
Journal of Scientific Computing (2020) 82:29
https://doi.org/10.1007/s10915-020-01132-0

Asymptotic Analysis and Numerical Methods for Oscillatory
Infinite Generalized Bessel Transforms with an Irregular
Oscillator

Hongchao Kang1 · Hong Wang1

Received: 3 April 2019 / Revised: 11 January 2020 / Accepted: 13 January 2020 / Published online: 23 January 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this work, we perform a complete asymptotic analysis and the construction of affordable
quadrature rules for a class of oscillatory infinite Bessel transform with a general oscillator.
Especially in the presence of critical points, e.g., endpoints, zeros and stationary points, we
first derive a series of useful asymptotic expansions in inverse powers of the frequency param-
eter ω. The resulting asymptotic expansions clarify the large ω behavior of the transform and
provide powerful tools for designing quadrature rules and conducting error analysis. As a
consequence, efficient and affordable new modified Filon-type methods for computing the
transform numerically are proposed. Particularly, we carry out the rigorous error analysis and
obtain asymptotic error estimates in inverse powers of ω. Numerical examples can confirm
our analysis. The accuracy can be improved greatly by either adding more derivatives inter-
polation at endpoints or adding more interior nodes. Moreover, only using a small number
of nodes and multiplicities, we can obtain the required accuracy level. For fixed number of
nodes and multiplicities, the higher accuracy can be achieved with the larger values of ω.
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1 Introduction

Highly oscillatory integrals arise frequently inmanyfields such as electromagnetics, acoustics
scattering, electrodynamics, computerized tomography [2,4,6,7,12,13]. Numerical evalua-
tion of such integrals is challenging in scientific computing. In this paper we mainly focus
on quadrature rules and asymptotic expansions of oscillatory infinite Bessel transforms of
the form

I [ f ] =
∫ +∞

a
xα f (x)Jm(ωg(x))dx, (1.1)

where α < 0, a > 0, and ω denotes the frequency of the oscillation. Moreover, f (x) and
g(x) are sufficiently smooth functions on [a,+∞). Here, Jm(z) [1, p. 358] is the Bessel
function of the first kind and of order m with �(m) > −1. In most of the cases, such
integrals cannot be calculated analytically, and then one has to resort to numerical methods.
Traditionally one would have to resolve the oscillations by taking several sub-intervals for
each period, resulting in a scheme whose complexity would grow linearly with the frequency
of the oscillations. Consequently, the classical integration methods like Gauss quadrature are
inapplicable for high frequency ω, since they often require many function evaluations which
make them highly time consuming.

In the following, we first mention several related articles for computing infinite range
oscillatory integrals. As early as in 1976, Blakemore et al. [5] made comparison of some
numerical methods for computing infinite range oscillatory integrals. However, those meth-
ods presented in [5] converge slowly, and have to use an extrapolation technique to accelerate
convergence. Wang et al. [34] investigated the asymptotics and fast computation of one-
sided oscillatory infinite Hilbert transforms. Xu et al. [42] studied the fast computation
of a class of oscillatory infinite Bessel Hilbert transform. Hascelik [15] gave an asymp-
totic Filon-type method for calculating the infinite oscillatory integral

∫ +∞
a f (x)eiωg(x)dx .

On the basis of Hascelik’s ideas [15], Chen [9,10] proposed efficient numerical methods
for approximating

∫ +∞
a f (x)Jm(ωx)dx . Recently, numerical methods for computing these

oscillatory infinite integrals
∫ +∞
1 xα f (x)G(ωx)dx were studied in [23,24], where G(ωx)

denotemany different oscillatory kernel functions, such as eiωx , Jm(ωx), Ym(ωx), H (1)
m (ωx),

H (2)
m (ωx), Ai(−ωx), respectively. More recently, Chen [11] proposed an asymptotic rule for

computing the infinite Bessel transform
∫ +∞
0 f (x)Jm(ωx)dx . In addition, there has been

tremendous interest in developing numerical methods for singular or nonsingular oscillatory
Bessel transforms on finite intervals (see [8,21,22,25,26,32,35,37–41,43,44]). Moreover, it is
noteworthy that asymptotic analysis and computation of finite generalized Fourier transform∫ b
a f (x)eiωg(x)dx [19,20] and finite Bessel transform

∫ b
a f (x)Jm(ωg(x))dx [35,40] were

extensively studied by Iserles, Nørsett, Wang and Xiang.
Let us go back to observe the problem to be solved. In particular, it should be noted that

transforms (1.1) are oscillatory infinite Bessel integrals with an irregular oscillator g(x).
The infinite integration interval [a,+∞) further complicates the evaluation of the integrals
and makes the asymptotic analysis and computation of (1.1) more difficult than that of the
oscillatory finite Bessel transform

∫ b
a f (x)Jm(ωg(x))dx investigated in [35,40]. In addition,

the irregular oscillator g(x) may have either zero points or stationary points. The presence of
zero points or stationary points can change the nature of oscillatory infinite integrals (1.1),
and make the asymptotic analysis and computation of (1.1) much more difficult than that
of oscillatory infinite integrals

∫ +∞
0 f (x)Jm(ωx)dx and

∫ +∞
1 xα f (x)Jm(ωx)dx studied

in [11,24], respectively. To the best of our knowledge, so far little research has been done for
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asymptotic analysis and numerical computation of the infinite Bessel transform (1.1) with an
irregular oscillator g(x). This motivates us to develop asymptotic expansions and efficient
quadrature rules for computing these integrals.

Consequently, we aim to introduce and analyze asymptotic expansions and a modified
Filon-type quadrature rule for the integrals (1.1). The modified Filon-type quadrature rule
and its error analysis are based onHermite interpolation polynomials on the bounded interval.
In the following, we briefly outline the steps of solution as follows. By change of variable
x = 2a

t+1 , we first transform (1.1) into singular integrals of the type

I [ f ] = (2a)α+1
∫ 1

−1
(t + 1)−α−2H(t)Jm(ωg(2a/(t + 1)))dt := Ĩ [H ], (1.2)

where

H(t) =
{
f ( 2a

t+1 ) = f (x), t ∈ (−1, 1],
limt→−1+ f ( 2a

t+1 ) = limx→+∞ f (x) = C (constant), t = −1.

Here, we make a change of variables from [a,+∞) to (−1, 1]. There are two main reasons.
On the one hand, we can construct a modified Filon-type quadrature rule based on Hermite
interpolation polynomials of H(t) on the bounded interval (−1, 1]. On the other hand, we can
conveniently conduct error analysis for themodified Filon-type quadrature rule by asymptotic
expansions of (1.2) on the bounded interval (−1, 1]. In fact, we can also keep [a,+∞) and
directly derive asymptotic expansions, which seems to us that it simplifies the calculations,
but it is not easy to use the resulting asymptotic expansions for performing error analysis. In
Sects. 2 and 3 we shall derive asymptotic expansions in inverse powers of ω for (1.2), both
with and without stationary points of the oscillator g(x), which clarify the large ω behavior
of the integrals (1.1) and (1.2). The resulting asymptotic expansions can provide powerful
tools for constructing quadrature rules and conducting error analysis. Further, based on these
asymptotic expansions, we devise some efficient and affordable quadrature rules such as
a new modified Filon-type method, and more particularly, perform their error analysis in
inverse powers of ω. Additionally, some numerical examples in Sect. 4 are listed to show the
high accuracy and efficiency of these quadrature rules. We conclude this paper with some
final remarks in Sect. 5.

2 Asymptotic Analysis and Quadrature Rules of the CaseWithout
Stationary Points

The case without stationary points can be divided into the two types, i.e., type I: g(x) �= 0
and type II: g(x) having zeros on x ∈ [a,+∞).

2.1 Asymptotic Analysis for the Type I: g(x) �= 0 for x ∈ [a,+∞)

Here we begin our analysis from the simple case that g(x) �= 0 for x ∈ [a,+∞).

Theorem 2.1 Let

R0[H ](t) = H(t),

Rk+1[H ](t) = − α(t + 1)Rk[H ](t)
g′( 2a

t+1 )
+ (t + 1)2

[
g

(
2a

t + 1

)]m+k+1
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d

dt

{
Rk[H ](t)

[g( 2a
t+1 )]m+k+1g′( 2a

t+1 )

}
, k = 0, 1, 2, . . . .

Suppose that f (x), g(x) ∈ C∞[a,+∞), limx→+∞ g′(x) �= 0 and g(x) �= 0, g′(x) �= 0 for
arbitrary x ∈ [a,+∞), ( which implies that limx→+∞ g(x) = ∞). Moreover, assume that
Rs [H ](t)
g′( 2a

t+1 )
for s = 0, 1, 2, . . . , converge as t → −1+. Then for a > 0 and α < 0 it follows

that

I [ f ] ∼ −2aα+1
∞∑
k=0

Rk[H ](1)
(2aω)k+1g′(a)

Jm+k+1(ωg(a)), as ω → ∞. (2.1)

Proof By induction on s ≥ 1, we can prove the following identity

I [ f ] = −2aα+1
s−1∑
k=0

Rk[H ](1)
(2aω)k+1g′(a)

Jm+k+1(ωg(a))

+ (2a)α−s+1

ωs

∫ 1

−1
(t + 1)−α−2Rs[H ](t)Jm+s(ωg(2a/(t + 1)))dt . (2.2)

Based on the derivative formula [1, p. 361]

d

dx
[xm+1 Jm+1(x)] = xm+1 Jm(x), (2.3)

we have

d

dt

{[
g

(
2a

t + 1

)]m+s

Jm+s

(
ωg

(
2a

t + 1

))}

= − 2aω

(t + 1)2
g′

(
2a

t + 1

)[
g

(
2a

t + 1

)]m+s

Jm+s−1

(
ωg

(
2a

t + 1

))
. (2.4)

When m is fixed, x is a real number and x → ∞, it follows from [1, p. 364] and [28],

Jm(x) = √
2/(πx)(cos(x − 1

2
mπ − 1

4
π) + O(x−1)) = O(x− 1

2 ). (2.5)

From [1, p. 362] and [29], we obtain

|Jν(x)| ≤ 1, ν ≥ 0, x ∈ �. (2.6)

