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Abstract
In this paper, we present a spectral-Galerkin method to approximate the zero-index transmis-
sion eigenvalues with a conductive boundary condition. This is a new eigenvalue problem
derived from the scalar inverse scattering problem for an isotropic media with a conductive
boundary condition. In our analysis, we will consider the equivalent fourth-order eigenvalue
problem where we establish the convergence when the approximation space is the span of
finitelymanyDirichlet eigenfunctions for the Laplacian.We establish the convergence rate of
the spectral approximation by appealing to Weyl’s law. Numerical examples for computing
the eigenvalues and eigenfunctions for the unit disk and unit square are presented. Lastly, we
provide a method for estimating the refractive index assuming the conductivity parameter is
either sufficiently large or small but otherwise unknown.

Keywords Transmission eigenvalues · Inverse spectral problem · Spectral-Galerkin
method · Error estimates
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1 Introduction

In this paper, we consider the numerical approximation of the zero-index transmission eigen-
values that are associated with the scalar scattering problem with a conductive boundary. In
general, the transmission eigenvalues can be seen as the wave numbers where the associ-
ated far-field operator fails to be injective. The zero-index transmission eigenvalue problem
is derived by mathematically imbedding the scattering object in a background with refrac-
tive index equalling zero in the interior of the scatterer. It can be shown that the resulting
far-field operator fails to be injective with a dense range at the wave numbers correspond-
ing to these eigenvalues see [7] for the case when the conductivity is zero. The zero-index
transmission eigenvalue problem has two main advantages over the classical transmission
eigenvalue problem. First, is that they avoid the assumption that the contrast must be either
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positive or negative definite in the scatterer. Next, is the fact that they are linear eigenvalue
problems. This zero-index eigenvalue problem with a conductive boundary condition was
introduced in [22] and was motivated by the work in [9,23] for the classical transmission
eigenvalue problem with a conductive boundary and [7] for the scattering problem without a
conductive boundary. We are also interested in the inverse spectral problem of estimating the
refractive index with little a prior knowledge of the boundary conductivity parameter. There
have beenmanuscripts written on the computation and application of transmission eigenvalue
problems to parameter identification such as [11,13,21,30] to name a few. For the classical
transmission eigenvalue problem we refer to [2,3] for the application of spectral-Galerkin
methods to compute the eigenvalues. See for example [17,19] for some of the previous work
for computing the classical transmission eigenvalues via the finite element method. Recently,
the method of fundamental solutions for computing the classical transmission eigenvalues
was studied and implemented in [25]. Due to the monotonicity property of the transmission
eigenvalues one can estimate the refractive index from the knowledge of the eigenvalues(see
for example [15,16]). The main contributions of this paper is the convergence analysis with
error estimates of the spectral-Galerkin method with the Dirichlet eigenfunctions taken as the
basis and the estimation of the refractive index from the zero-index transmission eigenvalues.

The zero-index transmission eigenvalue problem can be written as a fourth-order eigen-
value problem that depends on the refractive index and conductivity. We now derive the
fourth-order formulation of the eigenvalue problem. To this end, we define the zero-index
transmission eigenvalue problem from the scalar isotropic scattering problem as the values
k ∈ C \ {0} such that there exists a nontrivial pair (u, u0) ∈ H1(D) × H1(D) satisfying the
system

�u + k2nu = 0 and �u0 = 0 in D (1)

u − u0 = 0 and ∂νu = ∂νu0 + ηu0 on ∂D. (2)

Here, we assume that D ⊂ R
d (for d = 2, 3) is a simply connected open set where the

boundary ∂D is either polygonal with no reentrant corners or classC 2 where ν is the outward
unit normal vector. The eigenvalue k corresponds to the wave number for the associated
scattering problem. Let the refractive index n ∈ L∞(D) and conductivity η ∈ L∞(∂D)

where we assume that they are uniformly positive definite functions such that there exists
positive constants

nmin ≤ n(x) ≤ nmax a.e. x ∈ D and ηmin ≤ η(x) ≤ ηmax a.e. x ∈ ∂D.

Therefore, we can define the difference of the eigenfunctions w = u − u0. It is clear that w
satisfies the equation

�w + k2nw = −k2nu0 in D.

Due to standard elliptic regularity results ( [18] page 334 for a C 2 boundary) we have that
w ∈ H2(D) ∩ H1

0 (D). Now, by appealing to the fact that u0 is harmonic in D and the
boundary condition (2) we can conclude that w satisfies the homogeneous boundary value
problem

�
1

n
�w = −k2�w in D and

k2

η
∂νw = −1

n
�w on ∂D. (3)

In [22] it is shown that k ∈ C \ {0} is a zero-index transmission eigenvalue problem if and
only if there is a nontrivial w ∈ H2(D) ∩ H1

0 (D) satisfying (3). By studying the variational
formulation of (3) it is shown that there exists infinitely many real zero-index transmission
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eigenvalues. This eigenvalue problem is derived by mathematically embedding scatterer D
in a background where the refractive index is equal to zero in the interior of the object. This is
done by studying the difference of the far-field operators for the standard scattering problem
and the augmented far-field operator for the scattering problem where the refractive index is
equal zero in D. In general, it is known that the transmission eigenvalues can be determined
from the scattering data. In [24] it is shown that the classical transmission eigenvalues can be
determined from the far-field data. While in [23] it is shown that the classical transmission
eigenvalueswith a conductive boundary can also be recovered from far-field data. This implies
that these eigenvalues can be used as a target signature to determine the material properties.

