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Abstract
In this paper, we study an efficient andmodular grad-div stabilization algorithm for the 2D/3D
nonstationary incompressible magnetohydrodynamic equations. The considered algorithm
is a fully discrete first-order scheme based on the mixed finite element method and does not
increase computational time for increasing stabilization parameters. Also, both unconditional
stability and convergence analysis are given. Finally, numerical experiments are presented to
verify both the numerical theory and efficiency of the presented algorithm.

Keywords Magnetohydrodynamic model · Fully discrete scheme · Modular grad-div
stabilization · Mixed finite element method

1 Introduction

The magnetohydrodynamic (MHD) model is mainly used to describe the interaction of an
electrically conducting fluid with an external magnetic field, which has been widely applied
in industry and engineering, such as for liquid metal cooling of nuclear reactors, electromag-
netic pumping, stirring of liquid metals and so on [11,31]. The governing equations of the
MHDmodel include the incompressible Navier–Stokes equations of hydrodynamics coupled
with the Maxwell system of electromagnetism (including divergence-free constraint for the
magnetic field) via the Lorentz force and Ohm’s law. Due to the widely practical applica-
tion and computational complexity of the MHD model, much effort has been spent on the
development of some efficient numerical methods to investigate this problem.
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Based on a conservative formulation to ensure the local divergence-free condition of the
magnetic fieldweakly, a finite elementmethod has been proposed in [39] for 3Dnonstationary
incompressibleMHDflowswith both high and lowmagnetic Reynolds numbers. Amari et al.
[3] have developed a more general anisotropic semi-implicit scheme for the MHD problem.
This scheme can deal with domains that do not allow the use of direct methods. In [4], a term-
by-term stabilized finite element formulation based on orthogonal subscales for the numerical
approximation of the incompressible MHD system has been proposed and analyzed. In order
to stabilize the unresolved scales in MHD simulations, Belenli et al. [5] have studied a
subgrid stabilization finite element method. In [36], Prohl has discussed some coupling and
decoupling fully discrete schemes and verified convergence of these schemes towards weak
solutions for vanishing discretization parameters. Case et al. [8] have presented an energy,
cross-helicity and magnetic helicity preserving method for the considered equations which
is a semi-implicit Galerkin finite element discretization and enforces pointwise solenoidal
constraints by employing the Scott–Vogelius finite elements.

Additionally, a finite element spatial approximation of the MHD system under smooth
domains and data has been considered [24], and the optimal L2-norm error estimates are
obtained by using a new negative-norm technique without the standard duality argument.
Applying the implicit Euler scheme to discretize the two-dimensionalMHDequations in time,
H2-uniform stability has been obtained [40]. In addition, He and Zhang [23,46] have studied
the unconditional stability and convergence of the first order Euler semi-implicit scheme
for the three-dimensional incompressible MHD equations. Moreover, compared to the semi-
implicit scheme [23,46], Yang and He [43] have analysed the implicit/explicit scheme. This
scheme only needs to solve the constant matrix equations, but it is conditionally stable.
Furthermore, in order to increase convergence order in time, based on the Crank–Nicolson
extrapolation scheme, Zhang et al. [47] have considered the temporal discretization while
Dong and He [15] have considered the full discretization. In [44], a second order backward
difference Newton scheme has been designed, which is a combination of the second order
backward difference approximation for time terms and the Newton treatment for nonlinear
terms. However, mass conservation law is often ignored or not strongly enforced by most
schemes for the MHD model. In fact, if mass conservation is correctly accounted for in the
numerical schemes, then resulting numerical solutions have greater physical accuracy. Due
to the importance of mass conservation, there is a natural interest to study how to design
numerical schemes to keep this law.

The grad-div stabilization [35], which is studied in [18] initially, is a simple, useful and
popular technique for incompressible flow problems. It adds a penalty termwith respect to the
continuity equation to themomentum equation and can penalize for lack ofmass conservation
and improve solution accuracy by reducing the effect of the pressure on the velocity error
[26]. Hence, this tool has been widely studied for the incompressible flows over the past
decade. In particular, for the Oseen equations, de Frutos et al. [13] have proved that adding
a grad-div stabilization term to the Galerkin approximation has a stabilizing effect for small
viscosity. Further, they have extended the previous work to the Navier–Stokes equations with
high Reynolds number [14]. In [19], the grad-div stabilized finite element discretizations
of the singularly perturbed Oseen equations on properly layer-adapted meshes have been
considered.

Combination of grad-div stabilization with other algorithms has been investigated by
many authors. Within the viewpoints of variational multiscale methods and stabilization
procedures of least-square type, the grad-div stabilization as a pressure subgrid model has
been studied [34]. A combination of the streamline-upwind/Petrov–Galerkin formulation
and the grad-div stabilization applied to the stationary Navier–Stokes equations has been
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considered [33]. In [10], the local projection stabilization method which combines the idea
of streamline upwinding with the grad-div stabilization has been proposed. Based on the
Yosida splitting methods, Rebholz and Xiao [37] have analyzed the accuracy of divergence
free elements together with grad-div stabilization. All above algorithms together with the
grad-div stabilization are based on conforming finite element methods in space. For grad-
div stabilization with discontinuous finite element method, Akbas et al. [2] have designed
and tested broken grad-div stabilization for incompressible flows in order to get the desired
pressure robustness effect.

