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Abstract
We develop, analyze and numerically validate local discontinuous Galerkin (LDG) meth-
ods for solving the nonlinear Benjamin–Bona–Mahony (BBM) equation. With appropriately
chosen numerical fluxes, the conventional LDG methods can be shown to preserve the dis-
crete version of mass, and either preserve or dissipate the discrete version of energy, up to the
round-off level. The error estimate with optimal order of convergence is provided for both
the semi-discrete energy conserving and energy dissipative methods applied to the nonlinear
BBM equation, by a novel technique to discover the connection between the error of the
auxiliary and primary variables, and by carefully analyzing the nonlinear term. Fully discrete
methods can be derived with energy-conserving implicit midpoint temporal discretization.
Numerical experiments confirm the optimal rates of convergence, as well as the mass and
energy conserving/dissipative property. The comparison of the long time behavior of the
energy conserving and energy dissipative methods are also provided, to show that the energy
conserving method produces a better approximation to the exact solution. In a recent study
by Fu and Shu (J Comput Phys 394:329–363, 2019), optimal energy conserving discon-
tinuous Galerkin methods based on doubling-the-unknowns technique were developed for
the linear symmetric hyperbolic systems. We extend the idea to construct another class of
energy conserving LDGmethods for the nonlinear BBM equation. Their energy conservation
property and optimal convergence rate (via a special constructed numerical projection) are
investigated. We also provide a comparison of these two types of energy conserving LDG
methods, and shown that, under the same setup of computational elements, the latter method
produces a smaller numerical error with slightly longer computational time.
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1 Introduction

The dynamics of shallow water wave equations can be modeled by the nonlinear dispersive
wave equation, for example, the nonlinear Korteweg–de Vries (KdV) equation

ut + ux + uxxx + uux = 0,

which has been used in a wide range of applications [1]. In 1972, Benjamin et al. [2] proposed
an improved version of the KdV equation that also models long shallowwater waves of small
amplitude, known as the Benjamin–Bona–Mahony (BBM) equation

ut + ux − uxxt + uux = 0.

The BBM equation is obtained by replacing the third-order term uxxx in the KdV equation
with a mixed derivative term uxxt , and demonstrates some attractive features that the KdV
equation lacks, one specific example being better dispersion properties resulting in improved
stability of the highwavenumber components. TheBBMequationdescribes the unidirectional
propagation of surface water in a nonlinear dispersive medium with small amplitude and
long wave [2], and has been used in the analysis of hydromagnetic waves in cold plasma,
acoustic-gravity waves in compressible fluids and acoustic waves in harmonic crystals [3].
Due to its wide applications and rich dynamics, researchers have developed many different
forms of BBM equations which are usually called generalized BBM equations, see [4,5] and
the references therein.

In this paper, we consider the BBM equation taking the form of

ut − εuxxt + uux = 0, (1.1)

on the interval I = [xl , xr ], with the periodic boundary condition

u(xl , t) = u(xr , t), (1.2)

and the initial condition

u(x, 0) = u0(x), (1.3)

where ε > 0 is a given real number. The BBM equation possesses the cnoidal-wave solutions
of the form

u(x, t;C, D,m) = 3mC

(2m − 1)
cn2

(
1

2
√

(2m − 1)ε
(x − Ct − D);m

)
(1.4)

where cn(z;m) is the Jacobi elliptic function with modulus m ∈ (0, 1) (see [6]). C > 0 is
the speed of propagation of the solitary wave, and D is an arbitrary, real translation. The
period of cnoidal-wave solutions is 2K (m)/B, where K (m) is the complete elliptic integral
of the first kind and B = 1

2
√

(2m−1)ε
. It is well known that the BBM equation possesses two

invariant quantities: the mass M(t) and energy E(t), defined by

M(t) :=
∫
I
u(x, t)dx, (1.5)

and

E(t) :=
∫
I

(
u2(x, t) + εu2x (x, t)

)
dx . (1.6)

There have been awide range of theoretical work available for the BBMequation. Herewe
briefly review a few of them. The global existence, uniqueness and stability of the solutions of
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one-dimensional BBMequationwere studied in [2]. The result was extended in [7,8] tomulti-
dimensional cases. The existence and uniqueness of the periodic solutions was discussed in
[9], and that of the solitary wave solutions was studied in [10]. Numerical solutions of the
BBM equation have been studied by many researchers. We refer to [5,11,12] for the studies
of the convergence analysis of various finite difference and finite element methods proposed
for the BBM equation. High order scheme based on the local discontinuous Galerkin (LDG)
finite element method has been presented in [13,14] for one class of Sobolev equations which
includes the BBM equation. Numerical stability, as well as the optimal error estimate when
upwind nonlinear numerical flux was used, were studied in these papers. Another set of LDG
method was proposed in [15] for the KdV–BBM equation. In [16], LDG methods with two
different sets of numerical fluxes to either preserve or dissipate energy was proposed for the
Boussinesq coupled BBM system, and optimal error estimate was provided for the linearized
equations.

We confine our discussion on the high order discontinuous Galerkin (DG)method [17–21]
in this paper. It is a class of finite element methods using completely discontinuous piecewise
polynomial basis functions, and inherits the benefits of both finite element and finite volume
methods. Advantages of DG methods are many, including the flexibility for hp-adaptivity,
efficient parallel implementation, the local conservativity, the ability for easy handling of
complicated geometries and boundary conditions, and easy coordination with finite volume
techniques, making the methods very attractive in a wide range of applications. The LDG
methods were proposed by Cockburn and Shu in [22] to numerically solve partial differential
equations (PDEs) containing high order spatial derivatives terms, and we refer to the review
paper [23] for the development of LDG methods. Recently, there have been many studies in
designing DG and LDG methods which can conserve the energy or Hamiltonian structure
of the model in the discrete level. Energy conserving LDG methods have been designed for
the generalized KdV equation [24–27], the second order wave equation [28,29], the two-way
wave equation [30], the Camassa–Holm equation [31], the Degasperis-Procesi equation [32],
the nonlinear Schrödinger equation [33,34] and the improved Boussinesq equation [35].

In this paper, we develop, analyze and numerically validate two classes of LDG methods
for solving the nonlinear BBM equation. By introducing one auxiliary variable, and with
appropriately chosen numerical fluxes, the conventional LDG methods can be shown to
preserve the discrete version of mass, and either preserve or dissipate the discrete version of
energy of the continuous solution, up to the round-off level, which leads to the numerical
stability automatically. The proposed LDGmethod takes a different formulation from that in
[13], where three auxiliary variables were introduced for discretize the high order derivative
term. Our method is closer to the one in [15], but with a wide choice of numerical fluxes
to derive both energy conserving and dissipative methods. One main contribution of this
paper is to provide an optimal a priori error estimate for both the semi-discrete energy
conserving and energy dissipative methods applied to the nonlinear BBM equation. In [13,
15], optimal error estimate has been obtained for the upwind nonlinear numerical fluxes
only, and the same analysis cannot be extended to the energy conserving methods presented
here. Few work has been done in the literature on providing optimal error estimate for
the energy conserving methods applied to nonlinear equations. To achieve this goal, we
discover the connection between the error of the auxiliary and primary variables, and use this
connection to bound the nonlinear term by the auxiliary variable. Fully discrete methods can
be derived by coupling with energy-conserving implicit midpoint temporal discretization.
Numerical experiments confirm the optimal rates of convergence, as well as the mass and
energy conserving/dissipative property. The comparison of the long time behavior of the
energy conserving and energy dissipative methods are also provided, to show that the energy
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conserving method produces a better approximation to the exact solution, especially for long
time simulation and when polynomial degree k is small.

Recently, based on the idea of doubling the unknown functions via introducing auxil-
iary zero functions, optimal energy conserving DG methods have been presented for linear
symmetric hyperbolic systems by Fu and Shu in [36]. The same idea has been extended in
[37] to provide an energy conserving ultra-weak DG method for the KdV equation, where
comparison with existing energy conserving or dissipative DG methods have been provided
to demonstrate the better performance of the new developed optimal energy conserving DG
methods. At the end of the paper, another class of energy conserving LDG methods, based
on this doubling-the-unknowns technique in [36], is also constructed for the nonlinear BBM
equation. We investigate their energy conservation property and optimal convergence rate
via a special constructed numerical projection. We also provide a comparison of these two
types of energy conserving LDG methods presented in this paper, and under the same setup
of computational elements, the latter method is shown to have a smaller numerical error with
only slightly longer computational time.

Another motivation of the study of the energy conserving methods for the BBM equation
originates from our recent work in [31], where the energy conserving LDG method for the
Camassa–Holm equation was investigated. In [31, Figure 2], the comparison of numerical
solutions by the energy conserving and dissipative methods with the exact solution is pro-
vided, where we can observe a smaller phase error of the energy conserving methods, but
the improvement in terms of the phase error is not as good as that for the KdV [24] and
Degasperis-Procesi [32] equations. This phenomenon was also mentioned in [31]. We expect
this study of energy conserving methods for the simpler BBM equation provides us some
insights on this matter, and we will discuss our observation in the numerical experiment
section.

The organization of the paper is as follows. In Sect. 2, we present the LDG method for
the nonlinear BBM equation, and show that energy conserving or dissipative methods can
be obtained by choosing appropriate parameters and fluxes. The optimal error estimate of
the proposed methods is provided. Energy conserving temporal discretization is presented to
obtain fully discrete methods, which are shown to preserve the discrete version of mass, and
either preserve or dissipate the discrete version of energy of the continuous solution, up to
the round-off level. Numerical results are provided in Sect. 3 to show the order of accuracy,
the mass and energy conservation property and long time behavior of the LDG numerical
solutions. In Sect. 4, we introduce another class of energy conserving LDG methods based
on doubling-the-unknowns technique, recently proposed in [36]. Energy conserving property
and optimal error estimate of these methods have been studied. In Sect. 5, numerical tests are
provided to show the performance of the second class of energy conserving method, as well
as the numerical comparison of these two classes of LDG methods. Conclusion remarks are
presented in Sect. 6.

2 The LDGMethod

In this section, we start by applying the conventional LDGmethod to the BBM equation, and
show that the energy conserving/dissipative methods can be achieved with suitable choices
of numerical fluxes. The proof of optimal error estimate for the proposed energy conserv-
ing/dissipative LDGmethod applied to the nonlinear BBM equation is also provided, and we
end the section by presenting the temporal discretization which is also energy conserving.
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2.1 Notations

We divide the computational domain I = [xl , xr ] into J subintervals and denote the cells by
I j = [x j− 1

2
, x j+ 1

2
] for j = 1, 2, . . . , J . The center of each cell is x j = 1

2 (x j+ 1
2
+x j− 1

2
), and

the mesh size is denoted by h j = x j+ 1
2

− x j− 1
2
with h = max h j for j = 1, 2, . . . , J being

the maximal mesh size. We assume that the mesh is regular, namely, the ratio between the
maximal and the minimal mesh sizes stays bounded during mesh refinement. The piecewise
polynomial space V k

h is defined as the space of polynomials of degree up to k in each cell I j ,
that is,

V k
h = {v : v|I j ∈ Pk(I j ), j = 1, 2, . . . , J }.

The solution of the numerical scheme is denoted by uh , which belongs to the finite element
space V k

h . We denote by (uh)
+
j+ 1

2
and (uh)

−
j+ 1

2
the limit values of uh at x j+ 1

2
from the right

cell I j+1 and from the left cell I j , respectively. We use the usual notations

[uh] = u+
h − u−

h , {uh} = 1

2
(u+

h + u−
h )

to respectively represent the jump and the mean of the function uh at the element interfaces,
for which we have the following equalities summarized in the lemma.

Lemma 2.1 Assuming uh, vh ∈ V k
h , we have the equalities

[uhvh] j+ 1
2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
u+
h [vh] + [uh]v−

h

)
j+ 1

2
,(

u−
h [vh] + [uh]v+

h

)
j+ 1

2
,

({uh}[vh] + [uh]{vh}) j+ 1
2
.

If u is continuous at the point x j+ 1
2
, we have {u} j+ 1

2
= u j+ 1

2
, [u] j+ 1

2
= 0, and the above

equality reduces to

[uvh] j+ 1
2

= (u[vh]) j+ 1
2
.

For a shorthand notation, the inner product is denoted by (w, v) j = ∫
I j

wvdx for the
scalar variables w, v. Finally, we provide the definition of various norms that will be used in
the rest of the paper.

• ‖v‖: the L2 norm of a function v ∈ L2(I );
• ‖v‖∞: the L∞ norm of a function v ∈ L2(I );

• ‖v‖�h =
√∑J

j=1

(
v2(x+

j+ 1
2
) + v2(x−

j+ 1
2
)

)
: the norm defined on the element interfaces;

• |[v]| =
√∑J

j=1[v]2
j− 1

2
: the so called “jump semi-norm”.

2.2 The Semi-discrete LDGMethod

To derive the LDG discretization of the BBM Eq. (1.1), we introduce the auxiliary variable
v = ux and rewrite the equation as{

ut − εvxt + f (u)x = 0,

v = ux ,
(2.1)
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where f (u) = u2/2 is the flux term. The LDG spatial discretization of the system (2.1) is
given as follows: we seek uh and vh : [0, T ] → V k

h , the numerical approximations of u and
v, such that the variation forms

(uh,t , φ1) j + εH∗
j (vh,t , φ1; v̂h,t ) − F∗

j (uh, φ1; f̂ ) = 0, (2.2a)

(vh, φ2) j + H∗
j (uh, φ2; ûh) = 0, (2.2b)

hold in each cell I j , j = 1, 2, . . . , J , for any test function φ1, φ2 ∈ V k
h . The bilinear forms

in the Eq. (2.2) are defined as

H∗
j (ϕ, ψ; ϕ̂) = (ϕ, ψx ) j − (ϕ̂ψ−) j+ 1

2
+ (ϕ̂ψ+) j− 1

2
, (2.3)

F∗
j (ϕ, ψ; f̂ ) = ( f (ϕ), ψx ) j − ( f̂ ψ−) j+ 1

2
+ ( f̂ ψ+) j− 1

2
, (2.4)

where the hatted terms, ûh , f̂ and v̂h,t in the Eq. (2.2), are the so-called numerical fluxes,
defined on the numerical solutions values at the element interfaces. We will specify how to
choose these numerical fluxes later. For the bilinear forms H∗

j , we have following observa-
tions:

Lemma 2.2 Assuming ϕ, ψ ∈ V k
h are both periodic functions, the following equalities hold

J∑
j=1

H∗
j (ϕ, ψ; ϕ̂) j =

J∑
j=1

(ϕ, ψx ) j +
J∑

j=1

(ϕ̂[ψ]) j− 1
2
, (2.5)

and

J∑
j=1

(
H∗

j (ϕ, ψ; ϕ̂) j + H∗
j (ψ, ϕ; ψ̂ ) j

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J∑
j=1

(
(ϕ̂ − ϕ+)[ψ] + (ψ̂ − ψ−)[ϕ]) j− 1

2
,

J∑
j=1

(
(ϕ̂ − ϕ−)[ψ] + (ψ̂ − ψ+)[ϕ]) j− 1

2
,

J∑
j=1

(
(ϕ̂ − {ϕ})[ψ] + (ψ̂ − {ψ})[ϕ]) j− 1

2
.