The rest of the paper is ordered as follows. In the next section we will study the solution
operator corresponding to the zero-index transmission eigenvalue problem with a conductive
boundary (3). We will then consider the approximation of the eigenvalues via a Dirichlet
spectral-Galerkin method where the approximation space is taken to be the span of finitely
many Dirichlet eigenfunctions for the Laplacian. This method of representing the solution
to a PDE by the eigenfunctions of an auxiliary eigenvalue problem is studied for physical
applications in the manuscript [1]. We study the approximation properties of this space
as well as prove convergence of the Dirichlet spectral-Galerkin method for computing the
zero-index transmission eigenvalues and provide error estimates. We will then provide some
numerical examples in two dimensions to show that the proposed spectral method is effective
for computing the eigenvalues. Once we have a method to approximate the eigenvalues we
will turn our attention to estimating the refractive index for either large or small valued
conductivity parameters.

2 The Zero-Index Transmission Eigenvalues

This section focuses on the variational formulation of the zero-index transmission eigenvalue
problem (3). In particular, we study the associated solution operator. The analysis of the
solution operator will be used in the convergence analysis of the spectral method. We define
the variational space for (3) as H2(D) ∩ H1

0 (D) where

H2(D) = {
ϕ ∈ L2(D) : ∂xi ϕ and ∂xi x j ϕ ∈ L2(D) for i, j = 1, . . . , d

}

and

H1
0 (D) = {

ϕ ∈ L2(D) : ∂xi ϕ ∈ L2(D) for i = 1, . . . , d with ϕ|∂D = 0
}
.

From [22] we have that the equivalent variational form for the zero-index transmission
eigenvalue problem (3) is given by the values k ∈ C such that there is a nontrivial
w ∈ H2(D) ∩ H1

0 (D) satisfying

a(w, ϕ) = k2b(w, ϕ) for all ϕ ∈ H2(D) ∩ H1
0 (D). (4)

We will assume that the eigenfunctions are normalized with ‖w‖L2(D) = 1. The bounded
sesquilinear forms on are defined by

a(w, ϕ) =
∫

D

1

n
�w �ϕ dx and b(w, ϕ) =

∫

D

∇w · ∇ϕ dx −
∫

∂D

1

η
∂νw ∂νϕ ds. (5)

Recall, that we assume that there exists positive constants

nmin ≤ n(x) ≤ nmax a.e. x ∈ D and ηmin ≤ η(x) ≤ ηmax a.e. x ∈ ∂D.
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We will study the variational formulation for the zero-index transmission eigenvalue prob-
lem in this section. Even though this is a linear eigenvalue problem for k2 notice that the
sesquilinear form b(· , ·) is not sign definite due to the opposing signs in the definition.Which
does not give a semi-norm on the variational space which is usually the case for standard
elliptic eigenvalue problems.

The well-posedness estimate for the Poisson problem with zero trace along with the H2

elliptic regularity estimate gives have that for any H2(D) function with zero trace ‖� ·‖L2(D)

is equivalent to the ‖ · ‖H2(D). Therefore, we let

X(D) = H2(D) ∩ H1
0 (D) such that ‖ · ‖X(D) = ‖� · ‖L2(D).

Clearly, X(D) is a Hilbert space with the associated inner-product. This implies that a(· , ·)
is a coercive and Hermitian sesquilinear form on X(D). This implies that k = 0 is not a
zero-index transmission eigenvalue. Now, by the Lax-Milgram Lemma we can define the
solution operator T : X(D) → X(D) as

a
(
T f , ϕ

) = b( f , ϕ) for all f , ϕ ∈ X(D). (6)

From the definition of T in (6) we have the following result.

Theorem 2.1 Let the operator T : X(D) → X(D) be as defined by (6). Then T is an a(· , ·)
self-adjoint compact operator and satisfies the estimate

‖T f ‖X(D) ≤ C
(
‖ f ‖H1(D) + ‖∂ν f ‖L2(∂D)

)
.

Proof Since a(· , ·) is a coercive and Hermitian sesquilinear form on X(D) it is an equivalent
inner-product on X(D). Therefore, we have that for all f , ϕ ∈ X(D)

a
(
T f , ϕ

) = b( f , ϕ) = b(ϕ, f ) = a
(
Tϕ, f

) = a
(
f , Tϕ

)

since n and η are real-valued. Proving that T is a(· , ·) self-adjoint on X(D). By the compact
embedding of H1/2(∂D) into L2(∂D) and H2(D) into H1(D) the compactness of T will
follow immediately from the estimate. To prove the estimate notice that by (5) and (6) we
can conclude that

1

nmax
‖T f ‖2X(D) ≤ a

(
T f , T f

) = b
(
f , T f

)

≤
(
‖ f ‖H1(D)‖T f ‖H1(D) + 1

ηmin
‖∂ν f ‖L2(∂D)‖∂νT f ‖L2(∂D)

)

where we have used the bounds on the coefficients. By appealing to the Trace Theorem and
the continuous embedding of H2(D) into H1(D) we further have that

1

nmax
‖T f ‖2X(D) ≤ C

(
‖ f ‖H1(D) + ‖∂ν f ‖L2(∂D)

)
‖T f ‖X(D)

proving the claim. 
�
Notice that since T is a self-adjoint operator on the Hilbert space X(D) with the a(· , ·)

inner-product the Hilbert–Schmidt Theorem implies that there exists infinitely many eigen-
values counting multiplicity μ ∈ R for the operator T such that

Tw = μw which implies that μ = k−2.

