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Abstract

In this paper, we study an efficient and modular grad-div stabilization algorithm for the 2D/3D
nonstationary incompressible magnetohydrodynamic equations. The considered algorithm
is a fully discrete first-order scheme based on the mixed finite element method and does not
increase computational time for increasing stabilization parameters. Also, both unconditional
stability and convergence analysis are given. Finally, numerical experiments are presented to
verify both the numerical theory and efficiency of the presented algorithm.

Keywords Magnetohydrodynamic model - Fully discrete scheme - Modular grad-div
stabilization - Mixed finite element method

1 Introduction

The magnetohydrodynamic (MHD) model is mainly used to describe the interaction of an
electrically conducting fluid with an external magnetic field, which has been widely applied
in industry and engineering, such as for liquid metal cooling of nuclear reactors, electromag-
netic pumping, stirring of liquid metals and so on [11,31]. The governing equations of the
MHD model include the incompressible Navier—Stokes equations of hydrodynamics coupled
with the Maxwell system of electromagnetism (including divergence-free constraint for the
magnetic field) via the Lorentz force and Ohm’s law. Due to the widely practical applica-
tion and computational complexity of the MHD model, much effort has been spent on the
development of some efficient numerical methods to investigate this problem.
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Based on a conservative formulation to ensure the local divergence-free condition of the
magnetic field weakly, a finite element method has been proposed in [39] for 3D nonstationary
incompressible MHD flows with both high and low magnetic Reynolds numbers. Amari et al.
[3] have developed a more general anisotropic semi-implicit scheme for the MHD problem.
This scheme can deal with domains that do not allow the use of direct methods. In [4], a term-
by-term stabilized finite element formulation based on orthogonal subscales for the numerical
approximation of the incompressible MHD system has been proposed and analyzed. In order
to stabilize the unresolved scales in MHD simulations, Belenli et al. [5] have studied a
subgrid stabilization finite element method. In [36], Prohl has discussed some coupling and
decoupling fully discrete schemes and verified convergence of these schemes towards weak
solutions for vanishing discretization parameters. Case et al. [8] have presented an energy,
cross-helicity and magnetic helicity preserving method for the considered equations which
is a semi-implicit Galerkin finite element discretization and enforces pointwise solenoidal
constraints by employing the Scott—Vogelius finite elements.

Additionally, a finite element spatial approximation of the MHD system under smooth
domains and data has been considered [24], and the optimal L2-norm error estimates are
obtained by using a new negative-norm technique without the standard duality argument.
Applying the implicit Euler scheme to discretize the two-dimensional MHD equations in time,
H?2-uniform stability has been obtained [40]. In addition, He and Zhang [23,46] have studied
the unconditional stability and convergence of the first order Euler semi-implicit scheme
for the three-dimensional incompressible MHD equations. Moreover, compared to the semi-
implicit scheme [23,46], Yang and He [43] have analysed the implicit/explicit scheme. This
scheme only needs to solve the constant matrix equations, but it is conditionally stable.
Furthermore, in order to increase convergence order in time, based on the Crank—Nicolson
extrapolation scheme, Zhang et al. [47] have considered the temporal discretization while
Dong and He [15] have considered the full discretization. In [44], a second order backward
difference Newton scheme has been designed, which is a combination of the second order
backward difference approximation for time terms and the Newton treatment for nonlinear
terms. However, mass conservation law is often ignored or not strongly enforced by most
schemes for the MHD model. In fact, if mass conservation is correctly accounted for in the
numerical schemes, then resulting numerical solutions have greater physical accuracy. Due
to the importance of mass conservation, there is a natural interest to study how to design
numerical schemes to keep this law.

The grad-div stabilization [35], which is studied in [18] initially, is a simple, useful and
popular technique for incompressible flow problems. It adds a penalty term with respect to the
continuity equation to the momentum equation and can penalize for lack of mass conservation
and improve solution accuracy by reducing the effect of the pressure on the velocity error
[26]. Hence, this tool has been widely studied for the incompressible flows over the past
decade. In particular, for the Oseen equations, de Frutos et al. [13] have proved that adding
a grad-div stabilization term to the Galerkin approximation has a stabilizing effect for small
viscosity. Further, they have extended the previous work to the Navier—Stokes equations with
high Reynolds number [14]. In [19], the grad-div stabilized finite element discretizations
of the singularly perturbed Oseen equations on properly layer-adapted meshes have been
considered.

Combination of grad-div stabilization with other algorithms has been investigated by
many authors. Within the viewpoints of variational multiscale methods and stabilization
procedures of least-square type, the grad-div stabilization as a pressure subgrid model has
been studied [34]. A combination of the streamline-upwind/Petrov—Galerkin formulation
and the grad-div stabilization applied to the stationary Navier—Stokes equations has been
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considered [33]. In [10], the local projection stabilization method which combines the idea
of streamline upwinding with the grad-div stabilization has been proposed. Based on the
Yosida splitting methods, Rebholz and Xiao [37] have analyzed the accuracy of divergence
free elements together with grad-div stabilization. All above algorithms together with the
grad-div stabilization are based on conforming finite element methods in space. For grad-
div stabilization with discontinuous finite element method, Akbas et al. [2] have designed
and tested broken grad-div stabilization for incompressible flows in order to get the desired
pressure robustness effect.

Although the grad-div stabilization term is consistent for continuous equations, the finite
element solution depends on the stabilization parameter. As is known, too large values of the
stabilization parameter overstabilize the problem, make the corresponding linear algebraic
system poorly conditioned and cost lots of computational time resulting from decreased
sparsity and increased coupling. Hence, the choice of the stabilization parameter has drawn
attention. Jenkins et al. [25] have given an analytic support for the numerical observation
from [20] that the use of large stabilization parameters is appropriate in certain situations,
and found that the optimal stabilization parameter could range from being very small to very
large. Ahmed [1] has extended the idea presented for the Stokes problem in [25] to the Oseen
equations. In [12], arestricted range of possible values for the parameter in 3D turbulent flows
away from walls has been provided. Besides, a better understanding of grad-div stabilization
is achieved, when the limit behavior for arbitrarily large stabilization parameter is investigated
[7]. As it is claimed in [7], with the stabilization parameter tending to infinity, the limit of
the grad-div stabilized Taylor—Hood solution of the Navier—Stokes problem converges to
the Scott—Vogelius solution. Further, the convergence rate is improved in [30]. Also, if the
stabilization parameter tends to infinity, then the solution of the Chorin/Temam projection
methods for Navier—Stokes equations equipped with the grad-div stabilization converges to
the associated coupled method solution [28]. In addition, in order to understand how small
changes in the stabilization parameter could affect the solution, Neda et al. [32] have presented
a numerical study of the sensitivity of the parameter for mixed finite element discretizations
of incompressible flow problems. They have found that the solutions are the most sensitive
for small values of the stabilization parameter in certain situations.

