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Abstract

This paper studies several decoupled penalty methods to overcome the saddle point system
of the steady state 2D/3D incompressible magnetohydronamics (MHD). These approaches
combine the Oseen iteration and two-level technique with strong uniqueness condition

1
20?2 1,28} 1F|| - 2 . . .
0 < 2 0 mafl{ V2 ('}_”1 - <1- (”Fm“)z < 1 satisfied. For the convenience of imple-
(min{R; ', S.C1R;;' H? ¥ To

mentation, we employ two different simple Lagrange finite element pairs P1b — Py — P1b
and Py — Py — Pj for velocity field, pressure and magnetic field, respectively. Rigorous
analysis of the optimal error estimate and stability are provided. We present comprehensive
numerical experiments, which indicate the effectiveness of the proposed methods for both
two dimensional and three-dimensional problems.
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1 Introduction

The purpose of this work is to devise some decoupled penalty schemes for solving the
following 2D/3D stationary incompressible MHD equations:

This work is in part supported by the NSF of China (Grant Nos. 11701493) and the GRF of Hong Kong
(Grant Nos. 9041980, 9042081).

B Xinlong Feng
fxImath@xju.edu.cn

Haiyan Su
shymath@163.com

Jianping Zhao
zhaojianping @ 126.com

College of Mathematics and System Sciences, Xinjiang University, Urumgqi 830046, People’s Republic
of China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-020-01186-0&domain=pdf

11 Page2of30 Journal of Scientific Computing (2020) 83:11

—Re_lAu—f—(u'V)u—i—Vp — SccurlB x B=f in R,

divu =0, inQ, )
SCRrglcurl(curlB) — Sccurl(u x B) = g, in 2,
divB =0, in<.

Here €2 is a convex polygonal/polyhedral domain in R¢, d =2 or 3, with boundary 9$2. u the
velocity of the fluid, p the pressure, B the magnetic field, f and g the external force terms,
R, the hydrodynamic Reynolds number, R,, the magnetic Reynolds number, S, the coupling
number and n is the outer unit normal of d€2. The system is supplemented with the boundary
conditions:

(@)

ulyq =0, (no-slip condition),
B -nj|yo =0, nx curlB|yg =0, (perfectly wall),

The incompressible MHD model is a system of PDEs, which are prescribed by the Navier—
Stokes equations and coupled with the pre-Maxwell equations. Incompressible MHD has
many industrial applications such as metallurgical engineering, electromagnetic pumping,
stirring of liquid metals, and measuring flow quantities based on induction [1]. Therefore,
it is an important research topic to provide effective numerical methods for solving such
flow problem. We refer to [2,3] for more detailed information of physical background, Fur-
thermore, there are many research works which use finite element methods to simulate the
incompressible MHD flows in recent years. We refer to [2,4—15] and many references therein.

The coupled system (1) involves nonlinear terms and the incompressible constraint, which
requires much larger numbers of degrees of freedom to resolve numerically. Hence, the
Stokes, Newton and Oseen iterative methods are considered for the stationary 2D/3D MHD
equations to deal with the nonlinearity in [16—18]. And it can be concluded that Stokes
iteration and Newton iteration are suitable to small Reynolds number such that the strong

ﬁc% maf,“’ﬁs“},”lF ”; L < % and 0 < o < % hold, respec-
(min{R, ", S:C1 Ry, ' })

tively. And the Oseen method is suitable for each Reynolds number such that 0 < o < 1

holds.

The penalty method, the pressure stabilization method, the artificial compressibility
method and the projection method [19-26], etc. are usually used to handle the incompress-
ible constrain. Besides, we also proposed some decoupling method with Uzawa-type idea
for the incompressible MHD equations in [27-29]. In this study, we mainly consider the
penalty method to decouple the strong-coupled stationary incompressible MHD equations.
The penalty method applied to (1) is to approximate the solution (u, p, B) by (uc, pe, B¢)
satisfying the following equations:

uniqueness conditions 0 < o :

—Re_lAu6 + (ue - V)ue — SccurlBe x B + Vp. =f, in Q,
divue + R.epe =0, in Q,

SL.erlcurl(curlBg) — Sccurl(ue x Be) =g, inQ, &)
divB =0, inQ,
with the homogeneous boundary conditions:
Uc|pe = 0, (no-slip condition), @)
B¢ -nj|yo =0, n x curlB¢|yo =0, (perfectly wall),

where 0 < € < 1 is penalty parameter.

Although, the penalty method is to decouple (u, B) and p, the resulting system is still
large. Two-level scheme, which was put forward by Xu for the nonlinear elliptic boundary
value problem in [30,31] which is efficient to save a large amount of computing time and give
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1
. .. 2
reasonable results. Under the strong uniqueness conditiono < 1 — ( Hm‘lﬂ_ol ) < 1, we focus

on the two-level Oseen penalty finite element methods for 2D/3D steady state incompressible
MHD equations in this article. And, we mainly explore the finite element space pair Xj, X
M;, x W, which does not satisfy the discrete inf-sup condition (P; — Py — P1) and the one
satisfies the discrete inf-sup condition (P16 — P; — P1b). In general, the rigorous analysis
shows that the proposed methods can get the optimal accuracy with appropriate relationship
between €, H and h. Numerical results confirming theoretical findings are presented for
several 2D/3D examples. And we know that, the magnetic variables may have regularity
below H' with the domain € is a non-convex polygon (polyhedron), and the continuous
nodal finite element spaces may fail to approximate the singular magnetic solution. Then the
magnetic field of our ongoing work is discretized by curl-conforming Nédélec elements to
deal with the situations of singular magnetic fields.

The paper is organized as follows. In Sect. 2, some basic results are given. Penalty mixed
finite element method is given in Sect. 3. Section 4 is devoted to uniform stability and con-
vergence of the two-level penalty iterative methods. Section 5 is reported to show numerical
performance and accuracy of our algorithms. Finally, the article is concluded in Sect. 6.

2 Functional Setting of the Stationary MHD Equations

To derive the variational form, we introduce the following spaces

X:

o = ’ue H' Q) - ulyo =o},
Wi=H, = fve '@ v nlze =0},
V:={ueX:divu =0in Q},

V, = {ve W:divv =0in Q},

L3(Q) = {q e L*(Q): / qu:o}.
Q

M .