Although the grad-div stabilization term is consistent for continuous equations, the finite
element solution depends on the stabilization parameter. As is known, too large values of the
stabilization parameter overstabilize the problem, make the corresponding linear algebraic
system poorly conditioned and cost lots of computational time resulting from decreased
sparsity and increased coupling. Hence, the choice of the stabilization parameter has drawn
attention. Jenkins et al. [25] have given an analytic support for the numerical observation
from [20] that the use of large stabilization parameters is appropriate in certain situations,
and found that the optimal stabilization parameter could range from being very small to very
large. Ahmed [1] has extended the idea presented for the Stokes problem in [25] to the Oseen
equations. In [12], a restricted range of possible values for the parameter in 3D turbulent flows
away from walls has been provided. Besides, a better understanding of grad-div stabilization
is achieved,when the limit behavior for arbitrarily large stabilization parameter is investigated
[7]. As it is claimed in [7], with the stabilization parameter tending to infinity, the limit of
the grad-div stabilized Taylor–Hood solution of the Navier–Stokes problem converges to
the Scott–Vogelius solution. Further, the convergence rate is improved in [30]. Also, if the
stabilization parameter tends to infinity, then the solution of the Chorin/Temam projection
methods for Navier–Stokes equations equipped with the grad-div stabilization converges to
the associated coupled method solution [28]. In addition, in order to understand how small
changes in the stabilization parameter could affect the solution,Neda et al. [32] have presented
a numerical study of the sensitivity of the parameter for mixed finite element discretizations
of incompressible flow problems. They have found that the solutions are the most sensitive
for small values of the stabilization parameter in certain situations.

Recently, in order to increase sparsity and decrease coupling of coefficient matrices for
velocity created by grad-div stabilization, Linke and Rebholz [29] have proposed sparse
grad-div stabilization, which has similar advantages as grad-div stabilization but is more
efficient because of a sparser structure of its matrices. Furthermore, Çıbık [9] has extended
the idea to the optimal control of an incompressible stationary flow problem. A combination
of the projection methods and the sparse grad-div stabilization applied to the Navier–Stokes
equations has been considered [6]. Besides, as it is found by many authors [20,25,32], the
use of large stabilization parameters is unavoidable in certain situations. However, the solver
for large stabilization parameters may slow down and even lead breakdown. To address this
issue, an effective variant of the grad-div stabilization, called modular grad-div stabilization
[17], is presented for calculating solutions to the Navier–Stokes equations. This stabilization
is found to be unaffected by variations of the stabilization parameters whereas the cost of the
standard technique grows rapidly as the parameter grows. Later, Rong and Fiordilino [38]
have improved this modular grad-div stabilization with the first order backward Euler time
discretization to the second order backward difference time discretization.

Since the modular grad-div stabilization have proven useful for a large range of stabiliza-
tion parameters, we apply it to the MHD model to improve mass conservation of numerical
solutions. Inspired by [17],wedevelop anEuler semi-implicit time-discrete,modular grad-div
stabilization algorithm for the 2D/3D MHD problem and give the corresponding numerical
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analysis and numerical tests. The remainder of this paper is as follows. In Sect. 2,we introduce
nonstationary incompressible MHD equations and notation, lemmas and necessary prelim-
inaries. In the next section, we show the modular grad-div stabilization algorithm for the
considered equations and prove unconditional stability and convergence. Then, in Sect. 4,
numerical experiments show that the presentedmethod is efficient. Section 5 is the conclusion
of this paper.

2 Preliminaries

Thiswork is concernedwith the following 2D/3Dnonstationary incompressibleMHDsystem
that couples the incompressible Navier–Stokes equations with Maxwell equations under the
influence of body forces and currents [22,23,31]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut + (u · ∇)u − ν�u + μH × curlH + ∇ p = f,

divu = 0,

μHt + σ−1curlcurlH − μcurl(u × H) = σ−1curlJ,

divH = 0,

(1)

which holds for all (x, t) ∈ � × (0, T ], where T ∈ (0,∞) is a final time and � is an open
bounded domain in R

d , d = 2, 3, together with the following homogeneous boundary and
initial conditions [22,27]:

⎧
⎪⎨

⎪⎩

u|ST = 0 (no-slip condition),

(H · n)|ST = 0, (n × curlH)|ST = 0 (perfectly conducting wall),

u(x, 0) = u0(x), H(x, 0) = H0(x), in �,

(2)

with divu0(x) = 0 and divH0(x) = 0. Here ST := ∂� × [0, T ] and n is the unit exterior
normal to ∂�. Besides, u, H and p represent the velocity field, magnetic field and pressure,
respectively. Three parameters appearing in (1) are the kinematic viscosity ν, the magnetic
permeability μ and the electric conductivity σ. Furthermore, f denotes the known body force
and J is the known current with n × J|ST = 0.

For the mathematical setting of problem (1) with the boundary and initial conditions (2),
we introduce the usual L2(�) norm and its inner product by ‖ · ‖0,2 and (·, ·), respectively.
The L p(�) norm and W m,p(�) norm are denoted by ‖ · ‖0,p and ‖ · ‖m,p , respectively, for
m ∈ N

+, 1 ≤ p ≤ ∞. In particular, Hm(�) is used to represent the space W m,2(�) and
‖ · ‖m,2 denotes the norm in Hm(�). Besides, for X being a normed function space in �,
L p(0, T ; X) is the space of all functions defined on [0, T ] × � for which the norm

‖u‖L p(0,T ;X) =
(∫ T

0
‖u‖p

X dt

) 1
p

, p ∈ [1,∞),

is finite.
We define the following particular subspaces of H1(�)d that satisfy specific boundary

conditions [16,22,23]:

X := H1
0 (�)d = {v ∈ H1(�)d : v|∂� = 0},

W := H1
n (�)d = {B ∈ H1(�)d : B · n|∂� = 0},
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and subspaces with (weakly) divergence-free functions:

X0 := {v ∈ X : divv = 0}, W0 := {B ∈ W : divB = 0},
and subspace of L2(�):

M := L2
0(�) = {q ∈ L2(�) : (1, q) = 0}.

