To suppress oscillations across the discontinuities, we use TVB limiters to correct the
high order dofs of polynomial inside Ie, TVB-based indicators uses the 3-cell stencil to
detect the troubled-cells. The process for TVB limiting technique and the present indicator
based limiting technique are given as Algorithms 5.1 and 5.2,

Algorithm 5.1 TVB limiting process

Step-1: Calculate dofs u(i)
e,n and cell-average ūe for each e and i when t = tn

Step-2: Calculate left and right cell-interface values u−
e+ 1

2
and u+

e− 1
2
for each e

Step-3: Correct high order dofs in Ie if |̃ue| > Mh2 or |˜ũe| > Mh2.

Step-4: Obtain modified high order dofs u(i)
e,n

(mod)
.

Algorithm 5.2 present indicator process

Step-1: Calculate dofs u(i)
e,n and cell-average ūe for each e and i when t = tn

Step-2: Calculate output of the present indicator on each cell Ie , (4.6) ˜oute for scalar and (4.10) ̂oute for
system conservation laws.
Step-3: Flag Ie if ˜oute ≥ 0.5 or ̂oute ≥ 0.5.

Step-4: Modify high order dofs in flagged cells, obtain the modified high order dofs u(i)
e,n

(mod)
.

Next section, we will test numerical cases under the framework of RKDG to compare the
behaviors of the present indicators and the TVB-based indicators.

6 Numerical Results

We now demonstrate the capability of the present indicators (4.6) and (4.10) when applied
to RKDG framework. We compare the performance of the indicators (4.6) and (4.10) with
that of the TVB-based indicators. The notation TVB-1, TVB-2, TVB-3 are used to refer to
the TVB limiter with the parameter M = 10, M = 100, and M = 1000, respectively.

6.1 The 1-D Burgers Equation

6.1.1 CompoundWave Case

The initial condition for this test is a composition of smooth and discontinuous data [28],
expressed as

u0(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

sin(πx) i f |x | ≥ 1
3 i f − 1 < x ≤ −0.5
1 i f − 0.5 < x ≤ 0
3 i f 0 < x ≤ 0.5
2 i f 0.5 < x ≤ 1,
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Fig. 3 The Compound wave
problem for the Burgers equation,
the output (s) of the present
indicator in each cells at T = 0.4
with 200 cells
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(a) indicator output
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(b) solution

Fig. 4 Solutions of the Compound wave problem for the Burgers equation with various indicators at T = 0.4
under RKDG(p4) framework with 800 cells

on the domain [−4, 4]with periodic boundary conditions, the solution is simulated until time
T = 0.4. As the solution evolves, alternating shock and rarefaction waves begin to develop.
We test this testcase under N = 200 and N = 800 cells to assess the behaviour of the present
indicator under different cell-size.

Outputs (s) of the present indicator (4.6) at T = 0.4 are shown in Figs. 3 and 4a. The
results with various indicators on a mesh with N = 200 cells and under DG(p4) framework
are shown in Fig. 5a, b. The solution with TVB-3 indicator suffers from oscillations near
the shock waves because some of the shock waves are not detected. The solution with the
present indicator is similar to that with TVB-2 indicator, and is superior to that with TVB-1
indicator. We also show the time-history of the troubled-cell indication with 200 cells as
shown in Fig. 6a–d, except that there is no indication for initial inadmissible discontinuities,
the present indicator has a similar performance to the TVB-1 indicator. With N = 800 cells
under DG(p3) framework, as shown in Fig. 7, the TVB-3 indicator performs best among the
TVB indicators, TVB-1 and TVB-2 indicators work worse than that with N = 200 cells,
this implies that the performance of TVB-based indicators is much related to the cell size.
On the other hand, the present indicator works consistently.
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Fig. 5 Solutions of the Compound wave problem for the Burgers equation with various indicators at T = 0.4
under RKDG(p4) framework with 200 cells
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Fig. 6 The time-history of flagged troubled-cells of the compound wave problem for the Burgers equation
with 200 cells
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Fig. 7 The time-history of flagged troubled-cells of the compound wave problem for the Burgers equation
with 800 cells