Recently, in order to increase sparsity and decrease coupling of coefficient matrices for
velocity created by grad-div stabilization, Linke and Rebholz [29] have proposed sparse
grad-div stabilization, which has similar advantages as grad-div stabilization but is more
efficient because of a sparser structure of its matrices. Furthermore, Cibik [9] has extended
the idea to the optimal control of an incompressible stationary flow problem. A combination
of the projection methods and the sparse grad-div stabilization applied to the Navier—Stokes
equations has been considered [6]. Besides, as it is found by many authors [20,25,32], the
use of large stabilization parameters is unavoidable in certain situations. However, the solver
for large stabilization parameters may slow down and even lead breakdown. To address this
issue, an effective variant of the grad-div stabilization, called modular grad-div stabilization
[17], is presented for calculating solutions to the Navier—Stokes equations. This stabilization
is found to be unaffected by variations of the stabilization parameters whereas the cost of the
standard technique grows rapidly as the parameter grows. Later, Rong and Fiordilino [38]
have improved this modular grad-div stabilization with the first order backward Euler time
discretization to the second order backward difference time discretization.

Since the modular grad-div stabilization have proven useful for a large range of stabiliza-
tion parameters, we apply it to the MHD model to improve mass conservation of numerical
solutions. Inspired by [17], we develop an Euler semi-implicit time-discrete, modular grad-div
stabilization algorithm for the 2D/3D MHD problem and give the corresponding numerical
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analysis and numerical tests. The remainder of this paper is as follows. In Sect. 2, we introduce
nonstationary incompressible MHD equations and notation, lemmas and necessary prelim-
inaries. In the next section, we show the modular grad-div stabilization algorithm for the
considered equations and prove unconditional stability and convergence. Then, in Sect. 4,
numerical experiments show that the presented method is efficient. Section 5 is the conclusion
of this paper.

2 Preliminaries

This work is concerned with the following 2D/3D nonstationary incompressible MHD system
that couples the incompressible Navier—Stokes equations with Maxwell equations under the
influence of body forces and currents [22,23,31]:

u + (u-Vyu—vAu+ uH x curlH+ Vp =f,

diva = 0,

(D
uH; + o 'curlcurlH — pcurl(u x H) = o curl],

divH = 0,

which holds for all (x,7) € Q x (0, T], where T € (0, 0o) is a final time and €2 is an open
bounded domain in RY, d = 2, 3, together with the following homogeneous boundary and
initial conditions [22,27]:

u|s, = 0 (no-slip condition),
H-n)|s; =0, (m x curlH)|s, = 0 (perfectly conducting wall), 2)
u(x, 0) = up(x), H(x, 0) = Ho(x), in €,

with divug(x) = 0 and divHp(x) = 0. Here S7 := 92 x [0, T'] and n is the unit exterior
normal to d€2. Besides, u, H and p represent the velocity field, magnetic field and pressure,
respectively. Three parameters appearing in (1) are the kinematic viscosity v, the magnetic
permeability i and the electric conductivity o. Furthermore, f denotes the known body force
and J is the known current with n x J|s, = 0.

For the mathematical setting of problem (1) with the boundary and initial conditions (2),
we introduce the usual LZ(2) norm and its inner product by || - |lo,2 and (-, -), respectively.
The L?(€2) norm and W7 (£2) norm are denoted by || - [lo,, and || - ||, , respectively, for
m € NT, 1 < p < oo. In particular, H™ () is used to represent the space W”"Z(Q) and
Il - llm,2 denotes the norm in H" (£2). Besides, for X being a normed function space in €2,
LP(0, T; X) is the space of all functions defined on [0, 7] x €2 for which the norm

1

T »
llullLro,1:x) = (/ ||M||§(dt> , pell,00),
0

is finite.
We define the following particular subspaces of H'(2)? that satisfy specific boundary
conditions [16,22,23]:

X := H} () ={ve H(Q): v =0},
W:=H' Q) ={BecH (Q:B njo=0}
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and subspaces with (weakly) divergence-free functions:
Xp:={veX:divv=0}, Wpy:={B e W:divB =0},
and subspace of L2():

M :=L§(Q) ={q € L*(Q): (1.q) = 0}.

To derive the variational formulation of problem (1)—(2), we introduce two bilinear forms:

a(a,v) =v(Vu, Vv) Vu,v e X, d(v,q) = (divv,q) VveX, ge M,

the skew-symmetric form:
b(u,v,w) = ((u-V)v,w) + %((divu)w, V)
= %((u Vv, w) — %((u -V)w,v) Vu,v,weX,
which satisfies following properties [17,24,41]:
1b(u, v, w)| < CollVullo2[IVVllo,2VWllo,2,
|b(u, v, w)| < Cl”u”éz”V“||(§2||VV”0,2”VW”0,2,
for all u, v, w € X. Moreover, if v e H2(Q)4, then there exists C such that [16]
[b(u, v, w)| < Callullo2[IVIl2,2IVWllo,2.
Additionally, from [15,23], we have the following bounds

|(v x H, curlB)| < C3|Vvllo2llcurlH]o,2[[curlBlo,2,
|(v x H, curlB)| < Cy4llvll2,2[[H[lo,2[curlB]o,2,
|(v x H, curlB)| < C5[|Vvllo2[IBll2,2[Hllo,2,

3

“
(&)

(6)

@)
®
(€))

forallv e Xand B, H € Worv, B € H>(Q)¢. Here and after, we denote C (with or without
a subscript) as a general positive constant depending on (v, i, o, @, T, ug, Hy, f, J), which

may stand for different values at different occurrences.

Then, based on the above definitions of functional spaces, we have the following variational
formulation of problem (1)—(2): Find (u, p, H) € L*>(0, T: X) x L>(0, T; M) x L*>(0, T; W)

such that, for all (v, ¢, B) € X x M x W and for almost all € (0, T),

(w,v) +a(a,v)+b,u,v)+ Ml x curlH, v) —d(v, p) +d(u,q) = (f,v),

w(H;, B) + a_l(curlH, curlB) — w(u x H, curlB) = a_l(J, curlB),
u(0) =up, H(0) = Hp.

(10)

(an
(12)

Throughout this paper we need the following assumptions as in [23] on the prescribed

data for problem (1)—(2).

Assumption A0 The initial data ug € Xo N H2(Q)?, Hy € Wo N H2(2)?, the force f and

the current J satisfy the bound

sup (llf(t)llo,z + If: (D llo2 + IT@ 12 + ||Jz(f)||1,2) + lluoll2,2 + [Holl22 < C.