Note that since T is not sign definite there can be complex transmission eigenvalues k that
are purely imaginary. In [22] it has been shown that there are infinitely many zero-index
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transmission eigenvalues k ∈ R. Also, note that again by the Hilbert–Schmidt Theorem we
have that there are infinity many eigenfunctions w that form an a(· , ·) orthonormal basis of
X(D).

3 The Dirichlet Spectral-Galerkin Approximation

With the results given in the previous section we can prove the convergence and error esti-
mates of theDirichlet spectral-Galerkin approximationmethodof the zero-index transmission
eigenvalue problem. We will use the approximation space that is the span of finitely many
Dirichlet eigenfunctions for the Laplacian in the domain D. To prove the convergence and
error estimates we must show the approximation properties of this space and use the varia-
tional formulation (4) to show the convergence of the eigenvalues and eigenfunctions. Even
thoughwe focus on the approximation space of Dirichlet eigenfunctions similar analysis as in
Sect. 3.2 will work for any conforming approximation space such as the Legendre-Galerkin
approximation which is used for the fourth order formulation of the classical transmission
eigenvalue problem in [3].

3.1 Approximation Space

Here we will define the approximation space of Dirichlet eigenfunctions and study the
approximation properties of the space. To begin, we let φ j ∈ H1

0 (D) be the j th Dirichlet
eigenfunction for the Laplacian and the corresponding eigenvalue λ j ∈ R+ for the domain
D. The Dirichlet eigenpair satisfy

−�φ j = λ jφ j in D where ‖φ j‖L2(D) = 1. (7)

By again appealing to elliptic regularity we have that φ j ∈ X(D). From [22] we have the
following result.

Lemma 3.1 Let φ j satisfy (7) then the span{φ j }∞j=1 is dense in X(D).

The eigenvalues are assumed to be arranged in non-decreasing order such that 0 < λ j ≤ λ j+1

for all j ∈ N. It is well known that the eigenfunctions {φ j }∞j=1 form an orthonormal basis of

L2(D) which implies that for all f ∈ L2(D)

f =
∞∑

j=1

( f , φ j )L2(D)φ j (8)

as a convergent series in the L2(D) norm. This series representation will be used to show the
approximation rates for this set of basis functions. To do so, we will show the convergence
of this series in the X(D) norm.

Theorem 3.1 For all f ∈ X(D)we have that (8) is convergent in the X(D) norm. Moreover,

� f =
∞∑

j=1

−λ j ( f , φ j )L2(D)φ j

and is an L2(D) norm convergent series which gives ‖ f ‖2X(D) =
∞∑
j=1

λ2j

∣∣( f , φ j )L2(D)

∣∣2.
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Proof The result follows by Lemma 3.1 which gives that ψ j = φ j/λ j is an orthonormal
basis for X(D) by Eq. (7) such that

f =
∞∑

j=1

( f , ψ j )X(D)ψ j

as a X(D) convergent series. Then appealing to Green’s 2nd Theorem we have that

( f , ψ j )X(D) = −(� f , φ j )L2(D) = −( f ,�φ j )L2(D) = λ j ( f , φ j )L2(D).

Therefore, we obtain that

f =
∞∑

j=1

( f , φ j )L2(D)φ j

is a convergent series in the X(D) norm. Then applying the Laplacian term by term to the
series representation proves the claim. 
�

By the series representation (8) for any f ∈ L2(D) along with (7) we can define the
powers of the Laplacian �m for m ∈ N by

�m f =
∞∑

j=1

(−λ j )
m( f , φ j )L2(D)φ j . (9)

Note that this is often done to define (fractional) powers of an elliptic operator(see for example
[26]). We will denote the domain of the mth power of the Laplacian in the set L2(D) as

D
(
�m) := {

f ∈ L2(D) : �m f as defined in (9) is an L2(D) convergent series
}
.

Therefore, we have that D
(
�m

)
is a Hilbert space with the associated norm

‖ f ‖2D (�m ) =
∞∑

j=1

λ2mj

∣∣( f , φ j )L2(D)

∣∣2 < ∞. (10)

By Theorem 3.1 we have that X(D) ⊆ D(�).
For our spectral approximation method we will take the conforming computational sub-

space of X(D) to be given by

XN (D) = span
{
φ j

}N
j=1 for some fixed N ∈ N.

Akey ingredient to determining the approximation rate for this set of basis functions isWeyl’s
law for the Dirichlet eigenvalues(see [5]). Weyl’s law states that there exists two constants
c1, c2 > 0 independent of j such that

c1 j
2/d ≤ λ j ≤ c2 j

2/d for all j ∈ N

where again the dimension d = 2, 3.We now consider the L2(D) projection onto the approx-
imation space XN (D) which we denote 
N : X(D) → XN (D) and is given by


N f =
N∑

j=1

( f , φ j )L2(D)φ j for some fixed N ∈ N.
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It is clear that we have the point-wise convergence

∥∥(I − 
N ) f
∥∥2
X(D)

=
∞∑

j=N+1

λ2j

∣∣( f , φ j )L2(D)

∣∣2 → 0 as N → ∞

for any f ∈ X(D) by Theorem 3.1. We now give a convergence estimate for any f ∈
X(D) ∩ D

(
�m

)
where again we have that D

(
�m

)
is the subspace of L2(D) function such

that Eq. (10) is satisfied.

