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Abstract
Hybrid High-Order methods are introduced and analyzed for the elliptic obstacle problem
in two and three space dimensions. The methods are formulated in terms of face unknowns
which are polynomials of degree k = 0 or k = 1 and in terms of cell unknowns which
are polynomials of degree l = 0. The discrete obstacle constraints are enforced on the cell
unknowns. Higher polynomial degrees are not considered owing to the modest regularity
of the exact solution. A priori error estimates of optimal order, that is, up to the expected
regularity of the exact solution, are shown. Specifically, for k = 1, the method employs a

local quadratic reconstruction operator and achieves an energy-error estimate of order h
3
2−ε ,

ε > 0. To our knowledge, this result fills a gap in the literature for the quadratic approximation
of the three-dimensional obstacle problem. Numerical experiments in two and three space
dimensions illustrate the theoretical results.

Keywords Hybrid High-Order method · Discontinuous-skeletal method · Obstacle
problem · Error estimates · Variational inequalities

Mathematics Subject Classification 65N15 · 65N30 · 65N12

1 Introduction

Hybrid High-Order (HHO) methods have been introduced for linear elasticity in [20] and
linear diffusion in [22]. HHO methods have been extended to other linear PDEs, such as
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advection–diffusion [23], Stokes [24], and elliptic interface problems [12], and to nonlinear
PDEs, such as Leray–Lions operators [18], steady incompressible Navier–Stokes equations
[21], nonlinear elasticitywith infinitesimal deformations [6], hyperelasticitywith finite defor-
mations [1], and plasticity with small deformations [2]. Lowest-order HHO methods are
closely related to the hybrid finite volume method [26] and the mimetic finite difference
methods [9,10,35], see also the unifying viewpoints in [5,25]. HHO methods have been
bridged in [17] to the hybridizable discontinuous Galerkin methods [16] and to the noncon-
forming virtual element methods [4].

HHO methods employ face unknowns which are polynomials of arbitrary order k ≥ 0 on
each mesh face and cell unknowns which are polynomials of order l ≥ 0, with l ∈ {k, k ±
1}, in each mesh cell. The cell unknowns can be eliminated locally by static condensation
leading to a global transmission problem posed solely in terms of the face unknowns. For
this reason, HHO methods are also termed discontinuous skeletal methods. The formulation
of HHO methods relies on a local reconstruction operator of order (k + 1) in each mesh
cell and a local stabilization operator which weakly enforces a matching between the face
unknowns and the trace of the cell unknowns. HHOmethods offer various assets: they support
polyhedral meshes, lead to local conservation principles, are robust in various regimes, are
computationally efficient owing to the above local elimination procedure, and lend themselves
to generic programming software (see [15] and https://github.com/wareHHOuse/diskpp).

In this work, we devise and analyze a HHO method to approximate the solution of the
elliptic obstacle problem in two and three space dimensions. We consider the polynomial
degrees k ∈ {0, 1} for the face unknowns and the polynomial degree l = 0 for the cell
unknowns, and the obstacle constraint is enforced on the cell unknowns. Higher polynomial
degrees are not considered owing to the modest regularity that is expected for the exact
solution. Our main result is Theorem 1 below where we establish an energy-error estimate
of order hr , with h the mesh-size, r = 1 if k = 0 and r = 3

2 − ε, ε > 0, if k = 1,
where these convergence rates optimally match the assumed regularity of the exact solution.
Note that in the absence of contact and for a smooth enough solution, the present methods
classically delivers a rate h2 if k = 1, even if piecewise constant cell functions are used. Thus,
the above rate reflects the nonlinear nature of the problem. The salient point in Theorem 1
is the case where k = 1, since we are able to reach the best convergence rate matching the
expected regularity of the exact solution even in 3D.As the literature reviewbelow reveals, the
present HHOmethod thus fills a gap for the quadratic approximation of the three-dimensional
obstacle problem.We emphasize that the HHOmethodology is instrumental in achieving this
result, since the local reconstruction operator produces quadratic polynomials in each mesh
cell if k = 1, whereas the constraint is enforced on the cell unknowns and not on the
reconstruction. Let us also stress that the proposed HHO method is particularly attractive
from a computational viewpoint, since the discrete obstacle constraints are enforced on the
cell unknowns which are constant in each mesh cell. Hence, well-established solvers like
active-set methods [33] can be readily used.

Let us put our work in perspective with the literature. The elliptic obstacle problem relies
on firmmathematical foundations and appears in many engineering applications; see, among
others, the textbooks [29,31,34,38]. The numerical analysis of the two-dimensional ellip-
tic obstacle problem using finite elements was pioneered in the 1970s in [8,28]. In [28], a
linear finite element method was proposed and analyzed with discrete obstacle constraints
enforced at the vertices of the triangulation, whereas in [8], a quadratic finite element method
was proposed and analyzed with discrete obstacle constraints enforced at the edge midpoints
of the triangulation. The assumption in [8] on the finiteness of the free boundary length was
relaxed in [41]. More recently in [40], linear and quadratic discontinuous Galerkin (DG)
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methods were proposed and analyzed for the elliptic obstacle problem and a frictional con-
tact problem. These methods are designed by enforcing the discrete obstacle constraints at
the vertices and the edge midpoints of the triangulation, similarly to the case of conforming
linear and quadratic finite elements, respectively. The classical Crouzeix–Raviart noncon-
forming method was first studied in [42] with the regularity assumption on the exact solution
that u ∈ Ws,p(Ω) with s < 2 + 1/p and 1 < p < ∞. A refined analysis for the noncon-
forming method with minimal regularity assumptions is presented in [13] by constructing
a novel conforming companion to the nonconforming discrete solution. Mimetic finite dif-
ference methods which support general polyhedral meshes were studied in [3]. Mixed and
stabilized mixed methods, where both the solution and the Lagrange multiplier are approxi-
mated, were analyzed in [32]. Let us emphasize that the analysis in the above articles for the
obstacle problem is restricted to two-dimensional problems. The design and analysis of linear
conforming finite element methods in three dimensions can be performed similarly to the
two-dimensional case. However, the design of a three-dimensional quadratic finite element
method that achieves optimal convergence rates (up to the regularity of the exact solution) is
not similar to the two-dimensional case. Recently, in [30], a quadratic finite element method
enriched with element-wise bubbles was proposed and analyzed for the three-dimensional
elliptic obstacle problem. However the analysis assumes higher regularity, that is, u ∈ H3

piecewise in the contact and non-contact regions. The above literature review shows that a
gap still remains concerning the quadratic approximation of the three-dimensional elliptic
obstacle problem.