To derive the variational formulation of problem (1)–(2), we introduce two bilinear forms:

a(u, v) = ν(∇u,∇v) ∀u, v ∈ X, d(v, q) = (divv, q) ∀v ∈ X, q ∈ M,

the skew-symmetric form:

b(u, v,w) = ((u · ∇)v,w) + 1

2
((divu)w, v)

= 1

2
((u · ∇)v,w) − 1

2
((u · ∇)w, v) ∀u, v,w ∈ X, (3)

which satisfies following properties [17,24,41]:

|b(u, v,w)| ≤ C0‖∇u‖0,2‖∇v‖0,2‖∇w‖0,2, (4)

|b(u, v,w)| ≤ C1‖u‖
1
2
0,2‖∇u‖

1
2
0,2‖∇v‖0,2‖∇w‖0,2, (5)

for all u, v,w ∈ X. Moreover, if v ∈ H2(�)d , then there exists C2 such that [16]

|b(u, v,w)| ≤ C2‖u‖0,2‖v‖2,2‖∇w‖0,2. (6)

Additionally, from [15,23], we have the following bounds

|(v × H, curlB)| ≤ C3‖∇v‖0,2‖curlH‖0,2‖curlB‖0,2, (7)

|(v × H, curlB)| ≤ C4‖v‖2,2‖H‖0,2‖curlB‖0,2, (8)

|(v × H, curlB)| ≤ C5‖∇v‖0,2‖B‖2,2‖H‖0,2, (9)

for all v ∈ X and B,H ∈ W or v,B ∈ H2(�)d . Here and after, we denote C (with or without
a subscript) as a general positive constant depending on (ν, μ, σ,�, T ,u0,H0, f, J), which
may stand for different values at different occurrences.

Then, basedon the abovedefinitions of functional spaces,wehave the followingvariational
formulation of problem (1)–(2): Find (u, p,H) ∈ L2(0, T ;X)×L2(0, T ; M)×L2(0, T ;W)

such that, for all (v, q,B) ∈ X × M × W and for almost all t ∈ (0, T ),

(ut , v) + a(u, v) + b(u,u, v) + μ(H × curlH, v) − d(v, p) + d(u, q) = (f, v), (10)

μ(Ht ,B) + σ−1(curlH, curlB) − μ(u × H, curlB) = σ−1(J, curlB), (11)

u(0) = u0, H(0) = H0. (12)

Throughout this paper we need the following assumptions as in [23] on the prescribed
data for problem (1)–(2). :

Assumption A0 The initial data u0 ∈ X0 ∩ H2(�)d , H0 ∈ W0 ∩ H2(�)d , the force f and
the current J satisfy the bound

sup
0≤t≤T

(
‖f(t)‖0,2 + ‖ft (t)‖0,2 + ‖J(t)‖1,2 + ‖Jt (t)‖1,2

)
+ ‖u0‖2,2 + ‖H0‖2,2 ≤ C .
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Assumption A1 The problem (10)–(12) has a weak solution (u(t), p(t),H(t)) satisfying
u ∈ L2(0, T ;X0), H ∈ L2(0, T ;W0) and p ∈ L2(0, T ; M) such that

∫ T

0
(‖∇u(t)‖40,2 + ‖curlH(t)‖40,2)dt ≤ C .

Assumption A2 Assume that the boundary of � is smooth so that the unique solution (v, q)

of the steady Stokes problem

−�v + ∇q = fu, ∇ · v = 0 in �, v|∂� = 0,

for prescribed fu ∈ L2(�)d satisfies

‖v‖2,2 + ‖q‖1,2 ≤ C‖fu‖0,2;
and Maxwell’s equations

curlcurlB = fH, ∇ · B = 0 in �, n × curlB = 0, B · n = 0 on ∂�,

for the prescribed fH ∈ L2(�)d admits a unique solution B ∈ W0 which satisfies

‖B‖2,2 ≤ C‖fH‖0,2.
Besides, we recall some a priori energy estimates of the solution to the problem (10)–(12) in
the following, which are proved in [23].

Lemma 2.1 [23]Assume that Assumption (A0)–(A2)hold, then the solution (u(t), p(t),H(t))
of the problem (10)–(12) satisfies the estimate

sup
0≤t≤T

(‖ut (t)‖20,2 + ‖Ht (t)‖20,2 + ‖u(t)‖22,2 + ‖H(t)‖22,2 + ‖p(t)‖21,2)

+
∫ T

0
(‖ut t‖2−1,2 + ‖Ht t‖2−1,2 + ‖∇ut‖20,2 + ‖∇Ht‖20,2)dt ≤ C,

where ‖ut t‖−1,2 = supv∈X
|(ut t ,v)|
‖∇v‖0,2 and ‖Ht t‖−1,2 = supB∈W

|(Ht t ,B)|
‖∇B‖0,2 .

From now on, πh is a uniform partition of the domain � into triangular (d = 2) or
tetrahedral (d = 3) element K with diameters bounded by a real positive parameter h =
maxK∈πh {diam(K )}.