6.2 Buckley–Leverett Case

In order to demonstrate the performance of various indicators for non-convex flux, we con-
sider the Buckley–Leverett case with the flux function

f (u) = u2

u2 + 0.5(1 − u)2
,

where u represents the water saturation in a mixture of oil and water [18]. We consider the
initial condition

u0(x) =
{

0.95 i f x ≤ 0.5
0.1 i f x > 0.5,

on the domain [0, 1.5], which evolves into a compound wave consisting of a shock wave
and a rarefaction wave. The numerical solutions are evaluated at time T = 0.4, on a mesh
with N = 150 and open boundary conditions and under DG(p3) framework. The output (s)
of the present indicator is shown in Fig. 8. Solutions of Buckley–Leverett case with various
indicators are compared in Fig. 9a, b, as one can observe, the solutions with the present
indicator are superior to those obtained with TVB-3 indicator which are superior to those
obtained by TVB-1 and TVB-2 indicators. The time-history of flagged troubled-cells with
various indicators are also compared in Fig. 10a–d, the present indicator detects the zones
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Fig. 8 The Buckley–Leverett
case, the output (s) of the present
indicator in each cell at T = 0.4
with 150 cells
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Fig. 9 Solutions of the Buckley–Leverett case with various indicators at T = 0.4 under RKDG(p3) framework
with 150 cells

more regularly, and flags no cells near the rarefaction wave compared to TVB-1 and TVB-2
indicators which flag much more cells near the rarefaction wave. Note that the discontinuity
appearing in this case is a contact discontinuity due to non-convex flux, the present indicator
works well for this case because its mechanism of detecting troubled cell is via compressing
of characteristic curves, although we never train the indictor with data set of non-convex flux.

6.3 The 1-D Euler Equations

We consider the one-dimensional Euler equations to demonstrate the performance of the
indicator (4.10) in system conservation laws.

6.3.1 Sod Test

This problem describes a mild shock tube test proposed by Sod [33], whose initial condition
is given by

(ρ0, u0, p0)(x) =
{

(1, 0, 1) i f x < 0
(0.125, 0, 0.1) i f x ≥ 0,

x ∈ [−5, 5].

The solution is simulated on a mesh with N = 500 cells and under DG(p3) framework,
until the time T = 2. TVB-3 is unable to produce correct results due to loss of positivity
of density and TVB-2 leads to highly oscillatory results. The solutions with TVB-1 and
the present indicator have similar simulations and eliminate the spurious oscillations near
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Fig. 10 The time-history of flagged troubled-cells of the Buckley–Leverett case with 150 cells

the 3-shock wave at x = 3.5, as shown in Fig. 11b. Output (s) in each cell of the present
indicator (4.10) at T = 2 are shown in Fig. 12. The time-history of the troubled-cells is shown
in Fig. 13, we can observe the present indicator marks less troubled-cells near the 3-shock
wave than TVB-1 indicator. It should be pointed out that the present indictor with 0.5 as a
threshold, passes over the admissible jump of contact discontinuity because its output is less
than 0.5, as shown in Fig. 11b.

6.3.2 Lax Test

We consider the Lax shock tube problem [17], whose initial condition is given by

(ρ0, u0, p0)(x) =
{

(0.445, 0.698, 3.528) i f x < 0
(0.5, 0, 0.571) x ≥ 0,

x ∈ [−5, 5].

The solution is simulated on a mesh with N = 200 cells and under DG(p3) framework, until
the time T = 1.3. TVB-3 is unable to produce correct results due to loss of positivity of
density. The solutions with TVB-1, TVB-2 and present indicators are similar, as shown in
Fig. 14. Output (s) of the present indicator (4.10) in each cell at T = 1.3 is shown at Fig. 15.
The time-history of the troubled-cells is shown in Fig. 16a–c, we can observe the present
indicator marks similar regions as TVB-1 indicator near the 3-shock wave and marks contact
discontinuity regions well.