This article is organized as follows. In Sect. 2, we present the model problem. In Sect. 3,
we introduce the HHO discretization; we also derive the discrete elliptic obstacle problem
and establish its well-posedness. In Sect. 4, we prove our main result, namely an energy-

error estimate of order h for k = 0 and of order h
3
2−ε , ε > 0, for k = 1. Finally, in Sect. 5,

we present numerical results on two- and three-dimensional test cases to illustrate our error
estimate.

2 Model Problem

Let D ⊂ R
d with d ∈ {2, 3} be an open subset with a Lipschitz boundary ∂D. Let Hm(D)

denote the standard L2-based Sobolev space of orderm ≥ 0, and let γ : H1(D) → H
1
2 (∂D)

denote the well-known surjective trace map. More generally, for any subset G ⊆ D (which
is typically D or its boundary, a mesh cell or its boundary, or a mesh face), we denote the
norm and semi-norm on the standard Sobolev spaceWs,p(G) by ‖ · ‖Ws,p(G) and | · |Ws,p(G),
where s ≥ 0 is the order of the derivative and 1 ≤ p ≤ ∞ is the exponent in the integration
(with the appropriate Lebesgue measure depending on the dimension of G). For simplicity,
we denote ‖ · ‖L2(G) by ‖ · ‖G and the L2(G)-inner product by (·, ·)G ; the same notation is
used for vector-valued functions.

We consider the elliptic obstacle problem posed in D with a non-homogeneous Dirichlet

condition on ∂D. The data are the load function f ∈ L2(D), theDirichlet value g ∈ H
1
2 (∂D),

and the obstacle function χ ∈ H1(D) ∩ C0(D) such that χ ≤ g a.e. on ∂D. Define the set

K := {v ∈ H1(D) | v ≥ χ a.e. in D and γ (v) = g}. (1)

Define the bilinear form a : H1(D) × H1(D) → R and the linear form � : H1(D) → R,
respectively, by

a(w, v) = (∇w,∇v)D and �(v) = ( f , v)D . (2)
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The model problem consists of finding u ∈ K such that

a(u, v − u) ≥ �(v − u) ∀v ∈ K, (3)

or, equivalently, of minimizing the functional J (v) := 1
2a(v, v)− �(v) overK. Owing to the

following Browder–Stampacchia Lemma (see [11,34]), we infer that the model problem (3)
is well-posed.

Lemma 1 (Browder–Stampacchia) Let H be a real Hilbert space with norm ‖ · ‖H and let
H ′ denote the dual space of H. Let a be a bilinear form on H × H satisfying

a(v, v) ≥ α‖v‖2H and |a(w, v)| ≤ ξ‖w‖H‖v‖H for all w, v ∈ H , (4)

for some positive constants α and ξ . Let K be a nonempty, closed, convex subset of H and
let � ∈ H ′. Then there exists a unique u ∈ K such that a(u, v − u) ≥ �(v − u) for all v ∈ K.

In what follows, we make some (reasonable) additional smoothness assumptions on the
exact solution. Specifically, we assume that for all 1 < p < ∞ and all s < 2 + 1

p , u ∈
Ws,p(D), and that the following complementarity conditions hold true with λ := −Δu − f ,

λ ≥ 0 a.e. in D, (5a)

λ = 0 in the interior of the set {x ∈ D : u(x) > χ(x)}, (5b)

(u − χ)λ = 0 a.e. in D. (5c)

The above assumptions are reasonable once invoking the elliptic regularity theory for obstacle
problems if the problem data satisfies additional smoothness assumptions. In particular, if
χ ∈ H2(D) and g is the trace of a H2(D) function, then u ∈ H2(D) and the above
complementarity conditions hold true [34]. Moreover, if f ∈ L∞(D) ∩ BV (D), g, χ ∈
C3(D)with g ≥ χ on ∂D, and if the boundary ∂D is sufficiently smooth, then u ∈ Ws,p(D)

as stated above [7,8,34,41]. In the present work, we are going to assume that the domain D
is a polygon (if d = 2) or a polyhedron (if d = 3) so that it can be meshed exactly with cells
having straight edges or planar faces, respectively, and we are going to assume that the above
smoothness assumptions on the exact solution still hold true.

3 Discretization by the Hybrid High-Order Method

In this section, we present the setting for the HHO discretization of the elliptic obstacle
problem introduced in the previous section.

3.1 Discrete Setting

We consider a sequence of refined meshes (Th)h>0 where the parameter h denotes the mesh-
size and goes to zero during the refinement process. For all h > 0, we assume that the mesh
Th covers D exactly and consists of a finite collection of non-empty disjoint open polyhedral
cells T such that D = ⋃

T∈Th
T and h = maxT∈Th hT , where hT is the diameter of T . The

present HHO methods can be deployed on meshes having non-matching interfaces and cells
of polyhedral shape with planar faces. A closed subset F of D is defined to be a mesh face
if it is a subset of an affine hyperplane HF with positive (d − 1)-dimensional Hausdorff
measure and if either of the following two statements holds true: (i) There exist T1(F) and
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T2(F) in Th such that F = ∂T1(F) ∩ ∂T2(F) ∩ HF ; in this case, the face F is called an
internal face; (ii) There exists T (F) ∈ Th such that F = ∂T (F) ∩ ∂D ∩ HF ; in this case,
the face F is called a boundary face. The collection of all the internal (resp., boundary) faces
is denoted by F i

h (resp., Fb
h ), and we let Fh := F i

h ∪ Fb
h . Let hF denote the diameter of

F ∈ Fh . For each T ∈ Th , the set FT := {F ∈ Fh | F ⊂ ∂T } denotes the collection of all
faces contained in ∂T , nT the unit outward normal to T , and we set nT F := nT |F for all
F ∈ FT . Following [20, Def. 1], we assume that the mesh sequence (Th)h>0 is shape-regular
in the sense that, for all h > 0, Th admits a matching simplicial submesh Th (i.e., every cell
and face of Th is a subset of a cell and a face of Th , respectively) so that the mesh sequence
(Th)h>0 is shape-regular in the usual sense and all the cells and faces of Th have uniformly
comparable diameter to the cell and face of Th to which they belong. For a shape-regular
mesh sequence (Th)h>0, the maximum number of faces of a mesh cell is uniformly bounded
(see [19, Lemma 1.41]), i.e., there is a positive integer N∂ , uniform with respect to h, such
that

max
T∈Th

card(FT ) ≤ N∂ ∀h > 0. (6)

Moreover, the following discrete trace inequality holds true, where Pr (T ) is the linear space
of polynomials of degree at most r ≥ 0 on T , see [19, Lemma 1.46]:

‖q‖F ≤ Ctrh
− 1

2
F ‖q‖T ∀T ∈ Th, ∀F ∈ FT , ∀q ∈ P

r (T ), (7)

where Ctr depends on the mesh regularity and the polynomial degree r but is uniform with
respect to h. Henceforth, we use the notation C for a positive generic constant whose value
can change at each occurrence but is independent of the mesh cell T ∈ Th and of h. The
value of C can depend on the shape-regularity of the mesh sequence and on the underlying
polynomial degree.

