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Abstract
In this paper, we study a mixed discontinuous Galerkin (MDG) method to solve linear
elasticity problem with arbitrary order discontinuous finite element spaces in d-dimension
(d = 2, 3). This method uses polynomials of degree k + 1 for the stress and of degree k for
the displacement (k ≥ 0). The mixed DG scheme is proved to be well-posed under proper
norms. Specifically, we prove that, for any k ≥ 0, the H(div)-like error estimate for the stress
and L2 error estimate for the displacement are optimal. We further establish the optimal L2

error estimate for the stress provided that thePk+2−P−1
k+1 Stokes pair is stable and k ≥ d .We

also provide numerical results of MDG showing that the orders of convergence are actually
sharp.
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1 Introduction

In this paper, we present a mixed discontinuous Galerkin (MDG) method for the following
linear elasticity problem:

⎧
⎪⎨

⎪⎩

Aσ − ε(u) = 0 in �,

divσ = f in �,

u = 0 on ∂�,

(1.1)

where u : � �→ R
d and σ : � �→ S, denote displacement and stress, respectively. Here, S

represents the space of real symmetric matrices of order d × d . The tensor A : S �→ S is
assumed to be bounded and symmetric positive definite, and the linearized strain tensor is
denoted by ε(u) = (∇u + (∇u)t )/2.

For the mixed methods for linear elasticity problem (1.1), it is very challenging to develop
the stable mixed finite element methods because the stress tensor needs to be symmetric
according to the principle of conservation of angular momentum (cf. [3,7]). One approach to
circumvent this difficulty is to introduce the antisymmetric part of ∇u as a new variable, and
hence, to enforce stress symmetry weakly [2,6,11,23,27,30,39]. Another approach is to use
the composite element for the stress [5,37]. The first stable non-composite conformingmixed
finite element method for plane elasticity was proposed by Arnold and Winther in 2002 [7],
and analogs of the results in the 3D case were reported in [1,3]. In this class of elements, the
displacement is discretized by discontinuous piecewise P−1

k (k ≥ 1) polynomial, while the
stress is discretized by the conforming Pk+2 tensors whose divergence is Pk vector on each
triangle. In recent years, Hu and Zhang [33,35] and Hu [34] proposed a family of conforming
mixed elements for Rd that apply the Pk+1 − Pk pair for the stress and displacement when
k ≥ d . These elements also admit a unified theory and a relatively easy implementation. The
lower order conforming approximations of stress were also considered in [36], and a simpler
stress element with jump stabilization term for the displacement [20].

Because of the lack of suitable conformingmixed elasticity elements, several authors have
resorted to the nonconforming elements [4,8,29], where the optimal convergence order for the
displacement can be proved under the full elliptic regularity assumption but the convergence
order of L2 error for stress is still suboptimal. To improve the convergence order for stress,
an interior penalty mixed finite element method using Crouzeix–Raviart nonconforming
linear element to approximate each component of the symmetric stress was studied in [18].
In [44], Wu, Gong, and Xu proposed two classes of interior penalty mixed finite elements for
linear elasticity of arbitrary order in arbitrary dimension, where the stability is guaranteed
by introducing the nonconforming face-bubble spaces based on the local decomposition of
discrete symmetric tensors.

Discontinuous Galerkin (DG) methods have been applied to solve various differential
equations due to their flexibility in constructing feasible local shape function spaces and the
advantage to capture non-smooth or oscillatory solutions effectively. The DG methods are
attracting the interest of many applied mathematicians and engineers because they discretize
the equations in an element-by-element fashion, and glue each element through numerical
traces, which can give rise to locally conservative methods. In Arnold et al. [9] proposed a
unified framework for the devising and analysis ofmost DGmethods for second-order elliptic
equations. The LDG method, which is introduced in [25], is one of several discontinuous
Galerkin methods which are being vigorously studied [9,19,22,24]. As proposed in [19, Equ.
(2.4)], the numerical traces for second-order elliptic equations have the general expressions as
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p̂ = { p} − C11�u� − C12[ p],
û = {u} + C12 · �u� − C22[ p],

where u and p are the approximations of primal variable and flux, respectively. In most liter-
ature, the parameter C22 is taken as 0 or O(h) so that the resulting scheme is of the category
of primal DG method. When taking C22 as O(h−1), the penalty term on the jump of p leads
to a mixed DG scheme [32,38].

For linear elasticity problem, a primal LDGmethod was studied in [21], where the discon-
tinuousP−1

k −P−1
k+1 pairs were used to approximate the stress and displacement for k ≥ 0. In

the weak formulation, two penalty terms for stress and displacement are adopted, however,
the error analysis was only given for the case when the penalty term of the stress vanishes,
i.e. C22 = 0. The hybridizable DG discretizations for linear elasticity problem were studied
in [40,43].

In this paper,we study themixedLDGmethod for solving linear elasticity bydiscontinuous
P−1
k+1 − P−1

k finite element pairs for the stress and displacement with k ≥ 0 for any spatial
dimension in a unified fashion. We note that the stress is discretized in the DG space with
strongly imposed symmetry. Our contributions are twofold. First, by introducing a mesh-
dependent norm for the stress, we give a prior error analysis, which shows that optimal
L2-error estimate for displacement and optimal Hh(div) error estimate for stress. Second,
when thePk+2−P−1

k+1 Stokes pair is stable and k ≥ d , we prove the optimal L2 error estimate
for the stress by the BDM projection [15] and a symmetrization technique.