Next, we introduce the following finite element subspaces:

Xh = {vh ∈ C0(�)d ∩ X : vh |K ∈ P2(K )d ,∀K ∈ πh},
Mh = {qh ∈ C0(�) ∩ M : qh |K ∈ P1(K ),∀K ∈ πh},
Wh = {Bh ∈ C0(�)d ∩ W : Bh |K ∈ P2(K )d ,∀K ∈ πh}.

Furthermore, we need the subspace X0h of Xh which is defined as

X0h = {vh ∈ Xh : d(vh, q) = 0,∀qh ∈ Mh}.
Let Ph : L2(�)d → Xh and Rh : L2(�)d → Wh be L2-orthogonal projections. For

v ∈ H2(�)d ∩ X and B ∈ H2(�)d ∩ W, these projections satisfy the following properties
[23]

‖Phv‖1,2 ≤ C‖v‖1,2, ‖v − Phv‖0,2 + h‖∇(v − Phv)‖0,2 ≤ Ch3‖v‖3,2, (13)

‖RhB‖1,2 ≤ C‖B‖1,2, ‖B − RhB‖0,2 + h‖∇(B − RhB)‖0,2 ≤ Ch3‖B‖3,2. (14)
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As is known, the following discreteGronwall lemmawill play an important role in analysis
of convergence, so we list it in the following lemma.

Lemma 2.2 [17,23] Let an, bn and dn for the integer n ≥ 0 be nonnegative numbers such
that

am + τ

m∑

n=0

bn ≤ τ

m−1∑

n=0

andn + C∗, m ≥ 1,

then

am + τ

m∑

n=0

bn ≤ C∗ exp
(

τ

m−1∑

n=0

dn

)

, m ≥ 1.

3 AModular Grad-Div Stabilization for theMHD Equations

Let N > 0 be a fixed integer number and {tn }N
n=0 be a uniform partition of [0, T ] and tn = nτ

with time step τ = T
N . Besides, we define (un

h, pn
h ,Hn

h) to be an approximate solution of (1)–
(2) at t = tn . Then, we construct a modular grad-div stabilization algorithm of the problem
(1)–(2) applying the finite element discretization and a semi-implicit backward Euler scheme
as the temporal-spatial discretization.

Algorithm 3.1 Step I:Given (un
h,Hn

h) ∈ Xh×Wh , find (ûn+1
h , pn+1

h , Ĥn+1
h ) ∈ Xh×Mh×Wh

such that, for all 0 < n ≤ N − 1 and (vh, qh,Bh) ∈ Xh × Mh × Wh,

(dt û
n+1
h , vh) + a(ûn+1

h , vh) + b(un
h, ûn+1

h , vh) + μ(Hn
h × curlĤn+1

h , vh) − d(vh, pn+1
h )

+ d(ûn+1
h , qh) = (fn+1, vh), (15)

μ(dt Ĥ
n+1
h ,Bh) + σ−1(curlĤn+1

h , curlBh) − μ(ûn+1
h × Hn

h, curlBh)

= σ−1(Jn+1, curlBh), (16)

û0h = Phu0, Ĥ0
h = RhH0, (17)

where dt ŝ
n+1
h = 1

τ
(ŝn+1

h − sn
h) with s = u or H, and gn+1 = 1

τ

∫ tn+1
tn

g(t)dt with g = f or J.

Step II: Given (ûn+1
h , Ĥn+1

h ) ∈ Xh × Wh from (15)–(17), find (un+1
h ,Hn+1

h ) ∈ Xh × Wh

such that, for all 0 < n ≤ N − 1 and (vh,Bh) ∈ Xh × Wh,
(

dtu
n+1
h − dt û

n+1
h , vh

)
+ β1

(
∇ · dtu

n+1
h ,∇ · vh

)
+ γ1(∇ · un+1

h ,∇ · vh) = 0, (18)
(

dtH
n+1
h − dt Ĥ

n+1
h ,Bh

)
+ β2

(
∇ · dtH

n+1
h ,∇ · Bh

)
+ γ2(∇ · Hn+1

h ,∇ · Bh) = 0, (19)

with u0h = û0h, H0
h = Ĥ0

h and stabilization parameters βi ≥ 0, γi ≥ 0, i = 1, 2, recalling
dt s

n+1
h = 1

τ
(sn+1

h − sn
h).

In the following part of this section, we analyze the stability and convergence of the
modular grad-div stabilization algorithm for the MHD equations.

3.1 Stability Analysis

In this subsection, we show that Algorithm 3.1 is unconditionally stable. In fact, choosing
vh = 2τun+1

h in (18) andBh = 2τHn+1
h in (19), we have, on using the equality 2(a−b, a) =
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|a|2 − |b|2 + |a − b|2 for a,b ∈ R
d , that

‖un+1
h ‖20,2 + β1‖∇ · un+1

h ‖20,2 − (‖ûn+1
h ‖20,2 + β1‖∇ · un

h‖20,2) + ‖un+1
h − ûn+1

h ‖20,2
+ 2γ1τ‖∇ · un+1

h ‖20,2 + β1τ
2‖∇ · dtu

n+1
h ‖20,2 = 0,

‖Hn+1
h ‖20,2 + β2‖∇ · Hn+1

h ‖20,2 − (‖Ĥn+1
h ‖20,2 + β2‖∇ · Hn

h‖20,2) + ‖Hn+1
h − Ĥn+1

h ‖20,2
+ 2γ2τ‖∇ · Hn+1

h ‖20,2 + β2τ
2‖∇ · dtH

n+1
h ‖20,2 = 0.