Throughout this work, space Wy, = X x W equipped with the graph norm ||(v, B)|1,
where [|(v, B)||; = (|vII? + ||B||,2)% forallve H/(Q)¥NX,Be H(Q)INW (i =0,1,2).
And H~'(Q)? is the dual of X with norm |f|_; = SUP-£weX %, where (-, -) denotes

F,(v,¥
0yt and [FI2 = €12, +

duality product. Besides, we set [|F||—1 = sup(q 0y (v, w)eW,,

Igl?.
Then, we arrive at an equivalent variational formulation for (1): find ((u, B), p) € Wy, xM
such that

Ao((u, B), (v, ¥)) —d((v, ¥), p) +d((u, B), g) + Ai1((u, B), (u, B), (v, ¥))
= (F, (v, ¥)), (&)

for all ((v,%¥),q) € Wy, x M and the variational formulation of (3) reads: find
((ue, Be), pe) € Wy, x M such that for all ((v, ¥), g) € Wo, x M,

AO ((ue, Bé) ’ (Va ‘I’))_d ((V, ‘I’) ’ Pe)+d ((ués Bé) ’ Q)+A1 ((u€7 BG) ’ (ué’ Bé) ’ (V’ ‘I’))
+ Uie (p67 ‘]) = <F7 (Vv ‘I’)>7

(6)
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where v, is the reciprocal of R, and
Ao (v, ¥), (W, @) = ag (v, W) + bo (¥, @),
ao (v, w) = R (Vv, Vw), by (¥, @)
= S.R,,! (curl®, curl®) + S.R,,' (div¥, div®),
d((v,®),q) = (divv,q), (F, (v,¥)) = (£, v) + (g V).
Ay ((w,B), (v, ¥),(w,®)) =a; (u,v,w) +c(®,B,v) —c(¥,B,w),
1 1
ap (u,v,w) = 5((u~V)v,W) - 5((U~V)w,V), c(®,B,v)
=S¢ (curl® x B,v).

Besides, we need the following properties of Ag(-, ) and A;(:,-,-) in [2]: V (u, B),
(v, ¥), (w, ®) € Wy, there holds

Ao (v, W), (W, ®)) < max{R, ', 2+ d)Sc Ry, I (v, ¥) [[1]| (W, @) |I1, 7
Ao (v, W), (v, ¥)) > min{R, ", S.C1R,;'}|| (v, ¥) |17, )

A1 (W, B), (v, W), (W, ®)) < v2C3 max{1, vV2S}I| (w, B) 1 ]| (v, ¥) [l1 ]| (w, @) [I1,
)
A1 ((w,B), (v, W), (v, ¥)) =0, (10)
A (0, B), (v, W), (W, ®)) + A1 (v, ¥), (u, B), (W, ®)) + A1 (v, ¥), (W, ®), (u, B))
(11)

1 1

< CV2CE max{1, vV2S:}|l (w,B) I} || (w, B) [IZ Il (W, @) [l1]| (v, ¥) || (12)

And we introduce the properties of trilinear form in [32]:

|A1 (0, B), (v, W), (w, ®)) | < Cv/2C3 max{1, vV2S:}|| (u, B) [loll (v, ¥) [|2]| (W, @) |1,
V(u,B) e L2 ()9 x L2(Q)?, (w, ®) € H2(Q)? x HZ(Q)?, (v, ¥) € Wy, (),
[A1 (0, B), (v, W), (w, ®)) | < Cv2C max{1, v2S:}|| (w, B) [l (v, ¥) [[1]| (W, @) [l0.
¥ (u,B) € H2 () x H2 (), (w, ®) € Wy, (), (v, ¥) € L2 (Q)¢ x L2 (Q)¢ .
(13)

For the sake of convenience, C or ¢ (with or without a subscript) will denotes a generic
positive constant throughout the paper and denote

1
Il (w, ®) [Il; = min{R, ", S.C1R,,"} (Iwl|? + [ ®]17)?,
V weH (QInX, e H (QNW, i=0,1,2.

Then, we set y = min{Re_l,SL.Canjl}, y = max{Re_l,(Z + d)SCerl}, N =

ﬂCé max{1, ~/25,} in the following sections.
First, recall the following existence and uniqueness results in [16] for (5) and (6).

Theorem 2.1 Ler f € H-'(Q)?, g € L*()? and R,, R, and S, satisfy the uniqueness
condition

0<o <1, (14)
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the problem (5) admits a unique solution ((u, B), p) € Wy, x M such that
I, B)lIl1 < [IF[l-1. (15)

Moreover, suppose that 0 < o < 1 and f, g € L2(Q)4, then solution ((u, B), p) such
that

1@, B)lll2 + lipl = CliFllo- (16)

Theorem 2.2 IfR,, R, and S, satisfy the uniqueness condition (14) and eco < 1 withcg > 0,
then the problem (6) has a unique solution ((ue¢, Be), pe) € Wo, X M which satisfies

l(e, Bt < [1Fl-1. an

Then, suppose that f, g € L2(2)? and eco < 1, solution ((uc, Be), Pe) of the problem
(6) satisfies the following regularity

(e, B)lll2 + llpelli = ClIFlo. (18)
Theorem 2.3 Under the assumptions of Theorem 2.2, we have the following error bounds
(@ —ue, B—B)li + llp — pello < CellFllo. 19)

Proof Refer to [16] for details. O

3 Penalty Finite Element Galerkin Discretization

Let {r, } be a family of triangulations or tetrahedrons of €2 into quasi-uniform finite elements
K with Q = U Ker, K, mesh size u = h or H. Consider finite element space X, C X,
M, c M,W, Cc Wand Xy, My, Wg) C X, My, Wy,). PI(K) denote the set of all
polynomials on K with order / > 0 and Wgn = X, x W,,. Next, we introduce the discrete
analogue of space V as

Vy={veX, :d((v.¥),q)=0,Yg e M,, ¥ € W,}.
The discrete Stokes operator A, = —P, A, and A, defined as (see [33])
—(Apuy, v) = (Vu,, Vvy), Yu,, v, € X,

where P, : L2(Q)? — V,, defined by (P,u,v,) = (u,v,) forall v, € V, and define
discrete operator A, B, = Ro,(V, x V x B, +V,V-B,) € W, as follows (see [34])

(A2,B,, W)= (VxB, VxW¥)+(V-B,, V-¥), VB, ¥eW,

where Ry, : L?(2)¢ — W/, defined by (R, B, ¥,,) = (B, ¥,) forall ¥, € W,,.
The following two finite element pairs are mainly considered to explore the relation
between penalty parameter and the algorithms in this article:

(P1). The unstable finite element pair
X, ={uec®@nNX:ulx € P(K), VK € 1,,},
M, ={q e M:qlx € Po(K), VK € 1.},
W, ={BeCl(QNW:Blg € PI(K), VK €1,}.
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(P2) . The stable finite element pair

d
X, =(Pl,) NX,
M, ={q€C’(Q)NM:qlx € Pi(K), YK € 1.},
d
W, =(Pl) nW,
function.

where P, = {v, € C°%Q) : vulx € Pi(K) & span{b}, VK € 7,}, b is a bubble

The following properties of P; and P, are stated in [9,22,32,34,35].