Suppose that s = 1.Using (2.4)–(2.6) together with known conditions, and by integration
by parts we have

I [ f ] = − (2a)α

ω

∫ 1

−1
(t + 1)−α R0[H ](t)

[g( 2a
t+1 )]m+1g′( 2a

t+1 )
d

{[
g

(
2a

t + 1

)]m+1
Jm+1

(
ωg

(
2a

t + 1

))}

= − (2a)α

ω

[
(t + 1)−α R0[H ](t)

g′( 2a
t+1 )

Jm+1

(
ωg

(
2a

t + 1

))]1

−1

+ (2a)α

ω

∫ 1

−1
(t + 1)−α−2R1[H ](t)Jm+1

(
ωg

(
2a

t + 1

))
dt

= − aαR0[H ](1)
ωg′(a)

Jm+1(ωg(a))

+ (2a)α

ω

∫ 1

−1
(t + 1)−α−2R1[H ](t)Jm+1

(
ωg

(
2a

t + 1

))
dt . (2.7)
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So the identity (2.2) holds for s = 1.
For α < 0 and s ≥ 1, we can easily prove from (2.5) and (2.6) together with known

conditions that

lim
t→−1+(t + 1)−α Rs[H ](t)

g′( 2a
t+1 )

Jm+s+1

(
ωg

(
2a

t + 1

))
= 0. (2.8)

From the construction form of Rs+1[H ](t),

Rs+1[H ](t) = − α(t + 1)Rk[H ](t)
g′( 2a

t+1 )
+ (t + 1)2

[
g

(
2a

t + 1

)]m+k+1

d

dt

{
Rk[H ](t)

[g( 2a
t+1 )]m+k+1g′( 2a

t+1 )

}
, k = 0, 1, 2, . . . ,

and with the given condition that Rs [H ](t)
g′( 2a

t+1 )
for s = 0, 1, 2, . . . , converge as t → −1+, we

can see that each (1+ t)−α−2Rs+1[H ](t) is a combination in powers of 1+ t of degree more
than −1 (that is, (1 + t)λ−1, λ > 0), which is expressed by

(1 + t)−α−2Rs+1[H ](t) = (1 + t)λ−1ϕ(t),

with ϕ(t) ∈ C[−1, 1]. Therefore, it follows from (2.6) that
∣∣∣∣
∫ 1

−1
(t + 1)−α−2Rs+1[H ](t)Jm+s+1

(
ωg

(
2a

t + 1

))
dt

∣∣∣∣
≤

∫ 1

−1

∣∣∣∣(t + 1)−α−2Rs+1[H ](t)Jm+s+1

(
ωg

(
2a

t + 1

))∣∣∣∣dt

≤
∫ 1

−1

∣∣∣∣(t + 1)−α−2Rs+1[H ](t)
∣∣∣∣dx

≤
∫ 1

−1

∣∣∣∣(1 + t)λ−1ϕ(t)

∣∣∣∣dx < ∞. (2.9)

For s ≥ 1, integration by parts on the last formula of (2.2) by using (2.5) and (2.6) together
with known conditions yields

(2a)α−s+1

ωs

∫ 1

−1
(t + 1)−α−2Rs[H ](t)Jm+s(ωg(2a/(t + 1)))dt

= − (2a)α−s

ωs+1

∫ 1

−1
(t + 1)−α Rs[H ](t)

[g( 2a
t+1 )]m+s+1g′( 2a

t+1 )

d

{[
g

(
2a

t + 1

)]m+s+1

Jm+s+1

(
ωg

(
2a

t + 1

))}

= − (2a)α−s

ωs+1

[
(t + 1)−α Rs[H ](t)

g′( 2a
t+1 )

Jm+s+1

(
ωg

(
2a

t + 1

))]1

−1

+ (2a)α−s

ωs+1

∫ 1

−1
(t + 1)−α−2Rs+1[H ](t)Jm+s+1

(
ωg

(
2a

t + 1

))
dt

= − 2aα+1Rs[H ](1)
(2aω)s+1g′(a)

Jm+s+1(ωg(a))
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+ (2a)α−s

ωs+1

∫ 1

−1
(t + 1)−α−2Rs+1[H ](t)Jm+s+1

(
ωg

(
2a

t + 1

))
dt . (2.10)

Combining (2.7) and (2.10) leads to the desired result (2.2). By using (2.9) and letting
s → ∞ for (2.2), we complete the proof of (2.1). ��

By truncating after the first s terms of the asymptotic expansion (2.1), we obtain the s-step
asymptotic methods as follows

QA
s [H ] = − 2aα+1

s−1∑
k=0

Rk[H ](1)
(2aω)k+1g′(a)

Jm+k+1(ωg(a)), (2.11)

which represent the efficiency of the approximations to I [ f ], once 2aω is sufficiently large.
In the sequel we give the error estimate of the s-step asymptotic methods.

Theorem 2.2 Under the same conditions as those of Theorem 2.1, it is true that

QA
s [H ] − I [ f ] ∼ O(ω−s− 3

2 ), as ω → ∞, (2.12)

where QA
s [H ] is given in (2.11).

Proof On the basis of (2.5) and (2.8)–(2.10) , we can directly obtain from (2.2) and (2.11)

|QA
s [H ] − I [ f ]| =

∣∣∣∣ (2a)α−s+1

ωs

∫ 1

−1
(t + 1)−α−2Rs[H ](t)Jm+s(ωg(2a/(t + 1)))dt

∣∣∣∣
=

∣∣∣∣− 2aα+1Rs[H ](1)
(2aω)s+1g′(a)

Jm+s+1(ωg(a))

+ (2a)α−s

ωs+1

∫ 1

−1
(t + 1)−α−2Rs+1[H ](t)Jm+s+1

(
ωg

(
2a

t + 1

))
dt

∣∣∣∣
= O(ω−s− 3

2 ), ω → ∞.

This completes the proof of (2.12). ��
From the above asymptotic expansion (2.1) and the error estimate (2.12), we can immedi-

ately observe that the error order can be improved by adding derivative information of H(t)
at the endpoint t = 1. Similarly, we can see that, asymptotically, the values of (1.2) depend
on the behavior of H(t) and g(2a/(t + 1)) around t = 1, which are independent of the
behavior of H(t) and g(2a/(t + 1)) and its derivatives as t tends to −1. For convenience,
in the following all modified Filon-type methods, the multiplicities m0 associated with node
point t = −1 is set to be 0. This also implies that the behavior of f (x), g(x) and their
derivatives around x = a completely determines the values of (1.1), which are independent
of the behavior of f (x), g(x) and their derivatives when x tends to infinity.

2.2 Asymptotic Analysis for the Type II: g(x)Having Zeros on x ∈ [a,+∞)

In this subsection we only consider the case that g(x) has one zero on [a,+∞). If g(x) has
a few zeros on [a,+∞), we have to split the whole interval into some subintervals such that
g(x) has only one zero on each subinterval.

Theorem 2.3 Define that

σ0[H ](t) = H(t),
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σk+1[H ](t) = − α(t + 1){σk[H ](t) − σk[H ](ζ )}
g′( 2a

t+1 )
+ (t + 1)2

[
g

(
2a

t + 1

)]m+k+1

d

dt

{
σk[H ](t) − σk[H ](ζ )

[g( 2a
t+1 )]m+k+1g′( 2a

t+1 )

}
, k = 0, 1, 2, . . . .

Let f (x), g(x) ∈ C∞[a,+∞), g′(x) �= 0 for arbitrary x ∈ [a,+∞), and limx→+∞ g′(x) �=
0, ( which implies that limx→+∞ g(x) = ∞). Moreover, assume that g(2a/(1 + ζ )) = 0
for ζ ∈ (−1, 1] and g(2a/(1 + t)) �= 0 for t ∈ (−1, 1] \ {ζ }. If σs [H ](t)−σs [H ](ζ )

g′( 2a
t+1 )

for

s = 0, 1, 2, . . . , converge as t → −1+, then for a > 0 and α < 0 it follows that

I [ f ] ∼
∞∑
k=0

σk[H ](ζ )

(2aω)k
M̃(m + k, ω) − 2aα+1

∞∑
k=0

σk[H ](1) − σk[H ](ζ )

(2aω)k+1g′(a)
Jm+k+1(ωg(a)),

(2.13)

as ω → ∞, where

M̃(m + k, ω) = (2a)α+1
∫ 1

−1
(t + 1)−α−2 Jm+k(ωg(2a/(t + 1)))dt .

Proof By induction on s ≥ 1, we can prove the following identity

I [ f ] =
s−1∑
k=0

σk[H ](ζ )

(2aω)k
M̃(m + k, ω) − 2aα+1

s−1∑
k=0

σk[H ](1) − σk[H ](ζ )

(2aω)k+1g′(a)
Jm+k+1(ωg(a))

+ (2a)α−s+1

ωs

∫ 1

−1
(t + 1)−α−2σs[H ](t)Jm+s(ωg(2a/(t + 1)))dt . (2.14)

Suppose that s = 1. Similarly, we obtain

I [ f ] = (2a)1+α
∫ 1

−1
σ0[H ](ζ )(t + 1)−α−2 Jm

(
ωg

(
2a

t + 1

))
dt

+ (2a)1+α
∫ 1

−1
(t + 1)−α−2(σ0[H ](t) − σ0[H ](ζ ))Jm

(
ωg

(
2a

t + 1

))
dt

= σ0[H ](ζ )M̃(m, ω)

− (2a)α

ω

∫ 1

−1
(t + 1)−α σ0[H ](t) − σ0[H ](ζ )

[g( 2a
t+1 )]m+1g′( 2a

t+1 )

d

{[
g

(
2a

t + 1

)]m+1
Jm+1

(
ωg

(
2a

t + 1

))}

= σ0[H ](ζ )M̃(m, ω) − (2a)α

ω

[
(t + 1)−α σ0[H ](t) − σ0[H ](ζ )

g′( 2a
t+1 )

Jm+1

(
ωg

(
2a

t + 1

))]1

−1

+ (2a)α

ω

∫ 1

−1
(t + 1)−α−2σ1[H ](t)Jm+1

(
ωg

(
2a

t + 1

))
dt

= σ0[H ](ζ )M̃(m, ω) − aα(σ0[H ](1) − σ0[H ](ζ ))