123



21 Page 20 of 34 Journal of Scientific Computing (2020) 83 :21

0

0.5

1

1.5

-5 0 5 2 3 4

0.1

0.2

0.3

0.4

Fig. 11 Solutions (density) of the Sod test for the Euler equations with various indicators at T = 2 under
RKDG(p3) framework with 500 cells

Fig. 12 The Sod test for the Euler
equations, the output (s) of the
present indicator in each cell at
T = 2 with 500 cells
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6.3.3 Left Half of the Blast-Wave

We consider a severe test case, describing the left of the blast-wave problem [37], the initial
condition is given by

(ρ0, u0, p0)(x) =
{

(1, 0, 1000) i f x < 0.5
(1, 0, 0.01) i f x ≥ 0.5,

x ∈ [0, 1].

the solution is simulated on a mesh with N = 400 cells and under DG(p3) framework, until
the time T = 0.012. Output s of the present indicator at T = 0.012 is shown in (Fig. 17). As
shown in Fig. 18, the results obtained by the present indicator (4.10) hold the best simulation
of the wave peak compared to that obtained by TVB indicators. The time-history of the
troubled-cells is shown in Fig. 19a–d, we can observe the present indicator marks much less
cells than TVB-1 and TVB-2 and TVB-3, specially marked thinner zones of wave peak.

6.3.4 Shu–Osher Problem

This case proposed in [32], describes the interaction of a right moving shock with an oscil-
latory smooth wave. The initial condition is given as follows:

(ρ0, u0, p0)(x) =
{

(3.857143, 2.629369, 10.33333) i f x < −4
(1 + 0.2sin(5x), 0, 1) i f x ≥ −4,

x ∈ [−5, 5].
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Fig. 13 The time-history of flagged troubled-cells of the Sod test for the Euler equations with 500 cells
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Fig. 14 Solutions (density) of the Lax test for the Euler equations with various indicators at T = 1.3 under
RKDG(p3) framework with 200 cells
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Fig. 15 The Lax test for the Euler
equations, the output (s) of the
present indicator in each cell at
T = 1.3 with 200 cells
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Fig. 16 The time-history of flagged troubled-cells of the Lax test for the Euler equations with 200 cells

The solution is simulated on a mesh with N = 400 cells, until the time T = 1.8.
Various indicators are applied to this case under DG(p3) framework. Output s of the
present indicator at T = 1.8 is shown in (Fig. 20). Numerical results in Fig. 21
show that TVB-3 gives the most accurate simulations in the smooth high-frequency
region, with slight oscillations. The simulations obtained by TVB-2 and the present
indicators have a similar performance and are superior to that obtained by TVB-1
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Fig. 17 The Left half of the
blast-wave test for the Euler
equations, the output (s) of the
present indicator in each cell at
T = 0.012 with 400 cells
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Fig. 18 Solutions (density) of the Left half of the blast-wave test for the Euler equations with various indicators
at T = 0.012 under RKDG(p3) framework with 400 cells

indicator. The Fig. 22 also shows the present indicator flags thinner regions than TVB-
2.

6.3.5 1-2-3 Test

We consider the Riemann problem given by the following initial condition

(ρ0, u0, p0)(x) =
{

(7, −1, 0.2) i f x < 0
(7, 1, 0.2) i f x ≥ 0,

x ∈ [−1, 1].