0<t<T

@ Springer



3 Page6of24 Journal of Scientific Computing (2020) 82:3

Assumption A1 The problem (10)—(12) has a weak solution (u(z), p(¢), H(z)) satisfying
ue L%20,T:Xo),He L%0, T; Wy) and p € L2(0, T; M) such that

T
/ (Va4 > + llearlH (o) [ 5)ds < C.
0

Assumption A2 Assume that the boundary of €2 is smooth so that the unique solution (v, q)
of the steady Stokes problem
—Av+Vg=1f, V-v=0inQ, v|je=0,
for prescribed f, € L2(©)? satisfies
IVli2,2 + llglli,2 < Clifullo,2;

and Maxwell’s equations

curlcurlB=fg, V-B=0inQ2, nxcurlB=0, B-n=0o0naoa<2,
for the prescribed fg € L2(Q)¢ admits a unique solution B € Wy which satisfies

IBll2,2 < Clifrllo,2-

Besides, we recall some a priori energy estimates of the solution to the problem (10)—(12) in
the following, which are proved in [23].

Lemma 2.1 [23] Assume that Assumption (AO)—(A2) hold, then the solution (u(t), p(t), H(t))
of the problem (10)—(12) satisfies the estimate

[P (U, O3 5 + IHAO1F 5 + la@113 5 + IH©O3 5 + 1p@)113 )
<t<T

T
+ /0 (w1245 + IH 12 + Ve G 5 + IVHL (G 5)dr < C,

[(ug,v)| _ |(Hs,B)|
19vio, 91 IIHill-12 = SuPgew 9Bi,, -

where |luy || —12 = Supyex

From now on, 7, is a uniform partition of the domain €2 into triangular (d = 2) or
tetrahedral (d = 3) element K with diameters bounded by a real positive parameter 7 =
maxg ey, {diam(K)}.

Next, we introduce the following finite element subspaces:

Xp = {vi € CO(QQ N X :vplx € P2(K)?, VK € mp),
My = {gn € CO(Q N M : gplx € Pi(K),VK € m},
Wy, = (B € COUQNW :Bylx € P2(K)!, VK € 7).
Furthermore, we need the subspace Xo;, of X; which is defined as
Xon = {vi € X : d(Vir, q) = 0,Vq, € Mp}.

Let Py : LZ(Q)" — Xp and Ry, : LZ(Q)d — W, be L2—0rth0g0nal projections. For
ve H*(Q)? NXand B € H>(Q)¢ N'W, these projections satisfy the following properties
(23]

I Ppvll12 < ClIvih,2, Iv — Puvllo2 + 2RIV = PyV)llo2 < CR3||V]3 2, (13)
IRkBli2 < ClBli2,  IB—RiBllo2+hIVB— RB)llo2 < CH?[Bl3p.  (14)
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Asis known, the following discrete Gronwall lemma will play an important role in analysis
of convergence, so we list it in the following lemma.

Lemma 2.2 [17,23] Let ay, b, and d, for the integer n > 0 be nonnegative numbers such
that

m—1
am+th <r2andn+C*, m>1,
n=0 n=0

then

m m—1
am—l—‘ern < C,exp (1’ Zd,,), m>1
n=0

n=0

3 A Modular Grad-Div Stabilization for the MHD Equations

Let N > 0be afixed integer number and {¢, },11\'=0 be a uniform partition of [0, T] and ¢, = nt
with time step t = % Besides, we define (uj, p;, H}) to be an approximate solution of (1)—
(2) at t = t,,. Then, we construct a modular grad-div stabilization algorithm of the problem
(1)—(2) applying the finite element discretization and a semi-implicit backward Euler scheme
as the temporal-spatial discretization.

Algorithm 3.1 StepI: Given (u], H}') € X), x Wy, find @)+, pi™ HI™) € X, x My, x W),
such that, forall 0 < n < N — 1 and (v, g5, Bp) € X5 x Mj, x Wy,

(d,ﬁZ“, Vi) —l—a(ﬁZH, Vi) + b(uj, ﬁZ“ vi) + pn(Hj x curlI:IZH, Vi) —d(vi, p), +h

+d@t gn) = @), (15)
(@ H T By) 4+ o~ curlHF T curlBy) — p(@) ™ x HY, curlBy,)

= o 1", curlBy), (16)

o) = Pug, HY) = R,Hy, (17)

where d,8] 7! = (A’”rl —s) withs = uor H, and g"+! = %ft:‘*' g(t)dt withg =f or J.

Step II: Given (u"+1 H/™) € X), x W, from (15)~(17), find (™', H} ™) € X) x W,
such that, forall0 <n < N — 1 and (v;,, By) € X;, x Wy,

(! = dig ' ovi) + 1 (V- d ™ Vv )+ (Vu T Vv =0, ()
(@ = By) + B2 (V- diHH V- By) 4+ 2V LV B =0, (19)

with ug = ﬁh, H2 = 1:12 and stabilization parameters §; > 0, y; > 0, i = 1, 2, recalling
d[slh‘l‘i’l (Sn+1 SZ)

In the following part of this section, we analyze the stability and convergence of the
modular grad-div stabilization algorithm for the MHD equations.

3.1 Stability Analysis

In this subsection, we show that Algorithm 3.1 is unconditionally stable. In fact, choosing
v, = 21.'u”Jrl in(18)and By, = 2THZ+1 in (19), we have, on using the equality 2(a—b, a) =
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laj> — |b|? +|a — b|? fora, b € RY, that

1 2 + Bl Y w5 = GG 5 + AUV - wilF o) + g™ — G
+217lV - w G, + BV - dup TG, =0, e

MGG 2 + B2V - BTG — (GG + B2V - HG I ) + G — G
+ 20tV -G, + oIV - diH TG, = 0.

Then, we establish the unconditional stability of Algorithm 3.1 in the following theorem.

Theorem 3.1 Suppose that Assumption (A0)—(A2) hold, then Algorithm 3.1 is uncondition-
ally stable. That is,

N-1

BUY w132+ oV B IG5 + 3 (™ — 6 G, + G — AR )
n=0

N—1
I 32+ 7 Y (VIVE IR+ 200V R o o eurt S
n=0

+ 22|V - HHR )
N-—1

+ ulHY 5,4+ 72 ) (||df”“||02+m||v dw TG 5 + plld HETG
n=0

+ BlIV - dH G )
<C.