ωg′(a)
Jm+1(ωg(a))

+ (2a)α

ω

∫ 1

−1
(t + 1)−α−2σ1[H ](t)Jm+1

(
ωg

(
2a

t + 1

))
dt . (2.15)

So the identity (2.14) holds for s = 1.
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For s ≥ 1, we find from the last formula of (2.14) that

(2a)α−s+1

ωs

∫ 1

−1
(t + 1)−α−2σs[H ](t)Jm+s(ωg(2a/(t + 1)))dt

= (2a)α−s+1

ωs
σs[H ](ζ )

∫ 1

−1
(t + 1)−α−2 Jm+s(ωg(2a/(t + 1)))dt

+ (2a)α−s+1

ωs

∫ 1

−1
(t + 1)−α−2(σs[H ](t) − σs[H ](ζ ))Jm+s(ωg(2a/(t + 1)))dt

= 1

(2aω)s
σs[H ](ζ )M̃(m + s, ω)

− (2a)α−s

ωs+1

∫ 1

−1
(t + 1)−α σs[H ](t) − σs[H ](ζ )

[g( 2a
t+1 )]m+s+1g′( 2a

t+1 )

d

{[
g

(
2a

t + 1

)]m+s+1

Jm+s+1

(
ωg

(
2a

t + 1

))}

= 1

(2aω)s
σs[H ](ζ )M̃(m + s, ω)

− (2a)α−s

ωs+1

[
(t + 1)−α σs[H ](t) − σs[H ](ζ )

g′( 2a
t+1 )

Jm+s+1

(
ωg

(
2a

t + 1

))]1

−1

+ (2a)α−s

ωs+1

∫ 1

−1
(t + 1)−α−2σs+1[H ](t)Jm+s+1

(
ωg

(
2a

t + 1

))
dt

= 1

(2aω)s
σs[H ](ζ )M̃(m + s, ω) − 2aα+1(σs[H ](1) − σs[H ](ζ ))

(2aω)s+1g′(a)
Jm+s+1(ωg(a))

+ (2a)α−s

ωs+1

∫ 1

−1
(t + 1)−α−2σs+1[H ](t)Jm+s+1

(
ωg

(
2a

t + 1

))
dt . (2.16)

Combining (2.15) and (2.16) leads to the desired result (2.14). By letting s → ∞ for
(2.14), we complete the proof of (2.13). ��

By truncating after the first s terms of the asymptotic expansion (2.13), we obtain

QA
s [H ] =

s−1∑
k=0

σk[H ](ζ )

(2aω)k
M̃(m + k, ω) − 2aα+1

s−1∑
k=0

σk[H ](1) − σk[H ](ζ )

(2aω)k+1g′(a)
Jm+k+1(ωg(a)),

(2.17)

which represent the efficiency of the approximations to I [ f ], once 2aω is sufficiently large.

2.3 Modified Filon-TypeMethods and Their Error Analysis for the CaseWithout
Stationary Points

The error of the asymptotic method is uncontrolled due to the divergence of the asymptotic
series for a fixed ω. In order to overcome this weakness, based on the above observation we
now design an alternative method, i.e., a more accurate and convergent modified Filon-type
method, which requires identical information and produce the same rate of asymptotic decay.
And this new method can be regarded as a modification of the standard method presented
in [19,20]. To achieve this, we first introduce a valuable result.
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Lemma 2.1 Suppose that g( 2a
t+1 ) ∈ C∞(−1, 1] and g′( 2a

t+1 ) �= 0 for t ∈ (−1, 1]. Let

ϕk(t) = 2a(t + 1)αg′
(

2a

t + 1

)[
g

(
2a

t + 1

)]k
, k ≥ 0, a > 0, α ≤ 0,

and

En =
{

v(t)|v(t) =
n∑

k=0

ckϕk(t), ck ∈ R

}
.

Then En is an extended complete Chebyshev system.

Proof Based on that g( 2a
t+1 ) ∈ C∞(−1, 1], we get that ϕk(t) ∈ C∞(−1, 1]. Since g′( 2a

t+1 ) �=
0 for t ∈ (−1, 1], it is obvious that g( 2a

t+1 ) is a monotonic function on (−1, 1]. This implies

that the change of variable y = g( 2a
t+1 ) is a bijection. Then for any v(t) ∈ El and l ∈

{0, 1, . . . , n}, by setting y = g( 2a
t+1 ) we obtain that

v(t) =
l∑

k=0

ckϕk(t) = 2a(t + 1)αg′
(

2a

t + 1

) l∑
k=0

ck y
k .

For one thing, we observe that v(t) ≡ 0 implies that ck = 0, k = 0, . . . , l, and therefore
{ϕ0(t), . . . , ϕl(t)} is a basis of El . For another thing, we can see that v(t) has at most l zeros
in (−1, 1] counting multiplicities. From [33, Theorem 2.33 on page 34], it follows that El is
an extended Chebyshev system. Therefore, for arbitrary l ∈ {0, 1, . . . , n}, En is an extended
complete Chebyshev system. This completes the proof. ��
Theorem 2.4 Let {tk}η0 be a set of node points such that −1 = t0 < t1 < · · · < tη = 1
and {mk}η0 be a set of multiplicities associated with the above node points such that
m0,m1, . . . ,mη ≥ s, where s is a nonnegative integer. Suppose that

P(t) = Σn
k=02ack(t + 1)αg′

(
2a

t + 1

)[
g

(
2a

t + 1

)]k
,

where n = Σ
η
k=0mk − 1. From Lemma 2.1 and [33, Theorem 9.9 on page 370], the interpo-

lation polynomial P(t) ∈ En is the unique solution to the system of equations

P( j−1)(tk) = H ( j−1)(tk), j = 1, 2, . . . ,mk,

for every integer 0 ≤ k ≤ η. Then the modified Filon-type method for (1.2) of the type I:
g(x) �= 0 for x ∈ [a,+∞), is defined by the following quadrature formula

QF
s [H ] ≡ Ĩ [P] = (2a)α+1

n∑
k=0

ckMk, (2.18)

where the modified moments

Mk = 2a
∫ 1

−1
(t + 1)−2g′(2a/(t + 1))[g(2a/(t + 1))]k Jm(ωg(2a/(t + 1)))dt, (2.19)

can be explicitly computed by (2.28). Moreover, for ω � 1, the absolute error of the quadra-
ture formula (2.18) behaves asymptotically as

QF
s [H ] − I [ f ] ∼ O(ω−s− 3

2 ). (2.20)
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Proof We now substitute H(t) − P(t) for H(t) in the above asymptotic expansion (2.1).
Since P( j)(1) = H ( j)(1), j = 0, 1, . . . , s − 1, it follows that Rk[H − P](1) = 0, k =
0, 1, . . . , s − 1. Therefore, by using (2.5), we can obtain the desired results (2.20) directly
from the above asymptotic expansion (2.1). ��

Following the idea of Theorem 2.4, we devise a modified Filon-type method for the case
of g(x) having zeros. From the asymptotic expansion (2.13), we can see that the value of
I [ f ] also depends on the zero point ζ of g(2a/(t +1)) except endpoints. Therefore, we need
to make ζ as an interpolating point. Suppose that tν = ζ for some ν ∈ {0, 1, . . . , η}. By
using the same interpolation polynomial P(t) ∈ En as that of Theorem 2.4, we obtain the
similar modified Filon-type method (2.18). Here, if g(a) �= 0, the required moments Mk can
be computed by (2.28). If g(a) = 0, the required moments Mk can be computed by (2.29).

In order to give the error estimate of the modified Filon-type method for the case of
g(x) having zeros, we now analyze the asymptotics of the above moments M̃(m, ω) from
Theorem 2.3.

Lemma 2.2 Under the assumption of g in Theorem 2.3, it follows that

M̃(m, ω) = O

(
1

ω

)
, as ω → ∞. (2.21)

Proof From the above given conditions that g′(x) �= 0 for arbitrary x ∈ [a,+∞), it follows
that g(x) is strictly monotonic on [a,+∞). Hence, g(x) possesses an inverse function, i.e.,
g−1(t).

By change of variables u = 2a
1+ζ

and t = 2a
x − 1, together with the given conditions and

then using asymptotic analysis similar to that of Theorem 2.4, for α < 0 we have

M̃(m, ω) = (2a)α+1
∫ ζ

−1
(t + 1)−α−2 Jm(ωg(2a/(t + 1)))dt

+ (2a)α+1
∫ 1

ζ

(t + 1)−α−2 Jm(ωg(2a/(t + 1)))dt

=
∫ u

a
xα Jm(ωg(x))dx +

∫ +∞

u
xα Jm(ωg(x))dx

= −
∫ g(a)

0

[g−1(t)]α
g′(g−1(t))

Jm(ωt)dt +
∫ +∞

0

[g−1(t)]α
g′(g−1(t))

Jm(ωt)dt

∼ ( 2a
1+ζ

)α

g′( 2a
1+ζ

)

[∫ +∞

0
Jm(ωt)dt −

∫ g(a)

0
Jm(ωt)dt

]

− 1

ω

[
aα

g′(a)
− ( 2a

1+ζ
)α

g′( 2a
1+ζ

)

]
Jm+1(ωg(a)), (2.22)

where

lim
x→+∞ g(x) = +∞.

When limx→+∞ g(x) = −∞, the similar conclusion can be obtained.
Since, by setting ωt = y, and from

∫ ∞
0 Jm(t)dt = 1 [1, p. 486], we have

∫ b

0
Jm(ωt)dt = 1

ω

∫ ωb

0
Jm(y)dy = O

(
1

ω

)
, ω → +∞,
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the two integrals in the fifth line of (2.22) behave asymptotically as O( 1
ω
) for fixed m and

�(m) > −1. If g(a) �= 0, the last line of (2.22) behaves asymptotically as O

(
1

ω
3
2

)
for fixed

m and �(m) > −1. If g(a) = 0, both the second integral in the fifth line of (2.22) and the
last line of (2.22) vanish. Therefore, this leads to the desired results. ��

In the following, based on Lemma 2.2 we start to derive error estimates.