3.2 Local Reconstruction and Stabilization Operators

Let the face polynomial degree k ∈ {0, 1} be fixed. For all T ∈ Th , we define the local
discrete space

Û k
T := P

0(T ) × P
k(FT ), (8)

where Pk(FT ) := Ś

F∈FT
P
k(F) is composed of piecewise polynomials of degree at most

k on the faces composing the boundary of T . We represent a generic element v̂T ∈ Û k
T by

v̂T = (vT , v∂T ) with vT ∈ P
0(T ) and v∂T ∈ P

k(FT ). For all T ∈ Th , we define the local
reconstruction operator Rk+1

T : Û k
T → P

k+1(T ) so that, for all v̂T = (vT , v∂T ) ∈ Û k
T ,

(
∇Rk+1

T (v̂T ),∇w
)

T
= (∇vT ,∇w)T + (v∂T − vT ,∇w · nT )∂T , (9a)

(
Rk+1
T (v̂T ), 1

)

T
= (vT , 1)T , (9b)

where (9a) is enforced for all w ∈ P
k+1(T ). The volume term on the right-hand side of (9a)

is zero since vT is constant; we keep this term for the sake of consistency with the general
setting from [20,22]. Letπ0

T be the L2-projection ontoP0(T ) and letπk
∂T be the L2-projection

onto P
k(FT ). We define the local stabilization operator Sk∂T : Û k

T → P
k(FT ) such that, for

all v̂T = (vT , v∂T ) ∈ Û k
T , we have

Sk∂T (v̂T ) := πk
∂T

(
v∂T − Rk+1

T (v̂T )
)

−
(
π0
T

(
vT − Rk+1

T (v̂T )
))

|∂T
. (10)
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Finally, the discrete counterpart of the local exact bilinear form (∇w,∇v)T is the local
discrete bilinear form aT : Û k

T × Û k
T → R defined by

aT (ŵT , v̂T ) :=
(
∇Rk+1

T (ŵT ),∇Rk+1
T (v̂T )

)

T

+
(
η∂T S

k
∂T (ŵT ), Sk∂T (v̂T )

)

∂T
, (11)

with the piecewise constant weight η∂T defined on ∂T such that η∂T |F = h−1
F for all F ∈ FT .

Let us briefly outline the stability and approximation properties associated with the above
operators. We equip the discrete space Û k

T with the following seminorm:

|v̂T |Û k
T

:=
∥
∥
∥
∥η

1
2
∂T (v∂T − vT )

∥
∥
∥
∥

∂T
, ∀v̂T = (vT , v∂T ) ∈ Û k

T . (12)

Observe that |v̂T |Û k
T

= 0 implies that v∂T is constant on ∂T and equal to vT .

Lemma 2 (Stability) There exist positive constants C1 and C2, uniform with respect to T and
h, such that, for all v̂T ∈ Û k

T ,

C1|v̂T |2
Û k
T

≤ aT (v̂T , v̂T ) ≤ C2|v̂T |2
Û k
T
. (13)

Proof The proof follows that of [22, Lemma 4]. We briefly sketch it for completeness since
we are dealing here with different polynomial degrees for the face and the cell unknowns.
Let v̂T ∈ Û k

T . Invoking the triangle inequality, the regularity of the mesh sequence, the
L2-stability of πk

∂T , and the approximation properties of π0
T , we infer that

|v̂T |Û k
T

≤
∥
∥
∥
∥η

1
2
∂T S

k
∂T (v̂T )

∥
∥
∥
∥

∂T
+

∥
∥
∥
∥η

1
2
∂Tπk

∂T

(
Rk+1
T (v̂T ) − π0

T

(
Rk+1
T (v̂T )

))∥
∥
∥
∥

∂T

≤
∥
∥
∥
∥η

1
2
∂T S

k
∂T (v̂T )

∥
∥
∥
∥

∂T
+ Ch−1

T

∥
∥
∥Rk+1

T (v̂T ) − π0
T

(
Rk+1
T (v̂T )

)∥
∥
∥
T

≤
∥
∥
∥
∥η

1
2
∂T S

k
∂T (v̂T )

∥
∥
∥
∥

∂T
+ C ′

∥
∥
∥∇Rk+1

T (v̂T )

∥
∥
∥
T

,

which proves the leftmost bound in (13). Concerning the rightmost bound, we first observe
that the definition (9a) of Rk+1

T (v̂T ) combined with the Cauchy–Schwarz inequality and the
trace inequality (7) readily imply that

∥
∥
∥∇Rk+1

T (v̂T )

∥
∥
∥
T

≤ C |v̂T |Û k
T
.

Moreover, invoking the same arguments as above implies that
∥
∥
∥
∥η

1
2
∂T S

k
∂T (v̂T )

∥
∥
∥
∥

∂T
≤ |v̂T |Û k

T
+

∥
∥
∥
∥η

1
2
∂Tπk

∂T

(
Rk+1
T (v̂T ) − π0

T

(
Rk+1
T (v̂T )

))∥
∥
∥
∥

∂T

≤ |v̂T |Û k
T

+ C ′
∥
∥
∥∇Rk+1

T (v̂T )

∥
∥
∥
T

,

and since we have already proved that ‖∇Rk+1
T (v̂T )‖T ≤ C |v̂T |Û k

T
, this concludes the proof.