Lemma 3.1 The finite element pair P, satisfies the key relation

dvX,, =M,.

(20)

Besides, there exists mappings m,, H2(Q)NX —> X, and p;, : M — M, satisfy
IV —muvllo = Culvllz,

lg — pugllo = Cullgli,
forallv e HX(Q)?NX, q € HY(Q)nM, and a mapping R, : H*(Q)4NV, —> W, satisfy

21

(VXRw, VxW)+(V-Rw,V-W)=(Vxw,VxW¥)+ (V- -wV- ¥
=(Vxw,VxW¥), V¥eW,

(22)
lw — Rywllo + pllw — Rywly < C2lwlla, Yw e HX Q)N V,.

sup

Lemma 3.2 The finite element pair P, satisfies the discrete inf-sup condition
0,00#vu,B)eW;,

d((vy, B.), q.)

> Bollgllo.
”(V/u Bp,)”l "

Vg, € My,. (23)
Besides, there exists mappings m, : HX Q) NX —> X pu i M — M, satisfy (21) and

(V-(v—muv),q) =0, Vg € M,.
And mapping R, : H*(Q)NV, —> W, satisfies (22).

(24)
Then, the penalty finite element discretization of (6) is: find (e, Bey), pep) € Wgn X
M,, such that
Ao ((UGM’ Bey), (v, W) + A (e, Ber) s (Uepi, Bey) . (v, W) —d ((V’ V), pep)
+d ((ue;u Bsu) s CI)

+v€7 (pw,q) =<F, (v, V) >

(25)
Recalling the following stability and optimal error estimate (see [16]).

Theorem 3.1 Under the assumptions of Theorem 2.2 and if X,, x M, satisfies property Py,
k =1, 2, then (25) admits a unique solution ((Uey, Bey), pep) € Wgn x M, such that

e, Bl < IFl -1, N(Arptteps A2puBe)lllo < ClIF o,

1
2
V
WWMS(;>”HM,fWPh

I Peullo = CIIFI-1,

for P,
@ Springer
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Theorem 3.2 Under the assumptions of Theorem 2.2 and if X,, x M, satisfies property Py,

1
k =1, 2 and assume that u < ( “”p;‘u‘ol ) : (1 — o), then we have the following error estimate

1 1
(1 =) e} 1| (e —tteyss Be—Bey) o+ (Il (e —ttees Be—=Bey) Nl +€ I pe—peulo)
1
= Ce i Fo,

1 —=o)ll (ue — Uep, Be _Beu) o+ 1 (||| (ue — Uey, Be _Beu) 1+ [1Pe = Pen ”0)
< Cu*[IF o,

for P1 and P,, respectively.

Remark 3.1 On account of the important relation (20), the discrete penalty finite element
form for P; can be defined as follows

Ao ((ueu, Beu) s (v, ‘I’)) + A ((usua Beu) ) (ue/u Bsu.) , (v, ‘I’)) + % (diVue/u diVV)
=<F, (v,¥) >,
ve .
Dep = —:dlvuw.

But the finite element space X; x M, for P> does not have property (20). Therefore, we
have to employ the projection p,, to rewrite the penalty finite element discretization as

Ao ((ep- Bepr) . (v, W) + Ay (e Bep) . (Wep. Beyr) . (v. W) + - (pudivueﬂ,pﬂdivv)
=<F, (v,V¥) >,

Ve .
Dep = —:pﬂdlvum.

Then, the dimension of the stiffness matrix reduces greatly and leads to a relatively small
definite positive stiffness matrix. However, it is very difficult to compute p,divv for the
functions in M), are globally discontinuous and p, is a local projection operator, which
acting separately element by element (refer to [33] for details).

4 Penalty Iterative Methods for the 2D/3D Stationary MHD Equations

The Oseen iterative methods in penalty idea which based on finite element pair P; and P>
and several two-level schemes are introduced as follows.
Method 0 (Oseen iterative method). Find ((u? Zu)’ pgu) € Wgn x M, such that for

all ((v,¥),q) € Won x My

Ao (( ug,, B ) v, ‘I’)) —d((v, ‘I’)’pgu) +d(( eu’Bn ) )+ j—e(pgwq) (26)
+ A1 (g, B (ur, BL,) L (v, 9) =< F (v, ) >

€’

Here, ((u? ) is defined by the discrete penalty equation:

€n’ e;/.) pe;/.

Ao ((u, BY,) . (v, 9)) —d ((v. 9. pl),)
+d (0. BL,) q) + 5 (Pl a) =< F. (v, ¥) >,

forall (v, W), q) € Wy, x M

©2))
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Based on our previous work [16,17], we have the following stability estimate of the
iterative method.

Theorem 4.1 Under the assumptions of Theorem 3.2 and uniqueness condition 0 < o < 1
valid, suppose that Py and P> are valid, then (uf),, B¢})) and p¢), defined by the Method 0

satisfy
@, BN < IFI-1 (Al A Bl < CIF o,
1
1p2lo = () 1Fl-1. for i lpZulo < B3 (5 +2) IFI-1, for Pa.

€

and satisfy the following error bounds: for P

1
Il (u —ul,, B—BL,) lli < Ce+ Ce 2p+0"|[F]-1,

z
V
lp = péullo < Ce+ Ce '+ (6;) o |IF|l-1,

and for P,

I (w—u™,,B—B") 1 <Ce+Cp+a"|F|_1,
(Y
||p—p2”M||o§Ce+Cu+/301(y+2>am||p||_1,
forallm > 0.

4.1 Two-Level Oseen Penalty Iterative Methods

In this section, we consider the two-level Oseen penalty finite element methods under the

¥l
1l
m iteration steps by Oseen technique on the coarse mesh H and once correction by the three

corresponding iteration on the fine mesh /.

strong uniqueness condition o < 1 — ( ) * < 1. The methods includes two algorithms:

Method 1.

Step L. Find a coarse grid penalty iterative solution ((u},, BY},), pyy) € W(I)in x My such
that

Ao ((uZy. BZy), (v W) —d ((v, W), ply) +d (w2, BLy) . q) + 5 (Ply. q)

(28)
+ A1 ((uig Bl ) (0 BLy) (L 9)) =< F (v, 9) >
forn=1,2,...,m, where ((ugH, BSH), pSH) is determined by
Ao (s, BYy), (v, ¥)) —d ((v, W), p2y) +d ((uly. BYy) . ) (29)

+i (peH, q) = (F, (v, ¥)),

for all (v, ¥), q) € Wi x My.
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Step I1. Find a fine grid solution ((Wesnn, Bemn)s Pemn) € Wgn x My, defined by the following
Stokes correction.