Theorem 2.5 Under the same conditions as those of Theorem 2.3, it is true that, as ω → ∞,

QA
s [H ] − I [ f ] ∼

{
O( 1

ω
s+ 3

2
), if σs[H ](ζ ) = 0,

O( 1
ωs+1 ), if σs[H ](ζ ) �= 0,

(2.23)

where QA
s [H ] is given in (2.17).

Proof On the basis of (2.5), (2.14), (2.16) and (2.17), together with (2.21) from Lemma 2.2,
we can obtain for ω → ∞,

|QA
s [H ] − I [ f ]| =

∣∣∣∣ (2a)α−s+1

ωs

∫ 1

−1
(t + 1)−α−2σs[H ](t)Jm+s(ωg(2a/(t + 1)))dt

∣∣∣∣
=

∣∣∣∣ 1

(2aω)s
σs[H ](ζ )M̃(m + s, ω)

− 2aα+1(σs[H ](1) − σs[H ](ζ ))

(2aω)s+1g′(a)
Jm+s+1(ωg(a))

+ (2a)α−s

ωs+1

∫ 1

−1
(t + 1)−α−2σs+1[H ](t)Jm+s+1

(
ωg

(
2a

t + 1

))
dt

∣∣∣∣
=

{
O( 1

ω
s+ 3

2
), if σs[H ](ζ ) = 0,

O( 1
ωs+1 ), if σs[H ](ζ ) �= 0.

This completes the proof of (2.23). ��
Theorem 2.6 Under the same conditions as those of Theorem 2.4, and assume that multi-
plicities mν,mη ≥ s, then for the case of g(x) with zeros and without stationary points, and
as ω → ∞, the absolute error of the the modified Filon-type method behaves asymptotically
as,

QF
s [H ] − I [ f ] ∼

{
O( 1

ω
s+ 3

2
), if σs[H − P](ζ ) = 0,

O( 1
ωs+1 ), if σs[H − P](ζ ) �= 0.

(2.24)

Proof Wenow replace H(t)with H(t)−P(t) in the above asymptotic expansion (2.13). Since
P( j)(ζ ) = H ( j)(ζ ), P( j)(1) = H ( j)(1), j = 0, 1, . . . , s−1, it follows that σk[H−P](1) =
σk[H − P](ζ ) = 0, k = 0, 1, . . . , s − 1. Therefore, by using (2.5) together with (2.21) from
Lemma 2.2, we can obtain the desired results (2.24) directly from both the above asymptotic
expansion (2.13) and the proof of Theorem 2.5. ��

2.4 Computation of theModifiedMomentsMk Required in the AboveModified
Filon-TypeMethods

From [14, p. 851], we have∫ +∞

1
yτ−1(y − 1)λ−1Gm,n

p,q

(
a1, . . . , an, an+1, . . . , ap
b1, . . . , bm, bm+1, . . . , bq

∣∣∣∣σ y

)
dy

123



29 Page 12 of 33 Journal of Scientific Computing (2020) 82 :29

= Γ (λ)Gm+1,n
p+1,q+1

(
a1, . . . , an, an+1, . . . , ap, 1 − τ,

1 − τ − λ, b1, . . . , bm, bm+1, . . . , bq

∣∣∣∣σ
)

,

where the restrictions on the parameters are listed as follows:
either p + q ≤ 2(m + n), | arg σ | ≤ (m + n − 1

2 p − 1
2q)π,�(1 − τ − λ − a j ) > −1, j =

1, 2, . . . , n,�(λ) > 0, �[∑p
j=1 a j − ∑q

k=1 bk + (q − p)(1 − τ − λ + 1
2 )] > − 1

2 , or
q < p (or q ≤ p for |σ | > 1),�(1 − τ − λ − a j ) > −1, j = 1, 2, . . . , n,�(λ) > 0.

By using changes of the variable, and some recurrence relations and identities of the
Meijer G-function Gm,n

p,q [16,31], the reference [17] gives an important generalized formula∫ +∞
a

xμ−1(x − a)ν−1Gm,n
p,q

(
a1, . . . , an , an+1, . . . , ap
b1, . . . , bm , bm+1, . . . , bq

∣∣∣∣σ xt
)
dx

= Γ (ν)

tνa1−μ−ν
Gm+t,n

p+t,q+t

(
a1, . . . , an , an+1, . . . , ap,

1−μ
t , . . . ,

t−μ
t

1−μ−ν
t , . . . ,

t−μ−ν
t , b1, . . . , bm , bm+1, . . . , bq

∣∣∣∣σat
)

, t ∈ N+,

(2.25)

where the restrictions on the parameters a, μ, ν, σ,m, n, p, q are similar to the above and
hence are omitted. Throughout this paper, we only need to employ the special case of a =
ν = 1 in (2.25) for deriving the explicit formulae of the desiredmodifiedmoments.Moreover,
the Meijer G-function Gm,n

p,q can be expressed via the Mellin–Barnes integral in the complex
plane [3, pp. 206, 207]

Gm,n
p,q

(
a1, . . . , an, an+1, . . . , ap
b1, . . . , bm, bm+1, . . . , bq

∣∣∣∣z
)

= 1

2π i

∫
L

∏m
k=1 Γ (bk − s)

∏n
j=1 Γ (1 − a j + s)∏q

k=m+1 Γ (1 − bk + s)
∏p

j=n+1 Γ (a j − s)
zsds. (2.26)

There are three different paths L of integration (for details one can refer to [3, pp. 206, 207]
and [14, p. 1032]).

Following the identity in [3, p. 219] and [14, p. 1034],

Jm(x) = G1,0
0,2

(
1
2m,− 1

2m

∣∣∣∣14 x
2
)

,

together with (2.25), we have
∫ +∞

1
xλ Jm(ωx)dx

=
∫ +∞

1
xλG1,0

0,2

(
1
2m,− 1

2m

∣∣∣∣14ω2x2
)
dx

= 1

2
G3,0

2,4

( − λ
2 ,− λ−1

2− λ+1
2 ,− λ

2 , 1
2m,− 1

2m

∣∣∣∣14ω2
)

. (2.27)

(1) If limx→+∞ g(x) = +∞ and g(a) �= 0, by using (2.27), we have

Mk =
∫ +∞

g(a)

yk Jm(ωy)dy

= (g(a))k+1
∫ +∞

1
yk Jm(ωg(a)y)dy

= 1

2
(g(a))k+1G3,0

2,4

( − k
2 ,− k−1

2− k+1
2 ,− k

2 ,
1
2m,− 1

2m

∣∣∣∣14 (ωg(a))2
)

. (2.28)
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(2) If limx→+∞ g(x) = +∞ and g(a) = 0, by using (2.27), we have

Mk =
∫ +∞

0
yk Jm(ωy)dy

=
∫ 1

0
yk Jm(ωy)dy +

∫ +∞

1
yk Jm(ωy)dy

= G(ω,m, k) + 1

2
G3,0

2,4

( − k
2 ,− k−1

2− k+1
2 ,− k

2 ,
1
2m,− 1

2m

∣∣∣∣14ω2
)

, (2.29)

where G(ω,m, k) can be expressed by the following formulas (see [14, p. 676], [27,
p. 44] and [1, p. 480]), for �(k + m) > −1, ω > 0,

G(ω,m, k)

=
∫ 1

0
xk Jm(ωx)dx

= 2uΓ (m+k+1
2 )

ωk+1Γ (m−k+1
2 )

+ 1

ωk
[(k + m − 1)Jm(ω)Sk−1,m−1(ω) − Jm−1(ω)Sk,m(ω)]

(2.30)

= ωm

2m(k + m + 1)Γ (m + 1)
1F2(

k + m + 1

2
; k + m + 3

2
,m + 1;−ω2

4
) (2.31)

= Γ (m+k+1
2 )

ωΓ (m−k+1
2 )

∞∑
j=0

(m + 2 j + 1)Γ (m−k+1
2 + j)

Γ (m+k+3
2 + j)

Jm+2 j+1(ω). (2.32)

When limx→+∞ g(x) = −∞, the modified moments Mk can be similarly obtained.
Here, Sμ,ν(z), Γ (z), 1F2(μ; ν, λ; z) denote a Lommel function of the second kind, the
Gamma function, a class of generalized hypergeometric function, respectively.Moreover,
1F2(μ; ν, λ; z) converges for all |z|. From [36, p. 346], Sμ,ν(z) can be expressed in terms
of 1F2(μ; ν, λ; z), namely,

Sμ,ν(z) = zμ+1

(μ + ν + 1)(μ − ν + 1)
1F2(1; μ − ν + 3

2
,
μ + ν + 3

2
;− z2

4
)

− 2μ−1Γ (
μ+ν+1

2 )

πΓ (
ν−μ
2 )

(Jν(z) − cos(π(μ − ν)/2)Yν(z)), (2.33)

where Yν(z) is a Bessel function of the second kind of order ν. The efficient imple-
mentation of the moments is based on the fast computation of the above-mentioned
special functions. Obviously, when programming the proposed algorithm in a lan-
guage like Matlab, we can calculate the values of Γ (z), Jm(z), Ym(z), 1F2(μ; ν, λ; z)
and the Meijer G-function Gm,n

p,q by invoking the built-in functions ‘gamma(z)’,
‘besselj(m, z)’,‘bessely(m, z)’, ‘hypergeom(μ, [ν, λ], z)’, ‘meijerG([a1, . . . , an],
[an+1, . . . , ap],[b1, . . . , bm], [bm+1, . . . , bq ], z)’, respectively.

3 Asymptotic Analysis and Quadrature Rules of the Case with
Stationary Points

In this sectionwe only consider the case that g(x) has one stationary point on [a,+∞). If g(x)
has a finite number of stationary points on [a,+∞), we have to split the whole interval into
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some subintervals such that g(x) has only one stationary point on each subinterval.Moreover,
there are also two types, i.e., type I: g(x) = 0 or type II: g(x) �= 0 at this stationary point.
Here wemainly focus on the analysis and computation of type I. It can be similarly processed
for the latter case. Additionally, it should be noted that when the only one stationary point
may be different from its only one zero point, we need to divide the whole interval into two
subintervals such that one includes the zero point and the other contains the stationary point.