Proof First, we set (v, q) = ZT(A"'H, pZH) and B, = 2rI:IZ‘H in (15) and (16), respec-
tively, then add the ensuing equations. Finally, applying (3) and the identity (a x curlb, ¢) =
(¢ x a, curlb) fora, b € H'(Q)¢ yield

~ 1 ~ 1 ? 1,2 1
|| wr ||02 ||uh||()2+7-' ||dt " ||o,2+,U«(||HZ+ ||(),2 ||H ||()2+7-' ||dtHn+ ||02)

+ 2z | Va g, + 2a—lr||cur1ﬁg+1 13, = 2e( &t + o~ @M, curlflp ).
1)

Inserting (20) in (21) to obtain

15 2 — 1 13 2 + 72 ey G o + 18, — w G o + 200 VT

+ (IS S = IHEIG  + T2 BTG, + It -1 E )

+ 2(r_lr||curllfl”+l ||6 )

+ BV G, — IV w5 + TV - diap TG ) + 2n TV wp G

+ Bore(IV -HTHE , = IV -HEG 5 + 2V - dHEIS ) + 2907 |V - HEFS
=2¢(f" @ 20 e (Y curl . (22)

Further, employing the Cauchy—Schwarz and Young inequalities, we get the bound of the
right hand side (RHS) of (22)

tn+1
e, @t < ¢ / I8 13 2d + ve | VEH2 .
n
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N In41 N
207 (! el < € f I3 20 + o~ T llcurlHy G .
In

Together with the above estimates, summing (22) over n from O to N — 1 gives

a2 +//«||H;],V||(2)2 + BV - ul I§ 5 + wBallV-HY 15,
+ 1 Z (v||v”1+1||02 + o Meurt 3, + 21 1V - w3,
+2 1V -3 )

cndl ol Gt
+Z(|" wt R + ot R

1 1 yn+1
+ B — R+ 2uld )

N-1

+ 72 Y (BUIV - dy ™ I + Ball V- R )
n=0

= ||uh||oz'i‘M”Hh”oz'f‘lsl”V llh||02+,32M||V H) ||02

T
e /0 (I3 + 130)112,) dr
-c,

where we have used (13), (14) and Assumption (AQ). The proof is thus complete. O

3.2 Error Estimates of the Modular Algorithm

We are now in a position to state and prove the error estimate for the modular grad-div
stabilization algorithm (15)—(19). In order to obtain the error equation, let (v, g) = (vz, gn)
in (10) and B = B, in (11) with r = t,,41, and use integration by parts to get

(dra(ty+1), vp)+a(ty+1), vo)+b(tyr1), u(tyy1), Vi) + w( (1) x curlH(#,41), Vi)

1 In41
— d(Vp, p(tns1)) + dW(tnt1), gn) = E(tng1), Vi) — ;/ (t = tw) (g (1), Vp)dt,
In

23)
$(dH(trs1), By) + 0 (urlH (31, curlBy) — p(u(tsn) x Hiny 1), curlBy)
th+1
= o~ (i), curlBy) — f (t — 1) (Hyy (1), Byt (24)
th

Here we define d;s(t,+1) = %(s(tn_,_l) —s(t,)) withs = u or H.
Then, subtract (15) and (16) from (23) and (24), respectively, to get

@& v +a@ ™ vi)+bit,), uty), vi)—b), & v —d (vi, p(tas) — pph

+ d@ gp) + p(H(t) x curlH(ty11), vi) — w(H} x curl ;T vy) = BT wy),
(25)

M(dte Bh) +o” (curle"+1 curlBy) — p(u(t,+1) x H(z,), curlBy)
+ p@t x HY, curlBy) = (E5 ™, By), (26)
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where

41 1 [+ 1 [+t
(E{T i) = —;f (t = 1) (e (1), vp)d1 + ;/ (t = 1) (£ (1), va)dt
1, In

n

+ b(u(ty) —ultng1), W(tny1), Vi) + n((H(t) — H(tpg1)) x curlH(#n 1), Vi),
27)

and

11 % In+1 1 In+1
(B3, By) = —;/ (t — t) (Hy (1), Bp)dt + ;/ (t = 1)1 (1), curlBp)dt
17 1

n

— p@@(typ1) x (H(tp) — H(tny1)), curlBp), (28)

and &) = s(t,) — 8§}, with s = u or H. Split the errors as €, = »}, — 1}2 where 7! = u(t,) — "
and 1/72 =0, — 0", and &}, = 97, — q32 where 9%, = H(t,) — H" and qSZ = I:I;’l —H",
respectively. Here, @ denotes interpolation of u(z,) in X;,, and H” denotes interpolation of
H(t,) in Wy,.

Moreover, in order to derive estimate for error, we need establish bounds of E?H and
Eg“ . In fact, according to (4), (7) and Cauchy—Schwarz inequality, it follows from (27) and

(28) that
2
IETT vyl
B2, = sup —2——+
vieX, 1Vvallo2
th+1 2 2
= cr( f (6 D13 5 + w12 2
th
2 In+1 2
+ VUt D13 / IVu, ()11 ,dt
In
) tn+1 2
+ [IVHE D13 / ||VH,(r)||0,2dr), (29)
n
and

2
(B3 Byl 2 2
s = sup 2 e[RRI pr
2 12 B,ew, llcurlByllo 2 . 02 #1-1.2

n

5 Int1 2
+ Va3 5 / IVHL ()3 5 ). (30)

n

Further, add (29) and (30). Then, summing the ensuing inequality with respect to n from
n=0ton =N — 1, we arrive at

N—-1

+1,2 1,2
D AR 5+ B2 )
n=0

T
<Ct /O UEOG2 + g2y 5 + 13 ONG 5 + IH 112, 5)d

T
+ Ct(IVultas DI 2 + IVHEDIG 2) / (Va5 + IVH (D[ 5)dr.
0
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Based on Assumption (A0) and Lemma 2.1, we arrive at
N-1

T > B2+ BT, ) < Crn (31)
n=0

Finally, we consider the effect of step II of Algorithm 3.1. Note that

<w Vh) +B1 (V- dru(tns1), V- Vi) = —1(V - ultys1), V - V),

T
(32)
H(tn11) — H(tht1)
( R ,Bh> + B2 (V- diH(ty11). V - By) = =y2(V - H(ty11), V - By).
(33)
Subtract (18) and (19) from (32) and (33), respectively, which in turn imply that
n+1 n+l
(“7 v,,) + B (V-die™ V. ovy) + (Ve Vv =0 (34)
T

eYIL~I+1 - érIliJrl n+1 n+1
L1 B, |+ 5 (v dee V-Bh>+y2(V VB =0, (35)

where e = s(t,) — sz. Split the errors as el = — ¥; and ¢}, = 77, — ¢, where
h=u; —u" and ¢; = H} — H". Let i® =u;, andHO HO
h h h
Selecting v;, = 2t l/t"H in (34) and decomposmg the errors give the estimate,
I R+ 19— 9 1R+ 2nT Y R
+ B (IV -5 13 = IV - Wh 2 + IV - dw 1R )
=281V - diy TV Ayt 42810V - din TV )

n+1
+ 2nT(Vogpth v ,/,"+1)+||,/,h 132
et :3 n+1 fr+1 2
<Cpit f V0I5 2dt + —— ||v Ay G, + Chi / IV 0,115 2t
ty In
ﬂ] An+1
+ —nv w/f,,||02+Cy1r||Vn"“||02+—||v AR PO [

where we have apply the Cauchy—Schwarz and Young inequality. Reorganizing the above
inequality it follows that

5 B = 1 R+ 1 — R, y1r||v VG, — BTV G,
+ BV R, = IV IR+ = |v Ay 15 .0)
— CHIl+ 1) / IV 9 15 2t — Cylrnw"“ 15.2- (36)
Arguing in exactly the same way as in the proof of (36), we obtain
16y 12, = 16012, + 18y — @2, + szIIV 13, — BtV -BLI3

+ (V- 53 G2 — IV - ¢h||02+ IIV di it 15)
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_ Ch+1) f V013 2dt — Crat V012 . 37

Theorem 3.2 Suppose that Assumption (A0)—(A2) are satisfied, then the following estimate
holds

N—-1
el 15,2 + il 152+ BillV - e 5. + nBallV - e 152 + v D IVETIIG ,
n=0
N-—1 N—1 (38)
+o” TZ||VA”+1||0,2+2V1TZ||V'eZ+l||(%,2+2V2TZ||V 5.
n=0 n=0

< C(h4+rh3+r ).