Ao (emn, Bemn) , (v, W) —d (v, ¥), pemn) +d (e, Bemn) , q) + % (Pemn» q)

= (F. (v, ¥)) — Ay ((ugy uZy) . (08 ugy) . (v, 9))
(30)

for all (v, ¥), q) € W, x M.

1

Theorem 4.2 Under the assumptions of Theorem 4.1 and 0 < 1 — <HIIFFUII_01>7 < 1, then

(Wemn, Bemn), Pemn) provided by Method 1 satisfies the following stability and error esti-
mates:

I @emns Bemm) It < 2|1F|[ -1,
1

4p, 2
| Pemnllo < (ﬂ:) IF||-1, for P,

I pemnllo < 285" (; + 1) IF|—1. for Py, (31)

>] [1F1lo

and satisfy the following error bounds: for P

D=

Il @ = . B~ Bewn) 11 < C [e+e—% (h+e‘%H2(H”F|”, )
+ Cll| (ueH _u?[.pBeH _B?H) 1,

1
Ip = pemnllo < C [e +e (h +e T H (ke ))} 1Fllo
+CJl| (ueH _uanvBsH _B}GHH) 1,

€ and H can be taken as € = O(h%), H? = O(E%h) and the convergence rate is O(h%);
for P, the optimal error estimates are

1
11 @ = ttems B = Bei) 1 + llp — pemhno<C<e+h+H2(uﬁ”°l) )”F”O

+Clll (uerr — uly. By — BYy) ll1
€ and H can be taken as € = O(h), H* = O(h) and the convergence rate is O (h);
Proof We can arrive at the stability estimate (31) by setting (v, ¥) = (@emp, Bempn) and
g = Pemn in (30) and combining (8)—(10) with (23).

For the error estimate, subtracting (30) from (25) with i = h and take (e, by) = (uep —
Uemh, Ben — Bemn)s " = Peh — Pemn», We have following error equation

Ao ((en, bp) , (v, 9) —d ((v. W), nn) +d ((en, bp) . q) + 5= (Mh, q)
+ A1 ((Wep — e, Bep — Bep) , (Wen, Ben) . (v, W)
+ A1 (Uep, Berr) . (Wep — Ve, Bep — Ben) , (v, ¥)) (32)
+ Ay ((usH —uly, Bey — u'G"H) , (ueg, Be) , (v, \Il))
+ A1 (0. BYy) . (e —ully. Bey —ufy) . (v. ¥)) =0
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Substituting (v, ¥) = (ep, by), ¢ = np in (32) with (8), (9), (13) and Theorem 3.1, we
have

ABCA AT
< %Vlll (Uep — e, Ben — Benr) |||0[ I (Airver, A2aBer) llo
+ Il (Ainuen, A2nBen) ||0}||| (en, bp) 11 (33)
+ 501 (err — uly. Ben — By) Il

{0 acr Ber) 1+ 11 (w2 B2 ) 11 T e )

which guarantees that

Il (en, ba) 11 < Co g NIl (Wen — werr, Ber, — Berr) llo
+201| (ueH - uan, Bey — B’:H) 1

For Py, using Theorems 3.1, 3.2, 4.1 and (34), we derive that

(34)

|||(eh,bh>|||1sc[*1H2(” )||F||o+|||(uEH ?H,BGH—BQ’H)nh]@S)

then utilising (33) and Young’s inequality, we deduce

— F
Sl = € [ 1 IR + 1] (werr — wy Ben = B2) 1]

which we can get the error estimate for Pj.
Combining Theorems 3.2, 4.1 and (34), the bound for P is

|||<eh,bh>|||1<c[H2(”” )||F||o+|||(ueH GH,BGH—B;"H)uh], (36)

and with (23), (34), (7), (36), Theorems 3.2 and 4.1 , we conclude

lnllo < CBy [H2<”|FF“ 1> IFllo + IIl (werr — uly, Bery — B, )|||l:| (37)

We can finish the proof by Theorems 2.3, 3.2 and triangle inequality and some simple
calculations. O

Method 2.

Step 1. Find a coarse grid penalty iterative solution ((ul’,, BY,), p’y) € W(I)Lf1 x My such
that

Ao ((uZy BYy) . (v ) = d (v ) ply) +d ((wlyy By)  q) + 5 (Ply-q)

(38)
A (( B ‘) (u",, B2, (v, \11)) —<F, (v, V) > .
forn=1,2,...,m, where ((ugH, BSH), ng) is determined by
Ao (@l BEy) 60 90) = (). )+ (0 B2 ) + 5 (i) )
= (F, (v, ‘I’)),

for all (v, ¥), q) € Wi x My.
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Step I1. Find a fine grid solution ((Wesnn, Bemn)s Pemn) € Wgn x My, defined by the following
Newton correction.

Ao ((Wemn, Bemn) » (v, ¥)) —d (v, W), pemn) +d (e, Bemn) , q) + — (psmh q)

Ve

+A ((uemh,Bemh) ( Ueps ) (v, ‘I’)) + A (( Uy, ) (Wemn> Bemn) 5 (v, ‘I’))
=<F,(v,¥) > +A; ((u GH,B’”H),( T Bly) L (v, W) (40)
for all (v, ¥), q) € W x Mj,.

Theorem 4.3 Under the assumptions of Theorem 4.2, then ((Wemp, Bemn), Pemn) provided
by Method 2 with Newton Correction satisﬁes the following stability and error estimates:

I e Ben) = 20+ e 1 (e = iy Bemn = By I

2
V,
Il pemnllo < C (ye> [IFI=1 + Il (emn — ulsy. Bemn — B I17]. for Pr,

I pemnllo < C [IFI-1 + Il (4emn — u, Bemi — BIy) 113], forPa, (41

and ((Wemh, Bemh), Pemn) satisfies the following error estimates, for Py

I @ = tmns B = Ben) 11 = C [e €73 (h+ e a3 gH ) | 1Flo
+Cll| (wers — uly. Berr — By II13.

1P = pemillo = € [e + €t (h+ € nn 13 o) [ 1P o
+Cll| (wers — uly. Berr — By II13.