3.1 Asymptotic Analysis of the Case with Stationary Points

For the case of g(x) with only one stationary point at the interior point x = ς ∈ (a,+∞),
we derive the asymptotic expansion as follows.

Theorem 3.1 Let

τ0[H ](t) = H(t),

τk+1[H ](t) = − α(t + 1){τk[H ](t) − Cr [τk](t, ξ)}
g′( 2a

t+1 )

+ (t + 1)2
[
g

(
2a

t + 1

)]m+k+1 d

dt

{
τk[H ](t) − Cr [τk](t, ξ)

[g( 2a
t+1 )]m+k+1g′( 2a

t+1 )

}
, k = 0, 1, 2, . . . ,

Cr [τk](t, ξ) =
r∑
j=0

τk[H ]( j)(ξ)

j ! (t − ξ) j .

Suppose that f (x), g(x) ∈ C∞[a,+∞). Moreover, assume that τs [H ](t)−Cr [τs ](t,ξ)

g′( 2a
t+1 )

for s =
0, 1, 2, . . . , converge as t → −1+. If g(ς) = g′(ς) = · · · = g(r)(ς) = 0, g(r+1)(ς) �=
0, where x = ς = 2a

1+ξ
∈ (a,+∞) for ξ ∈ (−1, 1), and positive integer r ≥ 1, but

g(x) �= 0 and g′(x) �= 0 for x ∈ [a,+∞) \ {ς}, limx→+∞ g′(x) �= 0, ( which implies that
limx→+∞ g(x) = ∞), then for a > 0 and α < 0 it follows that as ω → ∞,

I [ f ] ∼
∞∑
k=0

1

(2aω)k

r∑
j=0

τk[H ]( j)(ξ)

j ! Mj (ξ,m + k, ω)

− 2aα+1
∞∑
k=0

τk[H ](1) − Cr [τk](1, ξ)

(2aω)k+1g′(a)
Jm+k+1(ωg(a)), (3.1)

where

M j (ξ,m + k, ω) = (2a)α+1
∫ 1

−1
(t + 1)−α−2(t − ξ) j Jm+k(ωg(2a/(t + 1)))dt .

Proof By induction on s ≥ 1, we can prove the following identity

I [ f ] =
s−1∑
k=0

1

(2aω)k

r∑
j=0

τk[H ]( j)(ξ)

j ! Mj (ξ,m + k, ω)

− 2aα+1
s−1∑
k=0

τk[H ](1) − Cr [τk](1, ξ)

(2aω)k+1g′(a)
Jm+k+1(ωg(a))

+ (2a)α−s+1

ωs

∫ 1

−1
(t + 1)−α−2τs[H ](t)Jm+s(ωg(2a/(t + 1)))dt . (3.2)
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For s = 1, we have

I [ f ] = (2a)1+α

∫ 1

−1
(t + 1)−α−2Cr [τ0](t, ξ)Jm

(
ωg

(
2a

t + 1

))
dt

+ (2a)1+α

∫ 1

−1
(t + 1)−α−2(τ0[H ](t) − Cr [τ0](t, ξ))Jm

(
ωg

(
2a

t + 1

))
dt

=
r∑
j=0

τ0[H ]( j)(ξ)

j ! Mj (ξ,m, ω)

− (2a)α

ω

∫ 1

−1
(t + 1)−α τ0[H ](t) − Cr [τ0](t, ξ)

[g( 2a
t+1 )]m+1g′( 2a

t+1 )

d

{[
g

(
2a

t + 1

)]m+1

Jm+1

(
ωg

(
2a

t + 1

))}

=
r∑
j=0

τ0[H ]( j)(ξ)

j ! Mj (ξ,m, ω)

− (2a)α

ω

[
(t + 1)−α τ0[H ](t) − Cr [τ0](t, ξ)

g′( 2a
t+1 )

Jm+1

(
ωg

(
2a

t + 1

))]1

−1

+ (2a)α

ω

∫ 1

−1
(t + 1)−α−2τ1[H ](t)Jm+1

(
ωg

(
2a

t + 1

))
dt

=
r∑
j=0

τ0[H ]( j)(ξ)

j ! Mj (ξ,m, ω) − aα(τ0[H ](1) − Cr [τ0](1, ξ))

ωg′(a)
Jm+1(ωg(a))

+ (2a)α

ω

∫ 1

−1
(t + 1)−α−2τ1[H ](t)Jm+1

(
ωg

(
2a

t + 1

))
dt . (3.3)

So the identity (3.2) holds for s = 1.
For s ≥ 1, we find from the last formula of (3.2) that

(2a)α−s+1

ωs

∫ 1

−1
(t + 1)−α−2τs [H ](t)Jm+s (ωg(2a/(t + 1)))dt

= (2a)α−s+1

ωs

∫ 1

−1
(t + 1)−α−2Cr [τs ](t, ξ)Jm+s (ωg(2a/(t + 1)))dt

+ (2a)α−s+1

ωs

∫ 1

−1
(t + 1)−α−2(τs [H ](t) − Cr [τs ](t, ξ))Jm+s (ωg(2a/(t + 1)))dt

= 1

(2aω)s

r∑
j=0

τs [H ]( j)(ξ)

j ! Mj (ξ,m + s, ω)

− (2a)α−s

ωs+1

∫ 1

−1
(t + 1)−α τs [H ](t) − Cr [τs ](t, ξ)

[g( 2a
t+1 )]m+s+1g′( 2a

t+1 )

d

{[
g

(
2a

t + 1

)]m+s+1
Jm+s+1

(
ωg

(
2a

t + 1

))}

= 1

(2aω)s

r∑
j=0

τs [H ]( j)(ξ)

j ! Mj (ξ,m + s, ω)
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− (2a)α−s

ωs+1

[
(t + 1)−α τs [H ](t) − Cr [τs ](t, ξ)

g′( 2a
t+1 )

Jm+s+1

(
ωg

(
2a

t + 1

))]1

−1

+ (2a)α−s

ωs+1

∫ 1

−1
(t + 1)−α−2τs+1[H ](t)Jm+s+1

(
ωg

(
2a

t + 1

))
dt

= 1

(2aω)s

r∑
j=0

τs [H ]( j)(ξ)

j ! Mj (ξ,m + s, ω) − 2aα+1(τs [H ](1) − Cr [τs ](1, ξ))

(2aω)s+1g′(a)
Jm+s+1(ωg(a))

+ (2a)α−s

ωs+1

∫ 1

−1
(t + 1)−α−2τs+1[H ](t)Jm+s+1

(
ωg

(
2a

t + 1

))
dt . (3.4)

Combining (3.3) and (3.4) leads to the desired result (3.2). By letting s → ∞ for (3.2),
we complete the proof of (3.1). ��

For the case of g(x) with only one stationary point at the endpoint x = ς = a, i.e., ξ = 1,
by L’Hôpital’s rule r -times, we have

lim
t→1−

τk[H ](t) − Cr [τk](t, 1)
g′(2a/(t + 1))

= 0,

and then by the method analogous to that used in the proof of Theorem 3.1, we can derive
the asymptotic expansion as follows.

Corollary 3.1 Suppose that f (x), g(x) ∈ C∞[a,+∞). Moreover, assume that f (k)(x) and
g(k)(x) for k = 0, 1, 2, . . . , converge as x → +∞. If g(a) = g′(a) = · · · = g(r)(a) =
0, g(r+1)(a) �= 0, where x = a = 2a

1+ξ
for ξ = 1 and positive integer r ≥ 1, but g(x) �= 0 and

g′(x) �= 0 for x ∈ (a,+∞), and limx→+∞ g′(x) �= 0, ( which implies that limx→+∞ g(x) =
∞), then for a > 0 and α < 0 it follows that as ω → ∞,

I [ f ] ∼
∞∑
k=0

1

(2aω)k

r∑
j=0

τk[H ]( j)(ξ)

j ! Mj (ξ,m + k, ω), (3.5)

where τk[H ](t) and Mj (ξ,m + k, ω) are given in Theorem 3.1.

By truncating after the first s terms of the asymptotic expansions (3.1) and (3.5), we can
obtain the following asymptotic formulae.

(1) For the stationary point x = ς ∈ (a,+∞), we have

QA
m[ f ] =

s−1∑
k=0

1

(2aω)k

r∑
j=0

τk[H ]( j)(ξ)

j ! Mj (ξ,m + k, ω)

−2aα+1
s−1∑
k=0

τk[H ](1) − Cr [τk](1, ξ)

(2aω)k+1g′(a)
Jm+k+1(ωg(a)). (3.6)

(2) For the stationary point x = a, we have

QA
m[ f ] =

s−1∑
k=0

1

(2aω)k

r∑
j=0

τk[H ]( j)(ξ)

j ! Mj (ξ,m + k, ω). (3.7)
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3.2 Modified Filon-TypeMethod and Its Error Analysis for the Case with Stationary
Points

Now, we consider the modified Filon-type method and its error analysis for the case with
stationary points. Before proceeding, we first establish a helpful lemma for the case of g( 2a

t+1 )

with a stationary point of type I and of order r at t = ξ = 1. When g( 2a
t+1 ) has a stationary

point of type I and of order r at t = ξ ∈ (−1, 1), a similar result can be obtained.

Lemma 3.1 Suppose that g( 2a
t+1 ) ∈ C∞(−1, 1] and it has a stationary point of type I and of

order r at t = ξ = 1 and g(r+1)( 2a
t+1 ) �= 0 for t ∈ (−1, 1], a > 0, α < 0. Let

ψk(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2a(t + 1)αg′
(

2a

t + 1

)[
g

(
2a

t + 1

)] k−r
r+1

, if g(r+1)
(

2a

t + 1

)
> 0,

2a(t + 1)αg′
(

2a

t + 1

) [
−g

(
2a

t + 1

)] k−r
r+1

, if g(r+1)
(

2a

t + 1

)
< 0,

and

Ẽn =
{

v(t)|v(t) =
n∑

k=0

ckψk(t), ck ∈ R

}
.

Then Ẽn is an extended complete Chebyshev system.