The rest of the paper is organized as follows. In Sect. 2, we derive the mixed DG scheme to
solve the linear elasticity problem. Then based on Brezzi theory, we prove the well-posedness
of the scheme in Sect. 3, and the optimal rates of convergence are obtained for both stress and
displacement variables in Sect. 4. In addition, the optimal L2 error estimate for the stress is
shown in Sect. 5. In Sect. 6, numerical tests are given for solving the linear elasticity problems
by the mixed LDG methods, and the numerical results verify the theoretical error analysis.
Finally, we give several concluding remarks in the last section.

2 Mixed DGMethod for Linear Elasticity Problem

In this section, we study a mixed discontinuous Galerkin method for the linear elasticity
problem (1.1), whose weak formulation reads: Find (σ , u) ∈ � × V such that

{
(Aσ , τ )� + (u, divτ )� = 0 ∀τ ∈ �,

(divσ , v)� = ( f , v)� ∀v ∈ V .
(2.1)

Here, V = L2(�;Rd) denotes the space of vector-valued functions which are square-
integrable with the L2 norm, and� = H(div,�;S) consists of square-integrable symmetric
matrix fields with square-integrable divergence, and the corresponding norm is defined by

‖τ‖2div,� := ‖τ‖20,� + ‖divτ‖20,� ∀τ ∈ H(div,�;S).

For the symmetric tensor space S, we define the inner products by σ : τ = ∑d
i, j=1 σi jτi j for

any σ , τ ∈ S. Further, we define the symmetric tensor product 	 as

u 	 v := 1

2
(u ⊗ v + v ⊗ u) ∈ S ∀u, v ∈ R

d , (2.2)

where u ⊗ v is a tensor with uiv j as its (i, j)-th entry.
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2.1 DG Notation

We introduce some notation before presenting the mixed DG scheme. Given a bounded
domain D ⊂ R

d and a positive integerm, Hm(D) is the Sobolev spacewith the corresponding
usual norm and semi-norm, which are denoted respectively by ‖ · ‖m,D and | · |m,D (cf. [13,
Chapter 1]). We abbreviate them by ‖·‖m and | · |m , respectively, when D is chosen as�. The
L2-inner product on D and ∂D are denoted by (·, ·)D and 〈·, ·〉∂D , respectively. ‖ · ‖D and
‖ · ‖∂D are the norms of Lebesgue spaces L2(D) and L2(∂D), respectively. We assume � is
a polygonal domain and denote by {Th}h a family of triangulations of �, with the minimal
angle condition satisfied. Let hK = diam(K ) and h = max{hK : K ∈ Th}. Denote by
Eh the union of the boundaries of the elements K of Th , E ih is the set of interior edges and
E∂
h = Eh\E ih is the set of boundary edges. Let e be the common edge of two elements K+

and K−, and ni = n|∂Ki be the unit outward normal vector on ∂K i with i = +,−. For any
vector-valued function v and tensor-valued function τ , let v± = v|∂K± , τ± = τ |∂K± . Then,
we define the average {·}, jump [·] and tensor jump �·� as follows:

{v} = 1

2
(v+ + v−), {τ } = 1

2
(τ+ + τ−) on e ∈ E ih,

[τ ] = τ+n+ + τ−n−, �v� = v+ 	 n+ + v− 	 n− on e ∈ E ih,
{τ } = τ , �v� = v 	 n on e ∈ E∂

h ,

where n is the outward unit normal vector on ∂�. Let us give the following identities which
are used often in this section. For any vector-valued function v and tensor-valued function
τ , all being continuously differentiable over K , we have the following integration by parts
formula:

∫

K
divτ · v dx = −

∫

K
τ : ε(v) dx +

∫

∂K
(τnK ) · v ds, (2.3)

and the following identity (cf. [21]):

∑

K∈Th

∫

∂K
(τnK ) · v ds =

∫

Eh
{τ } : �v� ds +

∫

E i
h

[τ ] · {v} ds. (2.4)

Throughout this paper, we shall use letter C to denote a generic positive constant inde-
pendent of h which may stand for different values at its different occurrences. The notation
x � y means x ≤ Cy. For piecewise smooth vector-valued function v and tensor-valued
function τ , let ∇h and divh be defined by the relation

∇hv|K = ∇v|K , divhτ |K = divτ |K ,

on any element K ∈ Th , respectively.

2.2 Mixed LDG Scheme

Now, let us introduce the mixed LDG formulation for (1.1). We denote the piecewise vector
and symmetric matrix valued discrete spaces by Vh and �h , respectively. We multiply (1.1)
by arbitrary test functions τ h ∈ �h and vh ∈ Vh , respectively, and integration by parts over
the element K ∈ Th to obtain
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

K∈Th

(Aσ , τ h)K +
∑

K∈Th

(u, divτ h)K −
∑

K∈Th

〈u, τ hnK 〉∂K = 0 ∀τ h ∈ �h,

−
∑

K∈Th

(σ , εh(vh))K +
∑

K∈Th

〈σnK , vh〉∂K =
∑

K∈Th

( f , vh)K ∀vh ∈ Vh .