��
We define the local reduction operator Î kT : H1(T ) → Û k

T such that, for all v ∈ H1(T ),

Î kT (v) :=
(
π0
T (v), πk

∂T (v)
)

∈ Û k
T . (14)

Then, Rk+1
T ◦ Î kT : H1(T ) → P

k+1(T ) acts as an approximation operator.
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Lemma 3 (Approximation) Let s ≥ 0 and set t := min(k, s). There is C, uniform with
respect to T and h, so that, for any v ∈ Hs+2(T ), the following holds true:

∥
∥
∥v − Rk+1

T

(
Î kT (v)

)∥
∥
∥
T

+ h
1
2
T

∥
∥
∥v − Rk+1

T

(
Î kT (v)

)∥
∥
∥

∂T
+ hT

∥
∥
∥∇

(
v − Rk+1

T

(
Î kT (v)

))∥
∥
∥
T

+h
3
2
T

∥
∥
∥∇

(
v − Rk+1

T

(
Î kT (v)

))∥
∥
∥

∂T
≤ Cht+2

T |v|Ht+2(T ). (15)

Moreover, we have ∥
∥
∥
∥η

1
2
∂T S

k
∂T

(
Î kT (v)

)∥
∥
∥
∥

∂T
≤ Cht+1

T |v|Ht+2(T ). (16)

Proof The proof of (15) is similar to [22, Lemma 3] (up to minor adaptations due to the
different polynomial degrees for the face and the cell unknowns). The key observation is
that (∇(v − Rk

T ( Î kT (v))),∇w)T = 0 for all w ∈ P
k+1(T ), so that ‖∇(v − Rk

T Î
k
T (v)))‖T =

infw∈Pk+1(T ) ‖∇(v − w)‖T . Concerning (16), we have

Sk∂T

(
Î kT (v)

)
= πk

∂T

(
v − Rk+1

T

(
Î kT (v)

))
− π0

T

(
v − Rk+1

T

(
Î kT (v)

))

|∂T .

Therefore, proceeding as in [22, Eq. (45)], we use the triangle inequality, the stability of the
L2-projectors, that η∂T is piecewise constant, and the regularity of the mesh sequence to infer
that

∥
∥
∥
∥η

1
2
∂T S

k
∂T

(
Î kT (v)

)∥
∥
∥
∥

∂T

≤
∥
∥
∥
∥η

1
2
∂Tπk

∂T

(
v−Rk+1

T

(
Î kT (v)

))∥
∥
∥
∥

∂T
+

∥
∥
∥
∥η

1
2
∂Tπ0

T

(
v−Rk+1

T

(
Î kT (v)

))∥
∥
∥
∥

∂T

≤
∥
∥
∥
∥η

1
2
∂T

(
v − Rk+1

T

(
Î kT (v)

))∥
∥
∥
∥

∂T
+ Ch−1

T

∥
∥
∥π0

T

(
v − Rk+1

T

(
Î kT (v)

))∥
∥
∥
T

≤ C ′h−1
T

(

h
1
2
T

∥
∥
∥v − Rk+1

T

(
Î kT (v)

)∥
∥
∥

∂T
+

∥
∥
∥v − Rk+1

T

(
Î kT (v)

)∥
∥
∥
T

)

,

and we conclude by invoking (15). ��

3.3 Discrete Elliptic Obstacle Problem

The global discrete space is defined by

Û k
h :=

⎛

⎝
∏

T∈Th

P
0(T )

⎞

⎠ ×
⎛

⎝
∏

F∈Fh

P
k(F)

⎞

⎠ . (17)

We use the notation v̂h = (
(vT )T∈Th , (vF )F∈Fh

)
to denote a generic element v̂h ∈ Û k

h . For

all T ∈ Th , we denote by v̂T = (vT , (vF )F∈FT ) ∈ Û k
T the components of v̂h attached to the

mesh cell T and the faces composing its boundary. We define the global reduction operator
Î kh : H1(D) → Û k

h such that, for all v ∈ H1(D),

Î kh (v) :=
(

(
π0
T (v)

)
T∈Th

,
(
πk
F (v)

)

F∈Fh

)

. (18)

Note that Î kh (v) is well-defined since v is single-valued at all the internal faces of the mesh.
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The global discrete bilinear form ah on Û k
h × Û k

h is defined by

ah(ŵh, v̂h) :=
∑

T∈Th

aT (ŵT , v̂T ) +
∑

F∈Fb
h

abF
(
ŵT (F), v̂T (F)

)
, (19)

with the Nitsche-type boundary penalty bilinear form [36] such that

abF
(
ŵT (F), v̂T (F)

) := −
(
∇Rk+1

T (F)

(
ŵT (F)

) · nD, vF

)

F
−

(
wF ,∇Rk+1

T (F)

(
v̂T (F)

) · nD

)

F

+ ςh−1
F (wF , vF )F , (20)

where ς > 0 is the boundary penalty parameter, nD is the unit outward normal to D, and
where we recall that T (F) is the unique mesh cell such that F = ∂T (F) ∩ ∂D ∩ HF for
every boundary face F ∈ Fb

h supported in the hyperplane HF (see Sect. 3.1). The linear form

�h on Û k
h is defined by

�h(v̂h) :=
∑

T∈Th

( f , vT )T +
∑

F∈Fb
h

�bF
(
v̂T (F)

)
, (21)

with
�bF

(
v̂T (F)

) := −
(
g,∇Rk+1

T (F)

(
v̂T (F)

) · nD

)

F
+ ςh−1

F (g, vF )F . (22)

We refer the reader to [14] for HHO methods combined with Nitsche’s boundary penalty
method applied to Dirichlet and nonlinear Signorini boundary conditions.

Remark 1 (Dirichlet boundary conditions) Alternatively, one can also enforce Dirichlet
boundary conditions strongly by setting the discrete unknowns attached to the boundary
faces of the mesh equal to the L2-projection of the Dirichlet data onto P

k
d−1(F) for all

F ∈ Fb
h and zeroing out the discrete test functions attached to the boundary faces of the

mesh. In this case, the contribution of abF is dropped from the right-hand side of (19) and
that of �bF is dropped from the right-hand side of (21).