(2.6)

Proof The Eq. (2.5) follows directly from the definition (2.3) and the periodicity of ϕ, ψ .
From the integration by parts and the periodicity, we have

J∑
j=1

(ϕ, ψx ) j = −
J∑

j=1

(ϕx , ψ) j −
J∑

j=1

[ϕψ] j− 1
2
. (2.7)

Therefore, the Eq. (2.6) can be obtained from the combination of the Eqs. (2.5), (2.7) and
Lemma 2.1. �	

The next theorem shows that the LDG methods (2.2) ensure the conservation of the total
mass.
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Theorem 2.1 Let uh, vh be the solutions of scheme (2.2)with any choice of consistent numer-
ical fluxes, and define the discrete mass as

Mh(t) =
J∑

j=1

∫
I j
uhdx,

then we have

Mh(t) = Mh(0).

Proof By taking the test function φ1 = 1 in the first equation of (2.2) and summing up over
all cells, we have

J∑
j=1

(uh,t , 1) j + ε

J∑
j=1

H∗
j (vh,t , 1; v̂h,t ) −

J∑
j=1

F∗
j (uh, 1; f̂ ) = 0.

It is easy to see that

J∑
j=1

(uh,t , 1) j = 1

2

d

dt
Mh(t),

J∑
j=1

H∗
j (vh,t , 1; v̂h,t ) =

J∑
j=1

(vh,t , 0) j +
J∑

j=1

(̂vh,t [1]) j− 1
2

= 0,

J∑
j=1

F∗
j (uh, 1; f̂ ) =

J∑
j=1

( f (uh), 0) j +
J∑

j=1

( f̂ [1]) j− 1
2

= 0.

Therefore we obtain

d

dt
Mh(t) = 0.

which leads to Mh(t) = Mh(0). �	

In order to find numerical fluxes that conserve or dissipate the total energy E(t) at the
semi-discrete level, we start with the following result:

Lemma 2.3 Let uh, vh be the numerical solutions of the LDG methods (2.2), the following
energy equation holds

1

2

d

dt

J∑
j=1

∫
I j

(
u2h + εv2h

)
dx +

J∑
j=1

([F(uh)] − f̂ [uh]
)
j− 1

2

+ ε

J∑
j=1

(
(̂vh,t − v∗

h,t )[uh] + (ûh − u∗
h)[vh,t ]

)
j− 1

2
= 0,

(2.8)

where F(u) = ∫ u f (s)ds and the pair 〈u∗
h, v

∗
h,t 〉 j− 1

2
can be any choice from the sets

〈u+
h , v−

h,t 〉 j− 1
2
, 〈u−

h , v+
h,t 〉 j− 1

2
and 〈{uh}, {vh,t }〉 j− 1

2
for any j .
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Proof By taking φ1 = uh and φ2 = εvh,t in (2.2), adding those two equations and then
summing up over all cells, we have

J∑
j=1

(
(uh,t , uh) j + ε(vh, vh,t ) j

) −
J∑

j=1

F∗
j (uh, uh; f̂ )

+ ε

J∑
j=1

(
H∗

j (vh,t , uh; v̂h,t ) + H∗
j (uh, vh,t ; ûh)

)
= 0.

The first two terms can be rewritten as

J∑
j=1

(
(uh,t , uh) j + ε(vh, vh,t ) j

) = 1

2

d

dt

J∑
j=1

∫
I j

(
u2h + εv2h

)
dx .

By applying Lemma 2.2, we can obtain

J∑
j=1

(
H∗

j (vh,t , uh; v̂h,t ) + H∗
j (uh, vh,t ; ûh)

)

=
J∑

j=1

∫
I j

(
(v̂h,t − v∗

h,t )[uh] + (ûh − u∗
h)[vh,t ]

)
j+ 1

2
,

with the choice of the pair 〈u∗
h, v

∗
h,t 〉 j− 1

2
stated in the theorem, and

J∑
j=1

F∗
j (uh, uh; f̂ (uh)) =

J∑
j=1

( f (uh), uh,x ) j +
J∑

j=1

( f̂ [uh]) j− 1
2

=
J∑

j=1

F(uh)
∣∣
∂ I j

+
J∑

j=1

( f̂ [uh]) j− 1
2

= −
J∑

j=1

([F(uh)] − f̂ [uh]
)
j+ 1

2
.

The combination of all these equations above leads to the energy Eq. (2.8). �	
Motivated by this lemma, the following choices of numerical fluxes have been investigated

in this paper. For the pair of the numerical fluxes (ûh, v̂h,t ), we choose them to be{
v̂h,t = v∗

h,t + cu[uh],
ûh = u∗

h,
(2.9)

where cu ≥ 0 and (u∗
h, v

∗
h,t ) can be either (·+, ·−) or (·−, ·+). Recently, there have been some

studies on upwind-biased fluxes for approximating the first order derivative term [38], and
generalized alternating numerical fluxes [39] for approximating the diffusion term. The term
(u∗

h, v
∗
h,t ) can also be extended to the generalized alternating numerical fluxes in the form of

({uh} − α[uh], {vh,t } + α[vh,t ]
)
, (2.10)

which won’t affect the energy conserving/dissipative property of the resulting methods. For
the nonlinear advection term f (u) = 1

2u
2, we can choose either the conservative flux

f̂ (u−, u+) = 1

u+ − u−

∫ u+

u−
f (s)ds = 1

6

(
(u+)2 + (u−)2 + u+u−)

, (2.11)
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or the standard local Lax-Friedrichs flux

f̂ (u−, u+) = (u+)2 + (u−)2

4
− max(|u+|, |u−|)

2
[u]. (2.12)

It is easy to observe that the conservative flux (2.11) satisfies

f̂ (u, u) = f (u) = 1

2
u2,

J∑
j=1

([F(uh)] − f̂ (uh)[uh]
)
j+ 1

2
= 0,

where F(u) = u3/6. The Lax-Friedrichs flux (2.12) is a nondecreasing function of its first
argument, and a nonincreasing function of its second argument, and satisfies

f̂ (u, u) = f (u) = 1

2
u2,

J∑
j=1

([F(uh)] − f̂ (uh)[uh]
)
j+ 1

2
≥ 0.

With these choices of numerical fluxes, the following observation on energy conservation
or energy dissipation holds, as a result of Lemma 2.3.

Theorem 2.2 Let uh, vh be the numerical solutions of LDG scheme (2.2), with the numerical
fluxes (ûh, v̂h,t ) chosen as (2.9) with cu = 0, and the numerical flux of the nonlinear term f̂
chosen as (2.11). The following energy conservation property holds

Eh(t)
.=

∫
I

(
u2h(x, t) + εv2h(x, t)

)
dx = Eh(0).

Theorem 2.3 Let uh, vh be the numerical solutions of LDG scheme (2.2), with the numerical
fluxes (ûh, v̂h,t ) chosen as (2.9) with cu ≥ 0, and the numerical flux of the nonlinear term f̂
chosen as either (2.11) or (2.12). The following energy dissipative property holds

Eh(t1) ≤ Eh(t2) ≤ Eh(0), ∀ t1 ≥ t2 ≥ 0. (2.13)

Remark 2.1 Another popular choice of energy conserving numerical fluxes is the central flux,
that can be define as

v̂h = {vh}, ûh = {uh}, f̂ (u−, u+) chosen as (2.11).

The LDG scheme (2.2) combined with this set of numerical fluxes exhibit suboptimal con-
vergence rate, which will be observed in the accuracy numerical tests.

Remark 2.2 In [13], LDG methods are derived for the BBM Eq. (1.1) based on an equivalent
formulation ⎧⎪⎨

⎪⎩
ut = w,

w + ( f (u) − εp)x = 0,

p − wx = 0,

(2.14)

with two auxiliary variablesw and p. Its difference to our approach lies in the discretization of
the term uxxt which is linear. Therefore, if the numerical fluxes (ûh, v̂h,t ) take the same form
as (ŵh, p̂h) [in the discretization of (2.14)], and the same nonlinear numerical flux f̂ is used,
these two LDG methods can be shown to be equivalent, after all these auxiliary variables are
eliminated and only one final equation to update uh is obtained. Energy dissipative methods
have been discussed in [13]. More choices of numerical fluxes, leading to energy conserving
or dissipative methods, are discussed in this paper, as well as the optimal error estimate for
these fluxeswhich requires some new analytical tools to be discussed in the following section.
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2.3 Optimal Error Estimate

In this section, we derive the optimal error estimate for the LDG scheme (2.2), with the
numerical fluxes (ûh, v̂h,t ) chosen as (2.9) with cu ≥ 0, and the numerical flux of the
nonlinear term f̂ (u−, u+) chosen as either (2.11) or (2.12). In other words, optimal error
estimate will be provided for both energy conserving and energy dissipative LDG methods.

We start by defining the following errors associated with a function f

e f = f − fh = η f − ξ f , η f = f − π f f , ξ f = fh − π f f ,

which from left to right, denote the error between the exact solution f and the numerical
solution fh , the projection error between f and a particular projection π f of f , and the error
between the numerical solution and the projection of f , respectively.

Some projection operators considered in this paper are defined as follows. We use π to
denote the standard L2 projection of a function ω into the space V k

h , satisfying

(πω, φ) j = (ω, φ) j , ∀φ ∈ Pk(I j ).

We use π− to denote the Radau projection of ω into the space V k
h , satisfying

(π−ω, φ) j = (ω, φ) j , ∀φ ∈ Pk−1(I j ),

(π−ω)− = ω−, at x j+ 1
2
.

Similarly, the projection π+ of ω is defined as:

(π+ω, φ) j = (ω, φ) j , ∀φ ∈ Pk−1(I j ),

(π+ω)+ = ω+, at x j− 1
2
.

For these three projections, we have the following approximation property [28,40]:

‖π f f − f ‖2 + h‖π f f − f ‖2�h
+ h2‖π f f − f ‖2∞ ≤ Ch2k+2, (2.15)

where π f = π , π± and the constant C depends on f but is independent of h. For our
problem, we choose the projections of the solutions u and v to be:

πv = π, πu =
{

π+, if ûh = u+
h ,

π−, if ûh = u−
h .

(2.16)

Moreover, for all v ∈ V k
h the following inverse inequalities holds

‖vx‖ ≤ Ch−1‖v‖, (2.17)

‖v‖�h ≤ Ch−1/2‖v‖, (2.18)

‖v‖∞ ≤ Ch−1/2‖v‖. (2.19)

Before we present the main result on the optimal error estimate of the LDG scheme, let
us start by providing some useful lemmas.

Lemma 2.4 Suppose (uh, vh) ∈ V k
h × V k

h satisfy the Eq. (2.2b) with the flux ûh = u−
h

or ûh = u+
h , and the projections (2.16) are used, then there exists a positive constant C

independent of h such that

‖ξu,x‖ + h−1/2|[ξu]| ≤ C‖ξv‖. (2.20)
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Remark 2.3 This Lemmaprovides an important relationship between the error of the auxiliary
variable and the primary variable. In [41, Lemma 2.4], similar result on the variable instead
of the error

‖uh,x‖ + h−1/2|[uh]| ≤ C‖vh‖,
has been obtained, and the main body of our proof follows that in [41].

Proof Without loss of generality, we assume ûh = u+
h , and the proof of the other case

ûh = u−
h follows the same idea. From (2.2b) and (2.3), we have

−(vh, φ) j = H∗
j (uh, φ; ûh) = (uh, φx ) j − (ûhφ

−) j+ 1
2

+ (ûhφ
+) j− 1

2
,

and the same equation is satisfied by the exact solutions u and v. Taking the difference yields
the error equation

−(ev, φ) j = −(ξv + ηv, φ) j = (eu, φx ) j − (êuφ
−) j+ 1

2
+ (êuφ

+) j− 1
2

= (ξu + ηu, φx ) j − (
(ξ̂u + η̂u)φ

−)
j+ 1

2
+ (

(ξ̂u + η̂u)φ
+)

j− 1
2
.

By utilizing the definition of the projections π and π±, we have

−(ξv, φ) j = (ξu, φx ) j − (
ξ̂uφ

−)
j+ 1

2
+ (

ξ̂uφ
+)

j− 1
2

= −(ξu,x , φ) j + (
ξ−
u − ξ̂u

)
φ−∣∣

j+ 1
2

− (
ξ+
u − ξ̂u

)
φ+∣∣

j− 1
2

= −(ξu,x , φ) j − [ξu]φ−∣∣
j+ 1

2
,

(2.21)

where the integration by parts and ξ̂u = ξ+
u are used.

The rest of the proof follows that of [41, Lemma 2.4], and we only sketch the main idea
below. Let Lk be the standard Legendre polynomial of degree k in [−1, 1], we have Lk(1) = 1
and Lk is orthogonal to any polynomials with degree less or equal to k − 1. First, we take
the test function φ as

φ(x)
∣∣
I j

= ξu,x (x) − ξu,x (x
−
j+ 1

2
)Lk(θ),

with θ = 2(x − x j )/h j . Therefore, the Eq. (2.21) reduces to

‖ξu,x‖2I j
.= (ξu,x , ξu,x ) j = −(ξu,x , φ) j − [ξu]φ−∣∣

j+ 1
2

= −(ξv, φ) j ≤ ‖ξv‖I j ‖φ‖I j ≤ C‖ξv‖I j ‖ξu,x‖I j ,
which leads to

‖ξu,x‖I j ≤ C‖ξv‖I j . (2.22)

Next, we take φ = 1 in (2.21) to obtain

h− 1
2 [ξu] j+ 1

2
= h− 1

2
(
(ξv, 1) j − (ξu,x , 1) j

) ≤ h− 1
2 ‖1‖I j (‖ξv‖I j + ‖ξu,x‖I j ) ≤ C‖ξv‖I j ,

(2.23)

by the Cauchy–Schwarz inequality and (2.22). Finally, by summing up (2.22) and (2.23) over
all elements, we get the desired result (2.20). �	
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Remark 2.4 To deal with the nonlinear term, we would like to make an a priori error estimate
assumption between numerical solution uh and exact solution u

‖u − uh‖ ≤ h,

following the setup in [40,42], where the same technique is used to treat the nonlinearity in
the KdV and Keller–Segel models. This assumption can be easily verified, and we refer to
[40,42] for the detailed explanation and proof. Easy to observe that this assumption implies

‖u − uh‖∞ ≤ ‖u − πu‖∞ + ‖πu − uh‖∞ ≤ C, (2.24)

following the inverse inequality (2.19).