(2.5)

Let V̂h and �̂h be the piecewise vector and symmetric matrix valued discrete spaces on Eh ,
respectively. The approximate solution (σ h, uh) is then defined by using theweak formulation
(2.5), namely

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

K∈Th

(Aσ h, τ h)K +
∑

K∈Th

(uh, divτ h)K −
∑

K∈Th

〈̂uh, τ hnK 〉∂K = 0 ∀τ h ∈ �h,

−
∑

K∈Th

(σ h, εh(vh))K +
∑

K∈Th

〈σ̂ hnK , vh〉∂K =
∑

K∈Th

( f , vh)K ∀vh ∈ Vh,

(2.6)

where the numerical traces ûh ∈ V̂h and σ̂ h ∈ �̂h need to be suitably defined to ensure the
stability of the method and to enhance its accuracy. By the identity (2.4) and integration by
parts (2.3), we get from (2.6) that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

�

Aσ h : τ h dx +
∫

�

uh · divhτ h dx −
∫

Eh

�ûh� : {τ h} ds −
∫

E i
h

{̂uh} · [τ h ] ds = 0 ∀τ h ∈ �h ,

∫

�

divhσ h · vh dx +
∫

Eh

{σ̂ h − σ h} : �vh� ds +
∫

E i
h

[σ̂ h − σ h ] · {vh} ds =
∫

�

f · vh dx ∀vh ∈ Vh .

(2.7)

Similar to the discussion for Poisson problem in [32], we choose mixed LDG numerical
traces as follow:

{
ûh = {uh} − η[σ h] on E ih, ûh = 0 on E∂

h ,

σ̂ h = {σ h} on Eh .
(2.8)

We note that the abovemixed LDG numerical traces are designated to approximate the mixed
formulation (2.1), where the normal continuity of σ is required. In such choice, it is easy
to see that the numerical traces are single valued. Further, we can see that if uh and σ h are
replaced by the exact solution u and σ , then ûh = u|Eh and σ̂ h = σ |Eh on Eh . That is, the
numerical traces are consistent. Moreover, we have

�̂uh� = 0, [σ̂ h] = 0, and {σ̂ h − σ h} = 0.

Then, we obtain the mixed LDG formulation for (1.1): Find (σ h, uh) ∈ �h × Vh such that
{
ah(σ h, τ h) + bh(τ h, uh) = 0 ∀τ h ∈ �h,

bh(σ h, vh) = ( f , vh)� ∀vh ∈ Vh .
(2.9)

Here, we choose η = ηeh−1
e , ηe = O(1), and define

ah(σ , τ ) =
∫

�

Aσ · τ dx +
∫

E i
h

ηeh
−1
e [σ ] · [τ ] ds ∀σ , τ ∈ �h ∪ �, (2.10a)

bh(τ , v) =
∫

�

divhτ · v dx −
∫

E i
h

[τ ] · {v} ds ∀τ ∈ �h ∪ �, v ∈ Vh ∪ V . (2.10b)
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Moreover, we define the following star norm

‖τ‖2∗,� :=
∫

�

(|τ |2 + |divhτ |2) dx +
∫

E i
h

ηeh
−1
e |[τ ]|2 ds ∀τ ∈ �h ∪ �. (2.11)

In the following subsections, we prove the boundedness, stability and consistency of the
mixed LDG formulation (2.9) when choosing

Vh = V k
h = {vh ∈ L2(�;Rd) : vh |K ∈ Pk(K ;Rd) ∀K ∈ Th},

�h = �k+1
h = {τ h ∈ L2(�;S) : τ h |K ∈ Pk+1(K ;S) ∀K ∈ Th},

(2.12)

for k ≥ 0, which lead to the optimal order of convergence. Note here that the strongly
symmetry is imposed in the DG space for the stress.

3 Well-Posedness of theMixed LDGMethod

The well-posedness of the mixed LDG methods (2.9) comes from the boundedness and the
stability.
Boundedness It is easy to check by Cauchy-Schwarz inequality that ah(·, ·) satisfies

ah(σ , τ ) � ‖σ‖∗,�‖τ‖∗,� ∀σ , τ ∈ �h ∪ �. (3.1)

The remaining task is the boundedness of bh(·, ·). To this end, let us recall the lifting operator
re : (L2(e))d → Vh defined by

∫

�

re(w) · vh dx = −
∫

e
w · {vh} ds ∀vh ∈ Vh . (3.2)

Then, we have the following lemma (see also [9,17]).

Lemma 3.1 For any edge e ∈ ∂K, it holds

‖re(w)‖0,� � h−1/2
e ‖w‖0,e. (3.3)

Proof By taking vh = re(w) in (3.2) and applying the inverse inequality, we obtain

‖re(w)‖20,� ≤ 1

2
‖w‖0,e(‖re(w)+‖0,e + ‖re(w)−‖0,e) � h−1/2

e ‖w‖0,e‖re(w)‖0,�,

which gives rise to (3.3). ��
Lemma 3.2 It holds that

bh(τ , vh) � ‖τ‖∗,�‖vh‖0,� ∀τ ∈ �h ∪ �, ∀vh ∈ Vh, (3.4)

bh(τ , v) � ‖τ‖∗,�(‖v‖0,� + h|v|1,�,h) ∀τ ∈ �h ∪ �, ∀v ∈ V ∩ H1(�;Rd). (3.5)