The discrete admissible set K̂k
h is defined by

K̂k
h :=

{
v̂h ∈ Û k

h | (vT , 1)T ≥ (χ, 1)T , ∀T ∈ Th
}

. (23)

Notice that the constraint is enforced on the cell unknowns. The discrete elliptic obstacle
problem consists of finding ûh ∈ K̂k

h such that

ah(ûh, v̂h − ûh) ≥ �h(v̂h − ûh) ∀v̂h ∈ K̂k
h . (24)

Equivalently, ûh minimizes over K̂k
h the discrete functional 1

2ah(v̂h, v̂h) − �h(v̂h). In order
to establish the well-posedness of the discrete problem (24), we study the coercivity and
boundedness of the discrete bilinear form ah on Û k

h × Û k
h . To this purpose, we equip the

space Û k
h with the following norm:

‖v̂h‖2Û k
h

:=
∑

T∈Th

|v̂T |2
Û k
T

+
∑

F∈Fb
h

h−1
F ‖vF‖2F . (25)

Lemma 4 (Coercivity and boundedness)Assume that the boundary penalty parameter is such
that ς > 1

4N∂C2
tr , where N∂ is defined by (6) and Ctr by (7). Then, there exists two positive

constants α and ξ , uniform with respect to h, such that, for all v̂h, ŵh ∈ Û k
h ,

ah(v̂h, v̂h) ≥ α‖v̂h‖2Û k
h
, (26a)
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|ah(v̂h, v̂h)| ≤ ξ‖ŵh‖Û k
h
‖ŵh‖Û k

h
. (26b)

Proof The coercivity property (26a) follows from the left bound in (13) and classical tech-
niques for Nitsche’s boundary penalty method, see, for example, [19, Lemma 4.12] in the
context of discontinuous Galerkin methods and [23, Lemma 7] in the context of HHO meth-
ods. The boundedness property (26b) follows from the Cauchy–Schwarz inequality, the right
bound in (13), and by invoking the discrete trace inequality (7) to bound the first two terms
composing abh . ��

Corollary 1 (Well-posedness) Assume that ς > 1
4N∂C2

tr . There exists a unique ûh ∈ K̂k
h

solving the discrete elliptic obstacle problem (24).

Proof The discrete admissible set K̂k
h is nonempty since Î kh (u) ∈ K̂k

h . Moreover, K̂k
h is a

closed convex subset of Û k
h . We can then invoke the Browder–Stampacchia lemma together

with coercivity and boundedness (see Lemma 4) to conclude. ��

4 Error Analysis

In this section, we state and prove our main result, that is, an energy-error estimate for the
HHOmethodwith k ∈ {0, 1}. The estimate is optimal up to the regularity of the exact solution
if k = 1, whereas if k = 0, the estimate is still optimal concerning the differentiability index
of the exact solution, but requires a somewhat stronger assumption on the integrability index
sincewe essentially require that u ∈ W 2,p(D)with p large enough instead of just u ∈ H2(D)

(see also Remark 2 below).

Theorem 1 (Energy-error estimate) Let u be the exact solution solving (3) and let ûh be the
discrete solution solving (24). Let Î kh be the global reduction operator defined by (18). If

k = 1, let ε ∈ (0, 1
2 ], set r = 3

2 − ε, and assume that u ∈ H1+r (D) = H
5
2−ε(D), (u −χ) ∈

W 2+ 1
p − ε

2 ,p
(D) with p = 2(d−1)

ε
∈ (1,∞), and λ := − f − Δu ∈ W 1−ε,1(D). If k = 0, set

r = 1, let τ ∈ (0, 1), and assume that u ∈ H1+r (D) = H2(D), (u − χ) ∈ W 2,p(D) with
p = d

τ
∈ (1,∞), and λ := − f − Δu ∈ W τ,1(D). Then, there is C, uniform with respect to

h, such that the following holds true:
∥
∥
∥ Î kh (u) − ûh

∥
∥
∥
Û k
h

≤ C
(|u|H1+r (D) + Φu,λ

)
hr , (27)

where

Φu,λ =

⎧
⎪⎨

⎪⎩

‖u − χ‖
1
2

W
2+ 1

p − ε
2 ,p

(D)

|λ|
1
2
W 1−ε,1(D)

if k = 1,

‖u − χ‖
1
2
W 2,p(D)

|λ|
1
2
W τ,1(D)

if k = 0.
(28)

Moreover, we also have

⎛

⎜
⎝

∑

T∈Th

∥
∥
∥∇(u − Rk+1

T (ûT ))

∥
∥
∥
2

T
+

∑

F∈Fb
h

h−1
F ‖u − uF‖2F

⎞

⎟
⎠

1
2

≤ C
(|u|H1+r (D) + Φu,λ

)
hr . (29)
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Proof Let us set v̂h := Î kh (u) − ûh ∈ Û k
h . Using the discrete coercivity property (26a) and

the discrete variational inequality (24) together with Î kh (u) ∈ K̂k
h , we find that

α

∥
∥
∥ Î kh (u) − ûh

∥
∥
∥
2

Û k
h

≤ ah
(
Î kh (u) − ûh, Î

k
h (u) − ûh

)

≤ ah
(
Î kh (u), Î kh (u) − ûh

)
− �h

(
Î kh (u) − ûh

)

= ah
(
Î kh (u), v̂h

)
− �h(v̂h)

= ah
(
Î kh (u), v̂h

)
+

∑

T∈Th

(Δu, vT )T −
∑

F∈Fb
h

�bF
(
v̂T (F)

)

+
∑

T∈Th

(
λ, π0

T (u) − uT
)
T ,

where we used λ = − f − Δu and that the cell component of v̂h attached to T ∈ Th is
vT = π0

T (u) − uT . Let us define T n
h := {T ∈ Th | u > χ on T } (collecting the non-contact

cells), T c
h := {T ∈ Th | u ≡ χ on T } (collecting the contact cells), and T f

h := Th\(T n
h ∪T c

h )

(collecting the free-boundary cells). Note that λ ≡ 0 on any T ∈ T n
h owing to (5b). Therefore,

we have
∑

T∈Th

(
λ, π0

T (u) − uT
)
T =

∑

T∈T c
h

(
λ, π0

T (u) − uT
)
T +

∑

T∈T f
h

(
λ, π0

T (u) − uT
)
T .

Moreover, for all T ∈ T c
h , we have π0

T (u) = π0
T (χ), and hence

(
λ, π0

T (u) − uT
)
T = (

λ, π0
T (χ) − uT

)
T ≤ 0,

recalling that uT ≥ π0
T (χ) since ûh ∈ K̂k

h and that λ ≥ 0 on D owing to (5a). As a result,
we have

α

∥
∥
∥ Î kh (u) − ûh

∥
∥
∥
2

Û k
h

≤ ah
(
Î kh (u), v̂h

)
+

∑

T∈Th

(Δu, vT )T −
∑

F∈Fb
h

�bF
(
v̂T (F)

)

+
∑

T∈T f
h

(
λ, π0

T (u) − uT
)
T .