Proof Here we only focus on the case of g(r+1)( 2a
t+1 ) > 0 for t ∈ (−1, 1]. When

g(r+1)( 2a
t+1 ) < 0, we have the similar result. With the assumption, we can derive that

g( j)( 2a
t+1 ) > 0 for t ∈ (−1, 1) and j = 1, . . . , r and thus g( 2a

t+1 ) is strictly increasing

in (-1,1). For any v(t) ∈ Ẽl and l ∈ {0, 1, . . . , n}, letting yr+1 = g( 2a
t+1 ), we obtain

v(t) =
l∑

k=0

ckψk(t) = φ(t)
l∑

k=0

ck y
k,

where φ(t) = 2a(t + 1)αg′( 2a
t+1 )g(

2a
t+1 )

−r
r+1 . It is easily verified that

lim
t→1

φ(t) = 21+αa(r + 1)

[
g(r+1)(a)

(r + 1)!

] 1
r+1

> 0,

and then φ(t) has a removable discontinuity point at t = 1. Next, define that

φ(1) = 21+αa(r + 1)

[
g(r+1)(a)

(r + 1)!

] 1
r+1

.

This implies that φ(t) ∈ C∞(−1, 1] and φ(t) > 0 for t ∈ (−1, 1]. The remaining part of
the proof is similar to that of Lemma 2.1. ��
Here, under the assumption g(x) in Theorem 3.1 or Corollary 3.1, we consider a modified
Filon-type method for the case that g(r+1)(2a/(t + 1)) > 0 for t ∈ (−1, 1]. Once that
g(r+1)(2a/(t + 1)) < 0, by making use of Jm(x) = e−mπ i Jm(−x), we can rewrite (1.2) as

I [ f ] = e−mπ i (2a)α+1
∫ 1

−1
(t + 1)−α−2H(t)Jm(−ωg(2a/(t + 1)))dt,
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with −g(r+1)(2a/(t + 1)) > 0. From the asymptotic expansions (3.1) and (3.5), we can
see that the value of I [ f ] also depends on the stationary point ξ of g(2a/(t + 1)) except
endpoints, where ξ ∈ (−1, 1]. Therefore, we need to impose ξ as an interpolating point.
Suppose that t� = ξ for some � ∈ {0, 1, . . . , η}. Then, define that

ψk(t) = 2a(t + 1)αg′
(

2a

t + 1

) [
g

(
2a

t + 1

)] k−r
r+1

.

From Lemma 3.1 and [33, Theorem 9.9 on page 370], we know that there exists a unique
function P̃(t) = ∑n

k=0 ckψk(t) ∈ Ẽn such that

P̃( j)(tk) = H ( j)(tk), j = 0, 1, 2,mk − 1,

for every integer 0 ≤ k ≤ η and n = Σ
η
k=0mk − 1. Then the modified Filon-type method for

the case with stationary points is defined by

QF
s [H ] ≡ Ĩ [P̃] = (2a)α+1

n∑
k=0

ck M̃k . (3.8)

Here, if limx→+∞ g(x) = +∞ and g(a) �= 0, from (2.27), the modified moments M̃k can
be expressed by

M̃k =
∫ +∞

g(a)

y
k−r
r+1 Jm(ωy)dy

= (g(a))
k+1
r+1

∫ +∞

1
y

k−r
r+1 Jm(ωg(a)y)dy

= 1

2
(g(a))

k+1
r+1 G3,0

2,4

(
r−k

2(r+1) ,
2r−k+1
2(r+1)

− k+1
2(r+1) ,

r−k
2(r+1) ,

1
2m,− 1

2m

∣∣∣∣14 (ωg(a))2

)
. (3.9)

If limx→+∞ g(x) = +∞ and g(a) = 0, from (2.27), the modified moments M̃k can be
rewritten as

M̃k =
∫ +∞

0
y

k−r
r+1 Jm(ωy)dy

=
∫ 1

0
y

k−r
r+1 Jm(ωy)dy +

∫ +∞

1
y

k−r
r+1 Jm(ωy)dy

= G

(
ω,m,

k − r

r + 1

)
+ 1

2
G3,0

2,4

(
r−k

2(r+1) ,
2r−k+1
2(r+1)

− k+1
2(r+1) ,

r−k
2(r+1) ,

1
2m,− 1

2m

∣∣∣∣14ω2

)
, (3.10)

where G
(
ω,m, k−r

r+1

)
can be explicitly computed by (2.30)–(2.32).

Remark 3.1 On the one hand, it should be noted from (2.28), (2.29), (3.9) and (3.10) that the
desired modified moments Mk and M̃k can be explicitly expressed and computed by some
special functions, such as the Meijer G-function, the Lommel function and the generalized
hypergeometric function (see Tables 1, 2, 3). On the other hand, those numerical examples
in the Sect. 4 show that the presented numerical method can produce quite accurate approx-
imations for computing the considered integral (1.1), which in turn verifies that the values
of the required modified moments can be of great precision. In fact, from those numerical
examples in the Sect. 4, we can also see that the required accuracy level can be obtained
only by using a small number of nodes N = 2, 3, 4, 5, 6 and multiplicities s = 1, 2, 3 at the
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endpoint t = 1 with the Hermite interpolation problem. This implies that the degree of the
required Hermite interpolation polynomials is very small, in general, no more than 10. This
leads to the fact that the values of n in (2.18) of Theorem 2.4 and (3.8), are no more than 10.
Moreover, from (2.18) and (3.8), we can see that 0 ≤ k ≤ n. Hence, the values of k in the
modified moments (2.28), (2.29), (3.9) and (3.10) required in those numerical examples of
the Sect. 4, are in general very small (≤ 10). This implies that we do not need to consider the
case of large k in practical applications. The numerical experiments in Tables 1 and 2, show
that the modified moments formulae (2.28) and (2.29) can be used for small k with moderate
or large ω. Actually, the modified moments formulae (2.28) and (2.29) may be also available
for some large k with large ω, which are shown in the numerical example (see Table 3).
However, the modified moments formulae (2.28), (2.29), (3.9) and (3.10) may be not appli-
cable for some large k with small ω, e.g., k = 200, ω = 10,m = 2. Fortunately, this paper
mainly focuses on the case of moderate or large ω and small k (see those numerical examples
of the Sect. 4 and Tables 1, 2). In [30], the modified moments (2.29) can be also explicitly
represented by the Gamma function under the given conditions. In fact, for the other case of
small k with �(m + k) > −1 and moderate or large ω, the modified moments (2.29) can be
explicitly expressed and computed by some special functions, such as the Meijer G-function,
the Lommel function and the generalized hypergeometric function (see Table 2). The related
convergence analysis for all parameters ω, k,m of the modified moments formulae (2.28),
(2.29), (3.9) and (3.10) will be discussed theoretically in our future research. In addition,
because of only using the small number of interpolation node points and multiplicities, the
system of linear equations obtained in the related Hermite interpolation is usually very small
and can be easily solved. Hence, the coefficients ck of the related interpolation polynomials
can be efficiently and accurately computed by solving the linear system of equations of small
size. Furthermore, the calculation of themodifiedmoments using theMeijer G-function looks
complicated. In the future, we shall seek a simple and feasible method for simplifying the
computation of the modified moments.

We now derive the asymptotics of the above moments Mj (ξ,m, ω) from Theorem 3.1
and Corollary 3.1, for performing the error estimate of the above quadrature rules.

Lemma 3.2 Under the assumption of g in Theorem 3.1, for 0 ≤ j ≤ r , it follows that

M j (ξ,m, ω) = O

(
1

ω
j+1
r+1

)
, as ω → ∞. (3.11)

Proof Change of variable t = 2a
x − 1 yields

Mj (ξ,m, ω) = (2a)α+1
∫ 1

−1
(t + 1)−α−2(t − ξ) j Jm(ωg(2a/(t + 1)))dt

=
∫ +∞

a
xα− j [2a − (1 + ξ)x] j Jm(ωg(x))dx . (3.12)

For the case of limx→+∞ g(x) = +∞, by subdividing the integration interval at x =
ς = 2a

1+ξ
and then change of variable g(x) = yr+1, the integral formula in the last line of

(3.12) is rewritten as

Mj (ξ,m, ω) =
∫ ς

a
xα− j [2a − (1 + ξ)x] j Jm(ωg(x))dx

+
∫ +∞

ς

xα− j [2a − (1 + ξ)x] j Jm(ωg(x))dx
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=
∫ 0

r+1√g(a)

xα− j [2a − (1 + ξ)x] j (r + 1)yr

g′(x)
Jm(ωyr+1)dy

+
∫ +∞

0
xα− j [2a − (1 + ξ)x] j (r + 1)yr

g′(x)
Jm(ωyr+1)dy

= (r + 1)

(
2a

ς

) j [∫ 0

r+1√g(a)

xα− j (ς − x) j
yr

g′(x)
Jm(ωyr+1)dy

+
∫ +∞

0
xα− j (ς − x) j

yr

g′(x)
Jm(ωyr+1)dy

]

= (r + 1)

(
2a

ς

) j [
−

∫ r+1√g(a)

0
y jϕ(y)Jm(ωyr+1)dy

+
∫ +∞

0
y jϕ(y)Jm(ωyr+1)dy

]
, (3.13)

where

ϕ(y) = xα− j yr− j (ς − x) j

g′(x)
,

and it follows from the given conditions on g(x) and g(x) = yr+1 that ϕ(y) is aC∞ function
and ϕ(0) �= 0. When g(a) = 0, the first integral in the last line of (3.13) vanishes.