Proof In light of Lemma 3.1, we have for any vh ∈ Vh

bh(τ , vh) =
∫

�

⎛

⎜
⎝divhτ +

∑

e∈E i
h

re([τ ])
⎞

⎟
⎠ · vh dx

� ‖vh‖0,�
(

‖divhτ‖20,� +
∫

E i
h

h−1
e |[τ ]|2 ds

)1/2

≤ ‖vh‖0,�‖τ‖∗,�.
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Furthermore, for any v ∈ V ∩ H1(�;Rd),

bh(τ , v) ≤ ‖divhτ‖0,�‖v‖0,� +
∑

e∈E i
h

h−1/2
e ‖[τ ]‖0,eh1/2e ‖{v}‖0,e

� ‖τ‖∗,�(‖v‖0,� + h|v|1,�,h).

Here, we use the trace inequality in the last step. ��
Stability According to the theory of mixed method, the stability of the saddle point problem
(2.9) is the corollary of the following two conditions [14,16]:

1. K-ellipticity: There exists a constant C > 0, independent of the grid size such that

ah(τ h, τ h) ≥ C‖τ h‖2∗,� ∀τ h ∈ Zh, (3.6)

where Zh = {τ h ∈ �h | bh(τ h, vh) = 0 ∀vh ∈ Vh}.
2. The discrete inf-sup condition: There exists a constant C > 0, independent of the grid

size such that

inf
vh∈Vh

sup
τ h∈�h

bh(τ h, vh)

‖τ h‖∗,�‖vh‖0,� ≥ C . (3.7)

First, we prove the inf-sup condition (3.7) in the following lemma.

Lemma 3.3 (Inf-sup condition)When choosing�h×Vh = �k+1
h ×V k

h for k ≥ 0, the discrete
inf-sup condition (3.7) holds true for mixed LDG method (2.9) of linear elasticity problem.

Proof In [44], Wu, Gong, and Xu introduced a class of nonconforming finite element spaces
for k ≥ 0 that

�
(1)
k+1,h := {τ | τ |K ∈ Pk+1(K ;S) ∀K ∈ Th, and the moments of τn

up to degree k are continuous across the interior edges}.
Thanks to the Lemma 3.3 and Lemma 4.1 in [44], we know that for any vh ∈ Vh , there exists
a τ̄ h ∈ �

(1)
k+1,h such that

divτ̄ h = vh and ‖τ̄ h‖∗,� � ‖vh‖0,�. (3.8)

Note that �(1)
k+1,h ⊂ �k+1

h and the property of �
(1)
k+1,h implies that

∫

E i
h

[τ̄ h] · {vh} ds = 0 ∀vh ∈ Vh .

Here, we use the fact that {vh} is of degree k on the edge. Therefore, for any vh ∈ V k
h

sup
τ h∈�k+1

h

bh(τ h, vh)

‖τ h‖∗,�

≥ bh(τ̄ h, vh)

‖τ̄ h‖∗,�

=
∫

�
divτ̄ h · vh dx

‖τ̄ h‖∗,�

� ‖vh‖0,�.

Then, we finish the proof. ��
Theorem 3.4 The mixed LDG scheme (2.9) is well-posed for (�k+1

h , ‖ · ‖∗,�) and (V k
h , ‖ ·

‖0,�).
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Proof In light of the boundedness and Lemma 3.3, we only need to prove the K-ellipticity
(3.6). By the definition of lifting operator (3.2), we have

bh(τ h, vh) =
∫

�

⎛

⎜
⎝divhτ h +

∑

e∈E i
h

re([τ h])
⎞

⎟
⎠ · vh dx ∀vh ∈ Vh,

which implies that

Zh = {τ h ∈ �k+1
h | divhτ h +

∑

e∈E i
h

re([τ h]) = 0}.

With the help of the Lemma 3.1, we see that

‖divhτ h‖0,� = ‖
∑

e∈E i
h

re([τ h])‖0,� �
∑

e∈E i
h

h−1/2
e ‖[τ h]‖0,e ∀τ h ∈ Zh .

Let η0 = infe∈E i
h
ηe be a positive constant that independent of the grid size. Then,

ah(τ h, τ h) ≥ ‖τ h‖20,� + η0
∑

e∈E i
h

h−1
e ‖[τ h]‖20,e � ‖τ h‖2∗,� ∀τ h ∈ Zh . (3.9)

Then, we finish the proof. ��
Remark 3.5 FromLemma 3.1, we can see that the penalty term

∫

E i
h
ηeh−1

e [σ h]·[τ h] ds can be
replaced by

∑
e∈E i

h

∫

�
ηere([σ h]) · re([τ h]) dx , and the well-posedness of the corresponding

scheme can be proved similarly with a modified norm ‖τ‖2∗,� := ∫

�
(|τ |2 + |divhτ |2 +

∑
e∈E i

h
|re([τ ])|2) dx .