The first three terms on the right hand side are estimated in Lemma 5 below, and the last term
is estimated in Lemma 6 below. This readily lead to (27). Finally, the bound (29) follows
from (27) by invoking the rightmost bound in (13), the triangle inequality, and the bound (15)
on ∇(u − Rk+1

T ( Î kT (u))) with s = t = 1
2 − ε ≥ 0 if k = 1 and s = t = 0 if k = 0. ��

Remark 2 (Regularity for k = 0) The regularity requirement u ∈ W 2,p(D) with p = d
τ

introduced in Theorem 1 for k = 0 can be reduced to u ∈ H2(D) provided one uses a HHO
method with cell unknowns of degree one on simplicial meshes and one enforces the obstacle
constraint on the cell unknowns with respect to the linear Lagrange interpolate of the obstacle
function. Details are omitted for brevity.

Lemma 5 (Consistency error on differential operator) Let r be as in Theorem 1 and assume
that the exact solution u is in H1+r (Ω). There is C, uniform with respect to h, such that the
following holds true for all v̂h ∈ Û k

h :
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∣
∣
∣
∣
∣
∣
∣

ah
(
Î kh (u), v̂h

)
+

∑

T∈Th

(Δu, vT )T −
∑

F∈Fb
h

�bF
(
v̂T (F)

)

∣
∣
∣
∣
∣
∣
∣

≤ Chr |u|H1+r (Ω)‖v̂h‖Û k
h
.

Proof The proof follows along the lines of [23, Sect. 6.2]; we sketch it for completeness.
Re-organizing the various terms, we have

ah
(
Î kh (u), v̂h

)
+

∑

T∈Th

(Δu, vT )T −
∑

F∈Fb
h

�bF
(
v̂T (F)

) = A1 + A2 + A3,

where

A1 =
∑

T∈Th

(
∇Rk+1

T

(
Î kT (u)

)
,∇Rk+1

T (v̂T )
)

T
+ (Δu, vT )T

−
∑

F∈Fb
h

(
∇Rk+1

T (F)

(
Î kT (F)(u)

)
· nD, vF

)

F
,

A2 =
∑

T∈Th

(
η∂T S

k
∂T

(
Î kT (u)

)
, Sk∂T (v̂T )

)

∂T
,

A3 =
∑

F∈Fb
h

−
(
πk
F (u) − g,∇Rk+1

T (F)

(
v̂T (F)

) · nD

)

F
+ ςh−1

F

(
πk
F (u) − g, vF

)

F
.

Using the definition of Rk+1
T , integrating by parts the term (Δu, vT )T , and since the normal

component of ∇u is single-valued across the mesh internal faces, we infer that

A1 =
∑

T∈Th

(
∇

(
u − Rk+1

T

(
Î kT (u)

))
· nT , v∂T − vT

)

∂T

+
∑

F∈Fb
h

(
∇

(
u − Rk+1

T (F)

(
Î kT (F)(u)

))
· nD, vF

)

F
.

We can now use the bound (15) on (u − Rk+1
T ( Î kT (u))) where we set s = r − 1 so that t =

min(k, s) = s = r−1whether k = 1 or k = 0.Using theCauchy–Schwarz inequality and the
definition of the‖·‖Û k

h
-norm,we thenobtain that |A1| ≤ Chr |u|H1+r (Ω)‖v̂h‖Û k

h
. Furthermore,

since ‖η
1
2
∂T S

k
∂T (v̂T )‖∂T ≤ C |v̂T |Û k

T
for all T ∈ Th , the Cauchy–Schwarz inequality and the

bound (16) on ‖η
1
2
∂T S

k
∂T ( Î kT (u))‖∂T imply that |A2| ≤ Chr |u|H1+r (Ω)‖v̂h‖Û k

h
. Finally, since

∇Rk+1
T (F)(v̂T (F)) · nD and vF are polynomials of order at most k on F , we have A3 = 0. ��

Lemma 6 (Consistency error on Lagrange multiplier) Let p and Φu,λ be as in Theorem 1.
There is C, uniform with respect to h, such that the following holds true:

∑

T∈T f
h

(
λ, π0

T (u) − uT
)
T ≤ CΦu,λh

r .

Proof Let T ∈ T f
h . Since (5c) implies that (λ, u − χ)T = 0, we infer that

(
λ, π0

T (u) − uT
)
T = (

λ, π0
T (u) − u + χ − π0

T (χ) + π0
T (χ) − uT

)
T .
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Since (λ, π0
T (χ) − uT )T ≤ 0, we obtain

(
λ, π0

T (u) − uT
)
T ≤ (

λ, π0
T (u − χ) − (u − χ)

)
T

= (
λ − π0

T (λ), π0
T (u − χ) − (u − χ)

)
T

≤ ∥
∥λ − π0

T (λ)
∥
∥
L1(T )

∥
∥(u − χ) − π0

T (u − χ)
∥
∥
L∞(T )

. (30)

(1) The case k = 1. The approximation properties of π0
T imply that

∥
∥λ − π0

T (λ)
∥
∥
L1(T )

≤ Ch1−ε
T |λ|W 1−ε,1(T ). (31)

Furthermore, we also have
∥
∥(u − χ) − π0

T (u − χ)
∥
∥
L∞(T )

≤ ChT |u − χ |W 1,∞(T ). (32)

The definition of p implies that α := 1− d−1
p − ε

2 = 1−ε > 0.Moreover, by assumption, we

have (u−χ) ∈ W 2+ 1
p − ε

2 ,p
(D), so that∇(u−χ) ∈ Ws,p(D;Rd)with s := 1+ 1

p − ε
2 . Since

1− d
sp ≥ 1− ε = α as can be verified by a direct calculation using that ε ∈ (0, 1

2 ] (actually
d
sp = ε if d = 2), the Sobolev Embedding Theorem implies that∇(u−χ) ∈ C0,α(D). Since

T ∈ T f
h , there is a point x

∗ ∈ T such that ∇(u − χ)(x∗) = 0 [39] and hence, for any x ∈ T ,
we have

|∇(u − χ)(x)| ≤ C |x − x∗|α‖u − χ‖
W

2+ 1
p − ε

2 ,p
(D)

≤ Chα
T ‖u − χ‖

W
2+ 1

p − ε
2 ,p

(D)
.