Al Antl
Proof Setting v, = 21'VIZ+ € Xon and g, = 0in (25), and B;, = 2‘L'¢Z+ in (26), adding
the two equations and decomposing the errors, we deduce that

~An+1 2 2 An+1 2 an+1 2 2 2 An+1 2
W 12— 102 + 220 130+ by 122 — 16713 + T2 1didy 12.5)

~An+1 2 1 ~n+1 2
+ 2vT||VY,, ||02+20 t|lcurlg;, 5.2

A +1
= 20(d" gy )—i-ZT(d, B AR TR 2 a2 M

1
+ 20 e (curly’y ™, curlg) )+2tb(u(tn),u(tn+1),1/fh )—21b(uh,”‘+l v

An+1 R
+ 2pt (H(t,) x curlH(t,41), ¢Z+ ) — 2ut(H! x curlHZ“, 'ﬁh

an Antl
— 2ut(u(ty41) x H(ty), curld)h ) + 2;1,7:(””rl x H}, curl¢Z+ )
n+1

An+1
—or g —2r @ gy, (39)
Inserting +2th(u}, u(tyt1), 1},1 ), :i:2rb(”’+l ntl wh ), j:2,ut(H” x curlH(t,41),
]/I ) :l:2;u(H"Jrl X curln"Jrl 1/Ih ), F2ut(u(t,+1) x HY, curlqASh )and £2ut (! x
HZH, curl¢h ) into the RHS of (39) and using (3), equation (39) is rewritten as

An+l o 2 2 ~n+l o ~n+l o 2 2 ~ntl 5
1y 132 = IWEIR, + T2 Nddy, 130 + iy 132 — 10713, + 2lldiby 132)

An+1 2 1 ~n+1 2
+ vt || VY, ||02+20 t|lcurlg, 5.

A +1
— 2 g )+ 2edin’ L gy PRI 2 v://’

+ 207! r(curln';_, ,curlq)h )+21b(n2,u(zn+1), 'ﬁh

u . +1
— 2h (@ (i) )+ 2eb(—rd i g g

. - 1
G TARE il >+2/u(n’;, x curlH(ty41), ¥
1
— 2pt(¢) x curlH(t,41), 'ﬁh )+2pu:( TaftH"Jrl X curln"Jrl ¢Z+

1
+ 2,ur(H”+] X curln”“ 'ﬁh )— 2T(Erf+] ¢Z+

An+1 An+1 +1
— 2uT(uty41) X 1y, curlgy, >+2m(u(rn+1> x ¢y, curldy, ) —2r (BTG,

A A 1
— 2pt (! x (—rd HTY, Curl¢h o 2ut (it x HZ+1,curl¢Z+ ), (40)
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in which we have used the fact that (a x curlb, ¢) = (¢ x a, curlb) fora, b € H}(Q)4.
‘We now estimate each terms of the RHS of (40) separately. Applying the Cauchy—Schwarz
and Young inequalities, we have the following bounds,

tn+]
el v )|<c/ Il e+ 00 R
17

221 @d ' ¢ < ¢ ! v d 7
T|dmy . ¢, )= I 'le||02 1+

In

2
S fcurldy, IIO,Z,

~ An+l1
20r|(Vi Vi, )|<CTIIVn”+]|Ioz+ ||wfh 15,2

_ o An+1
20 1r|(curlr}';1 curl¢h |<CT||curln”+1||0!2—|— ||curl¢h ||(2)’2,

Next, making use of (4), (5), (6), the inverse inequality, the Cauchy—Schwarz and Young’s
inequalities, we arrive at

VT ~n+1
27 |b (s utn41), 'ﬁh )|<CT”Vu(fn—H)”o2||V77u||02+ IIV'/fh 15.2-

An+1
2t|b(¥p, ultys1), 'ﬁh )I < Crlultas )31V ||02+ ||V'ﬁh 115.2-

| 1 gnt _1 1 | Antl
2elb(u) — o)t it oy, Y <crh 2 ujf — )t ||02||V17"+ ||oz||wh llo.2

-1 An+1 1 2
<Cth |uj — n ||02||V77n+ ||02+ ||V¢h ||0,2,

A~ ~ n+]
2 lb@t, gt g Y < co|vi "+1||02||Vn”+‘||0,2+ ||V~/fh 152

Further, combining (7), (8) and (9) with the Cauchy—Schwarz and Young’s inequalities shows
that

n+l
2ut|(ny x curlH(t,41), '/f;, )I < CT[Htagr D132 1107% 1152 + IIVllfh 0,25

2ut|(@) x curlH(ty 1), ¥y >|<Cr||H(rn+1>||22||¢"||oz+ ||WZ+’||0,2,
2 (M) — FH) x curly’ )l < CollBE — AP R 0o ||Vn"+‘||0,2
SV 1B
2| (AT x curly’y Ilfh )| < Cr||cur1H”+1||02||curln"+1||0’2

An+1
”th 15,25

T An+1 >
l[curlgy, 5.2

—1
An+1 o
2ut|(U(tys1) X 0y, curlg,, )| < Crnu(an)u%,znn'},||%,2 +

—1
~n+1 2 2 ~ntl o
2put|(altyy1) x @, curlg, )| < Crllultu)2,116415,2 + || curlp, 152,

A ~n+1
2|t x (HE — 1Y, curlg, )| < Cr|HY — H 3,0 ||Vn"“||o,2
—1

o T ~n+1 2
+ curlgy, 152,
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2|ttt < HH curlg) Yl < Crlleurl 3 5 V3 5
071
_l’_

Antl o
||Cur1¢h ”02.