4 A Priori Error Estimates in Energy Norms

Lemma 4.1 Assume the solution (σ , u) ∈ � × H1(�;Rd), we have
{
ah(σ − σ h, τ h) + bh(τ h, u − uh) = 0 ∀τ h ∈ �h,

bh(σ − σ h, vh) = 0 ∀vh ∈ Vh .
(4.1)

Proof It can be seen that [σ ] = 0 and �u� = 0 on E ih as (σ , u) ∈ � ×H1(�;Rd). Therefore,

ah(σ , τ h) + bh(τ h, u) =
∫

�

Aσ : τ h dx +
∫

�

u · divhτ h dx −
∫

E i
h

{u} · [τ h] ds

=
∫

�

Aσ : τ h dx −
∫

�

ε(u) : τ h dx +
∫

Eh
�u� : {τ h} ds

=
∫

�

(Aσ − ε(u)) : τ h dx = 0.

Hence, we prove the first equality in (4.1). On the other hand,

bh(σ , vh) =
∫

�

divσ · vh dx −
∫

E i
h

[σ ] · {vh} ds =
∫

�

divσ · vh dx =
∫

�

f · vh dx,

which implies the second equality in the lemma. ��
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By combining Lemma 4.1 and the well-posedness of mixed LDG formulation (2.9), we
have the following a priori error estimates.

Theorem 4.2 Let (σ h, uh)∈ �k+1
h × V k

h be the solution of the mixed LDG problem (2.9), and
(σ , u) ∈ � × H1(�;Rd) be the solution of (1.1). Then,

‖σ − σ h‖∗,� + ‖u − uh‖0,� � inf
τ h∈�k+1

h

‖σ − τ h‖∗,�

+ inf
vh∈V k

h

(‖u − vh‖0,� + h|u − vh |1,�,h). (4.2)

Proof Define

Lh(τ h, vh; θh, wh) = ah(τ h, θh) + bh(θh, vh) + bh(τ h, wh),

which satisfies discrete inf-sup condition based on the well-posedness of (2.9). In the light of
Lemma4.1 and the boundedness (3.1), (3.4) and (3.5),we have for any (τ h, vh) ∈ �k+1

h ×V k
h ,

‖τ h − σ h‖∗,� + ‖vh − uh‖0,�
� sup

(θh ,wh)∈�k+1
h ×V k

h

Lh(τ h − σ h, vh − uh; θh, wh)

‖θh‖∗,� + ‖wh‖0,�

= sup
(θh ,wh)∈�k+1

h ×V k
h

ah(τ h − σ , θh) + bh(θh, vh − u) + bh(τ h − σ , wh)

‖θh‖∗,� + ‖wh‖0,�

� ‖τ h − σ‖∗,� + sup
θh∈�k+1

h

bh(θh, vh − u)

‖θh‖∗,�

� ‖τ h − σ‖∗,� + ‖vh − u‖0,� + h|vh − u|1,�,h .

By triangle inequality, we finish the proof. ��
For (σ , u) ∈ Hk+2(�;S) × Hk+1(�;Rd), it is well-known that the Scott-Zhang inter-

polation [42] I rh satisfies:

|σ − I rhσ |s,� � hr+1−s |σ |r+1,� 0 ≤ s ≤ r + 1 ≤ k + 2,

|u − I rh u|s,� � hr+1−s |u|r+1,� 0 ≤ s ≤ r + 1 ≤ k + 1.

Hence, we have the following theorem.

Theorem 4.3 Assume that the solution of (1.1) satisfies (σ , u)∈Hk+2(�;S)×Hk+1(�;Rd).
Then, the solution of the mixed LDG problem (2.9) satisfies

‖σ − σ h‖∗,� + ‖u − uh‖0,� � hk+1(|σ |k+2,� + |u|k+1,�). (4.3)

5 L2 Error Estimate of Stress

In this section, we prove the optimal L2 error estimate of σ provided that the Stokes pair
Pk+2 − P−1

k+1 is stable and k ≥ d .
First, we recall the definition of classical BDM projection �BDM

h [15]. Given a function
q ∈ H(div,�;Rd), the restriction of �BDM

h to K is defined as the element of Pk+1(K ;Rd)

such that
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∫

e
(�BDM

h q − q) · npk+1 ds = 0 ∀pk+1 ∈ Pk+1(e),
∫

K
(�BDM

h q − q) · ∇ pk dx = 0 ∀pk ∈ Pk(K ),

∫

K
(�BDM

h q − q) · pk+1 dx = 0 ∀pk+1 ∈ �k+1(K ),

(5.1)

where

�k+1(K ) = {v ∈ Pk+1(K ;Rd) : divv = 0, v · n|∂K = 0}.
LetM be the space of real matrices of order d × d . In light of the BDM projection (5.1), on
each K ∈ Th , we first define a matrix-valued function σ̃ h as the only element ofPk+1(K ;M)

through the numerical solution σ h and σ̂ h in (2.8):
∫

e
(σ̃ h − σ̂ h)n · pk+1 ds = 0 ∀pk+1 ∈ Pk+1(e;Rd),

∫

K
(σ̃ h − σ h) : ∇pk dx = 0 ∀pk ∈ Pk(K ;Rd),

∫

K
(σ̃ h − σ h) : pk+1 dx = 0 ∀ pk+1 ∈ �k+1(K ),

(5.2)

where

�k+1(K ) = {τ ∈ Pk+1(K ;M) : divτ = 0, τn|∂K = 0}.
Here, the ∇ is regarded as the row-wise operator, i.e.,

∇p =
⎛

⎜
⎝

(∇ p1)t

...