Therefore, we have

|u − χ |W 1,∞(T ) ≤ Chα
T ‖u − χ‖

W
2+ 1

p − ε
2 ,p

(D)
. (33)

Using (33) in (32), we obtain
∥
∥(u − χ) − π0

T (u − χ)
∥
∥
L∞(T )

≤ Ch1+α
T ‖u − χ‖

W
2+ 1

p − ε
2 ,p

(D)
. (34)

Substituting (31) and (34) in (30) and summing over all T ∈ T f
h , we find that

∑

T∈T f
h

(
λ, π0

T (u) − uT
)
T ≤ Ch2+α−ε‖u − χ‖

W
2+ 1

p − ε
2 ,p

(D)

∑

T∈T f
h

|λ|W 1−ε,1(T )

≤ Ch3−2ε‖u − χ‖
W

2+ 1
p − ε

2 ,p
(D)

|λ|W 1−ε,1(D) = Ch3−2εΦ2
u,λ,

since 2 + α − ε = 3 − d−1
p − 3ε

2 = 3 − 2ε and where we used the definition (28) of Φu,λ

for k = 1. This completes the proof for k = 1.
(2) The case k = 0. Using the approximation properties of π0

T , we have
∥
∥λ − π0

T (λ)
∥
∥
L1(T )

≤ Chτ
T |λ|W τ,1(T ), (35)

and we also have
∥
∥(u − χ) − π0

T (u − χ)
∥
∥
L∞(T )

≤ ChT |u − χ |W 1,∞(T ).
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Since τ ∈ (0, 1) and p = d
τ
, we have γ := 1− d

p = 1−τ > 0.Moreover, by assumption, we

have (u − χ) ∈ W 2,p(D). Then, the Sobolev Embedding Theorem implies that ∇(u − χ) ∈
C0,γ (D). Proceeding as above for k = 1, we infer that

∥
∥(u − χ) − π0

T (u − χ)
∥
∥
L∞(T )

≤ Ch1+γ

T ‖u − χ‖W 2,p(D). (36)

Using (35) and (36) in (30) and summing over all T ∈ T f
h , we find that

∑

T∈T f
h

(
λ, π0

T (u) − uT
)
T ≤ Ch1+γ+τ‖u − χ‖W 2,p(D)

∑

T∈T f
h

|λ|W τ,1(T )

≤ Ch2‖u − χ‖W 2,p(D)|λ|W τ,1(D) = Ch2Φ2
u,λ,

since 1+ γ + τ = 2 − d
p + τ = 2 and where we used the definition (28) of Φu,λ for k = 0.

This completes the proof for k = 0. ��

5 Numerical Experiments

In this section, we briefly review some implementation aspects of the present HHO method
applied to elliptic obstacle problems, and we illustrate the above theoretical results on two-
and three-dimensional test cases from [37].

5.1 Implementation Aspects

We consider Dirichlet boundary conditions enforced strongly and enforced via Nitsche’s
method. Implementing Dirichlet conditions strongly leads to a linear system with slightly
less degrees of freedom at a cost of a sligtly more complex assembly procedure, whereas
Nitsche’s method allows one to avoid manipulating the global matrix in order to remove
the rows/columns corresponding to the Dirichlet faces. In the case where strong boundary
conditions are used, the standard HHO matrix associated with the bilinear form

ah(ŵh, v̂h) =
∑

T∈Th

aT (ŵT , v̂T ) (37)

is denoted A ∈ R
Nk
h×Nk

h with Nk
h := |Th | + (k+d−1

d−1

)|F i
h | (recall that the cell unknowns are

constant in each mesh cell), and the load vector associated with the linear form �h(v̂h) =
∑

T∈Th
( f , vT )T is denoted b ∈ R

Nk
h . For any vector α ∈ R

Nk
h , we denote αT ∈ R its

components attached to the mesh cell T ∈ Th and (αF,n)0≤n<(k+d−1
d−1 ) its components attached

to the internal face F ∈ F i
h of the mesh.

The numerical solution of the discrete elliptic obstacle problem (24) is based on the
primal-dual active set method (see [33]). Let m ≥ 0 be the iteration counter. For all m ≥ 0,

we are looking for the solution vector αm ∈ R
Nk
h and the Lagrange multiplier vector βm ∈

R
Nk
h (note that βm is actually a discrete counterpart of the function −λ considered in the

previous section). Since the constraint is enforced on the cell unknowns, the components of β
attached to the internal faces of the mesh are always zero. Moreover, since the cell unknowns
are constant in each mesh cell, the primal-dual active set method leads to a partition of
the mesh cells into active and inactive ones; specifically, we consider the subsets T m

A :=
{T ∈ Th | βm

T + c(αm
T − γT ) < 0} and T m

I := T \T m
A , where c > 0 is a numerical
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Fig. 1 Isocontours of the 2D
exact solution obtained on one of
the hexagonal meshes

weighting parameter and γT = 1
|T |

∫
T χ for all T ∈ Th . For all m ≥ 1, given the pair

(αm−1,βm−1) ∈ R
Nk
h × R

Nk
h and the resulting partition (T m−1

A , T m−1
I ) of Th , we solve the

following (nonsymmetric) linear system:
⎧
⎨

⎩

Aαm + βm = b
αm
T = γT ∀T ∈ T m−1

A ,

βm
T = 0, ∀T ∈ T m−1

I .

(38)

The iteration is started with α0 = 0, β0
T = −1 for all T ∈ Th , and the stopping criterion is

‖αm+1 − αm‖
�2(R

Nk
h )

< 10−6. The weighting parameter is set to c = 1. The above linear

system is solved using the PARDISO direct linear solver included in the Intel MKL library.
For further insight into the implementation of HHO methods, the reader is referred to [15].
The open-source template library DiSk++ is available at https://github.com/wareHHOuse/
diskpp (see tag papers/obstacle).

5.2 2D and 3DTest Cases

In 2D, we consider the square domain Ω = (−1, 1)2 and the obstacle function χ = 0. We
prescribe a contact radius r0 = 0.7 and, setting r2 = x2 + y2, we take the load function

f (x, y) :=
{

−4
(
4r2 − 2r20

)
if r > r0,

−8r20
(
1 − r2 + r20

)
if r ≤ r0.