The solution is simulated on a mesh with N = 200 cells and under DG(p3) framework,
until the time T = 0.6. The solution consists of two rarefaction waves pulling away from
each other. This test case has an initial inadmissible discontinuity and the present indica-
tor neglects it. As a result, numerical oscillations occur at the beginning, leading to the
code broken down due to the loss of positivity of pressure and density. Here we give a
simple strategy to solve this trouble. That is to combine a conventional indicator with
the present indicator for the first few time steps, and then shift to the present indicator
solely. The comparison of the solutions with the combined indicator and TVB-based indi-
cators are shown in Fig. 23 (TVB-3 does not work out for this case). The solution with
the combined indicator is slightly superior to solutions with the TVB-based indicators. We
can observe the combined indicator marks no cells after the first few time steps, while
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Fig. 19 The time-history of flagged troubled-cells of the Left half of the blast-wave test for the Euler equations
with 400 cells

Fig. 20 The Shu–Osher problem
for the Euler equations, the output
(s) of the present indicator in each
cell at T = 1.8 with 400 cells

-5 0 5
0

0.2

0.4

0.6

0.8

1

the TVB-based indicators still flag part of rarefaction waves as troubled-cells, as shown in
Fig. 24.

The next two cases are to demonstrate the performance of the indicator (4.6) and (4.10) for
multi-dimensional conservation laws. The present indicators (4.6) and (4.10) can be extended
to multi-dimensional conservation laws by applying them to characteristic fields in different
directions.
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Fig. 21 Solutions (density) of the Shu–Osher problem for the Euler equations with various indicators at
T = 1.8 under RKDG(p3) framework with 400 cells

(a) TVB-1 (b) TVB-2

-5 0 5
0

0.5

1

1.5
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Fig. 22 The time-history of flagged troubled-cells of the Shu–Osher problem for the Euler equations with 400
cells
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Fig. 23 Solutions (density) of the 1-2-3 test for the Euler equations with various indicators at T = 0.4 under
RKDG(p3) framework with 200 cells
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Fig. 24 The time-history of flagged troubled-cells of the 1-2-3 test for the Euler equations with 200 cells
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Fig. 25 Solutions (density) of the shock–vortex interaction case for the 2-D Euler equations with various
indicators with 480 × 480 cells at T = 0.2 under RKDG(p2) framework

Fig. 26 troubled-cells flagged by various indicators in the shock–vortex interaction case for 2-D Euler equa-
tions with 480 × 480 cells at TT = 0.2 under RKDG(p2) framework

6.4 The 2-D Euler Equations

6.4.1 Shock–Vortex Interaction

This problem consists of interaction of a left-moving shock wave with a right-moving vortex
[9]. The initial shock discontinuity on the domain [0, 1] × [0, 1] is given by

U0(x) =
{

UL i f x < 0.5
UR i f x ≥ 0.5,
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Fig. 27 Solutions (density) of the shock–vortex interaction case for the 2-D Euler equations with various
indicators with 480 × 480 cells at TT = 0.35 under RKDG(p2) framework

Fig. 28 troubled-cells flagged by various indicators in the shock–vortex interaction case for 2-D Euler equa-
tions with 480 × 480 cells at T = 0.35 under RKDG(p2) framework

where the left state is given by (ρL , uL , vL , pL ) = (1,
√

γ , 0, 1) while the right state is
given by

pR = 1.3, ρR = ρL

(

γ − 1 + (γ + 1)pR
γ + 1 + (γ − 1)pR

)

,

uR = √
γ + √

2

(

1 − pR√
γ − 1 + (γ + 1)pR

)

, vR = 0.

The left state UL is superposed onto an isentropic vortex described by the following
perturbations in the velocity, temperature and physical entropy respectively
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Fig. 29 Solutions (density) of the Double Mach reflection case for the 2-D Euler equations with various
indicators with 400 × 100 cells at T = 0.2 under RKDG(p2) framework

δu = θ
(y − yc)

rc
exp(β(1 − r2)), δv = −θ

(x − xc)

rc
exp(β(1 − r2))

δT = −γ − 1

4βγ
θ2exp(2β(1 − r2)), δs = 0.