Theorem 3.2 Assume that f ∈ X(D) ∩ D
(
�m

)
for some m ≥ 2 then

∥∥(I − 
N ) f
∥∥
X(D)

≤ C

(N + 1)2(m−1)/d
‖ f ‖D (�m ).

Proof To prove the claim we estimate

∥∥(I − 
N ) f
∥∥2
X(D)

=
∞∑

j=N+1

λ2j

∣∣( f , φ j )L2(D)

∣∣2 ≤ 1

λ
2(m−1)
N+1

∞∑

j=N+1

λ2mj

∣∣( f , φ j )L2(D)

∣∣2

where we have used the series representation in Theorem 3.1. Now appealing to Weyl’s law
and by (10) we have that

∥∥(I − 
N ) f
∥∥2
X(D)

≤ C

(N + 1)4(m−1)/d

∞∑

j=1

λ2mj

∣∣( f , φ j )L2(D)

∣∣2 = C

(N + 1)4(m−1)/d
‖ f ‖2D (�m )

proving the estimate. 
�

3.2 Convergence and Error Estimates

In this section, we will establish the Dirichlet spectral-Galerkin method for the zero-index
transmission eigenvalue problem. In our analysiswewill use the approximation space XN (D)

defined as the span of the first N Dirichlet eigenfunctions for the Laplacian in D. Similar
results can be established by using other conforming approximation subspaces such as a finite
element approximation space of piecewise polynomials. Using the convergence analysis for
the approximation space in the previous section we are now ready to prove the convergence
on the spectral approximation.

To begin, we will first consider the approximation for the operator T defined in (6) by the
L2(D)projectionofT onto the space XN (D).Wewill show that this approximation converges
in the operator norm. This fact will be used to prove convergence and error estimates for the
approximation of the eigenvalues.

Theorem 3.3 Let the operator T : X(D) → X(D) be as defined by (6) and 
N : X(D) →
XN (D) be the L2(D) projection onto XN (D). Then 
N T → T as N → ∞ in the operator
norm.

Proof Since the operator T defined in Eq. (6) is compact by Theorem 2.1 we have that the
point-wise convergence of 
N to the Identity operator on X(D) implies that

∥∥(I − 
N )T
∥∥
X(D)�→X(D)

→ 0 as N → ∞.

Proving the claim. 
�
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We now define the spectral approximation of the zero-index transmission eigenvalue
problem as find the values kN ∈ C such that there is a nontrivial wN ∈ XN (D) satisfying

a(wN , ϕN ) = k2Nb(wN , ϕN ) for all ϕN ∈ XN (D) (11)

where the sesquilinear forms a(· , ·) and b(· , ·) are defined by (5). Here we again assume
that the eigenfunctions are normalized such that ‖wN‖L2(D) = 1. Therefore, just as in the
continuous case we can define the spectral approximation of the solution operator as operator
TN : X(D) → XN (D) such that for any f ∈ X(D)

a
(
TN f , ϕN

) = b( f , ϕN ) for all ϕN ∈ XN (D). (12)

Since the dimension of the range of TN is finite we have that it is compact. It is also clear that
TN restricted to XN (D) is an a(· , ·) self-adjoint operator on XN (D). This gives that TN has
N eigenvalues countingmultiplicity. Arguing similarly as in Sect. 2we have that the eigenpair
(kN , wN ) ∈ C × XN (D) satisfying (11) is the eigenpair for the spectral approximation of
the solution operator such that

TNwN = k−2
N wN .

In order to attain the convergence aswell as an error estimatewewill study the convergence
of the spectral approximation of the solution operator as N → ∞. Therefore, by appealing
to Galerkin orthogonality

a
(
T f − TN f , ϕN

) = 0 for all ϕN ∈ XN (D)

and Cea’s Lemma( [6] page 372) we have that
∥∥T f − TN f

∥∥
X(D)

≤ C
∥∥T f − vN

∥∥
X(D)

for any vN ∈ XN (D)

and for all f ∈ X(D). From the above estimate we conclude that
∥∥T f − TN f

∥∥
X(D)

≤ C
∥∥(I − 
N )T f

∥∥
X(D)

where again
N is the L2(D) projection onto the approximation space XN (D). This analysis
gives the following result.

Theorem 3.4 Let (k, w) and (kN , wN ) be the j th eigenpair for (4) and (11) respectively.
Then as N → ∞ we have that kN → k and wN → w in X(D).

Proof This result follows from the fact that
∥∥T − TN

∥∥
X(D)�→X(D)

≤ C
∥∥(I − 
N )T

∥∥
X(D)�→X(D)

→ 0 as N → ∞
and then appealing to the results in [27]. 
�

Now that we have established the convergence of the spectral approximation our next step
it to determine the convergence rate. To this end, we will argue similarly to Theorem 3.2
along with the using variational formulations (4) and (11). Simple calculations give that for
(k, w) and (kN , wN ) being the j th egienpair for (4) and (11) then

a
(
wN − w,wN − w

) − k2b
(
wN − w,wN − w

) = (
k2N − k2

)
b
(
wN , wN

)
(13)

for any N . The equality (13) will be used to establish the convergence rate for the eigenvalues.
So we need to establish that the sequence

∣∣b
(
wN , wN

)∣∣ is bounded below. Therefore, we
present the following result.
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Theorem 3.5 Let (kN , wN ) be the j th egienpair for (11). Then there is a constant β > 0
independent of N such that

inf
N∈N

{∣∣b
(
wN , wN

)∣∣
}

≥ β.