€ and H can be taken as € = O(hf), H3 = O(eh|Inh|™Y) and the convergence rate is
O(h %) in the 2D case; for Pa, the optimal error estimates are

I @ = temns B = Beni) 11 + 1P = pemnllo < € [€ +h -+ | Inh 5 S 1Flo
+Cll| (ueH - uemHsBeH _B?H) |||2,

€ and H can be taken as € = O(h), H> = O(h|Inh|~") and the convergence rate is O (h)
in the 2D case; and for Py

IF1l -1
+C|||(u6H_u€HaBEH B )|||ls

3 F
1P — pemnllo < C [e bt (h beimd ||”F||”01 )} IFllo

+Cll| (serr — uly, Berr — B™) |I13,

1 s IFllo
|||(u_uemhaB_Bemh)”|l§C|:5+6 2<h+ iH3 )]IIFIIO

€ and H can be taken as € = O(h%), H? = O(eﬁh) and the convergence rate is O(h%) in
the 3D case; for P>, the optimal error estimates are

s [IFllo
Il @ —wemn. B —Bemn) lllt + 1P = pemnllo < C [6 +h+ HE Il } 1Flo

+Cll| (e —uly, Ber — B™y) 1113,
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€ and H can be taken as € = O(h), H 3= O (h) and the convergence rate is O (h) in the
3D case.

Proof By choosing (v, ¥) = (Uemn, Bemn) and ¢ = pemp in (40), we derive that

2, € 2
Y I Qemns Bemn) I7 + 7||P6m11||0

e
<N| (llan, ?H) 11l (uemh - UTH’ Benn — ZlH) 11l (Wemns Bemn) 1
+ ”F”—l ” (uemh» Bémh) ”1» (42)

which combining Young’s inequality guarantees that

IA

N
I (emns Bemn) Il ﬁlll (B ) 111 (@emn — 0l Bemn — BLy) Il 4 IFll -1

1 o
(ZG + 1) [IF] -1 + W'” (uemh - u:nH’ Bemn — B?H) “ﬁ

IA

(43)

For Py, from (42), (43) and Young’s inequality, we have

€ 2 N
7||pemh||0 = ?||| (U?H, B?H) |||1 ”l (uemh - ulngv Bemh - BZIH) |||1 ||| (uemhv Bemh) |||1
e

1
+ ;”F”—l I (aemn, Bemn) 11

1 1
< C;m (emn — 0y, Bewn — BI) IIT + C;HFMEI, (44)

which is that

1
2
%
| pemnllo < C (E;/) [”F”—] + I (uemh - urenH’ Benn — B:n[-]) ”lﬂ . (45)
Apply the similar technique used in Theorem 4.2, we have the following estimate for P,
7 N m m
| Pemnllo = ;III (emp, Bemn) 11 + ﬁlll (% BZ) 11l emn, Bemn) N1

N
+ ﬁlll (B ) 1] (emn — 0l Bemn — By ) [+ 1Fll-1

< CIFI=1 + Il (uemn — vy Bewn — B™y) 113] . (46)

Next, we will give the bounds of error estimate.
Subtracting (40) from (25) with © = h, we have

Ao ((en, bp), (v, W) —d ((v, W), np) +d ((en, bn) , q) + vi (M, q)

+ A1 ((u?y, BYy) . (en, bp), (v, W) + Ay ((en, bn) , (uy, Bly) . (v, ¥))
+ Ay ((uen — 'y, Ben —Bly), (uep —uy, Bey —BYy) (v, ) = 0. (47)
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Take (v, ¥) = (ep, bp), g = ny, in (47), with (8), (9), (13) and Theorem 3.1, we have

€
(1= o)yl (e ba) I+ — I3

e
3 1
< CN| (uep —uer. Bep = Beg) |7 | (e, — uerr. Bepy — Beg) Il || (e, ba) 1

1 1
+CN| (uep —uep, Bep —Bep) ”12 | (Wep —uey, Ben —Ben) ”(%
X || (ep — Uepr, Ben — Bep) 111l (e, bp) 1
+ N (en — verr. By —Bep) 171 (e bp) 11 (48)

which is that

o 3 1
Il Cen, bp) I < IFl— Il (Wen — epr, Bep — Bepr) |||12 Il (wen —Wepr, Bep — Bepr) |||(§
+ Wm (e, —Uep, Bep — Beg) 1l (e —vep, Ben — Ber) o
5 o
+ 27 1 (e — ully Bey — By I3 (49)

For Py, from (49), Theorems 3.2 and 4.1 , we have

I¥llo
IFl -1

I
I (en. bp) Il = C [6 “H? I€llo + IIl (wers — 0l Berr — By) |II%] . (50)

and with (48) and (50), we have

3 1
c 3 1
Slmnll§ < g Il en = verr Ben — Ber) 17 1] (Wen — verr, Ber — Berr) Il 11 (ens i) 111
c
+ 75 Il en — vers, Ben —Bep) 1111 (Wen — verr. Ben —Ber) llloll| (en. bp) 11

35_o 2
+3 uF‘ﬁ,l 11 (e — . By — B ) (11711 (en. ba) Il

<C -3 [[Fllo 2 F 2 C m_ B B™ 4
e 31 (1 )P + Ol (ven — wly Bewr — BL) I,
51)

with some simple calculations, we complete the proof of the estimate for P .
And for P», from (49), Theorems 3.2 and 4.1, we have

5
Il Gensbu) 11 = € [H3 51 1l + I (wers — w2y Bew = B2 IR]. (52)
and with (23), (34), (7), (36), Theorems 3.2 and 4.1, we deduce that

Bollnnllo = %III (e, bp) Il + %III (e, bp) [I11 111 (uZ,, BY, ) Il

+ 3N (e — uerr, Ben — Berr) 017 11 (e — trr. Ber, — Berr) e

+ 3 (Wen — v Ben = Be) 11| en — et Ben = Ber) lllo - (53)
+ 3721l en = ver, Bey = Bep) |1

C[ H3 1 1o + 1] (werr — uly Ber — B2) 1]
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On the other hand, in the 2D case, applying the inverse inequality
1
lvlleee < Clln |2 flvgllr, Wyl
< ClInpl? [Wyll1, Vo, € X, W, € W,y p=h, H, (54)
in the estimate of the trilinear term, from (53), Theorems 3.2 and 4.1, we derive that

(I=o)ll (eh7blh) 1
= H]ﬁ%th'i”' (Uep, —Uep, Ben — Beg) 1l (Wep — ver, Ben — Beq) lllo

55
- 7E | (e = Werr B = Ber) 1111l @er — werr. Bey —Bed llo O
+ 375 I (werr — uly, Bewr — B2y ) 1.
For Py, with (55), Theorems 3.2 and 4.1, we have
_3 IFlo
|||(eh,bh>|||1<c[e 2|1nh|H3”F” IFllo + Il (werr — uZyy. Berr —BLy) 17 |
(56)

and with (56), we have

||77h||() < ”F”U |Inh|2 ||| (uen — uerr. Bew — Ber) [l
Il (Wep, — verr, Bep, — Bepr) llloll (er, bp) 1

+ Il (en —vers, Ben — Bepy) 1l (en — verr, Ben — Ben) [lloll (er, bp) [l1

5 1 5
+ 77e | In Al 2| (err —uy. By — B ) (11711 (e bp) [

c JFIg
HFM2

IFGI Inhle > H® + ClI| (uers — ulyy. Ben — By 17,

which is that

Imnllo = € [1nhle=2H3 FE 1o + | (aen =y, Berr = BZ) I17].