Next, for g(a) �= 0 we set φ(y) = y jϕ(y) and r+1
√
g(a) = A �= 0 in the last line of

(3.13). This implies from ϕ(0) �= 0 that φ(n)(0) = 0 for 0 ≤ n ≤ j − 1 and φ(n)(0) �= 0 for
j ≤ n ≤ r . By similar asymptotic analysis to that of Theorem 3.1 and Corollary 3.1, the two
integrals in the last line of (3.13) employ the asymptotic expansions as follows,

−
∫ r+1√g(a)

0
y jϕ(y)Jm(ωyr+1)dy

= −
∫ A

0
φ(y)Jm(ωyr+1)dy

∼ −
r∑

n=0

φ(n)(0)

n!
∫ A

0
yn Jm(ωyr+1)dy − 1

ω

φ(A) − ∑r
n=0

φ(n)(0)
n! An

(r + 1)Ar
Jm+1(ωAr+1)

= −
r∑

n= j

φ(n)(0)

n!
∫ A

0
yn Jm(ωyr+1)dy − 1

ω

φ(A) − ∑r
n= j

φ(n)(0)
n! An

(r + 1)Ar
Jm+1(ωAr+1),

(3.14)∫ +∞

0
y jϕ(y)Jm(ωyr+1)dy

∼
r∑

n=0

φ(n)(0)

n!
∫ +∞

0
yn Jm(ωyr+1)dy

=
r∑

n= j

φ(n)(0)

n!
∫ +∞

0
yn Jm(ωyr+1)dy. (3.15)
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By setting ωyr+1 = u, for 0 ≤ j ≤ n ≤ r , the integrals in the last lines of (3.14) and (3.15)
can be rewritten as

∫ A

0
yn Jm(ωyr+1)dy = 1

ω
n+1
r+1

∫ ωg(a)

0
u

n−r
r+1 Jm(u)du

= 1

ω
n+1
r+1

[∫ 1

0
u

n−r
r+1 Jm(u)du +

∫ ωg(a)

1
u

n−r
r+1 Jm(u)du

]

= O

(
1

ω
n+1
r+1

)
, ω → +∞, (3.16)

∫ +∞

0
yn Jm(ωyr+1)dy = 1

ω
n+1
r+1

∫ +∞

0
u

n−r
r+1 Jm(u)du

= 1

ω
n+1
r+1

[∫ 1

0
u

n−r
r+1 Jm(u)du +

∫ +∞

1
u

n−r
r+1 Jm(u)du

]

= O

(
1

ω
n+1
r+1

)
, ω → +∞. (3.17)

Here, for n = r , since
∫ ∞
0 Jm(t)dt = 1 [1, p. 486], the right-hand integrals in the first line

of (3.16) and (3.17) are convergent as ω → +∞. For 0 ≤ j ≤ n < r , i.e., −1 < n−r
r+1 < 0,

on the one hand, from [1, p. 360] and [28], when m is fixed and m > −1,

Jm(u) ∼ um

2mΓ (m + 1)
, as u → 0+,

which leads to that

u
n−r
r+1 Jm(u) ∼ um+ n−r

r+1

2mΓ (m + 1)
, as u → 0+.

Note that um+ n−r
r+1 ≥ 0 and Jm(u) ≥ 0 for 0 < u ≤ 1. Hence, the integrand um+ n−r

r+1 Jm(u) is

non-negative for 0 < u ≤ 1. Since the integral
∫ 1
0 um+ n−r

r+1 du is convergent form+ n−r
r+1 > −1,

by comparison test, the first integral
∫ 1
0 u

n−r
r+1 Jm(u)du in the second line of (3.16) and (3.17)

is convergent for m + n−r
r+1 > −1. On the other hand, as ω → +∞, the second integral∫ ωg(a)

1 u
n−r
r+1 Jm(u)du in the second line of (3.16) and the second integral

∫ +∞
1 u

n−r
r+1 Jm(u)du

in the second line of (3.17) have the same convergence. Moreover, when u ∈ [1,+∞), the
Bessel function Jm(u) is a sign changing function. Since F(t) = ∫ t

1 Jm(u)du is bounded on

[1,+∞) and
∫ +∞
1 Jm(u)du is convergent, byDirichlet’s test orAbel’s test, it is easily verified

that the infinite integral
∫ +∞
1 u

n−r
r+1 Jm(u)du is convergent for−1 < n−r

r+1 < 0. Therefore, this
leads to the two estimates in the last lines of (3.16) and (3.17) for all 0 ≤ n < r , m+ n−r

r+1 >

−1 (that is,m > − 1
r+1 > −1). Hence, the first term in the last line of (3.14) and the last line

of (3.15) behave asymptotically as O

(
1

ω
j+1
r+1

)
. For A �= 0, the second term in the last line

of (3.14) behaves asymptotically as O

(
1

ω
3
2

)
. Therefore, the two integrals in the last line

of (3.13) behave asymptotically as O

(
1

ω
j+1
r+1

)
. When limx→+∞ g(x) = −∞, the similar

conclusion can be obtained. Therefore we complete this proof. ��
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In the sequel, we show error estimate of (3.6) and (3.7).

Theorem 3.2 Under the same conditions as those of Theorem 3.1 or Corollary 3.1, it is true
that, as ω → ∞,

QA
s [H ] − I [ f ] ∼ O

(
1

ωs+ 1
r+1

)
, (3.18)

where QA
s [H ] is given in (3.6) and (3.7), respectively.

Proof When QA
s [H ] is defined as in (3.6), by combining (3.2), (3.4), (3.6) and (3.11) from

Lemma 3.2, we have

|QA
s [H ] − I [ f ]| =

∣∣∣∣ (2a)α−s+1

ωs

∫ 1

−1
(t + 1)−α−2τs[H ](t)Jm+s(ωg(2a/(t + 1)))dt

∣∣∣∣
=

∣∣∣∣ 1

(2aω)s

r∑
j=0

τs[H ]( j)(ξ)

j ! Mj (ξ,m + s, ω)

− 2aα+1(τs[H ](1) − Cr [τs](1, ξ))

(2aω)s+1g′(a)
Jm+s+1(ωg(a))

+ (2a)α−s

ωs+1

∫ 1

−1
(t + 1)−α−2τs+1[H ](t)Jm+s+1

(
ωg

(
2a

t + 1

))
dt

∣∣∣∣
= O

(
1

ωs+ 1
r+1

)
, ω → ∞.

This completes the proof of (3.18). When QA
s [H ] is given in (3.7), the similar proof can be

performed. ��
With the above Lemma 3.2, we start to derive error estimate of the modified Filon-type

method (3.8).

Theorem 3.3 Under the same conditions as those of Theorem 3.1 (or Corollary 3.1), and
assume that g(r+1)(2a/(t+1)) > 0 for t ∈ (−1, 1] and multiplicities m� ≥ s(r+1),mη ≥ s
(or mη ≥ s(r + 1)), then it is true that, as ω → ∞,

QF
s [H ] − I [ f ] ∼ O

(
1

ωs+ 1
r+1

)
, (3.19)

where QF
s [H ] is given in (3.8).

Proof We now replace H(t)with H(t)− P̃(t) in the above asymptotic expansion (3.1). Since
P̃(n)(ξ) = H (n)(ξ), P̃(n)(1) = H (n)(1), n = 0, 1, . . . , s−1, it follows that τk[H − P̃](1) =
τk[H− P̃]( j)(ξ) = 0, k = 0, 1, . . . , s−1, j = 0, 1, . . . , r .Therefore, by using (2.5) together
with (3.11) from Lemma 3.2, we can obtain the desired results (3.19) directly from the above
asymptotic expansion (3.1) and the proof of Theorem 3.2. ��

4 Numerical Examples

We now test numerical examples to illustrate the quality of the approximations obtained by
the proposed quadrature rules. Since the presented asymptotic method is divergent for fixed
ω, we only consider numerical examples of the proposed modified Filon-type methods.
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Filon-type method for 1

+ x-1e-xJ1(  x2)dx

C1
C2
C3
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100

C1
C2
C3

Fig. 1 The left panel shows the absolute error of QF [H ] with nodes {− 4
5 , 0, 1} and multiplicities all one

(left upper blue C1), QF [H ] with nodes {− 4
5 ,− 2

5 , 0, 2
5 , 1} and multiplicities all one (left middle red C2) and

QF [H ] with nodes {− 4
5 , − 2

5 , 0, 2
5 , 1} and multiplicities all two (left lower green C3). The right panel shows

the absolute error of the first two methods scaled by ω
5
2 and the absolute error of the last method scaled by

ω
7
2

4.1 The CaseWithout Stationary Points: Type I: g(x) �= 0 for x ∈ [a,+∞)

Example 1 Let us consider an example where f (x) = e−x , g(x) = x2, a = 1, α = −1 and
m = 1. By using different modified Filon-type methods: QF [H ] with nodes {− 4

5 , 0, 1} and
multiplicities all one, QF [H ] with nodes {− 4

5 ,− 2
5 , 0,

2
5 , 1} and multiplicities all one and

QF [H ] with nodes {− 4
5 ,− 2

5 , 0,
2
5 , 1} and multiplicities all two, we show numerical results

in Fig. 1.

Example 2 Let us consider an example where f (x) = sin 1
x , g(x) = x , a = 1, α = −2 and

m = 2. By using different modified Filon-type methods: QF [H ] with nodes {− 7
8 ,− 1

8 , 1}
and multiplicities all one, QF [H ] with nodes {− 7

8 ,− 3
8 ,

1
8 ,

1
2 , 1} and multiplicities all one

and QF [H ] with nodes {− 7
8 ,− 3

8 ,
1
8 ,

1
2 , 1} and multiplicities all two, we show numerical

results in Fig. 2.

In Examples 1 and 2, the first two modified Filon-type methods correspond to s = 1 and

thus the decay rate of their absolute error is O(ω− 5
2 ). Similarly, the last one corresponds to

s = 2 and therefore the decay rate of its absolute error is O(ω− 7
2 ). It is easy to see from

Figs. 1 and 2 that this coincides with error estimate (2.20) in Theorem 2.4. As shown in
Figs. 1 and 2, the accuracy of the produced numerical results can be improved greatly by
either adding more derivatives interpolation at endpoint 1 or adding more interior nodes.
Moreover, only using a small number of nodes and multiplicities, we can obtain the required
accuracy level. Particularly, for fixed number of nodes and multiplicities, the higher accuracy
can be achieved with the larger values of ω.
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Fig. 2 The left panel shows the absolute error of QF [H ] with nodes {− 7
8 , − 1

8 , 1} and multiplicities all one

(left upper blue C1), QF [H ] with nodes {− 7
8 , − 3

8 , 1
8 , 1

2 , 1} and multiplicities all one (left middle red C2)

and QF [H ] with nodes {− 7
8 ,− 3

8 , 1
8 , 1

2 , 1} and multiplicities all two (left lower green C3). The right panel

shows the absolute error of the first two methods scaled by ω
5
2 and the absolute error of the last method scaled

by ω
7
2

4.2 The CaseWithout Stationary Points: Type II: g(x)Having Zeros on x ∈ [a,+∞)

Example 3 We consider an example with f (x) = 1
x , g(x) = x − 2, a = 2, α = −2 and

m = 2. Here, g(x) = x − 2 has an unique zero at x = 2, i.e., g( 2a
1+t ) has an unique zero at

t = ζ = 1. In Fig. 3 we present the accuracy of modified Filon-type methods: QF [H ] with
nodes {− 4

5 , 1} andmultiplicities all one,QF [H ]withnodes {− 4
5 ,− 2

5 ,
1
5 , 1} andmultiplicities

all one and QF [H ] with nodes {− 4
5 ,− 2

5 ,
1
5 , 1} and multiplicities {1, 1, 1, 2}. Actually, we

can regard this example as the case of α = 0 in the integral
∫ +∞
2 xαx−3 J2(ω(x − 2))dx .