Lemma 2.5 Let uh, vh be the numerical solutions of the LDG scheme (2.2)with the numerical
fluxes (ûh, v̂h,t ) chosen as (2.9) with cu ≥ 0, and the numerical flux of the nonlinear term
f̂ (u−, u+) chosen as either (2.11) or (2.12). Assume that u is the exact solution of the problem
(1.1) and is sufficiently smooth, then there holds the following inequality∣∣∣∣∣∣

J∑
j=1

F∗
j (uh, ξu; f̂ (u−

h , u+
h )) −

J∑
j=1

F∗
j (u, ξu; f (u))

∣∣∣∣∣∣
≤ C‖ξu‖2 + C

(‖∂xξu‖2 + h−1|[ξu]|2
) + Ch2k+2.

(2.25)

Proof We start by showing that both u and uh are bounded. The exact solution u satisfies the
energy invariant property (1.6), hence, we have

E(t) = ‖u(x, t)‖2 + ε‖ux (x, t)‖2 = E(0).

By Trace inequality, one can obtain that ‖u(x, t)‖∞ < C for any t , whereC depends only on
the initial condition u0(x) and the domain I . Combining this with (2.24) leads to ‖uh‖∞ < C
as well.

To prove the estimate (2.25), we separate the left hand side into two terms as follows:

J∑
j=1

∣∣∣∣F∗
j (uh, ξu; f̂ (u−

h , u+
h )) − F∗

j (u, ξu; f (u))

∣∣∣∣

=
J∑

j=1

∣∣∣∣( f (uh) − f (u), ∂xξu) j + (
f̂ (u−

h , u+
h ) − f (u)

)
j− 1

2
[ξu] j− 1

2

∣∣∣∣ :=
J∑

j=1

∣∣∣∣θ1j + θ2j

∣∣∣∣.
(2.26)

Since f (u) = 1
2u

2, it follows from the Cauchy-Schwarz inequality, the inverse inequality
and projection error bound (2.15) that

J∑
j=1

|θ1j | =
J∑

j=1

∣∣∣∣∣
(
1

2
(uh + u)(uh − u), ∂xξu

)
j

∣∣∣∣∣ ≤ C‖uh − u‖‖∂xξu‖

= C‖ξu − ηu‖‖∂xξu‖ ≤ C‖ξu‖2 + C‖∂xξu‖2 + Ch2k+2.

(2.27)
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The estimation of the second term θ2j will be treated differently, depending on the different

choices of the numerical fluxes f̂ (u−
h , u+

h ). If the conservative flux (2.11) is used, by applying
the mean-value theorem, we can get

J∑
j=1

|θ2j | =
J∑

j=1

∣∣∣( f̂ (u−
h , u+

h ) − f (u)) j− 1
2
[ξu] j− 1

2

∣∣∣ =
J∑

j=1

∣∣∣( f̂ (u−
h , u+

h ) − f̂ (u, u)) j− 1
2
[ξu] j− 1

2

∣∣∣

≤
J∑

j=1

(∣∣∣∣ ∂ f̂

∂u− (σ1, j , σ2, j )

∣∣∣∣|u−
h − u| +

∣∣∣∣ ∂ f̂

∂u+ (σ1, j , σ2, j )

∣∣∣∣|u+
h − u|

)
j− 1

2

∣∣∣[ξu] j− 1
2

∣∣∣

= 1

6

J∑
j=1

(|2σ1, j + σ2, j ||u−
h − u| + |σ1, j + 2σ2, j ||u+

h − u|) j− 1
2

∣∣∣[ξu] j− 1
2

∣∣∣

≤ C
J∑

j=1

(|u−
h − u| + |u+

h − u|) j− 1
2

∣∣∣[ξu] j− 1
2

∣∣∣, (2.28)

where σ1, j = (α1, j u
−
h + (1 − α1, j )u) j− 1

2
and σ2, j = (α2, j u

+
h + (1 − α2, j )u) j− 1

2
for some

α1, j , α2, j ∈ [0, 1], and the last inequality follows from
∣∣∣∣ ∂ f̂

∂u− (σ1, j , σ2, j )

∣∣∣∣ = 1

6

∣∣2σ1, j + σ2, j
∣∣ ≤ C,

∣∣∣∣ ∂ f̂

∂u+ (σ1, j , σ2, j )

∣∣∣∣ = 1

6

∣∣σ1, j + 2σ2, j
∣∣ ≤ C,

since ‖u‖∞ < C and ‖uh‖∞ < C . When f̂ (u−
h , u+

h ) is chosen as the Lax-Friedrichs flux
(2.12), we have

J∑
j=1

|θ2j | =
J∑

j=1

∣∣∣( f̂ (u−
h , u+

h ) − f (u)) j− 1
2
[ξu] j− 1

2

∣∣∣

=
J∑

j=1

∣∣∣∣
(
1

4

(
(u+

h )2 + (u−
h )2 + 2max(|u+

h |, |u−
h |)(u+

h − u−
h )

) − 1

2
u2

)
j− 1

2

[ξu] j− 1
2

∣∣∣∣

≤ 1

4

J∑
j=1

∣∣∣∣ ((u+
h + u)(u+

h − u) + (u−
h + u)(u−

h − u)
)
j− 1

2
[ξu] j− 1

2

∣∣∣∣

+1

2

J∑
j=1

∣∣∣∣ (max(|u+
h |, |u−

h |)((u+
h − u) − (u−

h − u))
)
j− 1

2
[ξu] j− 1

2

∣∣∣∣

≤ C
J∑

j=1

(|u−
h − u| + |u+

h − u|) j− 1
2

∣∣∣[ξu] j− 1
2

∣∣∣. (2.29)

Therefore, it follows from (2.28) and (2.29) that, for either choice of the nonlinear flux
f̂ (u−

h , u+
h ),

J∑
j=1

|θ2j | ≤ C
J∑

j=1

(|u−
h − u| + |u+

h − u|) j− 1
2

∣∣∣[ξu] j− 1
2

∣∣∣

≤ C
J∑

j=1

h
1
2
(|ξ−

u − η−
u | + |ξ+

u − η+
u |) j− 1

2

(
h− 1

2
∣∣[ξu] j− 1

2

∣∣)

123



17 Page 14 of 48 Journal of Scientific Computing (2020) 83 :17

≤ C
(
h‖ηu‖2�h

+ h‖ξu‖2�h
+ h−1|[ξu]|2

)
≤ C

(
‖ξu‖2 + h−1|[ξu]|2 + h2k+2

)
. (2.30)

The combination of the Eqs. (2.26), (2.27) and (2.30) leads to the desired result (2.25), and
this finishes the proof. �	

Remark 2.5 The above lemma to bound the error in approximating the nonlinear term is one
of the key ideas to derive the optimal error estimate. In this paper, we consider the nonlinear
BBM equation with f (u) = 1

2u
2. For the general flux f (u), the lemma also holds, if the

numerical flux f̂ (u−, u+) is a monotone numerical flux consistent with f . Therefore, the
optimal error estimate result in Theorem2.4 holds for the LDGmethods applied to the general
equation of the form ut + f (u)x − εuxxt = 0.

Remark 2.6 The initial condition of the LDG scheme (2.2) is chosen as

uh(x, 0) = πuu0(x) (2.31)

and vh(x, 0) is calculated by (2.2b). With the choice of πu defined in (2.16), one can follow
the proof in [28] to show the following estimate:

‖ξu(0)‖ = 0, ‖ξv(0)‖ ≤ Chk+1. (2.32)

Now, we can present and prove the main optimal error estimate result for both energy
conserving and energy dissipative LDG methods.

Theorem 2.4 Let uh and vh be the numerical solutions of LDG scheme (2.2) with the numer-
ical fluxes (ûh, v̂h,t ) chosen as (2.9) with cu ≥ 0, and the numerical flux of the nonlinear
term f̂ (u−, u+) chosen as either (2.11) or (2.12). Assuming u is the exact solution of the
problem (1.1) which is sufficiently smooth, and v = ux . For small h and all t ∈ [0, T ], the
optimal error estimate

‖eu‖ ≤ Chk+1, ‖ev‖ ≤ Chk+1, (2.33)

holds, where the constant C may depend on T , k, the length of the domain I , and some
Sobolev norms of the exact solution u up to time T , but is independent of h.

Proof The numerical solutions uh , vh satisfy the LDG scheme (2.2)–(2.2b), which are also
satisfied by the exact solutions u and v. The difference of these equations yields the error
equations

(ξut , φ1) j + εH∗
j (ξvt , φ1; ξ̂vt ) − F∗

j (uh, φ1; f̂ (u−
h , u+

h ))

= (ηut , φ1) j + εH∗
j (ηvt , φ1; η̂vt ) − F∗

j (u, φ1; f (u)), (2.34)

(ξv, φ2) j + H∗
j (ξu, φ2; ξ̂u) = (ηv, φ2) j + H∗

j (ηu, φ2; η̂u). (2.35)

By taking the test functions φ1 = ξu in (2.34), φ2 = εξvt in (2.35), and summing those
equations, we have
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J∑
j=1

(
(ξut , ξu) j + ε(ξv, ξvt ) j

) + ε

J∑
j=1

(
H∗

j (ξvt , ξu; ξ̂vt ) + H∗
j (ξu, ξvt ; ξ̂u)

)

=
J∑

j=1

(
(ηut , ξu) j + ε(ηv, ξvt ) j

) +
J∑

j=1

(
F∗

j (uh, ξu; f̂ (u−
h , u+

h )) − F∗
j (u, ξu; f (u))

)

+ε

J∑
j=1

(
H∗

j (ηvt , ξu; η̂vt ) + H∗
j (ηu, ξvt ; η̂u)

)
. (2.36)

Following the property of the operator H j in (2.6) and the selection of numerical flux in
(2.9), we can obtain

ε

J∑
j=1

(
H∗

j (ξvt , ξu; ξ̂vt ) + H∗
j (ξu, ξvt ; ξ̂u)

)
= ε

J∑
j=1

cu[ξu]2j− 1
2
.

The other property (2.5) of the operator H j leads to

ε

J∑
j=1

(
H∗

j (ηvt , ξu; η̂vt ) + H∗
j (ηu, ξvt ; η̂u)

)

= ε

J∑
j=1

(
(ηvt , ∂xξu) j + (ηu, ∂xξvt ) j

) + ε

J∑
j=1

(
η̂vt [ξu] + η̂u[ξvt ]

)
j− 1

2
.

Therefore, the Eq. (2.36) can be rewritten as

1

2

d

dt

(‖ξu‖2 + ε‖ξv‖2
) = −εcu |[ξu]|2 +

J∑
j=1

(ηut , ξu) j + ε

J∑
j=1

(ηv, ξvt ) j

+
J∑

j=1

(
F∗

j (uh, ξu; f̂ (u−
h , u+

h )) − F∗
j (u, ξu; f (u))

)

+ ε

J∑
j=1

(
(ηvt , ∂xξu) j + (ηu, ∂xξvt ) j

) + ε

J∑
j=1

(
η̂vt [ξu] + η̂u[ξvt ]

)
j− 1

2
.

(2.37)

From the choice (2.16) of our projections of u and v, it follows that

ε

J∑
j=1

(ηv, ξvt ) j = 0,
J∑

j=1

η̂u[ξvt ] j− 1
2

= 0, (2.38)

and

ε

J∑
j=1

(
(ηvt , ∂xξu) j + (ηu, ∂xξvt ) j

) = 0. (2.39)

By the properties (2.15) of projection error and Young’s inequality, we have

J∑
j=1

(ηut , ξu) j ≤ ‖ηut ‖2 + ‖ξu‖2 ≤ Ch2k+2 + ‖ξu‖2. (2.40)
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The combination of the inequality (2.25) inLemma2.5 and the inequality (2.20) inLemma2.4
yields∣∣∣∣∣∣

J∑
j=1

F∗
j (uh, ξu; f̂ (u−

h , u+
h )) −

J∑
j=1

F∗
j (u, ξu; f (u))

∣∣∣∣∣∣ ≤ C
(‖ξu‖2 + ‖ξv‖2

) + Ch2k+2.

(2.41)

The definition of η̂vt in (2.9) leads to

ε

J∑
j=1

(
η̂vt [ξu]

)
j− 1

2
= ε

J∑
j=1

(
(η∗

vt
+ cu[ηu])[ξu]

)
j− 1

2

≤ ε

2

J∑
j=1

(
h(η∗

vt
)2 + h[ηu]2 + (c2u + 1)h−1[ξu]2

)
j− 1

2

≤ ε

2
h‖ηvt ‖2�h

+ ε

2
h‖ηu‖2�h

+ ε(c2u + 1)

2
h−1|[ξu]|2

≤ Ch2k+2 + C‖ξv‖2,

(2.42)

where the assumption cu ≥ 0 is used, and the last inequality follows from the projection
error bound (2.15) and Lemma 2.4. By combining (2.38)–(2.42), one can rewrite Eq. (2.37)
as

d

dt

(‖ξu‖2 + ε‖ξv‖2
) ≤ C

(‖ξu‖2 + ε‖ξv‖2
) + Ch2k+2.

The optimal error estimate of ξu , ξv

‖ξu‖ + ε‖ξv‖ ≤ Chk+1, (2.43)

follows from the Gronwall’s inequality and the error of the initial condition in Remark 2.6.
Combined with the optimal projection error of ηu , ηv , this leads to the optimal error estimate
of eu , ev in (2.33). �	

2.4 Temporal Discretization

In this subsection,we present the fully discrete LDGmethods. The implicitmidpoint temporal
discretization will be used to ensure that the fully discrete methods maintain the mass and
energy conserving property. If the energy dissipative method [i.e., cu > 0 or f̂ chosen as
(2.12)] is used, the total variation diminishing (TVD) Runge–Kutta method can be used to
provide high order accurate temporal approximation.