And for P,, from Theorems 3.2, 4.1 and (55), we have

I ens ba) 1y = € [H2 {10 A1 Nl + 1] (werr — w2y Berr = B 1], (57)
and with (23), (7), (57), Theorems 3.2 and 4.1, we deduce that
Bollnnllo < max{R;", 2+ d)ScR,, "} (en, ba) [l
+ﬁ|lnh|%n| (Uer = Uerr, Ben = Ber) 1111 (Wer — verr, Ben = Berr) llo
e A 2] Quen — e, Ben — Be) 11ll] (e — ers. Ben — Berr) llo
+3 A2 ]| (uer — u?y Beyr — By |1}

< C[H3 1Al 1o + 1| (werr — uZy. Bew — BLy) 1]

Then, we complete the proof. O
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Method 3.
Step 1. Find a coarse grid penalty iterative solution ((ul’,, BY,), ply) € Won x My such
that

Ao ((uZy. BZy), (v W) —d ((v, W), ply) +d (2. BLy)  q) + 5 (Ply. q)

(58)
+ar ((u ZHI’B” . (0 By (L)) =< F (v, W) >
forn=1,2,...,m, where ((uSH, BSH), pSH) is determined by
AO(( (e)H’ ) (V ‘I’)) ((V"I’)’ng)+d(( eH’BO ) )+uie(p8H’q) (59)
= (F, (v, ‘I’)),

for all (v, ¥), q) € Wi x My.

Step I1. Find a fine grid solution ((Wesnn, Bemn)s Pemn) € Wgn x My, defined by the following
Oseen correction.

Ao (emn, Bemn) » (v, ¥) —d (v, ¥) , pemn) + d ((Wemn, Bemn) » q) + (pemh q% 60)
+ A (( U, U ) (Wemps Wemn) , (V, ‘I’)) (F, (v, ¥)),
for all ((v, W), q) € Won X My,.

Theorem 4.4 Under the assumptions of Theorem 4.2, then ((Wemp, Bemn), Pemn) provided
by Method 3 satisfies the following stability and error estimates:

Il @emn Bemn) lIl1 = [Fl -1,

e

1
2
v,
| Pemnllo < () IFll-1. for P1,
v

-1 (Y
I pemnllo < By (y + 2) IFll-1, for P2, (61)

and satisfy the following bounds:

1
_1 _1 IFllo \?
Il (@ —wempn, B—Bepp) |l <C |€+e 2<h+€ 2H2< ) >:|”F”0

IFN-1
+ Cll| (ueH _”ZLH:BGH _BZHH) 1,

1
F 2
1P = pomillo < C | € + ¢! (h bt (”L””(’l) )} IFllo

+C|||(uEH_ueHsB€H B’ )|||17

€ and H can be taken as € = O(hi), H? = 0(67h) and the convergence rate is O(h%);
for P2, the optimal error estimates are

11 @ = ttemns B~ Bewn) 1 + 1p = pemillo = C (e +h 1 () ) IFllo

+Cll (usH - uan, Ben _B?H) 1,

€ and H can be taken as € = O(h), H* = O(h) and the convergence rate is O (h);
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Proof We can finish the proof by the similar technique used in Theorem 4.2. O

Besides, from Theorems 4.2, 4.3 and 4.4, the comparison of the proposed schemes can be
concluded by:

Remark 4.1 From finite element space discretization point of view, the theoretical results
always about the penalty parameter for the methods which based on Py discretization, while
the choice of coarse mesh for the methods which based on P, discretization have no rela-
tionship with the penalty parameter. The inf-sup condition is the main reason.

Remark 4.2 In terms of convergence rate, Method 1 and Method 3 have linear convergence
rate with respect to |||(ue gy — 0, Bey — B[ [|11. But Method 2 has the second convergence
rate. Besides, the classical iterative solver can be applied to Method 1 for it’s invariant stiffness
matrix. However, GMERES is a better choice for Method 2 and 3 for their variable stiffness
matrix.

5 Numerical Results

In this section, we present several numerical examples to verify the numerical performance

of the above presented methods. The penalty parameter € is selected as € = O(h%) for Py
and € = O(h) for P, based on Theorems 4.2—4.4 in all the following numerical tests. The
iterative tolerance is set as 10~ !0 for numerical implementations.

5.1 Problems with Smooth Solutions

A smooth solution benchmark problem is presented to verify the convergence performance
in the square domain 2 = [0, l]d, d = 2, 3 in this case. The exact solutions are given by

up=oax’(x — D2y(y = DQy — 1), uzy =ay*(y — x(x — HQ2x — 1),

By = asin(wx)cos(wy), By = —asin(ry)cos(wx),
p=ax—-1)Q2y—1),
for d = 2 and

w =a(yt +2), w=ax+72%), uz3=al?+y?),

By = asin(yz), By = —asin(x +7), B3 = —ay sin(x?),
p=a@x— D2y - D2z - 1),

for d = 3. Here, « is chosen such that 0 < o < 1. The body forces f, g are determined
accordingly for any R, R, and S..

Tables 1 and 2 present the value of o with different . And we use the gradually increasing
o to modify the value of o in this part. From the detail of numerical analysis of Theorems 4.2—
4.4, it is known that ™ or o> come from the estimates given in Theorem 4.1. And it is
difficult to obtain the relations between the error estimates and o for the fast decaying of ¢
or o™ In Fig. 1, 2, we can see that there exists a linear relation between log(|||(e™, b™)|||)
and iterative step m, which is consistent with the theoretical analysis.