Proof To prove the claim we proceed by way of contradiction. To this end, assume no such
β exists, then we can extract a subsequence still denoted with N such that

∣∣b
(
wN , wN

)∣∣ → 0 as N → ∞.

By the continuity of the sesquilinear form b(· , ·) and Theorem 3.4 we obtain
∣∣b

(
wN , wN

)∣∣ → ∣∣b
(
w,w

)∣∣ as N → ∞
where w is an eigenfunction corresponding to (4). The variational formulation implies that
a(w,w) = 0 which contradicts the fact that ‖w‖L2(D) = 1 since a(· , ·) defines an inner-
product on X(D). Proving the claim. 
�

From Theorem 3.5 we can conclude that for (k, w) and (kN , wN ) being the j th egienpair
for (4) and (11) respectively then there is a C > 0 independent of N where

∣∣k2N − k2
∣∣ ≤ C

∥∥wN − w
∥∥2
X(D)

.

Note that we have used (13) and the boundedness of sesquilinear forms a(· , ·) and b(· , ·). In
order to obtain the error estimate for the spectral approximation of the zero-index transmission
eigenvalues we must estimate the error in the Galerkin approximation in the approximation
space XN (D)on the eigenspace corresponding to k. To this end,wewill denote the eigenspace
corresponding to the zero-index transmission eigenvalue k by E(k). It is clear that E(k) ⊂
X(D) is finite dimensional and any u ∈ E(k) satisfies Tu = k−2u. With this we can now
prove the error estimate.

Theorem 3.6 Let k and kN be the j th eigenvalues for (4) and (11) respectively. If the corre-
sponding eigenspace E(k) ⊂ D

(
�m

)
for m ∈ N then there is a C > 0 independent of N

such that
∣∣k2N − k2

∣∣ ≤ C

(N + 1)4(m−1)/d
sup

u∈E(k) , ‖u‖X(D)=1

∥∥(I − 
N )u
∥∥2
D (�m )

where 
N : X(D) → XN (D) is the L2(D) projection onto XN (D).

Proof Notice that according to the analysis in [8], we have that

‖wN − w‖2X(D) ≤ C
∥∥(T − TN )

∥∥2
E(k)�→X(D)

.

Therefore, by the definition of the norm
∥∥ · ∥∥

E(k)�→X(D)
we can estimate

∥∥(T − TN )
∥∥2
E(k)�→X(D)

= sup
u∈E(k) , ‖u‖X(D)=1

∥∥(T − TN )u
∥∥2
X(D)

≤ C sup
u∈E(k) , ‖u‖X(D)=1

∥∥(I − 
N )Tu
∥∥2
X(D)

.

We further have that
∥∥(T − TN )

∥∥2
E(k)�→X(D)

≤ C sup
u∈E(k) , ‖u‖X(D)=1

∥∥(I − 
N )Tu
∥∥2
X(D)
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= C sup
u∈E(k) , ‖u‖X(D)=1

∞∑

j=N+1

λ2j

∣∣(Tu, φ j )L2(D)

∣∣2

= C |k|−4 sup
u∈E(k) , ‖u‖X(D)=1

∞∑

j=N+1

λ2j

∣∣(u, φ j )L2(D)

∣∣2.

Wherewe have used the fact that u ∈ E(k). Now, sincewe have assumed that E(k) ⊂ D
(
�m

)

we further estimate just as in Theorem 3.2

∥∥(T − TN )
∥∥2
E(k)�→X(D)

≤ Cλ
−2(m−1)
N+1 sup

u∈E(k) , ‖u‖X(D)=1

∞∑

j=N+1

λ2mj

∣∣(u, φ j )L2(D)

∣∣2

≤ C(N + 1)−4(m−1)/d sup
u∈E(k) , ‖u‖X(D)=1

∥∥(I − 
N )u
∥∥2
D (�m )

which we obtain by appealing toWeyl’s law. This estimate give the convergence rate proving
the claim. 
�

Weend this section by noting that the convergence rate for the eigenfunctions are the square
root of the convergence rate for the eigenvalues. This is clear from the proof of Theorem
3.6 since estimates for ‖wN − w‖2X(D) are used to derive the estimates for the eigenvalue
convergence rate.

Theorem 3.7 Let w and wN be the j th eigenfunctions for (4) and (11) respectively. If the
corresponding eigenspace E(k) ⊂ D

(
�m

)
for m ∈ N then there is a C > 0 independent of

N such that

‖wN − w‖X(D) ≤ C

(N + 1)2(m−1)/d
sup

u∈E(k) , ‖u‖X(D)=1

∥∥(I − 
N )u
∥∥
D (�m )

where 
N : X(D) → XN (D) is the L2(D) projection onto XN (D).