Finally, the consistency error terms are bounded as

2| T 20 @ ) < o e 12+Cr||E"+1||_12

-1 An+l

o T ~n+1 2
+ l|curlg, ||0,2 |Vl/lh ||0,2-

Use above estimates, insert (36) and (37) into (40) and rearrange. Then,
An+1 ~n+1 An+l
I G, — I IG + 1 =, 15, + 22y, 15, vV, 15,
An+l1 An+l _ ~n+l1
+ 1) G~ DRI 2+ — b, ||32+r2||d,¢h 15.0) + o Tllcurld, 15,

'L'
+ 1 (nv Vi B = IV iR+ 5 3

IV - dyyyt! ||0,2> +ntlv ey,
+ Bt (||V-¢z+‘ 1, — IV - @)%, + = ||V d,¢"+‘||0,2)+mr||v o3,

< Ct (I1YIG, + 15, + BV - wzno,z + 1oV - $1 115 )
+ Ct(IVart g, + 1Va 5.0

1 Iht1
e ( / a0 13 2t + / Iel2 2dt + IV 3 +ru||Vn”+1||o,2)
1 In

+Cl+1) ()81 / " Va2 adt + o /, ||VnH,||é,2dr)

+ €t (Va1 IV IR o+ 198 I3 1w 1 o+ VR 131 13 )
+ Ct (2h 7 i IR VI o + 2 B 1 G )

+ Cr (2h N IV IR+ IETT2 + B2, ). (1)

where we have used Lemma 2.1.

Sum (41) from n = 0 to N — 1 and use Theorem 3.1, (31) and the accuracy of the
interpolation to yield

N—-1
n+1
1N 182 + il o 152+ BV - UN 132+ B2V - oY 152 +vT Y IVE, 152
n=0
- N— N—-1
;Z leundy 132+ Y2 (V¥ B+ vanl V-85 13)
n=0 n=0
1

N—
<Ct Y (19152 + 161152+ BV - WhlG2 + B2V - $1115.2)
n=0

+ C* + T+ th® + 1Y 5 + 1l g3, + BV - Y3132 + B2V - #1113 0)-
(42)
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In view of Lemma 2.2, we have
N—1

An+l
1PN 152+ ) 15,2 + AUV - ¥V 152 + B2V - 8 5 +vT Y IV, 5,
n=0
- N—1 4l N-—1
An
+ =3 leurldy, 132+ Y (nIV v IR+ vl V- 657 E )
o n=0 n=0

< C* 4+ 1h3 + 12+ 1315, + )15, + BV - YIS 2 + B2llV - 0113 ).

Then we have completed the proof by using ]/I2 = ¢2 = 0 and applying the triangle
inequality. O

4 Numerical Experiments

In this section, we give some numerical examples to illustrate the theoretical results proven in
the previous sections and to show the effectiveness of Algorithm 3.1 for the 2D/3D unsteady
incompressible MHD problem. Convergence will be checked against problems with known
analytical solutions and a classical benchmark problem, Hartmann flow, which is the MHD
version of classical Poiseuille flow. In the given experiments, the velocity, pressure and
magnetic are approximated by the P, — P; — P, element pair.

4.1 Analytical Solutions

The prescribed solutions are in €2 = (0, 1)? and d = 2, 3. The right hand sides of problem
(1) are determined by the following exact solutions with « an arbitrary positive constant

Uy = amw sin? (mx)sin(wy) cos(mwy)cos(t), uy = —amsin(rx) sin? (y) cos(mrx) cos(t),
H) = asin(mrx) cos(wy)cos(t), Hr = —acos(mwx)sin(ry)cos(t),
p = acos(irx) cos(my) cos(t),
ford =2 and
Uy = —%an sin? (x) sin(ry) cos(my) sin(mwz) cos(iwrz) cos(t),
s = arr sin(rrx) cos(rx) sin (7 y) sin( z) cos(z) cos(r),
uz = —%om sin(7rx) cos(rx) sin(;wr y) cos(mry) sin’ (z) cos(t),
p = acos(mrx) cos(mwy) cos(mwz) cos(t),
H| = —%an sin(x) cos(mwry) cos(mz) cos(t),
H, = am cos(mx) sin(mwy) cos(mz) cos(t),
H; = —%om cos(mx) cos(y) sin(mrz) cos(t),

for d = 3. Besides, choose equation parameters v = 1, u = 1 and 0 = 1, the stabilization
parameters y; = y» = 1 and 81 = > = 0.2, « = 0.01 and the final time 7 = 1.

Firstly, we implement the numerical tests to verify the unconditional stability of the pre-
sented method. In order to verify Theorem 3.1, we compute the values of ||V - u;lv llo.2.
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Table1 ||V - ulllv llo,2 and ||V - H}Ilv lo,2 of the considered scheme for 2D problem

1
T
4 8 16 32 64
IV -ulNlio,2 h=1 5.30E—03 6.07E—03 6.57E—03 6.91E—03 7.17E—03
h= 1]*6 2.53E-03 2.73E-03 2.86E—03 2.97E—-03 3.07E—03
1V - HQ’HOQ h= % 5.27E—04 6.89E—04 8.35E—04 9.66E—04 1.08E—03
h= 1]*6 3.61E-04 4.22E—04 4.74E—04 5.22E—04 5.65E—04
Table 2 HVﬁ}]lV llo,2 and ||VIQI}]Iv llo,2 of the considered scheme for 2D problem
1
T
4 8 16 32 64
||Vﬁ,]lv||0’2 h = % 5.33E—02 5.52E—02 5.60E—02 5.64E—02 5.66E—02
h= % 5.49E—02 5.70E—02 5.80E—02 5.84E—02 5.86E—02
||VI:I{IV\|0,2 h = % 2.46E—02 2.56E—02 2.61E—02 2.63E—02 2.64E—02
h= % 2.48E—02 2.58E—02 2.63E—02 2.65E—02 2.66E—02
Table3 ||V - u}[lv llo,2 and ||V - H/11V llp,2 of the considered scheme for 3D problem
1
T
4 8 16 32 64
IV -u o2 h=% 2.87E—04 2.73E—04 2.23E—04 1.82E—04 1.84E—04
= % 6.02E—05 5.77E—05 4.69E—05 3.49E—-05 2.52E—05
Iv-HY o2 h=% 2.49E—04 2.33E—04 1.90E—04 1.57E—04 1.55E—04
h= % 6.02E—05 5.23E—-05 4.06E—05 2.90E—05 2.15E—-05
Table 4 HVﬁIIIV llo,2 and ||VI:I}ILV llo,2 of the considered scheme for 3D problem
1
T
4 8 16 32 64
IV - ulllo.2 h=14 1.49E—00 1.71E—00 1.83E—00 1.89E—00 1.91E—00
= % 1.49E—00 1.71E-00 1.83E—00 1.89E—00 1.92E—00
IvV-HY o h=1 6.56E—01 7.55E—01 8.07E—01 8.33E—01 8.47E—01
h= % 6.56E—01 7.55E-01 8.07E—01 8.34E—01 8.47E—01