Tables 1, 2, 3, 4, 5 and 6 present the numerical results of relative error and CPU time for
uniform refinement. The comparisons indicate that the relative error are almost the same with
the same finite element pair for different methods. And the relative errors of P1b — Py — P1b
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—h— 0=0.1 ——0=0.1
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Fig. 1 2D |||(e™, b™)|||; versus iterative number m by linear-log plots

10° 10°
10° 10°
107 107
E': 107 E: 10
Q a
£ £
2 10° Q9 10°
10° 10
107" 107
107 L 107
o 2 4 6 8 10 12 14 o 5 10 15 20 25
Iterative number m Iterative number m
(a) P1-Py-P (b) Pb-P,-P1b

Fig.2 3D |||(e™, b™)||| versus iterative number m by linear-log plots

Table 1 Parameters of the investigations (2D)

1

N
Group « o C(% 111 llglls (”Hljuo1 ) ’
1 0.1 2.00e—1 € (0,2/5] 381 1.80e—2  3.lde—1  473e—1
2 022 4dle—1 € (2/5,5/11] 3081 4l3e—2  69le—1  473e—1
1
3 028 s6le—le(5/11,1—(Ipl=)21 38e-1 542e-2 8791 473e-1
1
4 048 9.62e—1 € (1 - (Ipl=tyz, 11 3.08e—1  1.06e—1 1510 4731
5 2 407e0 308e—1  L14e0 62860  4.68c—1

element is smaller than P; — Py — P; one with decrease of mesh size i. The convergence
rate investigations are in good agreement with the theoretical analysis in Theorems 4.1-4.4.
Specifically, the convergence rate of B for P — Py — P; element pair can reach O (h), it is
even higher than the theoretical result O (h'/?). Furthermore, all the given schemes remain
much the same property (i.e. diva = 0, divB = 0) as the original equations.

Then, it can be seen clearly that the computational speed of method M with P — Py — P;
element is fastest and method M, with P1b — P; — P1b element leads to the slowest one.
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Table 2 Parameters of the investigations (3D)

Gowp « o ct N TR
1 0.1 2121 € (0,2/5] 857c—1 921e—2 823¢—2  4.03—I
2 02 4l6e—1 e (2/5,5/11] 857c—1 177e—1 1.65e—1  4.06e—1
3 025 s1se—1e(5/11,1 - (gl )21 8571 218e—1 207e—1 4081
4 0.5 9.68e—1¢e(l— (”“‘ﬂl'l'lg )21 857e—1 379%—1 4.19%—1 4.13e—1
5 2 3420 857e—1  7.74c—1 1840  4.37e—1

Table3 M; withe = O(h!'/2) and @ = 0.1 for P| — Py — P; element (2D)

Method 1/H  1/h W Rate W Rate % Rate  CPU(s)
My 108 2.1335le—1 - 1.35482e—1 - 145435e—2 - 4.5%l1

Mo 122 200770e—1 05  127387e—1 05  128747e-2 10 632l

M 12 108  2.13388e—1 - 1.35528e—1 145435¢—2 - 1.52el

M, 13 122 200809%—1 0.5  1274lle—1 05  128747e—2 1.0  1.94el

M 12 108 2.1335le—1 - 135482e—1 - 145435e—2 - 2.50e1

My 13 122 200770e—1 0.5  127387e—1 0.5  128747e-2 1.0  32lel

M 12 108 2.13523e—1 - 1.35290e—1 145435e—2 - 1.97el

M3 13 122 200910e—1 05  127220e—1 0.5  128747e—2 1.0  2.54el

Table4 M; withe = O(h) and @ = 0.1 for P1b — Py — P1b element (2D)

Method 1H 1/n  Lgwlo pee  l2pulo Rate % Rate  CPU(s)
My 100 3.46876e—2 - 3.92158e—3 - 1.49007e—2 - 6.09%1

My 121 2.86598e—2 1.0  323365e—3 1.0 1231492 1.0  7.8lel

M 10 100 3.56849e—2 — 5.48128¢e—3 - 1.50512e—2 - 2.05el

M 11 121 294549e—2 1.0  4.5470le—3 1.0  124175¢—2 1.0  3.0lel

M 10 100 3.50390e—2 - 3.96169e—3 - 1.50512e—2 - 3.57el

M 11 121 2.88992e—2 1.0  326110e—3 1.0 1241752 10 532l

M 10 100 351137e-2 - 3.41077e—3 - 1.50512¢—2 - 2.79%1

M 11 121 289587e—2 1.0  2.80065e—3 1.0  124175e-2 1.0  4.15el

Since, the complexity of the discretization of the nonlinear terms and the order of the finite
element pair are the main causes.

The final issue is to validate the effectiveness of the proposed methods for different param-
eter . A comparison of Figs. 3, 4, 5 and 6 with gradually increasing « reveal that the precision
of M> with Pib — P; — P;b element is best and M| with P; — Py — P} element is the worst.
That is to say, method M, with Pib — P; — P;b element has good adaptation for relatively
large o.
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Table5 M; withe = O(h'/2) and @ = 0.1 for P} — Py — P; element (3D)

llp=pnllo

IV(B—B;)llo

Method I/H 1/h W Rate - Rate VBT Rate  CPU(s)
Mo ~ 14 4.46099%e—2 - 0.502855¢—1 - 491066e—2 - 9.091

Mo ~ 18 349619e—2 1.0  0444265e—1 0.5  3.81983e—2 1.0  4.15e2
M, 5 14 4.46088e—2 - 5.03246e—1 - 491089e—2  — 1.83¢l

M 6 18 3.49609e—2 1.0  4.44626e—1 05  381997e—2 1.0  4.59%l

Ms 5 14 446099%—2 - 5.02854e—1 - 491066e—2  — 2,531

M, 6 18 349619e—2 1.0  44426de—1 05  3.81983e—2 1.0  59lel

M3 5 14 446087e—2 - 5.03180e—1 - 491069e—2  — 1.96¢1

M3 6 18 34961le—2 1.0  4.44508e—1 0.5  3.81986e—2 1.0  4.86el

Table6 M; withe = O(h) and @ = 0.1 for Pib — P — P;b element (3D)

Method 1/H  1/h W Rate ””‘;{l’lg lo Rate % Rate  CPU(s)
Mo - 16 37545le—2 - 8.87038e—2 - 427532e—2 - 4.73¢2

Mo ~ 20 3.00394e—2 1.0  632870e—2 1.5  342053e—2 1.0  8.08e2

M, 4 16 37546le—2 - 9.09759%¢—2 427608e—2 - 1.83el

My 5 20 3.0039%—2 1.0  648166e—2 1.5  3.42093e—2 1.0  4.5%l

M 4 16 37545le—2 - 8.87178e—2 - 427533e—2 - 2,531

M> 5 20 3.003%4e—2 1.0 6.32902e—2 1.5  342054e—2 1.0  59lel

M 4 16 3.75450e—2 - 9.07360e—2 - 427548e—2 - 1.96¢1

M3 5 20 3.0039%4e—2 1.0 64507le—2 1.5 342062¢—2 1.0  4.86el

5.2 Hartman Flow

Here we explore both 2D and 3D Hartmann flow with Ha = /R, R, S.. For 2D, we treat
a steady undirectional flow in the channel 2 = [0, 10] x [—1, 1] under the influence of the
transverse magnetic field By = (0, 1). The analytical solutions are:

:u(x, y) = u(y), 0),

B(x,y) =By, D,

p(x,y) = —Gx — ScB*(y)/2 + po,

with

R.G

cosh(yHa)

u(¥) = Fatanh(Ha) (l n

cosh(Ha)

We impose the following boundary conditions:

u=0, on y==+1,

(pI— Re_IVu)n = pgn, on x =0and x = 10,

nxB=nxB;, on 9Q2,

G (sinh(yHa)
), B(y)—g(W‘y)'

where pg(x,y) = p(x,y), po is a constant and I is identity matrix. Whilst, 3D Hartmann
flow in a rectangular duct Q = [0, L] x [—Yo, Yol X [—z0, zo] Wwith L =10, yo =2,z0 =1

under the influence of a magnetic field B; = (0, 1, 0) has the following form
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0.032 2 0.032 2
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Fig.3 2D relative error for P — Py — Py

u(x,y,z) = w(y,z), 0, 0), B(x,y,z) =(B(,2), 1,0),
p(x,y,2) = —Gx — S:B%(y, 2)/2 + po,

with

+0o0 +00
u(y,2) = —3GRe (22 = 25) + X ui(y)cos (hiz), B (y,2) = 3 bi (y)cos (3i2) ,

i=0 i=0
where

u; (y) = A; cosh (p1y) + Bj cosh (p2y),

2—p3 .
lPlpz sinh (PZ)’)) ,

1 )L.z—p% .
bi (y) = g5; | Ai =, sinh (p1y) + B;

_ Qi4hr _ _2GR, ..
Ap = T 0 Wi (o) = A?zoe sin (4;z0) ,

pi,=A?+ Ha?/2+ Ha,/)} + Ha? /4,

vi = p2 (A2 — p?) sinh (p1yo) cosh (p2yo) — p1 (A2 — p3) sinh (p2yo) cosh (p1yo) .
(22 . (2 p? .
A = “PCP) (o) sinh (payo) . B = 24 () sinh (piyo)
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Fig.4 2D relative error for P1b — P — P1b

the boundary conditions are imposed by
u=0, on y==yy and z = %79
(pI—R;'Vu)n=pyn, on x=0 and x =L,
nxB=nxBy, on JQ.

In this part, we only consider the Pi1b — P; — P1b element for its high precision and
take G = 0.1. The first observation is in the scope of the Hartmann number Ha with the
presented methods. From the structure of algorithm M|-M3, we observe that the first step of
these methods dominate the adaptivity of Hartmann number. Then, we make a comparison
with the penalty Newton iteration, Stokes iteration and My, which described in our previous
work [16]. And we choose the following three cases to simulate 2D problem:

(@) Ha=1:R, =1, R, =0.1, S. =10;

() Ha=10: R, =10, R, =1, S.=10;

(¢) Ha=100:R, =100, R, =1, S.=10.
and choose the following three cases to simulate 3D problem:

(@) Ha=1:R, =1, R, =0.1, S, =10;

() Ha=10:R, =10, R, =1, S, =10;

(¢) Ha =514: R, =35, R, =1, S.=10.
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Fig.5 3D relative error for P; — Py — P;

As can be seen from Figs. 7 and 8, method My can deal with relatively large Hartmann
number and Stokes iteration is only suitable for small Hartmann number. The primary cause
is the limitation of uniqueness condition.

One final observation is in accuracy. Figure 9 depict the analytical solutions of the first
component #(y) and B(y) along with numerical ones u(yx) and B(yx) (yx = —1+0.1k, k =
0,...,20) obtained by scheme M; — M3 with Ha = 10 (R, = 5, R, = 5, S, = 4) and
Ha =100 (R, = 100, R, = 10, S, = 10) for the 2D problem. And the analytical solutions
of the first component u(y, z) and B(y, z) along with numerical ones u(yx, 0) and B (y, 0)
(v = =2 +0.1k, k = 0,...,40) with Ha = 1 (R, = 1,R,, = 0.1, S. = 10) and
Ha =10 (R, = 10, R, = 1, S, = 10) for the 3D problem are shown in Fig. 10. It shows
that the methods presented in this paper can achieve the desired results for different Hartmann
numbers.

5.3 Driven Cavity Flow

In this example, we consider a 2D/3D driven cavity flow which used in fluid dynamics with
the implementation domain Q = (=1, 1)¢,d = 2and Q = (0, 1)*, d = 3, and set the source
terms to be zero. The boundary conditions are prescribed as follows:

u=0, onx==+1 and y = —1,

u=(1,0), on y=1,

nxB=nxBp, on I,
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Fig.6 3D relative error for P1b — P; — P1b

where Bp = (1, 0) ford = 2;
u=0, onx=0,x=1,y=0,y=1 and z =0,
u=(1,0,0), on z=1,
nxB=nxBp, on L2,

where Bp = (1, 0, 0) ford = 3.

In this subsection, we mainly take a further investigation on the effectiveness for the
classical benchmark problem with different parameters. We set R, € {1,5-10%,6 - 103},
Ry € {1072,1,10}, S. € {1, 10%,10% and R, € {1,102,3-10%}, R, € {1072, 1,20},
Se € {1, 10%,5 - 102} for 2D and 3D case, respectively. And we only consider M, with
Pib — Py — P1b element in this part.

The numerical results of horizontal velocity, pressure and magnetic field distribution at the
mid-width for various R,, R, and S. are shown in Figs. 11, 12 13, 17, 18 and 19. It shows
that the numerical results have an excellent agreement with the standard two-level Oseen
iterative method. Figures 14, 15, 16, 20, 21 and 22 describe the numerical streamline of the
cavity flow for different hydrodynamic Reynolds numbers, magnetic Reynolds numbers and
coupling coefficients. It is observed that the velocity main vortex turns into several small
ones and become more complex with the increase of R,. And it shows that more resolved
vortexes may captured with the increase of S.. Besides, the velocity vortex remain almost
unchanged for different R,,.
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6 Conclusions

In this paper, we have proposed some two-level Oseen penalty finite element methods with

strong uniqueness condition o < 1 — <”|ﬁy”‘0‘ )7 < 1 for solving the 2D/3D steady incom-

pressible MHD equations. The main advantage of the presented methods is that they can
overcome the incompressible constrain and save large amount of computational time. And
we give the rigorous analysis of the stability and optimal error estimate for different finite ele-
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ment pair P; and P, under the penalty parameter €. Both 2D/3D numerical results illustrated
that Method 3 with P1b — P — P;b exhibits good performance in terms of adaptability for
large o and high precision. A further study about the 2D/3D non stationary incompressible
MHD equations in this direction is in progress.
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