(∇ pd)t

⎞

⎟
⎠ , p = (p1, · · · , pd)

t .

Define the following space

BDMd×d
k+1 := {τ ∈ H(div,�;M) : τ |K ∈ Pk+1(K ;M) ∀K ∈ Th}.

Then, we have the following lemma.

Lemma 5.1 The σ̃ h in (5.2) is well-defined, and

σ̃ h ∈ BDMd×d
k+1 , (5.3a)

‖σ̃ h − σ h‖L2(K ) � h1/2K ‖(σ̂ h − σ h)n‖L2(∂K ). (5.3b)

Proof Since (5.2) can be viewed as the row-wise BDM projection, then the well-posedness
and (5.3a) follows directly by the definition of �BDM

h , and by the fact that the normal com-
ponent of the numerical trace for the flux is single-valued. Let δ = σ̃ h − σ h , then

∫

e
δn · pk+1 ds =

∫

e
(σ̂ h − σ h)n · pk+1 ds ∀pk+1 ∈ Pk+1(e;Rd),

∫

K
δ : ∇pk dx = 0 ∀pk ∈ Pk(K ;Rd),

∫

K
δ : pk+1 dx = 0 ∀ pk+1 ∈ �k+1(K ).

Then, (5.3b) follows easily by the standard scaling argument; see [12]. ��
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Next, we symmetrize σ̃ h by the stable Stokes pair Pk+2 −P−1
k+1 (see Remark 5.4 below).

A similar technique can be found in [26,28,30].

Lemma 5.2 Suppose that the Stokes pair Pk+2 − P−1
k+1 is stable on the grid Th. Having

σ̃ h defined in (5.2), there exists a matrix-valued function τ̃ h ∈ BDMd×d
k+1 such that σ 	

h :=
σ̃ h + τ̃ h ∈ H(div,�;S), and

divτ̃ h = 0 and ‖τ̃ h‖0,� � ‖σ h − σ̃ h‖0,�. (5.4)

Proof We construct a divergence-free term τ̃ h = curlρh where ρh satisfies

1. For d = 2: ρh ∈ H1(�;R2) is a vector-valued function and ρh |K ∈ Pk+2(K ;R2);
2. For d = 3: ρh ∈ H1(�;M) is a matrix-valued function and ρh |K ∈ Pk+2(K ;M).

For the 2D case, the curl operator is a rotation of the operator ∇ (i.e., curl = (−∂y, ∂x )) and
applies on each entry of the vector ρh . For the 3D case, the curl operator applies on each
row of the matrix ρh . By direct calculation, the symmetry of σ̃ h + τ̃ h is equivalent to the
following equation,

skw(curlρh) = −skwσ̃ h, (5.5)

where skwτ := (τ − τ T )/2. For a scalar function v or a vector-valued function v =
(v1, v2, v3)

T , we further define

Skw2(v) :=
[
0 v

−v 0

]

and Skw3(v) :=
⎡

⎣
0 v3 −v2

−v3 0 v1
v2 −v1 0

⎤

⎦ .

Then, the proof can be divided into the following two cases:

1. For n = 2: from [10], we have skw(curlρh) = 1
2Skw2(divρh). Thus, (5.5) can be written

as:

divρh = σ̃h,21 − σ̃h,12. (5.6)

The stability of Stokes pair Pk+2 − P−1
k+1 then implies that there exists a ρh ∈ {v ∈

H1(�;R2) : v|K ∈ Pk+2(K ;R2)} satisfying (5.6) and

‖ρh‖1,� � ‖σ̃h,21 − σ̃h,12‖0,� ≤ ‖σ̃h,21 − σh,21‖0,� + ‖σ̃h,12 − σh,12‖0,�
≤ ‖σ h − σ̃ h‖0,�.

2. For n = 3: from [10], we have skw(curlρh) = − 1
2Skw3(div �ρh), where � is an

algebraic operator defined as �ρh = ρT
h − tr(ρh)I . Denoting ηh = �ρh , it is obvious

that ρh = �−1ηh = ηTh − 1
2 tr(ηh)I . Thus, (5.5) can be written as:

divηh = (̃σh,23 − σ̃h,32, σ̃h,31 − σ̃h,13, σ̃h,12 − σ̃h,21)
T . (5.7)

Again, there exists a ηh ∈ {τ ∈ H1(�;M) : τ |K ∈ Pk+2(K ;M)} satisfying (5.7) and

‖ρh‖1,� � ‖ηh‖1,� � ‖(̃σh,23 − σ̃h,32, σ̃h,31 − σ̃h,13, σ̃h,12 − σ̃h,21)
T ‖0,�

� ‖σ h − σ̃ h‖0,�.

To summarize, we obtain the desired τ̃ h = curlρh that satisfies (5.4). This completes the
proof. ��

We are now in the position to prove the optimal L2 error estimate.
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Theorem 5.3 Assume that the Stokes pair Pk+2 − P−1
k+1 is stable on Th and k ≥ d. Assume

further that the solution of (1.1) satisfies (σ , u) ∈ Hk+2(�;S) × Hk+1(�;Rd). Then, the
solution of the mixed LDG problem (2.9) satisfies

‖σ − σ h‖A,� � hk+2(|σ |k+2,� + |u|k+1,�), (5.8)

where ‖σ‖2A,� := (Aσ , σ )
1/2
� .