V&N [lo.2, IV - HY [lo,2 and |[VHY [|o,> for the 2D/3D MHD problems with different time
steps, which are listed in Tables 1, 2, 3 and 4. From these tables, we find that the values of
||Vﬁ,llV llo,2 and ||VI:I,11V llo,2 approach constants, which shows that no time-step restriction is
needed. Besides, the values of ||V - u;LV llo,2 and |V - H;LV llo,2 are small, which shows that the
numerical solutions have better conservation.
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Table 5 Errors and convergence
rates of the considered scheme
with 4 = O(r) for 2D problem

Err(ey) Rate Err(V-e,) Rate Err(Vé,) Rate

A=

4 292E-04 - 8.97E—-04 - 272E-03 -

8 3.09E-05 324 145E-04 263  434E-04 2.65
16 5.83E-06 241 3.30E-05 2.14  121E-04 1.84
32 284E-06 1.04 7.18E—06 220 3.02E-05 2.00
64 1.42E-06 1.00 1.84E—06 196 1.17E-05 1.37

Table 6 Errors and convergence rates of the considered scheme with 7 = O(t) for 2D problem

% Err(ey) Rate Err(V-ep) Rate Err(Vépg) Rate
4 4.80E—05 - 1.55E—-04 - 5.55E—-04 -

8 2.11E—-05 1.19 2.36E—05 2.72 1.08E—04 2.36
16 1.07E—-05 0.98 5.10E—06 221 4.36E—05 1.31
32 5.38E—06 0.99 1.09E—06 2.23 2.07E—05 1.08
64 2.70E—-06 1.00 2.84E—-07 1.94 1.03E—-05 1.00

Table 7 Errors and convergence
rates of the considered scheme
with & = O(z) for 3D problem

Err(ey) Rate Err(V-e,) Rate Err(Vé,) Rate

A=

2.84E-02 - 3.19E-01 - 9.14E-01 -

6.6OE—-03 2.09 1.53E-01 1.06  5.39E-01 0.76
2.77E—03 2.17 9.90E—-02 1.07  3.76E-01  0.89
149E—-03 2.16 7.30E—02 1.06 2.89E—-01 0.92
10 9.34E—04 2.09 5.78E—02 1.05 234E-01 0.95
12 6.46E—04 2.02 4.78E-02 1.04 197E-01 0.94

o AN BN

Secondly, we implement the numerical tests to verify the error convergence rate of Algo-
rithm 3.1, which is presented in Theorem 3.2. Here, we pick several values of t: 1/4, 1/8,
1/16, 1/32, 1/64 for the 2D problem and 1/2, 1/4, 1/6, 1/8, 1/10, 1/12 for the 3D problem. Let
Err(ey) denote the error by

1/2

N—-1
Err(es) = <f > llert! ||3,2>
n=0

We present the error results of the velocity and magnetic field in Tables 5, 6, 7 and 8.
From these numerical results, the expected first-order time accuracy (or better) is seen for
all relevant quantities. Moreover, we show the spatial convergence rates of the velocity and
magnetic field for 2D and 3D problems in Tables 9, 10, 11 and 12. From these tables, we find
that the desired second-order accuracy (or better) for Err(V - e,), Err(V -ey), Err(Vé,)
and Err(Veép) are obtained. As expected, the values of Err(V -e,) and Err(V - eg) are
small, which shows that the numerical solutions of the presented method has better mass
conservation.

Thirdly, for the timing test, we compare our algorithm with the standard grad-div algo-
rithm. We set t = h = 1/32, and vary the grad-div parameters such that 0 < g1, B2 < 8000
and 0 < y1, 2 < 20,000 at T = 1 for 2D problem. For the standard grad-div algorithm and
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Table 8 Errors and convergence rates of the considered scheme with 7 = O(t) for 3D problem

1 Err(es) Rate Err(V -eg) Rate Err(Vég) Rate
2 1.30E—-02 - 1.95E-01 - 3.81E-01 -
4 8.37E—03 0.64 8.85E—-02 1.14 2.25E-01 0.76
6 6.05E—03 0.80 5.68E—02 1.09 1.57E-01 0.89
8 4.66E—03 0.91 4.17E—-02 1.07 1.21E-01 091
10 3.97E-03 0.72 3.29E-02 1.06 9.81E—-02 0.94
12 3.41E-03 0.83 2.72E-02 1.04 8.25E—-02 0.95
Faes of he conidered chome .k Err(Vee)  Rae  Err(Ve) R
with T = O(h?) for 2D problem 4 2 36E—03 N 3 16E—03 N

8 6.29E—04 1.91 5.68E—04 2.48

16 1.51E—04 2.06 1.15E—-04 2.30

32 3.97E-05 1.93 2.83E—05 2.02

64 1.04E—05 1.93 7.08E—06 2.00
Fatesof the comidered cheme  h___ Err(Vee)  Rae  Err(Vey)  Rae
with 7 = O(hz) for 2D problem 4 5 40E—04 B 59E—04 B

8 1.08E—04 2.32 8.69E—05 2.76

16 2.51E-05 2.11 1.72E—-05 2.34

32 5.94E—-06 2.08 4.05E—06 2.09

64 1.60E—06 1.90 1.02E—-06 1.99
e E e T ) e prce e
with © = O(h?) for 3D problem 6.89E_04 - | O4E—00 -

4 1.68E—04 2.04 3.29E—-03 1.66

6 4.82E—05 3.08 1.29E—-03 2.31

8 1.89E—-05 3.25 6.56E—04 2.35

10 8.92E—06 3.36 3.92E—-04 2.31
T Ern s T o fwe e e
with t = (’)(hz) for 3D problem 2 8.38E—04 B 302602 B

4 1.45E—04 2.53 8.82E—03 1.78

6 4.33E-05 2.98 4.00E—03 1.95

8 1.86E—05 2.94 2.26E—03 1.99

10 9.80E—06 2.87 1.45E-03 1.99
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Table 13 Computational time by different grad-div algorithms

B1 Y1 B %) Standard time (s) Modular time (s) Percent (%)
0 0.2 0 0.2 480.861 162.043 33.70
0 2 0 2 1098.990 162.616 14.80
0 20 0 20 1758.690 161.553 9.19
0 200 0 200 1759.390 162.729 9.25
0 2000 0 2000 1642.630 163.620 9.96
0 20,000 0 20,000 1643.720 162.793 9.90
0.01 0.2 0.01 0.2 522.554 163.245 31.24
0.02 0.2 0.02 0.2 662.987 162.481 24.51
0.04 0.2 0.04 0.2 646.066 163.483 25.30
0.08 0.2 0.08 0.2 1656.210 161.939 9.78
0.8 0.2 0.8 0.2 1975.630 161.572 8.18
8 0.2 8 0.2 1974.230 164.140 8.31
80 0.2 80 0.2 1971.820 165.497 8.39
800 0.2 800 0.2 1611.570 164.242 10.19
8000 0.2 8000 0.2 1610.720 165.794 10.29

Step I of the modular grad-div algorithm, we use GMRES to solve. For Step II of the modular
grad-div algorithm, at each time step, we use UMFPACK to solve. We list the computational
times in Table 13. We see that the computational time cost by the modular grad-div algorithm
does not increase as the stabilization parameters increase. However, for the standard grad-div
algorithm, increasing stabilization parameters increases computational time. In addition, we
can find that the present method costs less computational time, which is not surprising since
Step I of the presented algorithm requires solution of a standard system without the added
coupling or ill-conditioning of the grad-div terms and Step II is the same uncoupled and
simple grad-div system at every timestep.