Let 0 = t0 < t1 < · · · < tN = T be a partition of the interval [0, T ] with time step
�tn = tn+1 − tn . The following notations

unh = uh( · , tn), u
n+ 1

2
h = 1

2
(un+1

h + unh), δ+
t u

n
h = un+1

h − unh
�tn

,

are introduced to ease the presentation.
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Table 1 The explanation of the
numerical methods
“C/D-C/D-LDG”

LDG method Flux f̂ n+ 1
2 Flux

(
̂

δ+
t vnh , (ûh)

n+ 1
2
)

C-C-LDG (2.11) (2.45) with cu = 0

D-C-LDG (2.12) (2.45) with cu = 0

C-D-LDG (2.11) (2.45) with cu > 0

D-D-LDG (2.12) (2.45) with cu > 0

Central-LDG (2.11)
({δ+

t vnh }, {(uh)
n+ 1

2 })

The fully discrete implicit midpoint rule with local discontinuous Galerkin scheme takes the
following form: we are looking for the solutions un+1

h , vn+1
h , for n = 1, 2, . . . , N − 1, such

that ⎧⎨
⎩

(δ+
t u

n
h, φ1) j + εH∗

j (δ
+
t vnh , φ1; ̂δ+

t vnh ) − F∗
j (u

n+ 1
2

h , φ1; f̂ n+ 1
2 ) = 0

(v
n+ 1

2
h , φ2) j + H∗

j (u
n+ 1

2
h , φ2; (ûh)

n+ 1
2 ) = 0

(2.44)

hold for all test functions φ1, φ2 ∈ V k on every cell I j . Here the nonlinear numerical flux

f̂ n+ 1
2 = f̂

(
u
n+ 1

2 ,−
h , u

n+ 1
2 ,+

h

)
can be chosen as (2.11) or (2.12), and the set of numerical

fluxes (̂δ+
t vnh , (ûh)

n+ 1
2 ) takes the similar form as (2.9)

⎧⎨
⎩

̂δ+
t vnh = δ+

t (v∗
h)

n + cu
[
u
n+ 1

2
h

]
,

(ûh)
n+ 1

2 = (u∗
h)

n+ 1
2 ,

(2.45)

where cu ≥ 0 and (u∗
h, v

∗
h) can be either (·+, ·−), (·−, ·+) or the generalized form in (2.10).

Easy to verify that the implicit midpoint rule method is second order accurate in time.

Remark 2.7 Since different choices of the numerical fluxes will be tested in the numerical
examples section, we name the fully discrete schemes as “C/D-C/D-LDG”, where “C” and
“D” stands for “conservative” and “dissipative” respectively, and the detailed explanation
can be found in Table 1. The “Central-LDG” method, as explained in Remark 2.1, is also
included for comparison. Note that the optimal error estimate proof does not apply to the
“Central-LDG” method.

The conservation of continuous mass and energy of the semi-discrete LDG methods are
shown in Sect. 2.2. For the fully discrete methods, we have the following results.

Theorem 2.5 Let unh and vnh be the numerical solutions of the fully discrete LDG methods
(2.44). With the discrete mass and energy defined as

Mn
h =

∫
I
unhdx, En

h =
∫
I

(
(unh)

2 + ε(vnh )
2)dx, (2.46)

the following mass conservation and energy dissipative property holds

Mn
h = M0

h , En
h ≤ En−1 ≤ · · · ≤ E0

h , (2.47)

for any n and all the LDG schemes in Table 1. More specifically, C-C-LDG and Central-LDG
methods can preserve the energy conservation, that means En

h = E0
h .
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The proof of this theorem is similar to that of Theorems 2.1 and 2.2, and is omitted here.

Remark 2.8 Note that the implicit midpoint rule method is introduced here, mainly for the
purpose of conserving the energy at the discrete level. If one’s purpose is to design energy
dissipative methods, the explicit TVD Runge-Kutta methods should be used for simplicity.

At the end of this section, we provide some details related to the implementation of the
fully discrete methods (2.44). LetUh be the vectors containing the degree of freedom for the
piecewise polynomial solution uh , and denote Un

h = Uh(tn). Similarly, we can define V n
h .

The fully discrete methods (2.44) can be rewritten in the matrix form as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AU
n+ 1

2
h + εBV

n+ 1
2

h + D1V
n+ 1

2
h + �tn

2

(
D2U

n+ 1
2

h + fs

(
U

n+ 1
2

h

))

= AUn
h + εBV n

h + D1V
n
h ,

AV
n+ 1

2
h + BU

n+ 1
2

h + D3U
n+ 1

2
h = 0,

(2.48)

where A and B are matrices depending on the polynomial basis functions and the terms

D1V
n+ 1

2
h , D2U

n+ 1
2

h and D3U
n+ 1

2
h come from the choices of the numerical fluxes ̂δ+

t vnh ,

(ûh)n+ 1
2 . The nonlinear function fs denotes the discretization of the nonlinear term. The

second equation of (2.48) leads to the following relation between Vh and Uh :

V
n+ 1

2
h = KuvU

n+ 1
2

h , (2.49)

where Kuv = −A−1(B + D3). Therefore, the system (2.48) can be reduced to

U
n+ 1

2
h = gs

(
U

n+ 1
2

h

)
+ L

(
Un
h , V n

h

)
, (2.50)

where gs is a nonlinear function and L is a linear function. To solve the nonlinear system
(2.50), one could use Newton’s method or other iterative methods. A stopping criteria of

‖(Un+ 1
2

h )(k) − (U
n+ 1

2
h )(k−1)‖ ≤ ε is used in the numerical implementation, where ε is the

control error and is taken as 10−15 in our tests. With the solution U
n+ 1

2
h available, one could

use (2.49) to evaluate V
n+ 1

2
h if needed.

3 Numerical Experiments of the LDGMethods

In this section, we provide some numerical results of the proposed LDG methods with
implicit midpoint rule temporal discretization. When the case cu > 0 is considered in (2.45),
we always choose cu = 1 in our tests.We first perform the accuracy tests on the LDGmethods
to verify the optimal convergence rate. We also test different initial projections and different
fluxes, and observe how these affect the order of accuracy. Mass conservation and energy
conservation/dissipation property of the proposed methods will also be verified numerically.
At the end, the long time behavior of the LDG methods is studied.
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3.1 Accuracy Test

The cnoidal-wave solution (1.4), with the following parameters

m = 0.9, C = 2m − 1

3m
= 0.2963, D = 0, ε = 10−2, xl = 0, xr = 2K (m)

B
= 0.9224,

(3.1)

is used in this section to check the convergence rate of the proposed LDG methods. The
initial conditions u0(x) is obtained by setting t = 0, and the numerical error are computed
at the stopping time T = 1.

Since the second order implicit midpoint temporal discretizations is employed and our
interest is in the effect of various spatial discretizations, we set the time step as τ = 0.5877h2

(such that N = 2J 2). Tables 2, 3, 4, 5, 6 and 7 present the numerical order of accuracy for
the LDG methods with P0, P1, P2 and P3 basis, and with different choices of projections
in evaluating the numerical initial conditions.

As seen in Table 2 and Table 4, optimal order of accuracy of uh and vh are obtained for both
C-C-LDG and D-D-LDGmethods, when (u∗

h, v
∗
h,t ) is chosen as (u+

h , v−
h,t ) in fluxes (2.9) and

projection π+ is applied to obtain the initial conditions of uh . These results agree well with
the error estimate in Theorem 2.4. It’s worth mentioning that, when L2 projections is used to
obtain the initial conditions of uh , only kth order accuracy of vh can be obtained with basis
functions in Pk for k = 1, 2, 3 for C-C-LDG scheme (see Table 3) and D-D-LDG scheme
(see Table 5). In spite of this, optimal order of accuracy of uh still can be obtained with basis
functions in Pk for k = 1, 2, 3. The impact of different numerical initial conditions of the
LDG methods towards the convergence rate has also been observed by us in [28,29,35]. The
performance of the C-D-LDG and D-C-LDG methods is similar and is not presented here
to save space. With the other choice of numerical fluxes (u∗

h, v
∗
h,t ) = (u−

h , v+
h,t ), the same

numerical results are observed, and are omitted here.
The convergence rate of the Central-LDG method is shown in Table 6. Only kth order

accuracy in uh and vh are obtained for odd k, which is consistent with our impression that
even-odd phenomenon of the central flux. Note that the optimal error estimate result in
Theorem 2.4 does not hold for the central flux, as one of the key inequality (2.20) cannot
be proven. If the energy dissipative terms are added to the Central-LDG method [i.e., taking
cu = 1 and f̂ chosen as (2.12)], the accuracy improves a little for odd k, as seen in Table 7,
but optimal convergence still cannot be obtained.

3.2 Mass, Energy Conservation and the Long Time Behavior

In this subsectionwe study themass, energy conservation property and the long time behavior
of the proposed LDG methods.

We consider the cnoidal-wave solution (1.4) of BBM Eq. (1.1) with the parameters spec-
ified in (3.1). First, we plot the time history of the error of mass and energy (i.e., MN

h − M0
h

and EN
h − E0

h ) of C-C-LDG methods in Fig. 1, with J = 10, T = 250 and N = 2480. Easy
to observe that the mass and energy are both exactly preserved by our methods up to the
machine error at the level of 10−14.

Figure 2 plots ‖eu‖, the time history of L2 norm of numerical error, of different LDG
methods, for the cnoidal-wave example with J = 10, N = 20480, T = 30 and various Pk

polynomial basis.We can observe that the L2 errors of D-C-LDG and D-D-LDGmethods are
similar and those of C-C-LDG and C-D-LDGmethods are similar. The L2 error of D-D-LDG