Proof The result follows from the analysis given in the proof of Theorem 3.6. 
�

4 Numerical Examples

In this section, we provided some numerical examples of computing the zero-index transmis-
sion eigenvalues via the Dirichlet spectral-Galerkin method studied in the previous sections.
For simplicity, will assume that the domain D is the unit ball in R

2. We refer to [4] for the
approximation of the classical transmission eigenvalues via a Spectral Element Method for
a spherically stratified media. We will check the accuracy of our Dirichlet spectral-Galerkin
method by comparing to the eigenvalues computed by separation of variables for constant
refractive index n and conductivity η. The computations in this section are motivated by the
work in [20] where the authors studied the convergence of the spectral-Galerkin method for
computing the classical transmission eigenvalues where the basis functions in the approxi-
mation space are the eigenfunctions for the bilaplacian with zero clamped plate boundary
conditions. We will also consider estimating the refractive index n for η either small or large
but unknown. To do so, we will use the convergence results given in [22] where it is shown
that as the conductivity tends to zero or infinity one obtains an eigenvalue problem that only
depends on the refractive index. The estimation of the refractive index from the scattering
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data has been studied in [12,29] to name a few examples. In these papers the authors show
that the far and near field data can be used to recover the classical transmission eigenvalues
and use monotonicity results to recover a constant refractive index or estimate a variable
refractive index. Here we numerically study this problem for the zero-index transmission
eigenvalues.

4.1 Computing the Eigenvalues

We are now ready to compute the zero-index transmission eigenvalues using the Dirichlet
spectral-Galerkin approximation presented in Sect. 3. All of our experiments are done with
the software MATLAB 2018a on an iMac with a 4.2 GHz Intel Core i7 processor with 8GB
of memory. To begin, we will describe an effective method for computing the approximated
eigenvalues that satisfy (11). Since the domain D is given by the unit circle we can determine
the basis functions from separation of variables. Therefore, the basis functions are taken to
be

φ j (r , ϑ) = Jp
(√

λp,q r
)
cos(pϑ) with index j = j(p, q) ∈ N.

Here square root of the eigenvalues
√

λp,q corresponds to the qth positive root of the pth
first kind Bessel function denoted Jp for all p ∈ N ∪ {0} and q ∈ N.

In the following numerical examples we take 24 basis functions where 0 ≤ p ≤ 5 and
1 ≤ q ≤ 4 which will give that the approximation space is defined as

Span
{
φ j(p,q)(r , ϑ)

}p=5 , q=4

p=0 , q=1
⊂ X(D).

For our Dirichlet spectral-Galerkin approximation we will solve (11) for wN in the afore-
mentioned approximation space. This gives that the approximation of the eigenfunctions will
have the form

wN (x) =
24∑

j=1

ω jφ j (x).

Therefore, the spectral approximation of the eigenvalues kN satisfying (11) correspond to
the eigenvalues for the matrix equation

(
A − k2NB

) �ω = 0 where �ω = (
ω1, . . . , ω24

)� �= 0. (14)

We have that the 24× 24 Galerkin mass and stiffness matrices in the Spectral approximation
(11) are given by

Ai, j = a(φi , φ j ) and Bi, j = b(φi , φ j ) for i, j = 1, . . . , 24.

The integrals can be simplified by using (7) to evaluate the sesquilinear forms a(· , ·) and
b(· , ·) giving that

a(φi , φ j ) = λiλ j

∫

D

1

n(x)
φi (x) φ j (x) dx

and

b(φi , φ j ) = λi

∫

D

φi (x) φ j (x) dx −
∫

∂D

1

η(x)
∂νφi (x) ∂νφ j (x) ds.
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Fig. 1 Plot of the function dm (k) for the values of m = 0, 1, 2, 3, 4, 5 with coefficient parameter n = 4 and
η = 25

Notice that we have used that for theDirichlet eigenfunctionsφi andφ j we have the following
integral identities

∫

D

1

n(x)
�φi (x)�φ j (x) dx = λiλ j

∫

D

1

n(x)
φi (x) φ j (x) dx

and
∫

D

∇φi (x) · ∇φ j (x) dx = λi

∫

D

φi (x) φ j (x) dx for any i, j ∈ N.

In our calculations, we use the fact that the Dirichlet eigenfunctions are orthogonal in L2(D)

which gives that the volume integral in b(φi , φ j ) corresponds to a diagonal matrix.
To compute the Galerkin matrices we implement a 2d Gaussian quadrature method. In the

numerical examples the integrals are written in polar coordinates where 12 quadrature points
are used to evaluate the radial and angular parts of the integrals. The discretized eigenvalue
problem (14) is then solved using the ‘polyeig’ command in MATLAB since (14) is a
quadratic eigenvalue problem for the parameter kN . From [22] we have that for n and η

constant the eigenvalues k satisfy the transcendental equation

dm(k) := k
√
nJ ′|m|

(
k
√
n
) − (

η + |m|)J|m|
(
k
√
n
) = 0 for all m ∈ Z.

Using the ‘fzero’ command inMATLABwecandetermine the exact zero-index transmission
eigenvalues. In Figs. 1 and 2 we plot the function dm(k) for the values of m = 0, 1, 2, 3, 4, 5
with k ∈ [0, 5]. To validate our approximation method we compare the Approximation v.s.
the Exact eigenvalues presented in Tables 1 and 2.
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Fig. 2 Plot of the function dm (k) for the values of m = 0, 1, 2, 3, 4, 5 with coefficient parameter n = 4 and
η = 1/10

Table 1 Comparison of the
Dirichlet spectral-Galerkin
approximation v.s. Exact
zero-index transmission
eigenvalues for n = 4 and
η = 25

Approximation Exact Relative error

k1 1.25185566197 1.25132121108 4.27 × 10−4

k2 1.99243796762 1.99043273844 0.0010

k3 2.878602256114 2.66364226350 0.0807

Table 2 Comparison of the
Dirichlet spectral-Galerkin
approximation v.s. Exact
zero-index transmission
eigenvalues for n = 4 and
η = 1/10

Approximation Exact Relative error

k1 2.00233111434 1.90276223549 0.0523

k2 2.68333505931 2.55809498688 0.0490

k3 3.69381250080 3.18227361485 0.1607

The plot of the relative error for the first eigenvalue k1 is given where we let n vary in the
interval [3, 5] for η = 25 or η = 1/10. We use d0(k) to compute the exact first zero-index
transmission eigenvalues. In Fig. 3 we see that the relative error for η = 25 is on the order of
10−4 where as the relative error for η = 1/10 is on the order of 10−2. This seems to imply
that the Dirichlet spectral-Galerkin approximation method is better suited for problems with
larger conductivity.