4.2 Hartmann Flow

Hartmann flow is a classical benchmark problem for the MHD model which involves a steady
unidirectional flow. It describes the flow of a liquid metal through a channel under an external
transverse magnetic field [21] and has been investigated in [42,44,45,48]. The related physical
parameters R, (fluid Reynolds number), R,, (magnetic Reynolds number) and the coupling
coefficient s are given by

1 1
Re=—-, Ry=po, s=—,
v 128

in our numerical examples. We consider both 2D/3D Hartmann flows with Hartmann number
H, = /R.Rys.

Firstly, we consider the domain 2 = (0, 2) x (—1, 1) under the influence of the transverse
magnetic field HY = (0, 1). The exact solutions to the 2D MHD problem are given by [21]

GRe (1 cosh(yHa)> 0
H, tanh(H,) cosh(H,) /" )’

u(x,y) = <

@ Springer



3 Page20of24 Journal of Scientific Computing (2020) 82:3

x10™
8 :

Analytical solution | |
% Algorithm 3.1

4l
—_ 27
= >
o o 3
S T
2+
4t
01 Analytical solution i sl
%  Algorithm 3.1 B
001 . . . . . . . . . 8 . . . . . . . . .
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 -04 -02 0 02 04 06 08 1
y y

Fig.1 H, = 0.5, R, = R;; = 0.1 (left: velocity; right: magnetic field)

02— —— 0.02 —_——
0.18 , Analytical solution
0.015 | % Algorithm 3.1 1
0.16 | 1
001}
0141
_ od2h oo ¢
= =
< o1} < o A
> | =
0.08 -0.005 |
0.06 1
001 |
004r Analytical soluti
nalytical solution
0.02 % Algorithm 3.1 -0.015 1
S 002 e ‘
1 -08 -06 -04 02 0 02 04 06 08 1 1 -08 -06 04 02 0 02 04 06 08 1

y y

Fig.2 H, =5, R, = Ry = 1 (left: velocity; right: magnetic field)

G2 (sinh(yH,) 2
p(x,y) =—-Gx — — (¢ - y) + po.

2s \ sinh(H,)
_ (G /sinh(yH,)
Hex,y) = (?( sinh(H,) y)’ ]) '

We impose no-slip boundary conditions on the wall and Neumann boundary conditions on
the inlet and the outlet:

u=0 ony==l1,
(pI—R;'Vuyn=pn onx=0,2
nxH=nx H¢ on 02,

where [ is the identity matrix.

For the 2D problem, we set G = 1, pg = 10, s = 25 with R, = R,, = 0.1 and
R, =R,, =1.Weselecth =1/60,7 = 1and y; = y» = 1, 1 = B2 = 0.2. The numerical
solutions are computed at 7 = 50 for the these cases, respectively. The analytical solutions
u(l, y) and H(1, y) are presented in Figs. 1 and 2 alongside the numerical ones u(1, y;) and
H(, yx) (yx = =1 + 0.1k, k = 0, ..., 20) obtained by Algorithm 3.1. From the figures,
we find that the numerical solutions of our scheme are consistent with the exact solutions of
Hartmann flow.
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Secondly, we consider the 3D Hartmann flow with the rectangular duct Q = (0, 2) x
(=0, y0) X (—z0, zo) under the influence of the uniform magnetic field H? = (0,1, 0). The
solutions of this model are of the following form [21,42,48]:

u(x, y,2) = (Hy(y,2),0,0), H(x, y,2) = (Hy(y,2), 1,0),
p(x,y,2) = —Gx — sH} (v, 2)/2 + po,

with
1 —+00 —+00
Ho(y,2) = =GR = 25) + ) ai(y) cos(iz), Hu(y,2) = Y bi(y) cos(hia),
i=0 i=0
where

a; = A; cosh(p1y) + B; cosh(p2y),

1 A —pi AP —p3

by (A,- L PV Ginh(pry) + B L2 sinh(pay) ) .
Res Pl )2)

—p1(A? = pd) . p2(A7 — pd)

———L—"22u;(yo) sinh(payo), Bi = ———1-

1 L

2i + D) —2GR, .
ji= CEDT 2 2 W2k Ha 32 H2A wiG0) = e Sin(hizo),
220 ’ A°20

vi = p2(Af — p}) sinh(p1yo) cosh(payo) — pi(AF — p3) sinh(p2yo) cosh(p1yo).

A; = u; (yo) sinh(p1yo),

The boundary conditions are imposed by

u=0 ony==yy and z = %z,
(pI—RE_IVu)n:pn onx =0 and x =2,
nxH=nxH onaQ.

We take G = 1, yg = % and zg = %. Besides, we design this investigation with the
parameters R, = R, = 30,s =1, y; = y» = 1 and 81 = B> = 0.2. The numerical results
of the presented method, Zhang’s method [48] and the Linearized Crank—Nicolson method
at final time 7 = 10 are shown in Table 14. From this table, we can find that the presented
method has the best accuracy among these methods.

5 Conclusions

In this work, we have presented an Euler semi-implicit time-discrete, modular grad-div stabi-
lization algorithm for the time-dependent MHD equations. Then, we theoretically establish
the unconditional stability and provide rigorous error estimates of the algorithm. The pre-
sented algorithm is unaffected by variations of grad-div stabilization parameters whereas
the cost of standard implementations grow rapidly as the parameters grow. Numerical tests
illustrate the theoretical results and computational efficiency.

In the future, we will consider some second order in time numerical schemes with grad-div
stabilization to solve the time-dependent MHD equations, such as the BDF2 scheme or the
Crank—Nicolson scheme.
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Table 14 Errors for the different methods of 3D Hartmann flow at T = 10

Methods t=h a(T) —u o2 IH(T) — HY (|0,
Algorithm 3.1 1/4 5.36E—02 4.65E—02
Zhang’s algorithm [48] 1/4 9.49E—-02 7.22E—02
Linearized Crank—Nicolson [48] 1/4 9.50E—02 7.22E—-02
Algorithm 3.1 1/8 2.40E—02 2.55E—-02
Zhang’s algorithm [48] 1/8 3.58E—-02 3.24E-02
Linearized Crank—Nicolson [48] 1/8 3.58E—02 3.24E-02
Algorithm 3.1 1/16 1.09E—02 8.84E—-03
Zhang’s algorithm [48] 1/16 1.15E—-02 1.08E—02
Linearized Crank—Nicolson [48] 1/16 1.15E—-02 1.08E—02
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