(20)

Then, we establish the unconditional stability of Algorithm 3.1 in the following theorem.

Theorem 3.1 Suppose that Assumption (A0)–(A2) hold, then Algorithm 3.1 is uncondition-
ally stable. That is,

β1‖∇ · uN
h ‖20,2 + μβ2‖∇ · HN

h ‖20,2 +
N−1∑

n=0

(
‖un+1

h − ûn+1
h ‖20,2 + μ‖Hn+1

h − Ĥn+1
h ‖20,2

)

+ ‖uN
h ‖20,2 + τ

N−1∑

n=0

(
ν‖∇ûn+1

h ‖20,2 + 2γ1‖∇ · un+1
h ‖20,2 + σ−1‖curlĤn+1

h ‖20,2

+ 2γ2‖∇ · Hn+1
h ‖20,2

)

+ μ‖HN
h ‖20,2 + τ 2

N−1∑

n=0

(
‖dt û

n+1
h ‖20,2 + β1‖∇ · dtu

n+1
h ‖20,2 + μ‖dt Ĥ

n+1
h ‖20,2

+ β2‖∇ · dtH
n+1
h ‖20,2

)

≤ C .

Proof First, we set (vh, qh) = 2τ(ûn+1
h , pn+1

h ) and Bh = 2τ Ĥn+1
h in (15) and (16), respec-

tively, then add the ensuing equations. Finally, applying (3) and the identity (a× curlb, c) =
(c × a, curlb) for a,b ∈ H1(�)d yield

‖ûn+1
h ‖20,2 − ‖un

h‖20,2 + τ 2‖dt û
n+1
h ‖20,2 + μ(‖Ĥn+1

h ‖20,2 − ‖Hn
h‖20,2 + τ 2‖dt Ĥ

n+1
h ‖20,2)

+ 2ντ‖∇ûn+1
h ‖20,2 + 2σ−1τ‖curlĤn+1

h ‖20,2 = 2τ((fn+1, ûn+1
h ) + σ−1(Jn+1, curlĤn+1

h )).

(21)

Inserting (20) in (21) to obtain

‖un+1
h ‖20,2 − ‖un

h‖20,2 + τ 2‖dt û
n+1
h ‖20,2 + ‖ûn+1

h − un+1
h ‖20,2 + 2τν‖∇ûn+1

h ‖20,2
+ μ(‖Hn+1

h ‖20,2 − ‖Hn
h‖20,2 + τ 2‖dt Ĥ

n+1
h ‖20,2 + ‖Ĥn+1

h − Hn+1
h ‖20,2)

+ 2σ−1τ‖curlĤn+1
h ‖20,2

+ β1(‖∇ · un+1
h ‖20,2 − ‖∇ · un

h‖20,2 + τ 2‖∇ · dtu
n+1
h ‖20,2) + 2γ1τ‖∇ · un+1

h ‖20,2
+ β2μ(‖∇ · Hn+1

h ‖20,2 − ‖∇ · Hn
h‖20,2 + τ 2‖∇ · dtH

n+1
h ‖20,2) + 2γ2τ‖∇ · Hn+1

h ‖20,2
= 2τ(fn+1, ûn+1

h ) + 2σ−1τ(Jn+1, curlĤn+1
h ). (22)

Further, employing the Cauchy–Schwarz and Young inequalities, we get the bound of the
right hand side (RHS) of (22)

2τ(fn+1, ûn+1
h ) ≤ C

∫ tn+1

tn
‖f(t)‖20,2dt + ντ‖∇ûn+1

h ‖20,2,

123
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2σ−1τ(Jn+1, curlĤn+1
h ) ≤ C

∫ tn+1

tn
‖J(t)‖20,2dt + σ−1τ‖curlĤn+1

h ‖20,2.

Together with the above estimates, summing (22) over n from 0 to N − 1 gives

‖uN
h ‖2 + μ‖HN

h ‖20,2 + β1‖∇ · uN
h ‖20,2 + μβ2‖∇ · HN

h ‖20,2

+ τ

N−1∑

n=0

(
ν‖∇ûn+1

h ‖20,2 + σ−1‖curlĤn+1
h ‖20,2 + 2γ1‖∇ · un+1

h ‖20,2

+ 2γ2‖∇ · Hn+1
h ‖20,2

)

+
N−1∑

n=0

(
‖ûn+1

h − un+1
h ‖20,2 + τ 2‖dt û

n+1
h ‖20,2

+μ‖Ĥn+1
h − Hn+1

h ‖20,2 + τ 2μ‖dt Ĥ
n+1
h ‖20,2

)

+ τ 2
N−1∑

n=0

(
β1‖∇ · dtu

n+1
h ‖20,2 + β2μ‖∇ · dtH

n+1
h ‖20,2

)

≤ ‖u0h‖20,2 + μ‖H0
h‖20,2 + β1‖∇ · u0h‖20,2 + β2μ‖∇ · H0

h‖20,2
+ C

∫ T

0

(‖f(t)‖20,2 + ‖J(t)‖20,2
)

dt

≤ C,

where we have used (13), (14) and Assumption (A0). The proof is thus complete. �

3.2 Error Estimates of theModular Algorithm

We are now in a position to state and prove the error estimate for the modular grad-div
stabilization algorithm (15)–(19). In order to obtain the error equation, let (v, q) = (vh, qh)

in (10) and B = Bh in (11) with t = tn+1, and use integration by parts to get

(dtu(tn+1), vh)+a(u(tn+1), vh)+b(u(tn+1),u(tn+1), vh) + μ(H(tn+1) × curlH(tn+1), vh)