where r2 = ((x − xc)2 + (y − yc)2)/r2c . The various parameters of the perturbation are
chosen as θ = 0.3, rc = 0.05, β = 0.204and(xc, yc) = (0.25, 0.5). The domain is
discretized by 480 × 480 structured grid with inflow boundary conditions applied on the
left/right and reflective boundary conditions on the top/bottom. The simulation is under
RKDG(p2) framework and till a final time T = 0.35. The solution and flagged troubled cells
at different time instances are shown in Figs. 25, 26, 27 and 28. Note that the present indicator
marked only the moving shock wave and never marked regions near the vortex, which might
explain that solution with the present indicator preserves the vortex structure more precisely
than that with TVB-3 indicator.
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Fig. 30 troubled-cells flagged by various indicators in the Double Mach reflection problem for 2-D Euler
equations with 400 × 100 cells at T = 0.2 under RKDG(p2) framework

6.4.2 Double Mach Reflection Test

This problem is originally from [37], the computational domain for this problem is [0, 4] ×
[0, 1]. The reflecting wall lies at the bottom, starting from x = 1

6 . Initially a right-moving
Mach 10 shock wave is positioned at x = 1

6 , y = 0 and make a 60◦ angle with the x-axis. For
the bottom boundary, the exact post-shock condition is imposed for the part from x = 0 to
x = 1

6 and a reflective boundary condition is used for the rest. At the top boundary, the flow
values are set to describe the exact motion of a Mach 10 shock. We compute the solution up
to T = 0.2 and plot only the simulation results on 400×100 cells and 960×240 cells under
RKDG(p2) framework, all the figures are shown with 23 equally spaced density contours
from 1.5 to 22.7.

The results for this problem show an excellent performance of the present indicator. Sim-
ulations by various TVB indicators have a better performance with the increased parameter
M in the TVB indicator, we only compare the simulations by the present indicator with
that by the TVB-3 indicator. Solutions (density) have a significant improvement with the
present indicator near bottom boundary as shown in Figs. 29 and 31. The flagged troubled-
cells detected by various indicators are compared in Figs. 30 and 32, we can observe the
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Fig. 31 Solutions (density) of the Double Mach reflection case for the 2-D Euler equations with various
indicators with 960 × 240 cells at T = 0.2 under RKDG(p2) framework

flagged regions detected by the present indicator are almost the discontinuity position of
the solution, which are much more accurate than the TVB-3 indicator, and the flagged cells
are significantly reduced compared to TVB-3 indicator, which might explain the significant
improvement near bottom boundary under 960 × 240 cells. The results with KXRCF shock
indicator are presented in Figs. 29, 30, 31 and 32.(c), it shows the KXRCF indicator has
similar behaviors with 400 × 100 cells and marked extra cells at the bottom boundary with
960 × 240 cells as compared to the present indicator.

7 Conclusion

In this work, we proposed a novel shock wave indicator that can be applied to various
numerical schemes such as the RKDG scheme. The present indicator was obtained initially
by training an AN, then modified and extended to multi-dimensional conservation laws.

The present indicator is concise, explicable and generalizable. We proved the present
indicator can identify and detect the troubled-cells where exist solution discontinuities caused
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Fig. 32 troubled-cells flagged by various indicators in the Double Mach reflection problem for 2-D Euler
equations with 960 × 240 cells at T = 0.2 under RKDG(p2) framework

by compressing or intersecting of the characteristic curves, smooth extrema and inadmissible
large gradient regions cannot be flagged by the present indicator. Several numerical results
in this work demonstrated that the present indicator can improve the indicating efficiency,
leading to a reduced computational cost and more accurate numerical results.

Because the present indicator detect troubled-cells by capturing the compressing or inter-
secting of characteristic curves, theoretically it might not detect the initial inadmissible
discontinuities. One way to treat the initial inadmissible discontinuities is to follow the
approach done for the 1-2-3 case in this work, the other way is to generate related data into
database and deepen the neural network as presented in [28,29], but the resultant indicator
might be difficult to be explicable. In addition, we believe that the present indicator can be
extended to unstructured mesh.
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