123



17 Page 20 of 48 Journal of Scientific Computing (2020) 83 :17

Ta
bl
e
2

N
um

er
ic
al
er
ro
r
an
d
co
nv
er
ge
nc
e
ra
te
s
of

C
-C

-L
D
G

sc
he
m
e
in

th
e
cn
oi
da
l-
w
av
e
ex
am

pl
e

h
τ

E
rr
or

of
u

E
rr
or

of
v

‖e
u
‖ 2

C
2

‖e
u
‖ ∞

C
∞

‖e
v
‖ 2

C
2

‖e
v
‖ ∞

C
∞

P
0

h
1

τ 1
9.
71

60
E
−0

2
*

3.
09

43
E
−0

1
*

1.
67

09
E
+
00

*
4.
87

16
E
+
00

*

h
1
/
2

τ 1
/
4

3.
87

44
E
−0

2
1.
32

64
1.
33

42
E
−0

1
1.
21

36
7.
74

75
E
−0

1
1.
10

88
3.
04

40
E
+
00

0.
67

85

h
1
/
4

τ 1
/
16

1.
75

00
E
−0

2
1.
14

67
5.
82

75
E
−0

2
1.
19

51
3.
54

12
E
−0

1
1.
12

95
1.
50

88
E
+
00

1.
01

25

h
1
/
8

τ 1
/
64

8.
48

38
E
−0

3
1.
04

46
2.
66

86
E
−0

2
1.
12

68
1.
67

24
E
−0

1
1.
08

23
7.
32

11
E
−0

1
1.
04

33

P
1

h
1

τ 1
1.
17

16
E
−0

2
*

4.
94

86
E
−0

2
*

3.
82

09
E
−0

1
*

1.
41

50
E
+
00

*

h
1
/
2

τ 1
/
4

2.
93

84
E
−0

3
1.
99

54
1.
74

44
E
−0

2
1.
50

43
1.
03

35
E
−0

1
1.
88

64
4.
03

04
E
−0

1
1.
81

18

h
1
/
4

τ 1
/
16

7.
46

70
E
−0

4
1.
97

64
4.
71

09
E
−0

3
1.
88

87
2.
63

60
E
−0

2
1.
97

11
1.
03

86
E
−0

1
1.
95

63

h
1
/
8

τ 1
/
64

1.
88

59
E
−0

4
1.
98

53
1.
22

09
E
−0

3
1.
94

81
6.
62

39
E
−0

3
1.
99

26
2.
61

35
E
−0

2
1.
99

06

P
2

h
1

τ 1
1.
11

38
E
−0

3
*

7.
12

63
E
−0

3
*

2.
36

67
E
−0

2
*

9.
59

95
E
−0

2
*

h
1
/
2

τ 1
/
4

1.
42

34
E
−0

4
2.
96

80
9.
14

31
E
−0

4
2.
96

24
2.
91

89
E
−0

3
3.
01

94
1.
09

30
E
−0

2
3.
13

47

h
1
/
4

τ 1
/
16

1.
79

10
E
−0

5
2.
99

05
1.
15

00
E
−0

4
2.
99

10
3.
62

29
E
−0

4
3.
01

02
1.
45

07
E
−0

3
2.
91

35

h
1
/
8

τ 1
/
64

2.
24

41
E
−0

6
2.
99

66
1.
41

12
E
−0

5
3.
02

66
4.
51

99
E
−0

5
3.
00

28
1.
95

40
E
−0

4
2.
89

22

P
3

h
1

τ 1
1.
05

53
E
−0

4
*

5.
90

19
E
−0

4
*

2.
48

03
E
−0

3
*

1.
40

54
E
−0

2
*

h
1
/
2

τ 1
/
4

6.
75

39
E
−0

6
3.
96

58
4.
87

92
E
−0

5
3.
59

65
1.
57

67
E
−0

4
3.
97

55
7.
68

58
E
−0

4
4.
19

26

h
1
/
4

τ 1
/
16

4.
23

72
E
−0

7
3.
99

45
3.
08

25
E
−0

6
3.
98

45
9.
98

68
E
−0

6
3.
98

08
4.
84

62
E
−0

5
3.
98

73

h
1
/
8

τ 1
/
64

2.
65

03
E
−0

8
3.
99

89
1.
97

81
E
−0

7
3.
96

19
6.
26

31
E
−0

7
3.
99

51
2.
96

35
E
−0

6
4.
03

15

P
ro
je
ct
io
n

π
+
fo
r
u
0
w
ith

x l
=

0,
x r

=
0.
92

23
7,

T
=

1,
c u

=
0,

h
1

=
9.
22

37
E

−0
2,

τ 1
=

0.
00

5

123



Journal of Scientific Computing (2020) 83 :17 Page 21 of 48 17

Ta
bl
e
3

N
um

er
ic
al
er
ro
r
an
d
co
nv
er
ge
nc
e
ra
te
s
of

C
-C

-L
D
G

sc
he
m
e
in

th
e
cn
oi
da
l-
w
av
e
ex
am

pl
e

h
τ

E
rr
or

of
u

E
rr
or

of
v

‖e
u
‖ 2

C
2

‖e
u
‖ ∞

C
∞

‖e
v
‖ 2

C
2

‖e
v
‖ ∞

C
∞

P
0

h
1

τ 1
9.
71

60
E
−0

2
*

3.
09

43
E
−0

1
*

1.
67

09
E
+
00

*
4.
87

16
E
+
00

*

h
1
/
2

τ 1
/
4

3.
87

44
E
−0

2
1.
32

64
1.
33

42
E
−0

1
1.
21

36
7.
74

75
E
−0

1
1.
10

88
3.
04

40
E
+
00

0.
67

85

h
1
/
4

τ 1
/
16

1.
75

00
E
−0

2
1.
14

67
5.
82

75
E
−0

2
1.
19

51
3.
54

12
E
−0

1
1.
12

95
1.
50

88
E
+
00

1.
01

25

h
1
/
8

τ 1
/
64

8.
48

38
E
−0

3
1.
04

46
2.
66

86
E
−0

2
1.
12

68
1.
67

24
E
−0

1
1.
08

23
7.
32

11
E
−0

1
1.
04

33

P
1

h
1

τ 1
1.
61

07
E
−0

2
*

6.
78

86
E
−0

2
*

6.
33

32
E
−0

1
*

2.
71

65
E
+
00

*

h
1
/
2

τ 1
/
4

4.
31

80
E
−0

3
1.
89

92
1.
98

15
E
−0

2
1.
77

65
3.
25

47
E
−0

1
0.
96

04
1.
47

20
E
+
00

0.
88

40

h
1
/
4

τ 1
/
16

1.
09

74
E
−0

3
1.
97

63
5.
37

24
E
−0

3
1.
88

29
1.
61

22
E
−0

1
1.
01

34
7.
23

49
E
−0

1
1.
02

48

h
1
/
8

τ 1
/
64

2.
75

31
E
−0

4
1.
99

49
1.
38

03
E
−0

3
1.
96

06
7.
96

84
E
−0

2
1.
01

67
3.
53

79
E
−0

1
1.
03

21

P
2

h
1

τ 1
1.
46

99
E
−0

3
*

7.
38

82
E
−0

3
*

9.
15

52
E
−0

2
*

4.
80

03
E
−0

1
*

h
1
/
2

τ 1
/
4

1.
79

52
E
−0

4
3.
03

35
9.
50

98
E
−0

4
2.
95

77
1.
99

02
E
−0

2
2.
20

17
1.
09

17
E
−0

1
2.
13

65

h
1
/
4

τ 1
/
16

2.
28

48
E
−0

5
2.
97

40
1.
14

92
E
−0

4
3.
04

88
4.
71

20
E
−0

3
2.
07

85
2.
29

04
E
−0

2
2.
25

30

h
1
/
8

τ 1
/
64

2.
90

75
E
−0

6
2.
97

43
1.
42

49
E
−0

5
3.
01

16
1.
15

98
E
−0

3
2.
02

24
5.
08

58
E
−0

3
2.
17

10

P
3

h
1

τ 1
1.
18

41
E
−0

4
*

5.
75

33
E
−0

4
*

1.
20

12
E
−0

2
*

6.
55

09
E
−0

2
*

h
1
/
2

τ 1
/
4

7.
92

88
E
−0

6
3.
90

06
4.
82

75
E
−0

5
3.
57

51
1.
74

01
E
−0

3
2.
78

72
1.
21

67
E
−0

2
2.
42

87

h
1
/
4

τ 1
/
16

5.
03

08
E
−0

7
3.
97

82
3.
07

59
E
−0

6
3.
97

22
2.
25

53
E
−0

4
2.
94

78
1.
66

42
E
−0

3
2.
87

01

h
1
/
8

τ 1
/
64

3.
15

42
E
−0

8
3.
99

54
1.
96

66
E
−0

7
3.
96

72
2.
84

65
E
−0

5
2.
98

61
2.
12

38
E
−0

4
2.
97

01

L
2
P
ro
je
ct
io
n

π
fo
r
u
0
w
ith

x l
=

0,
x r

=
0.
92

23
7,

T
=

1,
c u

=
0,

h
1

=
9.
22

37
E

−0
2,

τ 1
=

0.
00

5

123



17 Page 22 of 48 Journal of Scientific Computing (2020) 83 :17

Ta
bl
e
4

N
um

er
ic
al
er
ro
r
an
d
co
nv
er
ge
nc
e
ra
te
s
of

D
-D

-L
D
G

sc
he
m
e
in

th
e
cn
oi
da
l-
w
av
e
ex
am

pl
e

h
τ

E
rr
or

of
u

E
rr
or

of
v

‖e
u
‖ 2

C
2

‖e
u
‖ ∞

C
∞

‖e
v
‖ 2

C
2

‖e
v
‖ ∞

C
∞

P
0

h
1

τ 1
2.
04

24
E
−0

1
*

4.
17

35
E
−0

1
*

1.
86

76
E
+
00

*
4.
42

84
E
+
00

*

h
1
/
2

τ 1
/
4

1.
29

45
E
−0

1
0.
65

79
2.
77

17
E
−0

1
0.
59

05
1.
23

67
E
+
00

0.
59

47
3.
04

23
E
+
00

0.
54

16

h
1
/
4

τ 1
/
16

7.
43

04
E
−0

2
0.
80

08
1.
59

95
E
−0

1
0.
79

31
7.
26

54
E
−0

1
0.
76

74
1.
91

81
E
+
00

0.
66

54

h
1
/
8

τ 1
/
64

3.
99

87
E
−0

2
0.
89

39
8.
73

33
E
−0

2
0.
87

30
3.
95

09
E
−0

1
0.
87

88
1.
06

71
E
+
00

0.
84

60

P
1

h
1

τ 1
1.
37

48
E
−0

2
*

3.
70

81
E
−0

2
*

4.
67

83
E
−0

1
*

1.
62

68
E
+
00

*

h
1
/
2

τ 1
/
4

3.
15

79
E
−0

3
2.
12

22
1.
42

63
E
−0

2
1.
37

84
1.
68

01
E
−0

1
1.
47

74
6.
20

29
E
−0

1
1.
39

10

h
1
/
4

τ 1
/
16

7.
60

45
E
−0

4
2.
05

40
4.
22

35
E
−0

3
1.
75

57
4.
97

96
E
−0

2
1.
75

45
1.
85

64
E
−0

1
1.
74

04

h
1
/
8

τ 1
/
64

1.
88

91
E
−0

4
2.
00

92
1.
15

82
E
−0

3
1.
86

65
1.
34

76
E
−0

2
1.
88

57
5.
05

45
E
−0

2
1.
87

69

P
2

h
1

τ 1
1.
22

29
E
−0

3
*

7.
22

62
E
−0

3
*

4.
09

85
E
−0

2
*

1.
60

67
E
−0

1
*

h
1
/
2

τ 1
/
4

1.
47

90
E
−0

4
3.
04

76
9.
26

29
E
−0

4
2.
96

37
5.
58

41
E
−0

3
2.
87

57
2.
04

25
E
−0

2
2.
97

57

h
1
/
4

τ 1
/
16

1.
81

44
E
−0

5
3.
02

71
1.
18

16
E
−0

4
2.
97

07
7.
26

67
E
−0

4
2.
94

20
2.
96

59
E
−0

3
2.
78

38

h
1
/
8

τ 1
/
64

2.
25

38
E
−0

6
3.
00

90
1.
43

89
E
−0

5
3.
03

77
9.
29

72
E
−0

5
2.
96

64
4.
07

26
E
−0

4
2.
86

44

P
3

h
1

τ 1
1.
10

52
E
−0

4
*

5.
92

63
E
−0

4
*

3.
45

01
E
−0

3
*

1.
92

06
E
−0

2
*

h
1
/
2

τ 1
/
4

6.
87

93
E
−0

6
4.
00

59
4.
76

18
E
−0

5
3.
63

76
2.
52

37
E
−0

4
3.
77

30
1.
26

21
E
−0

3
3.
92

76

h
1
/
4

τ 1
/
16

4.
26

60
E
−0

7
4.
01

13
3.
02

23
E
−0

6
3.
97

78
1.
70

08
E
−0

5
3.
89

13
8.
24

18
E
−0

5
3.
93

68

h
1
/
8

τ 1
/
64

2.
65

70
E
−0

8
4.
00

50
1.
96

35
E
−0

7
3.
94

42
1.
09

93
E
−0

6
3.
95

15
5.
17

29
E
−0

6
3.
99

39

P
ro
je
ct
io
n

π
+
fo
r
u
0
w
ith

x l
=

0,
x r

=
0.
92

23
7,

T
=

1,
c u

=
1,

h
1

=
9.
22

37
E

−0
2,

τ 1
=

0.
00

5

123



Journal of Scientific Computing (2020) 83 :17 Page 23 of 48 17

Ta
bl
e
5

N
um

er
ic
al
er
ro
r
an
d
co
nv
er
ge
nc
e
ra
te
s
of

D
-D

-L
D
G

sc
he
m
e
in

th
e
cn
oi
da
l-
w
av
e
ex
am

pl
e

h
τ

E
rr
or

of
u

E
rr
or

of
v

‖e
u
‖ 2

C
2

‖e
u
‖ ∞

C
∞

‖e
v
‖ 2

C
2

‖e
v
‖ ∞

C
∞

P
0

h
1

τ 1
2.
04

24
E
−0

1
*

4.
17

35
E
−0

1
*

1.
86

76
E
+
00

*
4.
42

84
E
+
00

*

h
1
/
2

τ 1
/
4

1.
29

45
E
−0

1
0.
65

79
2.
77

17
E
−0

1
0.
59

05
1.
23

67
E
+
00

0.
59

47
3.
04

23
E
+
00

0.
54

16

h
1
/
4

τ 1
/
16

7.
43

04
E
−0

2
0.
80

08
1.
59

95
E
−0

1
0.
79

31
7.
26

54
E
−0

1
0.
76

74
1.
91

81
E
+
00

0.
66

54

h
1
/
8

τ 1
/
64

3.
99

87
E
−0

2
0.
89

39
8.
73

33
E
−0

2
0.
87

30
3.
95

09
E
−0

1
0.
87

88
1.
06

71
E
+
00

0.
84

60

P
1

h
1

τ 1
1.
52

61
E
−0

2
*

3.
94

97
E
−0

2
*

5.
29

15
E
−0

1
*

1.
39

11
E
+
00

*

h
1
/
2

τ 1
/
4

3.
89

50
E
−0

3
1.
97

01
1.
56

92
E
−0

2
1.
33

17
2.
70

51
E
−0

1
0.
96

80
1.
04

91
E
+
00

0.
40

70

h
1
/
4

τ 1
/
16

1.
02

09
E
−0

3
1.
93

18
4.
70

62
E
−0

3
1.
73

74
1.
41

41
E
−0

1
0.
93

58
6.
12

85
E
−0

1
0.
77

56

h
1
/
8

τ 1
/
64

2.
64

27
E
−0

4
1.
94

98
1.
29

79
E
−0

3
1.
85

83
7.
38

11
E
−0

2
0.
93

80
3.
26

30
E
−0

1
0.
90

93

P
2

h
1

τ 1
1.
45

32
E
−0

3
*

7.
29

81
E
−0

3
*

8.
83

39
E
−0

2
*

4.
17

31
E
−0

1
*

h
1
/
2

τ 1
/
4

1.
81

35
E
−0

4
3.
00

24
9.
39

30
E
−0

4
2.
95

79
2.
04

34
E
−0

2
2.
11

21
1.
10

70
E
−0

1
1.
91

44

h
1
/
4

τ 1
/
16

2.
29

67
E
−0

5
2.
98

12
1.
17

25
E
−0

4
3.
00

20
4.
79

22
E
−0

3
2.
09

22
2.
37

27
E
−0

2
2.
22

21

h
1
/
8

τ 1
/
64

2.
91

22
E
−0

6
2.
97

94
1.
42

97
E
−0

5
3.
03

58
1.
16

67
E
−0

3
2.
03

82
5.
20

81
E
−0

3
2.
18

77

P
3

h
1

τ 1
1.
22

90
E
−0

4
*

5.
85

17
E
−0

4
*

1.
08

58
E
−0

2
*

5.
20

26
E
−0

2
*

h
1
/
2

τ 1
/
4

7.
82

49
E
−0

6
3.
97

32
4.
73

57
E
−0

5
3.
62

72
1.
56

74
E
−0

3
2.
79

24
1.
08

76
E
−0

2
2.
25

80

h
1
/
4

τ 1
/
16

4.
94

46
E
−0

7
3.
98

41
3.
02

05
E
−0

6
3.
97

07
2.
11

94
E
−0

4
2.
88

66
1.
57

49
E
−0

3
2.
78

79

h
1
/
8

τ 1
/
64

3.
11

90
E
−0

8
3.
98

67
1.
95

37
E
−0

7
3.
95

05
2.
75

54
E
−0

5
2.
94

34
2.
06

68
E
−0

4
2.
92

98

L
2
P
ro
je
ct
io
n

π
fo
r
u
0
w
ith

x l
=

0,
x r

=
0.
92

23
7,

T
=

1,
c u

=
1,

h
1

=
9.
22

37
E

−0
2,

τ 1
=

0.
00

5

123



17 Page 24 of 48 Journal of Scientific Computing (2020) 83 :17

Ta
bl
e
6

N
um

er
ic
al
er
ro
r
an
d
co
nv
er
ge
nc
e
ra
te
s
of

C
en
tr
al
-L
D
G

sc
he
m
e
in

th
e
cn
oi
da
l-
w
av
e
ex
am

pl
e

h
τ

E
rr
or

of
u

E
rr
or

of
v

‖e
u
‖ 2

C
2

‖e
u
‖ ∞

C
∞

‖e
v
‖ 2

C
2

‖e
v
‖ ∞

C
∞

P
0

h
1

τ 1
8.
71

43
E
−0

2
*

2.
74

92
E
−0

1
*

7.
15

99
E
−0

1
*

2.
63

73
E
+
00

*

h
1
/
2

τ 1
/
4

3.
67

16
E
−0

2
1.
24

70
1.
18

93
E
−0

1
1.
20

89
3.
41

42
E
−0

1
1.
06

84
1.
35

35
E
+
00

0.
96

24

h
1
/
4

τ 1
/
16

1.
71

82
E
−0

2
1.
09

55
5.
32

81
E
−0

2
1.
15

84
1.
60

58
E
−0

1
1.
08

83
6.
95

29
E
−0

1
0.
96

10

h
1
/
8

τ 1
/
64

8.
44

17
E
−0

3
1.
02

53
2.
53

84
E
−0

2
1.
06

97
7.
89

08
E
−0

2
1.
02

51
3.
43

81
E
−0

1
1.
01

60

P
1

h
1

τ 1
6.
22

66
E
−0

2
*

1.
88

43
E
−0

1
*

5.
98

16
E
−0

1
*

2.
17

26
E
+
00

*

h
1
/
2

τ 1
/
4

3.
05

68
E
−0

2
1.