− d(vh, p(tn+1)) + d(u(tn+1), qh) = (f(tn+1), vh) − 1

τ

∫ tn+1

tn
(t − tn)(ut t (t), vh)dt,

(23)

μ(dtH(tn+1),Bh) + σ−1(curlH(tn+1), curlBh) − μ(u(tn+1) × H(tn+1), curlBh)

= σ−1(J(tn+1), curlBh) − μ

τ

∫ tn+1

tn
(t − tn)(Ht t (t),Bh)dt . (24)

Here we define dt s(tn+1) = 1
τ
(s(tn+1) − s(tn)) with s = u or H.

Then, subtract (15) and (16) from (23) and (24), respectively, to get

(dt ên+1
u , vh)+a(ên+1

u , vh)+b(u(tn),u(tn+1), vh)−b(un
h, ûn+1

h , vh)−d(vh, p(tn+1) − pn+1
h )

+ d(ên+1
u , qh) + μ(H(tn) × curlH(tn+1), vh) − μ(Hn

h × curlĤn+1
h , vh) = (En+1

1 , vh),

(25)

μ(dt ê
n+1
H ,Bh) + σ−1(curlên+1

H , curlBh) − μ(u(tn+1) × H(tn), curlBh)

+ μ(ûn+1
h × Hn

h, curlBh) = (En+1
2 ,Bh), (26)

123
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where

(En+1
1 , vh) = − 1

τ

∫ tn+1

tn
(t − tn)(ut t (t), vh)dt + 1

τ

∫ tn+1

tn
(t − tn)(ft (t), vh)dt

+ b(u(tn) − u(tn+1),u(tn+1), vh) + μ((H(tn) − H(tn+1)) × curlH(tn+1), vh),

(27)

and

(En+1
2 ,Bh) = −μ

τ

∫ tn+1

tn
(t − tn)(Ht t (t),Bh)dt + 1

στ

∫ tn+1

tn
(t − tn)(Jt (t), curlBh)dt

− μ(u(tn+1) × (H(tn) − H(tn+1)), curlBh), (28)

and ên
s = s(tn)− ŝn

h with s = u orH. Split the errors as ên
u = ηn

u − ψ̂
n
h where ηn

u = u(tn)− ũn

and ψ̂
n
h = ûn

h − ũn, and ên
H = ηn

H − φ̂
n
h where ηn

H = H(tn) − H̃n and φ̂
n
h = Ĥn

h − H̃n,

respectively. Here, ũn denotes interpolation of u(tn) in Xh, and H̃n denotes interpolation of
H(tn) in Wh .

Moreover, in order to derive estimate for error, we need establish bounds of En+1
1 and

En+1
2 . In fact, according to (4), (7) and Cauchy–Schwarz inequality, it follows from (27) and

(28) that

‖En+1
1 ‖2−1,2 =

(

sup
vh∈Xh

|(En+1
1 , vh)|

‖∇vh‖0,2

)2

≤ Cτ
( ∫ tn+1

tn
(‖ft (t)‖20,2 + ‖ut t‖2−1,2)dt

+ ‖∇u(tn+1)‖20,2
∫ tn+1

tn

‖∇ut (t)‖20,2dt

+ ‖∇H(tn+1)‖20,2
∫ tn+1

tn

‖∇Ht (t)‖20,2dt
)
, (29)

and

‖En+1
2 ‖2−1,2 =

(

sup
Bh∈Wh

|(En+1
2 ,Bh)|

‖curlBh‖0,2

)2

≤ Cτ
( ∫ tn+1

tn

(‖Jt (t)‖20,2 + ‖Ht t‖2−1,2)dt

+ ‖∇u(tn+1)‖20,2
∫ tn+1

tn

‖∇Ht (t)‖20,2dt
)
. (30)

Further, add (29) and (30). Then, summing the ensuing inequality with respect to n from
n = 0 to n = N − 1, we arrive at

N−1∑

n=0

(‖En+1
1 ‖2−1,2 + ‖En+1

2 ‖2−1,2)

≤ Cτ

∫ T

0
(‖ft (t)‖20,2 + ‖ut t‖2−1,2 + ‖Jt (t)‖20,2 + ‖Ht t‖2−1,2)dt

+ Cτ(‖∇u(tn+1)‖20,2 + ‖∇H(tn+1)‖20,2)
∫ T

0
(‖∇ut (t)‖20,2 + ‖∇Ht (t)‖20,2)dt .

123
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Based on Assumption (A0) and Lemma 2.1, we arrive at

τ

N−1∑

n=0

(‖En+1
1 ‖2−1,2 + ‖En+1

2 ‖2−1,2) ≤ Cτ 2. (31)

Finally, we consider the effect of step II of Algorithm 3.1. Note that
(
u(tn+1) − u(tn+1)

τ
, vh

)

+ β1 (∇ · dtu(tn+1),∇ · vh) = −γ1(∇ · u(tn+1),∇ · vh),

(32)
(
H(tn+1) − H(tn+1)

τ
,Bh

)

+ β2 (∇ · dtH(tn+1),∇ · Bh) = −γ2(∇ · H(tn+1),∇ · Bh).