(39)

It can be shown that the exact solution solving (3) is u(x, y) = max(r2−r20 , 0)2. Isocontours
of the exact solution obtained using one of the hexagonal meshes from our tests are displayed
in Fig. 1. In 3D, we consider the cubic domain Ω = (0, 1)3 and the obstacle function χ = 0.
We prescribe again a contact radius r0 = 0.7 and, setting r2 = x2 + y2 + z2, we take the
load function

f (x, y, z) :=
{

−4
(
5r2 − 3r20

)
if r > r0,

−8r20
(
1 − r2 + r20

)
if r ≤ r0,

(40)

so that the exact solution solving (3) is u(x, y, z) = max(r2 − r20 , 0)2.
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Table 1 Errors and convergence rates on triangular meshes, with both strong and Nitsche-based boundary
conditions

h k = 0 k = 1
Strong Rate Nitsche Rate Strong Rate Nitsche Rate

4.59e−1 2.13e+0 – 2.15e+0 – 2.00e−1 – 2.00e−1 –

2.29e−1 1.16e+0 0.86 1.16e+0 0.88 5.11e−2 1.97 5.10e−2 1.97

1.14e−1 5.90e−1 0.98 5.90e−1 0.98 1.52e−2 1.75 1.52e−2 1.75

5.74e−2 2.96e−1 0.99 2.96e−1 0.99 5.27e−3 1.53 5.27e−3 1.53

2.87e−2 1.48e−1 0.99 1.48e−1 0.99 1.78e−3 1.56 1.78e−3 1.56

Table 2 Errors and convergence rates on square Cartesian meshes, with both strong and Nitsche-based bound-
ary conditions

h k = 0 k = 1
Strong Rate Nitsche Rate Strong Rate Nitsche Rate

3.53e−1 1.90e+0 – 1.91e+0 – 1.74e−1 – 1.75e−1 –

1.76e−1 1.02e+0 0.84 1.02e+0 0.90 5.23e−2 1.74 5.23e−2 1.74

8.83e−2 5.17e−1 0.98 5.17e−1 0.98 1.54e−2 1.76 1.54e−2 1.76

4.41e−2 2.59e−1 0.99 2.59e−1 0.99 4.84e−3 1.67 4.84e−3 1.67

2.21e−2 1.29e−1 0.99 1.29e−1 0.99 1.56e−3 1.63 1.56e−3 1.63

Table 3 Errors and convergence rates on hexagonal meshes, with both strong and Nitsche-based boundary
conditions

h k = 0 k = 1
Strong Rate Nitsche Rate Strong Rate Nitsche Rate

6.69e−1 2.47e+0 – 2.51e+0 – 4.97e−1 – 4.83e−1 –

3.51e−1 1.51e+0 0.75 1.51e+0 0.78 1.40e−1 1.97 1.39e−1 1.93

1.81e−1 7.96e−1 0.97 7.96e−1 0.97 3.91e−2 1.92 3.90e−2 1.92

9.21e−2 4.06e−1 0.99 4.05e−1 0.99 1.21e−2 1.73 1.21e−2 1.73

4.64e−2 2.04e−1 1.00 2.04e−1 1.00 3.91e−3 1.65 3.91e−3 1.65

Table 4 Errors and convergence rates on tetrahedral meshes, with both strong and Nitsche-based boundary
conditions

h k = 0 k = 1
Strong Rate Nitsche Rate Strong Rate Nitsche Rate

2.19e−1 7.27e−1 – 7.26e−1 – 2.90e−2 – 2.84e−2 –

1.76e−1 5.81e−1 1.02 5.81e−1 1.02 1.92e−2 1.88 1.88e−2 1.89

1.39e−1 4.61e−1 0.98 4.61e−1 0.98 1.25e−2 1.81 1.21e−2 1.86

1.11e−1 3.68e−1 0.98 3.68e−1 0.98 8.14e−3 1.91 7.88e−3 1.91

8.82e−2 2.92e−1 1.00 2.92e−1 1.00 5.33e−3 1.85 5.12e−3 1.87
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Table 5 Errors and convergence rates on cubicCartesianmeshes,with both strong andNitsche-based boundary
conditions

h k = 0 k = 1
Strong Rate Nitsche Rate Strong Rate Nitsche Rate

4.33e−1 1.86e+0 – 1.87e+0 – 1.56e−1 – 1.56e−1 –

2.16e−1 9.65e−1 0.95 9.65e−1 0.95 4.42e−2 1.83 4.41e−2 1.83

1.08e−1 4.88e−1 0.98 4.88e−1 0.98 1.17e−2 1.91 1.17e−2 1.91

5.41e−2 2.45e−1 0.99 2.45e−1 0.99 3.24e−3 1.85 3.24e−3 1.85

Table 6 Errors and convergence rates on hexagonal-based-prismatic meshes, with both strong and Nitsche-
based boundary conditions

h k = 0 k = 1
Strong Rate Nitsche Rate Strong Rate Nitsche Rate

1.83e−1 7.63e−1 – 7.63e−1 – 2.99e−2 – 2.99e−2 –

9.71e−2 3.93e−1 1.04 3.93e−1 1.04 8.77e−3 1.92 8.77e−3 1.92

6.59e−2 2.65e−1 1.02 2.65e−1 1.01 4.17e−3 1.91 4.17e−3 1.91

4.98e−2 2.00e−1 1.01 2.00e−1 1.01 2.45e−3 1.90 2.45e−3 1.90
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Fig. 2 Summary of the convergence results for the 2D (top) and 3D (bottom) test cases, with both strong (left)
and Nitsche-based boundary conditions (right). The mesh size is on the horizontal axis, and the energy error
on the vertical axis. Solid lines (green color) show the results for k = 0, and dashed lines (red color) for k = 1
(Color figure online)
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The computations are run on six types of mesh sequences. In 2D, we consider triangular,
square Cartesian, and hexagonal mesh sequences, whereas in 3D, we consider tetrahedral,
cubic Cartesian, and hexagonal-based-prismatic mesh sequences (this last mesh sequence
corresponds to the set “F” of the FVCA6 benchmark [27]). Each mesh sequence is generated
by successive uniform refinements from an initial coarse mesh; for the meshes involving
hexagons, the process is performed on an underlying simplicial mesh and the hexagons
are then created by agglomeration. The energy errors and convergence orders are reported
in Tables 1, 2 and 3 for triangular, square Cartesian, hexagonal mesh sequences (2D) and
in Tables 4, 5 and 6 for tetrahedral, cubic Cartesian, and hexagonal-based-prismatic mesh
sequences (3D). A summary of the results is presented in Fig. 2. In all cases, we observe that
the reported results match the theoretical predictions from the analysis. Moreover, there is
practically no difference in terms of error when strong or Nitsche-based boundary conditions
are used. In the latter case, we used the value ς = 100 for the penalty parameter (there is no
appreciable difference in the errors between ς = 50 and ς = 100).
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