02

64
9.
27

27
E
−0

2
1.
02

29
3.
33

91
E
−0

1
0.
84

11
1.
40

77
E
+
00

0.
62

61

h
1
/
4

τ 1
/
16

1.
51

94
E
−0

2
1.
00

85
4.
67

62
E
−0

2
0.
98

77
1.
72

44
E
−0

1
0.
95

33
7.
54

29
E
−0

1
0.
90

01

h
1
/
8

τ 1
/
64

7.
58

53
E
−0

3
1.
00

23
2.
32

89
E
−0

2
1.
00

57
8.
69

54
E
−0

2
0.
98

78
3.
82

77
E
−0

1
0.
97

86

P
2

h
1

τ 1
1.
90

11
E
−0

3
*

8.
32

63
E
−0

3
*

7.
31

26
E
−0

2
*

3.
65

32
E
−0

1
*

h
1
/
2

τ 1
/
4

1.
07

44
E
−0

4
4.
14

52
4.
97

43
E
−0

4
4.
06

51
6.
91

39
E
−0

3
3.
40

28
4.
40

30
E
−0

2
3.
05

26

h
1
/
4

τ 1
/
16

1.
19

91
E
−0

5
3.
16

35
5.
40

64
E
−0

5
3.
20

18
7.
99

74
E
−0

4
3.
11

19
4.
54

90
E
−0

3
3.
27

49

h
1
/
8

τ 1
/
64

1.
46

27
E
−0

6
3.
03

53
6.
57

86
E
−0

6
3.
03

88
9.
76

71
E
−0

5
3.
03

35
5.
10

69
E
−0

4
3.
15

50

P
3

h
1

τ 1
3.
38

94
E
−0

4
*

1.
22

96
E
−0

3
*

9.
75

83
E
−0

3
*

5.
32

83
E
−0

2
*

h
1
/
2

τ 1
/
4

4.
24

12
E
−0

5
2.
99

85
1.
50

29
E
−0

4
3.
03

23
1.
62

48
E
−0

3
2.
58

63
9.
99

13
E
−0

3
2.
41

49

h
1
/
4

τ 1
/
16

5.
30

80
E
−0

6
2.
99

82
1.
84

24
E
−0

5
3.
02

81
2.
20

77
E
−0

4
2.
87

96
1.
36

38
E
−0

3
2.
87

31

h
1
/
8

τ 1
/
64

6.
63

70
E
−0

7
2.
99

96
2.
25

59
E
−0

6
3.
02

98
2.
82

09
E
−0

5
2.
96

83
1.
75

73
E
−0

4
2.
95

62

L
2
P
ro
je
ct
io
n

π
fo
r
u
0
w
ith

x l
=

0,
x r

=
0.
92

23
7,

T
=

1,
c u

=
0,

h
1

=
9.
22

37
E

−0
2,

τ 1
=

1.
56

25
E

−0
3

123



Journal of Scientific Computing (2020) 83 :17 Page 25 of 48 17

Ta
bl
e
7

N
um

er
ic
al
er
ro
r
an
d
co
nv
er
ge
nc
e
or
de
rs
of

u
an
d

v
of

C
en
tr
al
-L
D
G

sc
he
m
e
w
it
h
di
ss
ip
at
iv
e
te
rm

ad
de
d
in

th
e
cn
oi
da
l-
w
av
e
ex
am

pl
e

h
τ

E
rr
or

of
u

E
rr
or

of
v

‖e
u
‖ 2

C
2

‖e
u
‖ ∞

C
∞

‖e
v
‖ 2

C
2

‖e
v
‖ ∞

C
∞

P
0

h
1

τ 1
2.
07

66
E
−0

1
*

4.
18

51
E
−0

1
*

1.
77

51
E
+
00

*
3.
87

20
E
+
00

*

h
1
/
2

τ 1
/
4

1.
31

01
E
−0

1
0.
66

45
2.
79

38
E
−0

1
0.
58

30
1.
17

46
E
+
00

0.
59

57
2.
69

50
E
+
00

0.
52

28

h
1
/
4

τ 1
/
16

7.
45

30
E
−0

2
0.
81

38
1.
61

75
E
−0

1
0.
78

84
6.
85

59
E
−0

1
0.
77

67
1.
63

28
E
+
00

0.
72

29

h
1
/
8

τ 1
/
64

3.
99

63
E
−0

2
0.
89

92
8.
73

98
E
−0

2
0.
88

81
3.
73

01
E
−0

1
0.
87

81
9.
18

64
E
−0

1
0.
82

98

P
1

h
1

τ 1
2.
37

62
E
−0

2
*

6.
33

62
E
−0

2
*

4.
77

93
E
−0

1
*

1.
48

27
E
+
00

*

h
1
/
2

τ 1
/
4

7.
87

84
E
−0

3
1.
59

27
2.
05

62
E
−0

2
1.
62

36
2.
62

90
E
−0

1
0.
86

23
1.
01

57
E
+
00

0.
54

58

h
1
/
4

τ 1
/
16

2.
34

44
E
−0

3
1.
74

87
6.
46

32
E
−0

3
1.
66

97
1.
42

20
E
−0

1
0.
88

66
5.
98

15
E
−0

1
0.
76

39

h
1
/
8

τ 1
/
64

6.
73

19
E
−0

4
1.
80

02
1.
95

83
E
−0

3
1.
72

27
7.
55

00
E
−0

2
0.
91

34
3.
28

07
E
−0

1
0.
86

65

P
2

h
1

τ 1
1.
54

08
E
−0

3
*

5.
18

32
E
−0

3
*

5.
81

24
E
−0

2
*

2.
78

39
E
−0

1
*

h
1
/
2

τ 1
/
4

1.
08

88
E
−0

4
3.
82

28
5.
21

11
E
−0

4
3.
31

42
7.
26

35
E
−0

3
3.
00

04
5.
00

99
E
−0

2
2.
47

43

h
1
/
4

τ 1
/
16

1.
20

66
E
−0

5
3.
17

38
5.
58

86
E
−0

5
3.
22

10
9.
06

91
E
−0

4
3.
00

16
6.
08

32
E
−0

3
3.
04

19

h
1
/
8

τ 1
/
64

1.
46

53
E
−0

6
3.
04

17
6.
70

28
E
−0

6
3.
05

97
1.
13

06
E
−0

4
3.
00

39
7.
28

39
E
−0

4
3.
06

21

P
3

h
1

τ 1
1.
41

28
E
−0

4
*

5.
13

91
E
−0

4
*

8.
61

55
E
−0

3
*

4.
67

81
E
−0

2
*

h
1
/
2

τ 1
/
4

1.
52

11
E
−0

5
3.
21

54
6.
62

86
E
−0

5
2.
95

47
1.
29

30
E
−0

3
2.
73

62
7.
36

64
E
−0

3
2.
66

69

h
1
/
4

τ 1
/
16

1.
56

33
E
−0

6
3.
28

24
5.
88

15
E
−0

6
3.
49

45
1.
69

06
E
−0

4
2.
93

51
7.
28

17
E
−0

4
3.
33

86

h
1
/
8

τ 1
/
64

1.
66

26
E
−0

7
3.
23

31
5.
62

84
E
−0

7
3.
38

54
2.
33

27
E
−0

5
2.
85

75
8.
55

07
E
−0

5
3.
09

02

L
2
P
ro
je
ct
io
n

π
fo
r
u
0
w
ith

x l
=

0,
x r

=
0.
92

23
7,

T
=

1,
c u

=
1,

h
1

=
9.
22

37
E

−0
2,

τ 1
=

1.
56

25
E

−0
3

123



17 Page 26 of 48 Journal of Scientific Computing (2020) 83 :17

0 50 100 150 200 250
−7

−6

−5

−4

−3

−2

−1

0

1

2 x 10
−15 Error of mass Mn

h − M 0
h for P 2 C-C-LDG

t

M
n h

−
M

0 h

0 50 100 150 200 250
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4 x 10
−14 Error of energy En

h − E0
h for P 2 C-C-LDG

t

E
n h

−
E

0 h

Fig. 1 Errors of mass (left) and energy (right) of C-C-LDG scheme in Sect. 3.2, with J = 10, T = 250,
N = 2480 and P2 polynomial basis
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Fig. 2 Time history of the numerical errors of uh in L2 norm with J = 10, N = 20,480 and T = 30 of
C-C-LDG, C-D-LDG, D-C-LDG and D-D-LDG methods in Sect. 3.2, with P0 (top left), P1 (top right), P2

(bottom left) and P3 (bottom right) polynomial basis

is growing faster than C-C-LDGmethod. This means that the influence of term cu[uh] in flux
v̂h,t is not as obvious as the nonlinear term flux f̂ , and in general, the conserved C-C-LDG
scheme performs better. From the bottom of Fig. 2, we can see the the errors of the C-C-LDG
scheme do not grow significantly in time due to the energy conserving property.
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Next we focus on C-C-LDG and D-D-LDGmethods, and provide a thorough comparison
of them by Figs. 3, 4 and 5 with the explanations below. In the top of Fig. 3, we show the
time history of the numerical errors of uh in L∞ norm with uniform time steps τ = 0.0323
(top left), τ = 0.0161 (top right) and P0 polynomial basis. It can be observed that the errors
of different time step sizes are similar, which means the numerical error is dominated by the
spatial discretization. Also, the numerical error of energy conserving scheme is smaller. The
middle and bottom of Fig. 3 provide the comparison of numerical solutions with the exact
solution at different stopping times, and the time history of u(xm, t) with xm = (xl + xr )/2,
uniform spatial cells J = 40 and the time step τ = 0.161. It is very easy to observe that, theD-
D-LDG scheme has a larger phase error, which makes the solution very inaccurate in the long
time simulation. On the other hand, C-C-LDG scheme demonstrate a good approximation to
the exact solution. When P2 and P3 polynomial basis are used, the same numerical results
can be observed in Figs. 4 and 5, respectively. The C-C-LDG scheme demonstrates a better
approximation to the exact solution than the D-D-LDG scheme. In addition, we can see the
difference betweenC-C-LDG andD-D-LDGbecomes less obvious, as the polynomial degree
k increases.

Figure 6 shows the comparison of the waveform of C-C-LDG and D-D-LDG methods
at different times T = 70, 200, 250 and 290. Significant phase error can be observed for
the D-D-LDG methods, while the C-C-LDG methods can capture the wave well. At time
T = 290, the solution of D-D-LDG methods seems to match well with the exact solution,
but this is because the phase error has accumulated and the wave is now one period behind
(with periodic boundary condition used). Also, the magnitude of the numerical solution of
the C-C-LDG scheme (red line) stays as 1, while the amplitude of D-D-LDG result (blue
line) decreases gradually over time.

In [31], energy conserving LDG method for the Camassa–Holm equation is investigated
and tested. One question about [31, Figure 2] remains unanswered in that paper. A smaller
phase error of the energy conserving methods was observed for that numerical test, but
the improvement in terms of the phase error is not as good as that for the KdV [24] and
Degasperis-Procesi [32] equations. We revisited this issue for this simpler BBM equation.
Figure 7, the left column, reproduces similar observation as in [31, Figure 2], and one can
observe obvious phase error of both C-C-LDG and D-D-LDG methods, although C-C-LDG
method has a smaller phase error. The right column of Fig. 7 provide the numerical results
with a half time step size while keeping all the other parameters. After reducing �t , the
numerical error of energy conserving C-C-LDG methods decreases significantly, leading to
a much smaller phase error, but the error of the energy dissipative D-D-LDG methods does
not change much. Therefore, the large phase error of energy conserving methods in Fig. 7
(the left column) is mainly due to the temporal discretization error.

3.3 Non-uniformMeshes

In this subsection, numerical results of the proposed methods on non-uniform spatial meshes
are provided. Both the accuracy and long time behavior are tested. The non-uniform meshes
are taken of the style {h, 2h, 3h, h, 2h, 3h, . . .}, and J again stands for the total number of
cells.

We consider the cnoidal-wave solution (1.4) of BBM Eq. (1.1) with the parameters spec-
ified in (3.1). In the first accuracy test, we set the time step as τ = 2.3508h2 (such that
N = 2J 2). (u∗

h, v
∗
h,t ) is chosen as (u+

h , v−
h,t ) in the fluxes (2.9), and projection π+ is applied

to obtain the initial conditions of uh . Tables 8 and 9 present the accuracy test of C-C-LDG and
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Fig. 3 Time history of the numerical errors of uh in L∞ norm with uniform time cells N = 1240 (top left)
and 2480 (top right) at t = 40, waveform at t = 4 (middle left), t = 20 (middle right) and t = 40 (bottom left)
and time history of u(xm , t) (bottom right) of C-C-LDG and D-D-LDGmethods in the cnoidal-wave example
with uniform spatial cells J = 40, xm = (xl + xr )/2 and P0 polynomial basis

D-D-LDGmethods on non-uniform meshes, respectively. We can observe that both methods
demonstrate an optimal order of convergence rate on uh and vh .

Both C-C-LDG and D-D-LDG methods are simulated for this cnoidal-wave example, on
non-uniform meshes using P0 (with J = 40) and P3 (with J = 10) polynomial basis.
Figure 8 shows the time history of their numerical errors of uh in L∞ norm. Comparing
with the top right of Figs. 3 and 5, we observe that non-uniform spatial meshes lead to
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Fig. 4 Time history of the numerical errors of uh in L∞ norm with uniform time cells N = 10,240 (top
left) and N = 20,480 (top right ) for T = 70, waveform at t = 7 (middle left), t = 50 (middle right) and
t = 70 (bottom left) and time history of u(xm , t) (bottom right) of C-C-LDG and D-D-LDG methods in the
cnoidal-wave example with uniform spatial cells J = 10, xm = (xl + xr )/2 and P2 polynomial basis

larger numerical error with the same J , and the C-C-LDG scheme demonstrates a better
approximation to the exact solution than the D-D-LDG scheme.