(33)

Subtract (18) and (19) from (32) and (33), respectively, which in turn imply that
(
en+1

u − ên+1
u

τ
, vh

)

+ β1
(∇ · dten+1

u ,∇ · vh
) + γ1(∇ · en+1

u ,∇ · vh) = 0 (34)

(
en+1

H − ên+1
H

τ
,Bh

)

+ β2

(
∇ · dte

n+1
H ,∇ · Bh

)
+ γ2(∇ · en+1

H ,∇ · Bh) = 0, (35)

where en
s = s(tn) − sn

h . Split the errors as en
u = ηn

u − ψn
h and en

H = ηn
H − φn

h where
ψn

h = un
h − ũn and φn

h = Hn
h − H̃n . Let ũ0 = u0h and H̃0 = H0

h .

Selecting vh = 2τψn+1
h in (34) and decomposing the errors give the estimate,

‖ψn+1
h ‖20,2 + ‖ψn+1

h − ψ̂
n+1
h ‖20,2 + 2γ1τ‖∇ · ψn+1

h ‖20,2
+ β1

(
‖∇ · ψn+1

h ‖20,2 − ‖∇ · ψn
h‖20,2 + τ 2‖∇ · dtψ

n+1
h ‖20,2

)

= 2β1τ
2(∇ · dtη

n+1
u ,∇ · dtψ

n+1
h ) + 2β1τ(∇ · dtη

n+1
u ,∇ · ψn

h)

+ 2γ1τ(∇ · ηn+1
u ,∇ · ψn+1

h ) + ‖ψ̂n+1
h ‖20,2

≤ Cβ1τ

∫ tn+1

tn
‖∇ηut‖20,2dt + β1τ

2

4
‖∇ · dtψ

n+1
h ‖20,2 + Cβ1

∫ tn+1

tn
‖∇ηut‖20,2dt

+ β1τ

2
‖∇ · ψn

h‖20,2 + Cγ1τ‖∇ηn+1
u ‖20,2 + γ1τ

2
‖∇ · ψn+1

h ‖20,2 + ‖ψ̂n+1
h ‖20,2,

where we have apply the Cauchy–Schwarz and Young inequality. Reorganizing the above
inequality it follows that

‖ψ̂n+1
h ‖20,2 ≥ ‖ψn+1

h ‖20,2 + ‖ψ̂n+1
h − ψn+1

h ‖20,2 + γ1τ‖∇ · ψn+1
h ‖20,2 − β1τ‖∇ · ψn

h‖20,2
+ β1(‖∇ · ψn+1

h ‖20,2 − ‖∇ · ψn
h‖2 + τ 2

2
‖∇ · dtψ

n+1
h ‖20,2)

− Cβ1(1 + τ)

∫ tn+1

tn
‖∇ηut‖20,2dt − Cγ1τ‖∇ηn+1

u ‖20,2. (36)

Arguing in exactly the same way as in the proof of (36), we obtain

‖φ̂n+1
h ‖20,2 ≥ ‖φn+1

h ‖20,2 + ‖φ̂n+1
h − φn+1

h ‖20,2 + γ2τ‖∇ · φn+1
h ‖20,2 − β2τ‖∇ · φn

h‖20,2
+ β2(‖∇ · φn+1

h ‖20,2 − ‖∇ · φn
h‖20,2 + τ 2

2
‖∇ · dtφ

n+1
h ‖20,2)

123
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− Cβ2(1 + τ)

∫ tn+1

tn
‖∇ηHt‖20,2dt − Cγ2τ‖∇ηn+1

H ‖20,2. (37)

Theorem 3.2 Suppose that Assumption (A0)–(A2) are satisfied, then the following estimate
holds

‖eN
u ‖20,2 + μ‖eN

H ‖20,2 + β1‖∇ · eN
u ‖20,2 + μβ2‖∇ · eN

H ‖20,2 + ντ

N−1∑

n=0

‖∇ ên+1
u ‖20,2

+ σ−1τ

N−1∑

n=0

‖∇ ên+1
H ‖20,2 + 2γ1τ

N−1∑

n=0

‖∇ · en+1
u ‖20,2 + 2γ2τ

N−1∑

n=0

‖∇ · en+1
H ‖20,2

≤ C(h4 + τh3 + τ 2).

(38)

Proof Setting vh = 2τ ψ̂
n+1
h ∈ X0h and qh = 0 in (25), and Bh = 2τ φ̂

n+1
h in (26), adding

the two equations and decomposing the errors, we deduce that

‖ψ̂n+1
h ‖20,2 − ‖ψn

h‖20,2 + τ 2‖dt ψ̂
n+1
h ‖20,2 + μ(‖φ̂n+1

h ‖20,2 − ‖φn
h‖20,2 + τ 2‖dt φ̂

n+1
h ‖20,2)

+ 2ντ‖∇ψ̂
n+1
h ‖20,2 + 2σ−1τ‖curlφ̂n+1

h ‖20,2
= 2τ(dtη

n+1
u , ψ̂

n+1
h ) + 2τ(dtη

n+1
H , φ̂

n+1
h ) + 2ντ(∇ηn+1

u ,∇ψ̂
n+1
h )

+ 2σ−1τ(curlηn+1
H , curlφ̂

n+1
h ) + 2τb(u(tn),u(tn+1), ψ̂

n+1
h ) − 2τb(un

h, ûn+1
h , ψ̂

n+1
h )

+ 2μτ(H(tn) × curlH(tn+1), ψ̂
n+1
h ) − 2μτ(Hn

h × curlĤn+1
h , ψ̂

n+1
h )