We now consider computing the eigenvalues for variable coefficients. Here we take a
smooth and a piece-wise constant refractive index defined as

n1 = 4 + exp(−r2) and n2 = 4 ∗ 1(0.25≤r<1) + 2 ∗ 1(r<0.25)
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Fig. 3 Here is a plot of the relative error for the 1st eigenvalue for n ∈ [3, 5] for η = 25 and η = 1/10 on the
left and right respectively

Table 3 The first three real zero-index transmission eigenvalues for n1. We also plot the eigenfunctions
corresponding to the eigenvalues k1 and k2 for η = 1/10

for a spherically stratified media. Here 1I denotes the indicator function on the interval I . In
Tables 3 and 4we report the first three real zero-index transmission eigenvalues computed via
our approximationmethod for various conductivities. Herewe take three different parameters
η. Two of the conductivities are constants taken to be 25 and 1/10 while the third is a variable
conductivity parameter

η = 1/
(
10 + sin2(2θ)

)
.

Recall, that the analysis in Sect. 3.2 also gives the convergence of the eigenfunctions in
Theorems 3.4 and 3.7. So, presented with Tables 3 and 4 are the plots for the first two
corresponding eigenfunctions for the spherically stratified refractive indices n1 and n2 defined
above.
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Table 4 The first three real zero-index transmission eigenvalues for n2. We also plot the eigenfunctions
corresponding to the eigenvalues k1 and k2 for η = 25

Notice that the computed zero-index transmission eigenvalues are monotonically decreas-
ing with respect to the coefficients which is predicted by the theory in [22]. We can see that
for the first three real zero-index transmission eigenvalues that for η = 25 and 1/10 we have

k j (n1, η) ≤ k j (4, η) ≤ k j (n2, η).

Similarly comparing the reported eigenvalues we see the monotonicity with respect to the
conductivity η for various refractive indices.

4.2 Estimating the Refractive Index

In this section, we present numerical examples for estimating the refractive index from the
knowledge of the zero-index transmission eigenvalues. It has been shown in [9,23] that the
classical transmission eigenvalues with a conductive boundary condition can be recovered
from the scattering data via the Linear Sampling Method and the Inside-Out Duality, see
[14,24] for details of these methods to recover the transmission eigenvalues. Therefore, we
will assume that the zero-index transmission eigenvalues can be recovered from the scattering
data and we wish to estimate n.

In order to estimate the refractive index from the zero-index transmission eigenvalues
k(n, η) we will restrict ourselves to the case where η is either sufficiently large or small. The
case for η knownwas considered numerically in [22]. The limiting behavior of the zero-index
transmission eigenvalues was studied in [22] as η tends to zero or infinity. It has been shown
that k(n, η) → τ(n) as η → ∞ where τ is a ‘modified’ Dirichlet eigenvalue satisfying that
there exist a nontrivial v such that

�v + τ 2nv = 0 in D where v ∈ H1
0 (D)
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Table 5 Estimation of the refractive index n for η = 1/
(
10 + sin(2θ)2

)

Refractive index 1st eigenvalue napprox

n = 4 2.00296851019 3.65301

n = 4 + exp(−r2) 1.83137577764 4.39393

n = 4 ∗ 1(0.25≤r<1) + 2 ∗ 1(r<0.25) 2.21052625727 3.00333

Table 6 Estimation of the refractive index n for η = 25(2 + sin4(θ))

Refractive index 1st eigenvalue napprox

n = 4 1.25192566197 3.866691

n = 4 + exp(−r2) 1.11323689887 4.681572

n = 4 ∗ 1(0.25≤r<1) + 2 ∗ 1(r<0.25) 1.30146479659 3.404278

or as η → 0 where τ is a ‘modified’ plate buckling eigenvalue satisfying that there exist a
nontrivial v such that

�
1

n
�v + τ 2�v = 0 in D where v ∈ H2

0 (D).

This limiting behavior will allow use to estimate the refractive index without the knowledge
of η on the boundary.

This gives that if it is known a prior that η � 1 or η � 1 thenwe can estimate the refractive
index by finding the constant napprox such that k1(n, η) = τ1(napprox) where τ1 is the first
‘modified’ Dirichlet eigenvalue for η � 1 or the first ‘Modified’ plate buckling eigenvalue
for η � 1. It is known that τ1 depends monotonically on n by the max-min principle [30].
Since D is assumed to be known we can compute τ1 for any constant refractive index n via
the methods from [10,28]. To numerically approximate τ1 we use separation of variables
since D is the unit circle. Therefore, we have that the ‘modified’ Dirichlet eigenvalues for a
constant n satisfies

J|m|
(
τ
√
n
) = 0 for all m ∈ Z

and the ‘modified’ plate buckling eigenvalues for a constant n satisfies

τ
√
nJ ′|m|

(
τ
√
n
) − |m|J|m|

(
τ
√
n
) = 0 for all m ∈ Z.