Proof By (2.6), (5.2) and Lemma 5.1, we have that for any vh ∈ Vh ,

( f , vh)� = −(σ h, εh(vh))� + 〈σ̂ hn, vh〉∂Th = −(σ h,∇hvh)� + 〈σ̂ hn, vh〉∂Th

= −(σ̃ h,∇hvh)� + 〈σ̃ hn, vh〉∂Th = (divσ̃ h, vh)�.

ByLemma5.2, the symmetrized variable σ 	
h = σ̃ h+τ̃ h is piecewisePk+1(K ;S) and belongs

to H(div,�;S). Further, the divergence-free of τ̃ h implies that

(divσ 	
h, vh)� = ( f , vh)�. (5.9)

In [33,35], Hu and Zhang constructed the conforming Pk+1 −P−1
k mixed methods for linear

elasticity on simplicial grids when k ≥ d . Hu also show that (cf. [34, Remark 3.1]), when
k ≥ d , there exists a projection �c

h such that,

(div(τ − �c
hτ ), vh)� = 0 ∀τ ∈ H1(�;S), (5.10a)

‖τ − �c
hτ‖0,� � hk+2|τ |k+2,� ∀τ ∈ Hk+2(�;S). (5.10b)

By (5.9) and (5.10a), we have

(div(σ 	
h − �c

hσ ), vh) = 0 ∀vh ∈ Vh .

Taking τ h = σ 	
h − �c

hσ in the error Eq. (4.1), we immediately have the A-orthogonality
condition:

(A(σ − σ h), σ
	
h − �c

hσ ) = 0. (5.11)

Hence, by the energy estimate (4.3), (5.3b) and (5.10b),

‖σ − σ h‖A,� ≤ ‖σ − �c
hσ‖A,� + ‖σ 	

h − σ h‖A,�

� ‖σ − �c
hσ‖0,� + ‖τ̃ h‖0,� + ‖σ̃ h − σ h‖0,�

� ‖σ − �c
hσ‖0,� + h1/2‖(σ̂ h − σ h)n‖∂Th

� ‖σ − �c
hσ‖0,� + h1/2‖[σ h]‖E i

h

� ‖σ − �c
hσ‖0,� + h‖σ − σ h‖∗,�

� hk+2(|σ |k+2,� + |u|k+1,�).

This completes the proof. ��

Remark 5.4 In the 2D case, the Scott–Vogelius elements Pk+2 −P−1
k+1 are stable when k ≥ 2

and the grid does not contain singular vertices (cf. [31,41]). Hence, in the 2D case, we have
the optimal L2 estimate when k ≥ 2 with some mild constrain pertaining to the grids.
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Table 1 Linear elasticity: the convergence order for 2D example

1/h ‖u − uh‖0,� hn ‖σ − σ h‖0,� hn ‖divh(σ − σ h)‖0,� hn

(a) Linear elasticity: P−1
1 − P−1

0 , 2D uniform grids

4 0.135877 – 0.445892 – 3.839803 –

8 0.067302 1.01 0.177473 1.33 1.936584 0.99

16 0.033543 1.00 0.080752 1.14 0.970346 1.00

32 0.016757 1.00 0.039257 1.04 0.485431 1.00

(b) Linear elasticity: P−1
2 − P−1

1 , 2D uniform grids

4 0.0198206 – 0.0425699 – 0.5850957 –

8 0.0050264 1.98 0.0079777 2.42 0.1483264 1.98

16 0.0012616 1.99 0.0017692 2.17 0.0372321 1.99

32 0.0003158 2.00 0.0004284 2.05 0.0093191 2.00

(c) Linear elasticity: P−1
3 − P−1

2 , 2D uniform grids

4 0.00217252 – 0.00341919 – 0.06370927 –

8 0.00027548 2.98 0.00024533 3.80 0.00805005 2.98

16 0.00003456 2.99 0.00001627 3.91 0.00100892 3.00

32 0.00000432 3.00 0.00000104 3.96 0.00012620 3.00

6 Numerical Examples

In this section, we present some numerical results of the mixed LDG method for linear
elasticity problem. The compliance tensor is given by

Aσ = 1

2μ

(

σ − λ

2μ + dλ
tr(σ )Id

)

, (6.1)

where Id is the d × d identity matrix. In the computation, the parameter in (2.10a) is chosen
as ηe = 1 on all e ∈ E ih .

6.1 2D Convergence Order Example

The 2D problem is computed on the unit square � = (0, 1)2 with a homogeneous boundary
condition that u = 0 on ∂�. The Lamé constants are set to be μ = 1/2 and λ = 1. Let the
exact solution be

u =
(
ex−y xy(1 − x)(1 − y)

sin(πx) sin(π y)

)

.

The exact stress function σ and the load function f can be analytically derived from (1.1)
and for a given u. Uniform grids with different grid sizes are adopted in the computation.