Figure 9 shows the comparison of the waveform of C-C-LDG and D-D-LDG methods
at different times T = 50, 100, 140 and 150, on non-uniform meshes (J = 10) for P2

polynomial basis. We can obtain the same conclusion as observed in Fig. 6 for the tests with
uniformmeshes, namely the C-C-LDGmethods have smaller phase and amplitude error than
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Fig. 5 Time history of the numerical errors of uh in L∞ norm with uniform time cells N = 20,480 (top
left) and N = 40,960 (top right ) for T = 70, waveform at t = 7 (middle left), t = 50 (middle right) and
t = 70 (bottom left) and time history of u(xm , t) (bottom right) of C-C-LDG and D-D-LDG methods in the
cnoidal-wave example with uniform spatial cells J = 10, xm = (xl + xr )/2 and P3 polynomial basis

D-D-LDGmethods. Comparing with Fig. 6, we can observe, under non-uniform meshes, the
phase error of the D-D-LDGmethods accumulates faster: the peak of the wave lag one period
behind around t = 150, while the same phenomenon occurs around t = 290 with uniform
spatial meshes.
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Fig. 6 The comparison of the waveform of C-C-LDG and D-D-LDG methods at different times t =
70, 200, 250, 290 in the cnoidal-wave example with uniform spatial cells J = 10, τ = 0.015736 and P2

polynomial basis

4 Energy Conserving LDGMethod Via Doubling-the-Unknowns

Optimal energy conservingDGmethods have been presented for linear symmetric hyperbolic
systems by Fu and Shu in [36], based on the doubling-the-unknowns idea to introduce an
auxiliary zero unknown equation. The same idea has been extended in [37] to provide an
energy conserving ultra-weak DG method for the KdV equation, where comparison with
existing energy conserving or dissipative DG methods have been provided to demonstrate
the better performance of this optimal energy conserving DGmethod. In this section, we will
extend the same idea to the BBM equation to derive and analyze optimal energy conserving
LDGmethodwith double unknowns (named as dLDG), and themain focus is two-folds: first,
we want to show that the suboptimal Central-LDG method can be extended to be optimal
in this framework; second, the comparison of dLDG methods with the energy conserving
methods presented in Sect. 2 will be presented.

We start by doubling the unknown functions with the introduction of an auxiliary zero
function g(x, t), and consider the following system

{
ut − εuxxt + uux = 0,

gt − εgxxt = 0,
(4.1)
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Fig. 7 The comparison of the waveform of C-C-LDG and D-D-LDG methods at different times t = 40 (top),
t = 70 (middle), t = 150 (bottom) with time step τ = 0.063004 (left) and τ = 0.031502 (right), in the
cnoidal-wave example with uniform spatial cells J = 10 and P2 polynomial basis

with initial condition u(x, 0) = u0(x) and g(x, 0) = 0. As explained in [37], one could add
the nonlinear term ggx to the second equation to obtain the dLDGmethod, but it is not found
to be beneficial, therefore, to save computational cost, this nonlinear term is not included.
Analytically, g(x, t) should stay as 0 for any t , but this will not be the case numerically, due
to our choice of the numerical fluxes to couple u and g togther.

123



Journal of Scientific Computing (2020) 83 :17 Page 33 of 48 17

Ta
bl
e
8

A
cc
ur
ac
y
te
st
on

no
n-
un

if
or
m

m
es
he
s:
nu

m
er
ic
al
er
ro
r
an
d
co
nv
er
ge
nc
e
ra
te
s
of

C
-C

-L
D
G

sc
he
m
e
in

th
e
cn
oi
da
l-
w
av
e
ex
am

pl
e

h
τ

E
rr
or

of
u

E
rr
or

of
v

‖e
u
‖ 2

C
2

‖e
u
‖ ∞

C
∞

‖e
v
‖ 2

C
2

‖e
v
‖ ∞

C
∞

P
0

h
1

τ 1
4.
46

55
E
−0

2
*

1.
68

11
E
−0

1
*

4.
28

19
E
−0

1
*

1.
42

57
E
+
00

*

h
1
/
2

τ 1
/
4

2.
48

34
E
−0

2
0.
84

65
9.
24

87
E
−0

2
0.
86

21
2.
08

79
E
−0

1
1.
03

62
8.
22

61
E
−0

1
0.
79

34

h
1
/
4

τ 1
/
16

1.
30

65
E
−0

2
0.
92

66
4.
81

50
E
−0

2
0.
94

17
1.
03

53
E
−0

1
1.
01

19
4.
36

59
E
−0

1
0.
91

39

h
1
/
8

τ 1
/
64

6.
69

32
E
−0

3
0.
96

49
2.
44

09
E
−0

2
0.
98

01
5.
16

51
E
−0

2
1.
00

32
2.
23

46
E
−0

1
0.
96

63

P
1

h
1

τ 1
2.
29

41
E
−0

3
*

1.
64

39
E
−0

2
*

7.
65

37
E
−0

2
*

3.
43

87
E
−0

1
*

h
1
/
2

τ 1
/
4

5.
67

88
E
−0

4
2.
01

43
4.
53

42
E
−0

3
1.
85

82
1.
97

74
E
−0

2
1.
95

26
9.
59

51
E
−0

2
1.
84

15

h
1
/
4

τ 1
/
16

1.
42

45
E
−0

4
1.
99

51
1.
20

64
E
−0

3
1.
91

01
4.
98

60
E
−0

3
1.
98

76
2.
53

22
E
−0

2
1.
92

19

h
1
/
8

τ 1
/
64

3.
57

46
E
−0

5
1.
99

46
3.
07

69
E
−0

4
1.
97

12
1.
24

92
E
−0

3
1.
99

69
6.
42

63
E
−0

3
1.
97

83

P
2

h
1

τ 1
1.
02

88
E
−0

4
*

8.
14

68
E
−0

4
*

2.
14

85
E
−0

3
*

9.
81

55
E
−0

3
*

h
1
/
2

τ 1
/
4

1.
30

33
E
−0

5
2.
98

07
1.
14

45
E
−0

4
2.
83

15
2.
63

59
E
−0

4
3.
02

70
1.
45

53
E
−0

3
2.
75

38

h
1
/
4

τ 1
/
16

1.
63

30
E
−0

6
2.
99

66
1.
39

58
E
−0

5
3.
03

55
3.
28

89
E
−0

5
3.
00

27
1.
96

06
E
−0

4
2.
89

19

h
1
/
8

τ 1
/
64

2.
04

33
E
−0

7
2.
99

86
1.
75

80
E
−0

6
2.
98

91
4.
10

91
E
−0

6
3.
00

07
2.
52

48
E
−0

5
2.
95

71

P
3

h
1

τ 1
4.
93

08
E
−0

6
*

4.
67

13
E
−0

5
*

1.
06

88
E
−0

4
*

6.
41

72
E
−0

4
*

h
1
/
2

τ 1
/
4

3.
00

75
E
−0

7
4.
03

52
2.
94

24
E
−0

6
3.
98

88
7.
14

20
E
−0

6
3.
90

35
4.
80

08
E
−0

5
3.
74

06

h
1
/
4

τ 1
/
16

1.
88

11
E
−0

8
3.
99

89
1.
95

77
E
−0

7
3.
90

98
4.
47

89
E
−0

7
3.
99

51
2.
93

66
E
−0

6
4.
03

10

h
1
/
8

τ 1
/
64

1.
17

57
E
−0

9
4.
00

00
1.
23

77
E
−0

8
3.
98

35
2.
80

17
E
−0

8
3.
99

88
1.
80

64
E
−0

7
4.
02

30

P
ro
je
ct
io
n

π
+
fo
r
u
0
w
ith

x l
=

0,
x r

=
0.
92

23
7,

T
=

1,
c u

=
0,

h
1

=
1.
53

73
E
-0
2,

τ 1
=

5.
55

56
E
-0
4

123



17 Page 34 of 48 Journal of Scientific Computing (2020) 83 :17

Ta
bl
e
9

A
cc
ur
ac
y
te
st
on

no
n-
un

if
or
m

m
es
he
s:
nu

m
er
ic
al
er
ro
r
an
d
co
nv
er
ge
nc
e
ra
te
s
of

D
-D

-L
D
G

sc
he
m
e
in

th
e
cn
oi
da
l-
w
av
e
ex
am

pl
e

h
τ

E
rr
or

of
u

E
rr
or

of
v

‖e
u
‖ 2

C
2

‖e
u
‖ ∞

C
∞

‖e
v
‖ 2

C
2

‖e
v
‖ ∞

C
∞

P
0

h
1

τ 1
1.
01

29
E
−0

1
*

2.
37

97
E
−0

1
*

1.
07

28
E
+
00

*
2.
56

46
E
+
00

*

h
1
/
2

τ 1
/
4

5.
76

32
E
−0

2
0.
81

36
1.
51

51
E
−0

1
0.
65

14
6.
42

31
E
−0

1
0.
74

00
1.
65

38
E
+
00

0.
63

29

h
1
/
4

τ 1
/
16

3.
08

25
E
−0

2
0.
90

28
8.
38

09
E
−0

2
0.
85

42
3.
52

15
E
−0

1
0.
86

71
9.
62

49
E
−0

1
0.
78

10

h
1
/
8

τ 1
/
64

1.
59

40
E
−0

2
0.
95

15
4.
38

21
E
−0

2
0.
93

55
1.
84

23
E
−0

1
0.
93

47
5.
26

73
E
−0

1
0.
86

97

P
1

h
1

τ 1
2.
56

07
E
−0

3
*

1.
31

27
E
−0

2
*

1.
28

46
E
−0

1
*

5.
55

14
E
−0

1
*

h
1
/
2

τ 1
/
4

5.
90

35
E
−0

4
2.
11

69
4.
21

88
E
−0

3
1.
63

77
3.
77

14
E
−0

2
1.
76

81
1.
73

99
E
−0

1
1.
67

39

h
1
/
4

τ 1
/
16

1.
43

63
E
−0

4
2.
03

93
1.
15

68
E
−0

3
1.
86

66
1.
01

81
E
−0

2
1.
88

92
4.
92

45
E
−0

2
1.
82

09

h
1
/
8

τ 1
/
64

3.
57

60
E
−0

5
2.
00

59
3.
00

85
E
−0

4
1.
94

31
2.
64

01
E
−0

3
1.
94

72
1.
29

71
E
−0

2
1.
92

47

P
2

h
1

τ 1
1.
07

03
E
−0

4
*

7.
98

71
E
−0

4
*

4.
07

33
E
−0

3
*

2.
07

56
E
−0

2
*

h
1
/
2

τ 1
/
4

1.
31

99
E
−0

5
3.
01

94
1.
17

29
E
−0

4
2.
76

76
5.
29

19
E
−0

4
2.
94

44
2.
97

16
E
−0

3
2.
80

42

h
1
/
4

τ 1
/
16

1.
63

99
E
−0

6
3.
00

88
1.
41

44
E
−0

5
3.
05

18
6.
76

84
E
−0

5
2.
96

69
4.
08

87
E
−0

4
2.
86

15

h
1
/
8

τ 1
/
64

2.
04

64
E
−0

7
3.
00

25
1.
77

36
E
−0

6
2.
99

54
8.
56

84
E
−0

6
2.
98

17
5.
33

39
E
−0

5
2.
93

84

P
3

h
1

τ 1
5.
01

28
E
−0

6
*

4.
45

67
E
−0

5
*

1.
79

05
E
−0

4
*

1.
16

61
E
−0

3
*

h
1
/
2

τ 1
/
4

3.
02

80
E
−0

7
4.
04

92
2.
93

07
E
−0

6
3.
92

67
1.
21

83
E
−0

5
3.
87

75
8.
19

62
E
−0

5
3.
83

05

h
1
/
4

τ 1
/
16

1.
88

59
E
−0

8
4.
00

50
1.
94

83
E
−0

7
3.
91

10
7.
87

21
E
−0

7
3.
95

20
5.
12

86
E
−0

6
3.
99

83

h
1
/
8

τ 1
/
64

1.
17

69
E
−0

9
4.
00

21
1.
23

38
E
−0

8
3.
98

10
4.
99

62
E
−0

8
3.
97

78
3.
21

21
E
−0

7
3.
99

70

P
ro
je
ct
io
n

π
+
fo
r
u
0
w
ith

x l
=

0,
x r

=
0.
92

23
7,

T
=

1,
c u

=
1,

h
1

=
1.
53

73
E
-0
2,

τ 1
=

5.
55

56
E
-0
4

123



Journal of Scientific Computing (2020) 83 :17 Page 35 of 48 17

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

||e
u
|| ∞

||eu||∞ with N = 2480 non-uniform mesh J = 40 for P 0

 

 

C−C−LDG
D−D−LDG

0 10 20 30 40 50 60 70
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

t

||e
u
|| ∞

||eu||∞ with N = 40960 non-uniform mesh J = 10 for P 3

 

 

C−C−LDG
D−D−LDG

Fig. 8 Non-uniform meshes: time history of the numerical errors of uh in L∞ norm of C-C-LDG and D-D-
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J = 10 and P2 polynomial basis
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The equations can be rewritten into a first order system by substituting ux with variable v

and gx with variable w:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − εvxt + f (u)x = 0,

v = ux ,

gt − εwxt = 0,

w = gx ,

(4.2)

where f (u) = u2/2. The semi-discrete dLDG methods for the system (4.2) are defined as
follows: find uh , vh , gh , and wh ∈ V k

h , such that for all test functions φ1, φ2, φ3, φ4 ∈ V k
h it

holds that
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(uh,t , φ1) j + εH∗
j (vh,t , φ1; v̂h,t ) − F∗

j (uh, φ1; f̂ ) = 0,

(vh, φ2) j + H∗
j (uh, φ2; ûh) = 0,

(gh,t , φ3) j + εH∗
j (wh,t , φ3; ŵh,t ) = 0,

(wh, φ4) j + H∗
j (gh, φ4; ĝh) = 0,

(4.3)

where the numerical flux of the nonlinear term f̂ can be chosen as the conservative flux
(2.11) and the hatted numerical fluxes ûh , v̂h,t , ĝh and ŵh,t are chosen as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̂h,t = {vh,t } + k1[wh,t ],
ûh = {uh} + k2[gh],
ŵh,t = {wh,t } − k2[vh,t ],
ĝh = {gh} − k1[uh],

(4.4)

and the parameters k1, k2 satisfies k1k2 = −1/4. The average {·} in (4.4) can also be
replaced by the generalized alternating numerical flux (2.10). Optimal error estimate can-
not be obtained for the LDG method in Sect. 2 when average is used (i.e., Central-LDG
method), and we will show that by this doubling-the-unknowns technique, one could recover
the optimal error estimate.