To determine the approximate refractive index we first find the polynomial interpolation
for τ1(n) for constant n ∈ [2, 7] via the ‘polyfit’ command in MATLAB. Then we solve
for the constant napprox such that

k1(n, η) = τ1(napprox)

via the ‘fzero’ command in MATLAB. Since τ1 is a deceasing function of n the above
equation has a unique solution napprox. The results are reported in Tables 5 and 6 for the
spherically stratified refractive indices used in our previous calculations with variable coef-
ficient conductivity parameters.

Simple calculus gives that the average value of n = 4 + exp(−r2) in the unit disk to
be 4 + (1 − exp(−1)) ≈ 4.6321205 which is fairly close to the approximation in Table 6.
We can also compute the average value for the piece-wise constant refractive index n =
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Table 7 The first zero-index transmission eigenvalue for n = 4 and η = 10m with m = 0, 1, 2, 3 of the unit
square

η = 1 η = 10 η = 100 η = 1000

k1 2.42379135332 2.23942914304 2.22322075768 2.22161920572

Here we see that k1 is converging to the first ‘modified’ Dirichlet eigenvalues for the unit square π/
√
2 ≈

2.2214414

Table 8 The first zero-index transmission eigenvalue for n =
(
x21
2 + 2

) (
x22
2 + 2

)
and η = 10m with

m = 0, 1, 2, 3 of the unit square

η = 1 η = 10 η = 100 η = 1000

k1 2.23128387981 2.00960194537 1.96995925736 1.96292112038

4 ∗ 1(0.25≤r<1) + 2 ∗ 1(r<0.25) in the unit disk which is 3.875. Also notice that due to
the monotonicity of τ1 we have that nmin ≤ napprox ≤ nmax. In the case of the classical
transmission eigenvalues it has been numerically documented that estimating the refractive
index by a constant leads to determining it’s average value [29]. Table 6 seems to suggest
that for η � 1 that estimating the refractive index by a constant may also lead to determining
the average value.

4.3 A Numerical Example for the Unit Square

For completeness we provide numerical examples for the unit square D = (0, 1)2. This is
given to show that this method also works for polygonal domains with no reentrant corners.
Here we wish to show the accuracy of the approximation for this domain. To this end, we
will compute the zero-index transmission eigenvalues for a constant η. To establish that the
approximation is accurately computing the eigenvalues we will show test convergence as
η → ∞ as well as the monotonicity. We will also estimate the refractive index n(x1, x2)
assuming η � 1 just as we did for the unit sphere. Therefore, the zero-index transmission
eigenvalues k should converge to the ‘modified’ Dirichlet eigenvalues for the unit square.

For the approximate we have that the basis functions are taken to be

φ j (x1, x2) = sin(pπx1) sin(qπx2) with index j = j(p, q) ∈ N.

In the numerical examples we take 25 basis functions where 1 ≤ p, q ≤ 5 which gives the
spectral approximation space as

Span
{
φ j(p,q)(x1, x2)

}5

p,q=1
⊂ X(D).

To compute the zero-index transmission eigenvalues we proceed just as in the previous
section. The spectral approximation of the eigenvalues kN satisfy the corresponding matrix
eigenvalue problemwith the appropriate mass and stiffness matrices. Again the matrix eigen-
value problem is solved by using ‘polyeig’ command in MATLAB.

Herewe see in Table 7 the convergence of the first zero-index transmission eigenvalue k1 to
the first ‘modified’ Dirichlet eigenvalue. Also, notice that in Tables 7 and 8 the monotonicity
of the transmission eigenvalue k1(n, η)with respect to n and η is verified by the calculations.
Now from the approximated transmission eigenvalue we can again estimate the refractive
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Table 9 Estimation of the
refractive index n for η = 10

Refractive index 1st eigenvalue napprox

n = 4 2.23942914304 3.935999

n =
(
x21
2 + 2

)(
x22
2 + 2

)
2.00960194537 4.887757

index. Using the convergence as η → ∞ we proceed just as in the previous section. That is
we find napprox such that

k1(n, η) = τ1(napprox)

where the conductivity parameter η � 1. To estimate the refractive index we can solve the
above equation exactly since the ‘modified’ Dirichlet eigenvalues are known analytically.
In Tables 9 we present the approximation of two refractive indices from the first zero-index
transmission eigenvalue for the unit square.

5 Summary and Conclusions

In conclusion, we have provided a numerical method to compute the zero-index transmission
eigenvalues via the Dirichlet spectral-Galerkin approximation method. Our approximation
space is taken to be the span of the first N Dirichlet eigenfunctions. Even though our numerical
examples are only presented in for the unit disk and circle in R2 the analysis is also valid for
any domain where the boundary ∂D is either polygonal with no reentrant corners or class
C 2 in R

d for d = 2, 3. In order to apply this method one needs the Dirichlet eigenpairs a
prior for the domain of interest. In theory this can be done by pre-calculating a fixed number
of Dirichlet eigenpairs for the domain D via BEM [28] or FEM [30]. We have also given
numerical examples to validate the theoretical results as well as investigated estimating
the refractive index from the first zero-index transmission eigenvalue. It seems that for η

sufficiently large one can estimate the average value of nwhich can be used for nondestructive
testing. Possible future work would consist of applying this method to compute ‘classical’
transmission eigenvalues with a conductive boundary and considering the inverse problem
of recovering a variable coefficient refractive index from the eigenvalues.
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