We list the errors and the rates of convergence of the computed solution in Table 1.
The (k + 1)-th order convergence is observed for both the L2 error of u and the Hh(div)
error of σ , which is in agreement with Theorem 4.3. Further, we see from Table 1c that
‖σ − σ h‖0,� = O(h4) when k = 2. This rate of convergence coincides with the statements
in Theorem 5.3, which is also shown sharp from the L2 errors of stress in Table 1a-1b.
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Table 2 Linear elasticity: 2D locking-free example

1/h ‖u − uh‖0,� hn ‖σ − σ h‖0,� hn ‖divh(σ − σ h)‖0,� hn

(a) Linear elasticity: P−1
1 − P−1

0 , 2D uniform grids

ν = 0.49 16 0.0004196 – 0.0016485 – 0.0226073 –

32 0.0002106 0.99 0.0007906 1.06 0.0113175 1.00

ν = 0.4999 16 0.0004196 – 0.0016402 – 0.0224581 –

32 0.0002106 0.99 0.0007864 1.06 0.0112438 1.00

ν = 0.499999 16 0.0004196 – 0.0016401 – 0.0224576 –

32 0.0002106 0.99 0.0007863 1.06 0.0112421 1.00

(b) Linear elasticity: P−1
2 − P−1

1 , 2D uniform grids

ν = 0.49 16 0.00002940 – 0.00006685 – 0.00121273 –

32 0.00000738 1.99 0.00001434 2.22 0.00030490 1.99

ν = 0.4999 16 0.00002940 – 0.00006652 – 0.00120483 –

32 0.00000738 1.99 0.00001427 2.22 0.00030291 1.99

ν = 0.499999 16 0.00002940 – 0.00006652 – 0.00120475 –

32 0.00000738 1.99 0.00001427 2.22 0.00030289 1.99

(c) Linear elasticity: P−1
2 − P−1

1 , 2D uniform grids

ν = 0.49 16 0.000001282 – 0.000001674 – 0.000061781 –

32 0.000000161 2.99 0.000000111 3.91 0.000007747 3.00

ν = 0.4999 16 0.000001282 – 0.000001665 – 0.000061377 –

32 0.000000161 2.99 0.000000111 3.91 0.000007696 3.00

ν = 0.499999 16 0.000001282 – 0.000001665 – 0.000061373 –

32 0.000000161 2.99 0.000000111 3.91 0.000007696 3.00

6.2 2D Locking-Free Example

In this example, we set the Lamé constants to be

μ = E

2(1 + ν)
and λ = Eν

(1 + ν)(1 − 2ν)
,

where the Young’s Modulus is taken as E = 3, and ν represents the Poisson’s ratio that goes
to 0.5 when the material becomes increasingly incompressible. We consider the example in
[40,43] by setting f to satisfy the exact solution:

u =
(−x2(x − 1)2y(y − 1)(2y − 1)

x(x − 1)(2x − 1)y2(y − 1)2

)

.

The errors with different Poisson’s ratios are displayed in Table 2. Given a polynomial
order k, we observe the same convergence order with increasing ν, which is optimal in both
stress and displacement. Further, it is clear to see that the proposed MDGmethod is locking-
free, or stable in the incompressible limit case. We refer to the subsequent work [38] for the
detailed proof.
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Table 3 Linear elasticity: the convergence order for 3D example

1/h ‖u − uh‖0,� hn ‖σ − σ h‖0,� hn ‖divh(σ − σ h)‖0,� hn

(a) Linear elasticity: P−1
1 − P−1

0 , 3D uniform grids

2 0.235741 – 1.221265 – 7.534218 –

4 0.127481 0.89 0.536012 1.19 4.420875 0.77

8 0.063704 1.00 0.210303 1.35 2.294909 0.95

(b) Linear elasticity: P−1
2 − P−1

1 , 3D uniform grids

2 0.0831048 – 0.3641751 – 2.8564400 –

4 0.0227446 1.87 0.0664638 2.45 0.7833919 1.87

8 0.0058207 1.97 0.0123827 2.42 0.2007023 1.96

6.3 3D Convergence Order Example

In this 3D example, the Lamé constants are set to be μ = 1/2 and λ = 1. Let the exact
solution on the unit cube be

u =
⎛

⎝
24

25

26

⎞

⎠ x(1 − x)y(1 − y)z(1 − z),

which is also considered in [35]. Again, the true stress function σ , which is a 3D symmetric
tensor without further special structure, and the load function f are defined by the relations
in (1.1) for the given solution u. In Table 3, the errors and the convergence order in various
norms are listed when k = 0, 1. The optimal orders of convergence are achieved respectively
under the Hh(div) norm for the stress and L2 norm for the displacement, which confirms
Theorem 4.3.

7 Concluding Remarks

In this paper, we present a priori error analysis of mixed DG method for solving the linear
elasticity problem with strongly imposed symmetry. We provide numerical evidence indi-
cating the sharpness of our estimates, namely, the convergence order of k + 1 both stress in
Hh(div)-norm and displacement in L2-norm with the elements pair (σ h, uh) ∈ �k+1

h × V k
h .

The estimate holds for any k ≥ 0 in arbitrary dimension, making the MDGmore meaningful
for the linear elasticity as the lower order conformingPk+1−P−1

k elasticity element does not
exist on general simplicial grids [44]. Since there is a close connection between the elasticity
elements and the Stokes elements (cf. [26, Section 4.1], [28,30]), we also prove the optimal
L2 error estimate for the stress provided that thePk+2−P−1

k+1 Stokes pair is stable and k ≥ d .
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