Therefore, the modified Filon-type method is also available for the case of α = 0 with some
fast decreasing functions f (x).

Example 4 We consider an example with f (x) = e−x2 , g(x) = x2 − 4, a = 2, α = −2 and
m = 3. Evidently, g(x) = x2 − 4 has an unique zero at x = 2, i.e., g( 2a

1+t ) has an unique
zero at t = ζ = 1. In Fig. 4 we compare the accuracy of three modified Filon-type methods:
QF [H ]with nodes {− 7

8 , 1} andmultiplicities all one, QF [H ]with nodes {− 7
8 ,− 3

8 ,
1
2 , 1} and

multiplicities all one and QF [H ] with nodes {− 7
8 ,− 3

8 ,
1
2 , 1} and multiplicities {1, 1, 1, 2}.

Obviously, the decay rates obtained in Figs. 3 and 4 are consistent with the error analysis
of the modified Filon-typemethods in Theorem 2.6. The produced accuracy improves greatly
as ω increases for fixed node points. The proposed methods can achieve an error that decays
faster for increasing frequency ω.
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Fig. 3 The left panel shows the absolute error of QF [H ] with nodes {− 4
5 , 1} and multiplicities all one (C1),

QF [H ] with nodes {− 4
5 , − 2

5 , 2
5 , 1} and multiplicities all one (C2) and QF [H ] with nodes {− 4

5 , − 2
5 , 2

5 , 1}
and multiplicities {1, 1, 1, 2} (C3). The right panel shows the absolute error of the first two methods scaled by
ω2 and the absolute error of the last method scaled by ω3

10 20 30 40 50 60 70 80 90 100
10-9

10-8

10-7

10-6

10-5

10-4
Filon-type method for 2

+ x-2e-x2
J3(  (x2-4))dx

C1
C2
C3

10 20 30 40 50 60 70 80 90 100

3

3.5

4

4.5

5

5.5
10-3

C1
C2
C3

Fig. 4 The left panel shows the absolute error of QF [H ] with nodes {− 7
8 , 1} and multiplicities all one (C1),

QF [H ] with nodes {− 7
8 , − 3

8 , 1
2 , 1} and multiplicities all one (C2) and QF [H ] with nodes {− 7

8 , − 3
8 , 1

2 , 1}
and multiplicities {1, 1, 1, 2} (C3). The right panel shows the absolute error of the first two methods scaled by
ω2 and the absolute error of the last method scaled by ω3
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Fig. 5 The left panel shows the absolute error of QF [H ] with nodes {− 5
6 , 1} and multiplicities {1, 2} (C1),

QF [H ]withnodes {− 5
6 , − 1

2 , 1
2 , 1} andmultiplicities {1, 1, 1, 2} (C2) andQF [H ]withnodes {− 5

6 , − 1
2 , 1

2 , 1}
and multiplicities {1, 1, 1, 4} (C3). The right panel shows the absolute error of the first two methods scaled by

ω
3
2 and the absolute error of the last method scaled by ω

5
2

4.3 The Case with Stationary Points

Example 5 Let us consider this example with f (x) = sin 1
x , g(x) = (x − 2)2, a = 2,

α = −3 and m = 3, where r = 1. By comparing the accuracy of three modified Filon-
type methods: QF [H ] with nodes {− 5

6 , 1} and multiplicities {1, 2}, QF [H ] with nodes
{− 5

6 ,− 1
2 ,

1
2 , 1} and multiplicities {1, 1, 1, 2} and QF [H ] with nodes {− 5

6 ,− 1
2 ,

1
2 , 1} and

multiplicities {1, 1, 1, 4}, we give the desired numerical results in Fig. 5.

Example 6 Let us consider this example with f (x) = e−x2 , g(x) = x(x − 1)2, a = 1,
α = −1 and m = 1 where r = 1. By comparing the accuracy of three modified Filon-
type methods: QF [H ] with nodes {− 7

8 , 1} and multiplicities {1, 2}, QF [H ] with nodes
{− 7

8 ,− 1
4 ,

3
8 , 1} and multiplicities {1, 1, 1, 2} and QF [H ] with nodes {− 7

8 ,− 1
4 ,

3
8 , 1} and

multiplicities {1, 1, 1, 3}, we give the desired numerical results in Fig. 6.

In Examples 5 and 6, the first twomodified Filon-typemethods hold for s = 1 and thus the

decay rate of their absolute error is O(ω− 3
2 ). Similarly, the last one in Examples 5 corresponds

to s = 2 and therefore the decay rate of its absolute error is O(ω− 5
2 ). In Examples 6, the last

one corresponds to s = 3
2 and thus the decay rate of its absolute error is O(ω−2). This implies

that Figs. 5 and 6 can confirm our error analysis in Theorem 3.3. Additionally, Examples 5
and 6 show the high accuracy and efficiency of the proposed methods. All these presented
methods share an advantageous property that the error decreases greatly as ω increases.
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Fig. 6 The left panel shows the absolute error of QF [H ] with nodes {− 7
8 , 1} and multiplicities {1, 2} (C1),

QF [H ]withnodes {− 7
8 , − 1

4 , 3
8 , 1} andmultiplicities {1, 1, 1, 2} (C2) andQF [H ]withnodes {− 7

8 , − 1
4 , 3

8 , 1}
and multiplicities {1, 1, 1, 3} (C3). The right panel shows the absolute error of the first two methods scaled by

ω
3
2 and the absolute error of the last method scaled by ω2

Table 4 Relative errors of the modified Filon-type method QF [H ] for the integral ∫ +∞
1 x−1e−x J1(ωx

2)dx,

with nodes {− 4
5 , 0, 1} and multiplicities {1, 1, 1}, {1, 1, 2}, and {1, 1, 3}, for ω = 100, 200, 500, 1000

ω s = 1 s = 2 s = 3

100 4.91 × 10−2 2.26 × 10−4 3.58 × 10−5

200 2.03 × 10−2 6.12 × 10−5 6.40 × 10−6

500 7.49 × 10−4 1.07 × 10−5 2.16 × 10−8

1000 2.22 × 10−4 2.68 × 10−6 1.61 × 10−9

4.4 Relative Errors

Here we show the relative errors of the modified Filon-type method by two examples in
Tables 4 and 5.

Tables 4 and 5 present the relative errors of the modified Filon-type method for the above
two integrals. We can see from Table 4 that the Filon-type method exhibits the fast conver-
gence as the multiplicities increase at the endpoint t = 1 for fixed ω. Table 5 illustrates that
adding the more nodes for fixed ω, the approximate accuracy can be enhanced. Furthermore,
for fixed number of nodes and multiplicities, the higher accuracy can be achieved with the
larger values of ω.

Remark 4.1 The choice of the extreme point 1 as interpolation point for the highly oscillatory
integral (1.2) is not only a technical necessity but also can improve asymptotic order to
obtain the required high accuracy. The main approximative power of the modified Filon-type
method comes from matching function values and derivatives at the end-points (or, with
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Table 5 Relative errors of the modified Filon-type method QF [H ] for the integral ∫ +∞
2 x−3 sin 1

x J3(ω(x −
2)2)dx, with nodes {− 5

6 , 1}, {− 5
6 ,− 1

2 , 1
2 , 1} and {− 5

6 ,− 2
3 , − 1

2 , 1
2 , 2

3 , 1} and multiplicities {1, 2},
{1, 1, 1, 2}, {1, 1, 1, 1, 1, 2}, for ω = 10, 50, 100, 200

ω n = 2 n = 4 n = 6

10 2.38 × 10−3 1.38 × 10−4 1.57 × 10−5

50 2.70 × 10−4 5.83 × 10−5 5.09 × 10−6

100 1.02 × 10−4 2.59 × 10−5 3.37 × 10−6

200 3.77 × 10−5 1.06 × 10−5 1.71 × 10−6

Here, n is the number of nodes

greater generality, at critical points), and the addition of internal nodes in real number field
is intended merely to decrease the error ‘constant’, rather than improve the asymptotic order.
Indeed, computing one extra derivative at the end-points can improve the asymptotic order.
The above method is usually known as the real Filon-type method based on polynomial
interpolation at real number points. In particular, Huybrechs and Olver [18] presented an
important consequence that the asymptotic order of the complex Filon-type method can
be doubled by replacing evaluations of derivatives at critical points by evaluations at certain
points in the complex plane. The complex Filon-typemethod enjoys the same high asymptotic
order of accuracy as the numerical steepest descent method. In our future work we shall
consider how to use the complex Filon-type method for computing the highly oscillatory
Bessel transform (1.1).

5 Conclusions

In this work, we provide a complete asymptotic analysis and the construction of affordable
quadrature rules for a class of infinite Bessel transform with a general oscillator. For each
type of critical points including zeros and stationary points, we first derive a series of useful
asymptotic expansions in inverse powers of ω. On the basis of the resulting useful asymp-
totic expansions, we then present the modified Filon-type method. Particularly, owing to the
resulting asymptotic expansions, we give the rigorous error analysis and obtain asymptotic
error estimates in inverse powers of ω. It is worth noting that for fixed nodes the accuracy
increases when oscillation becomes faster. Additionally, for fixed frequency ω, the accuracy
can be also improved by adding either the derivatives of H(t) at t = 1 or the number of
interpolation nodes. The presented numerical examples can confirm our numerical analysis.
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