4.1 Energy Conservation Property

In this subsection we present the energy conservation property of the dLDG scheme. The
equations of uh , vh in the dLDG method (4.3) are the same as in the LDG method (2.2)–
(2.2b), except the definition of the numerical fluxes are different. Therefore, Theorem 2.1
(mass conservation property) and Lemma 2.3 still hold, with the new definition of these
fluxes. For the new variables gh and wh , we have the following lemma:

Lemma 4.1 Let gh, wh be the solutions of dLDG scheme (4.3), the following result hold

1

2

d

dt

∫
I

(
g2h + εw2

h

)
dx + ε

∑
j

(
(̂wh,t − {wh,t })[gh] + (ĝh − {gh})[wh,t ]

)
j+ 1

2
= 0.

The proof of this Lemma follows that of Lemma 2.3, and is omitted here. Therefore, we have
the following properties.
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Theorem 4.1 Let uh, vh, gh andwh be the solutions of dLDGscheme (4.3), with the numerical
fluxes chosen as (4.4) and (2.11). The following energy conservation property holds

dEh(t) :=
∫
I

(
u2h(x, t) + εv2h(x, t) + g2h(x, t) + εw2

h(x, t)
)
dx = dEh(0). (4.5)

Remark 4.1 Due to the introduction of auxiliary zero function g, the energy of dLDGmethod
in (4.5) now include both uh , vh , and gh , wh , which is different from the conventional LDG
method. This should be an approximate of the energy, because gh and wh are numerical
approximation of zero functions, and we refer to [36] for more discussions on this matter.

4.2 Optimal Error Estimate

To derive the error estimate, the standard L2 projections of the solutions v, w

πvv = πv, πww = πw, (4.6)

and the following coupled projections 〈πu, π g〉 of u and g
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(πuu, φ) j = (u, φ) j , ∀φ ∈ Pk−1(I j ),

(π gg, φ) j = (g, φ) j , ∀φ ∈ Pk−1(I j ),({πuu} + k2[π gg]) j− 1
2

= u(x j− 1
2
),({π gg} − k1[πuu]) j− 1

2
= g(x j− 1

2
),

(4.7)

are defined for all j = 1, 2, . . . , J , where k1k2 = −1/4 is assumed. At a first glance, the
projections (4.7) seem to be globally coupled over all the element I j , due to the appearance
of {·} and [·] in the definition of the cell boundary terms. The following Lemma, following
similar result in [36], shows that they are actually local projections with optimal projection
errors.

Lemma 4.2 The projections in (4.7) are well-defined, and they satisfy⎧⎪⎪⎨
⎪⎪⎩

πuu = 1

2
π+(u + 2k2g) + 1

2
π−(u − 2k2g),

π gg = 1

4k2
π+(u + 2k2g) − 1

4k2
π−(u − 2k2g).

(4.8)

In particular,

‖πuu − u‖0 ≤ Chk+1 and ‖π gg − g‖0 ≤ Chk+1. (4.9)

Proof From the definition of the coupled projections (4.7), we know that for any α and β

(απuu + βπ gg, φ) j = (αu + βg, φ) j , ∀φ ∈ Pk−1(I j ),(
{απuu + βπ gg} + 1

2
[2αk2π gg − 2βk1π

uu]
) ∣∣∣∣

j− 1
2

= αu(x j− 1
2
) + βg(x j− 1

2
).
(4.10)

We can choose α = 1, β = 2k2 such that 2αk2 = β, −2βk1 = α, since k1k2 = −1/4. Note
that for any w ∈ V k

h it holds {w} + 1
2 [w] = w+, then the Eq. (4.10) leads to

πuu + 2k2π
gg = π+(u + 2k2g). (4.11)
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Similarly we can choose α = 1, β = −2k2 to derive

πuu − 2k2π
gg = π+(u − 2k2g). (4.12)

The conclusion (4.8) follows from (4.11) and (4.12), and the error estimate (4.9) is the direct
consequence of applying the error estimate (2.15) to π±. �	

The following lemma is the analogue of Lemma 2.4.

Lemma 4.3 Suppose (uh, vh), (gh, wh) ∈ V k
h × V k

h are the solutions of the dLDG methods
(4.3) with the numerical fluxes (4.4), and the projections (4.6) and (4.7) are used, then there
exists a positive constant C, which is independent of h, such that

‖ξu,x‖0 + h−1/2|[ξu]| ≤ C (‖ξv‖0 + ‖ξw‖0) , (4.13)

‖ξg,x‖0 + h−1/2|[ξg]| ≤ C (‖ξv‖0 + ‖ξw‖0) . (4.14)

Proof From the second and fourth equations of (4.3), we can obtain

(vh + 2k2wh, φ) j + H∗
j (uh + 2k2gh, φ; ûh + 2k2 ĝh) = 0,

(vh − 2k2wh, φ) j + H∗
j (uh − 2k2gh, φ; ûh − 2k2 ĝh) = 0,

with the fluxes satisfying

ûh + 2k2 ĝh = (uh + 2k2gh)
+, ûh − 2k2 ĝh = (uh − 2k2gh)

−.

Therefore, 〈uh + 2k2gh, vh + 2k2wh〉 and 〈uh − 2k2gh, vh − 2k2wh〉 satisfy the assumptions
of Lemma 2.4, and we have

‖ξu,x + 2k2ξg,x‖0 + h−1/2|[ξu + 2k2ξg]| ≤ C‖ξv + 2k2ξw‖0 ≤ C (‖ξv‖0 + ‖ξw‖0) ,

(4.15)

‖ξu,x − 2k2ξg,x‖0 + h−1/2|[ξu − 2k2ξg]| ≤ C‖ξv − 2k2ξw‖0 ≤ C (‖ξv‖0 + ‖ξw‖0) ,

(4.16)

and the results (4.13) and (4.14) follow from the fact that ξu = 1
2 (ξu+2k2ξg)+ 1

2 (ξu−2k2ξg)
and ξg = 1

4k2
(ξu + 2k2ξg) − 1

4k2
(ξu − 2k2ξg). �	

Theorem 4.2 Let uh, vh, gh and wh be the numerical solutions of dLDG scheme (4.3) with
the numerical fluxes (4.4), and the numerical flux of the nonlinear term f̂ (u−, u+) chosen
as (2.11). Let u, v, g and w be the exact solution of the problem (4.2) which are sufficiently
smooth. For small h and all t ∈ [0, T ], it holds that

‖eu‖ ≤ Chk+1, ‖ev‖ ≤ Chk+1, ‖eg‖ ≤ Chk+1, ‖ew‖ ≤ Chk+1. (4.17)

where the constant C may depend on T , k, the length of the domain I and some Sobolev
norms of the exact solutions up to time T , but is independent of h.

The proof follows the same line as that of Theorem 2.4, and is skipped to save space.

4.3 Temporal Discretization

The fully discrete dLDGmethods, coupledwith the implicitmidpoint temporal discretization,
will be discussed in this section. They take the following form:we are looking for the solutions
un+1
h , vn+1

h , gn+1
h and wn+1

h for n = 1, 2, . . . , N − 1, such that
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(δ+
t u

n
h, φ1) j + εH∗

j (δ
+
t vnh , φ1; ̂δ+

t vnh ) − F∗
j (u

n+ 1
2

h , φ1; f̂ n+ 1
2 ) = 0,

(v
n+ 1

2
h , φ2) j + H∗

j (u
n+ 1

2
h , φ2; (ûh)

n+ 1
2 ) = 0,

(δ+
t g

n
h , φ3) j + εH∗

j (δ
+
t wn

h , φ3; ̂δ+
t wn

h ) = 0,

(w
n+ 1

2
h , φ4) j + H∗

j (g
n+ 1

2
h , φ4; (ĝh)

n+ 1
2 ) = 0,

(4.18)

hold for all test functionsφ1,φ2,φ3 andφ4 ∈ V k on every cell I j . Here the nonlinear numerical

flux f̂ n+ 1
2 can be chosen as (2.11), and the other numerical fluxes ̂δ+

t vnh , (ûh)
n+ 1

2 , ̂δ+
t wn

h ,

̂(gh)
n+ 1

2 take the similar form as (4.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

̂δ+
t vnh = {δ+

t vnh } + k1[δ+
t wn

h ],
(ûh)

n+ 1
2 = {un+ 1

2
h } + k2[gn+ 1

2
h ],

̂δ+
t wn

h = {δ+
t wn

h } − k2[δ+
t vnh ],

̂(gh)
n+ 1

2 = {gn+ 1
2

h } − k1[un+ 1
2

h ],

(4.19)

where k1k2 = −1/4.
The mass and energy conservation property of the fully discrete dLDG methods is sum-

marized below.

Theorem 4.3 Let unh, vnh , g
n
h and wn

h be the solutions of the fully discrete dLDG methods
(4.18). With the discrete mass and energy defined as

Mn
h =

∫
I
unhdx, En

h =
∫
I

(
(unh)

2 + ε(vnh )
2 + (gnh )

2 + ε(wn
h )

2) dx, (4.20)

the following mass conservation and energy dissipative property holds for any n

Mn
h = M0

h , En
h = E0

h . (4.21)

The implementation of the fully discrete dLDG methods (4.18) is similar to that of the
LDG methods as discussed at the end of Sect. 2.4. The two additional equations are both
linear. As the implicit temporal discretization is used, most of the computational time is
spent on the nonlinear equation, therefore the computational cost of the dLDGmethod is not
significantly more than that of the LDG method, which will be discussed in the numerical
example section.

5 Numerical Experiments of the dLDGMethods

In this section, we provide some numerical results of the proposed dLDG methods with
implicit midpoint temporal discretization. The accuracy test and the comparison of the dLDG
and LDG methods will be studied. k1 = 1/2 and k2 = −1/2 are chosen in the numerical
experiments.
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5.1 Accuracy Test

The same cnoidal-wave solution (1.4), studied in Sect. 3.1, is considered here to verify the
convergence rate. The numerical error are computed at the stopping time T = 1. Similarly, we
set the time-step as τ = 0.5877h2. Numerical order of accuracy of the dLDGmethod is given
in Tables 10 and 11. Optimal order of accuracy of uh, gh, vh, wh can be observed with Pk ,
k = 1, 2, 3, basis functions, when the coupled projections 〈πu, π g〉 are chosen to evaluate
the numerical initial conditions. When L2 projection is used, optimal order of accuracy of
uh and gh still can be observed, while the accuracy of vh and wh are not optimal any more
(see Table 11). Note that the Central-LDG method delivers suboptimal error estimate of uh ,
and by doubling the unknowns, the proposed dLDG method gives optimal convergence rate.
We have also tested other choices of k1, k2 (satisfying k1k2 = −1/4), and observe the same
behavior.

Figure 10 shows the time history of the error of mass and energy (i.e., MN
h − M0

h and
EN
h − E0

h ) of the dLDGmethods, where we can see that the mass and energy are both exactly
preserved to the machine error at the level of 10−14.

5.2 Comparison of the dLDG and LDGMethods

Both the dLDG and C-C-LDGmethods are optimal energy conserving methods for the BBM
equation. A numerical comparison of these two methods is conducted in this section.

To provide a fair comparison, we provide the numerical results of the dLDG method with
J elements, as well as the C-C-LDG methods with both J and 2J elements. In Fig. 11,
we plot the time history of the L2 errors of uh of C-C-LDG (J = 10 and J = 20) and
dLDG (J = 10) methods with various Pk basis, for the same cnoidal-wave example. The
stopping time is set as T = 10 with N = 5120 uniform time steps. We can see the L2 error
of the dLDG (J = 10) methods is between those of the C-C-LDG (J = 10) and C-C-LDG
(J = 20) methods, for all of P1, P2 and P3 spaces. For P2 and P3 case, the growth rate of
L2 error of the dLDG (J = 10) method is similar to that of the C-C-LDG (J = 20), while
the initial error of the dLDGmethod at t = 0 is larger since less elements are used. It’s worth
noting that for P0 case the L2 error of dLDG (J = 10) and C-C-LDG (J = 10) methods
are the same, because one can actually show that with P0 basis the dLDG scheme simply
reduces to the C-C-LDG scheme.

InTable 12,we list the average computational times (by taking the average of 20 runs) ofC-
C-LDGanddLDGmethodswith different J andvarious Pk basis. It can be observed that,with
the same number of elements and Pk basis, the computational times of C-C-LDG and dLDG
method are almost the same, since most of the computation is spent on solving the nonlinear
equation when the implicit temporal discretization is used. In general, our computational
tests suggest that, with the same number of elements, the dLDG method provides a smaller
error than the LDG method, while maintaining slightly larger computational cost.

6 Conclusion Remarks

In this paper, we develop, analyze and numerically validate two classes of LDG methods
for solving the nonlinear BBM equation. By introducing one auxiliary variable, and with
appropriately chosen numerical fluxes, the conventional LDG methods can be shown to
preserve the discrete version of mass, and either preserve or dissipate the discrete version of
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Fig. 10 Errors of mass (left) and energy (right) of the dLDG method in Sect. 5.1 with J = 10, T = 100,
N = 2480 and P3 polynomial basis
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Fig. 11 Time history of the numerical errors of uh in L2 norm with uniform time cells N = 4960 for T = 10
of C-C-LDG (J = 10 and J = 20) and dLDG (J = 10) methods in the cnoidal-wave example with P0 (top
left), P1 (top right), P2 (bottom left) and P3 (bottom right) polynomial basis
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Table 12 Average computational times (in seconds) of 20 runs ofC-C-LDGanddLDGmethodwith N = 5120,
T = 10, xl = 0, xr = 0.92237 and different J in the cnoidal-wave example

J = 50 J = 100 J = 200

C-C-LDG dLDG C-C-LDG dLDG C-C-LDG dLDG

P0 3.6000 3.7227 4.2211 4.3125 6.4695 6.6383

P1 3.2781 3.3820 4.3273 4.5594 17.5703 17.7000

P2 3.5500 3.8281 5.3578 5.8336 29.4523 31.6195

P3 3.9766 4.3367 6.5313 7.2875 42.3992 46.5656

energy of the continuous solution, up to the round-off level. One contribution of the paper is
to provide an optimal a priori error estimate for both the semi-discrete energy conserving and
energy dissipative methods applied to the nonlinear BBM equation. To achieve this goal, we
discover the connection between the error of the auxiliary and primary variables, and use it
to bound the nonlinear term by the auxiliary variable. Fully discrete methods can be derived
by coupled with energy-conserving implicit midpoint temporal discretization. Numerical
experiments confirm theoptimal rates of convergence, and the advantage of energy conserving
method for long time simulation. We also present another class of energy conserving LDG
methods for the nonlinear BBM equation, based on the doubling-the-unknowns technique
in [36]. We investigate their energy conservation property, optimal convergence rate, and
numerical comparison of these two energy conserving LDG methods.
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