− 2μτ(u(tn+1) × H(tn), curlφ̂
n+1
h ) + 2μτ(ûn+1

h × Hn
h, curlφ̂

n+1
h )

− 2τ(En+1
1 , ψ̂

n+1
h ) − 2τ(En+1

2 , φ̂
n+1
h ). (39)

Inserting ±2τb(un
h,u(tn+1), ψ̂

n+1
h ), ±2τb(ûn+1

h , ηn+1
u , ψ̂

n+1
h ), ±2μτ(Hn

h × curlH(tn+1),

ψ̂
n+1
h ),±2μτ(Ĥn+1

h ×curlηn+1
H , ψ̂

n+1
h ),±2μτ(u(tn+1)×Hn

h, curlφ̂
n+1
h ) and±2μτ(ηn+1

u ×
Ĥn+1

h , curlφ̂
n+1
h ) into the RHS of (39) and using (3), equation (39) is rewritten as

‖ψ̂n+1
h ‖20,2 − ‖ψn

h‖20,2 + τ 2‖dt ψ̂
n+1
h ‖20,2 + μ(‖φ̂n+1

h ‖20,2 − ‖φn
h‖20,2 + τ 2‖dt φ̂

n+1
h ‖20,2)

+ 2ντ‖∇ψ̂
n+1
h ‖20,2 + 2σ−1τ‖curlφ̂n+1

h ‖20,2
= 2τ(dtη

n+1
u , ψ̂

n+1
h ) + 2τ(dtη

n+1
H , φ̂

n+1
h ) + 2ντ(∇ηn+1

u ,∇ψ̂
n+1
h )

+ 2σ−1τ(curlηn+1
H , curlφ̂

n+1
h ) + 2τb(ηn

u,u(tn+1), ψ̂
n+1
h )

− 2τb(ψn
h,u(tn+1), ψ̂

n+1
h ) + 2τb(−τdt û

n+1
h , ηn+1

u , ψ̂
n+1
h )

− 2τb(ûn+1
h , ηn+1

u , ψ̂
n+1
h ) + 2μτ(ηn

H × curlH(tn+1), ψ̂
n+1
h )

− 2μτ(φn
h × curlH(tn+1), ψ̂

n+1
h ) + 2μτ(−τdt Ĥ

n+1
h × curlηn+1

H , ψ̂
n+1
h )

+ 2μτ(Ĥn+1
h × curlηn+1

H , ψ̂
n+1
h ) − 2τ(En+1

1 , ψ̂
n+1
h )

− 2μτ(u(tn+1) × ηn
H , curlφ̂

n+1
h ) + 2μτ(u(tn+1) × φn

h, curlφ̂
n+1
h ) − 2τ(En+1

2 , φ̂
n+1
h )

− 2μτ(ηn+1
u × (−τdt Ĥ

n+1
h ), curlφ̂

n+1
h ) − 2μτ(ηn+1

u × Ĥn+1
h , curlφ̂

n+1
h ), (40)

123
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in which we have used the fact that (a × curlb, c) = (c × a, curlb) for a,b ∈ H1(�)d .
We now estimate each terms of the RHS of (40) separately. Applying theCauchy–Schwarz

and Young inequalities, we have the following bounds,

2τ |(dtη
n+1
u , ψ̂

n+1
h )| ≤ C

∫ tn+1

tn
‖ηut‖20,2dt + ντ

11
‖∇ψ̂

n+1
h ‖20,2,

2τ |(dtη
n+1
H , φ̂

n+1
h )| ≤ C

∫ tn+1

tn
‖∇ηHt‖20,2dt + σ−1τ

7
‖curlφ̂n+1

h ‖20,2,

2ντ |(∇ηn+1
u ,∇ψ̂

n+1
h )| ≤ Cτ‖∇ηn+1

u ‖20,2 + ντ

11
‖∇ψ̂

n+1
h ‖20,2,

2σ−1τ |(curlηn+1
H , curlφ̂

n+1
h )| ≤ Cτ‖curlηn+1

H ‖20,2 + σ−1τ

7
‖curlφ̂n+1

h ‖20,2,

Next, making use of (4), (5), (6), the inverse inequality, the Cauchy–Schwarz and Young’s
inequalities, we arrive at

2τ |b(ηn
u,u(tn+1), ψ̂

n+1
h )| ≤ Cτ‖∇u(tn+1)‖20,2‖∇ηn

u‖20,2 + ντ

11
‖∇ψ̂

n+1
h ‖20,2,

2τ |b(ψn
h,u(tn+1), ψ̂

n+1
h )| ≤ Cτ‖u(tn+1)‖22,2‖ψn

h‖20,2 + ντ

11
‖∇ψ̂

n+1
h ‖20,2,

2τ |b(un
h − ûn+1

h , ηn+1
u , ψ̂

n+1
h )| ≤ Cτh− 1

2 ‖un
h − ûn+1

h ‖0,2‖∇ηn+1
u ‖0,2‖∇ψ̂

n+1
h ‖0,2

≤ Cτh−1‖un
h − ûn+1

h ‖20,2‖∇ηn+1
u ‖20,2 + ντ

11
‖∇ψ̂

n+1
h ‖20,2,

2τ |b(ûn+1
h , ηn+1

u , ψ̂
n+1
h )| ≤ Cτ‖∇ûn+1

h ‖20,2‖∇ηn+1
u ‖20,2 + ντ

12
‖∇ψ̂

n+1
h ‖20,2,

Further, combining (7), (8) and (9) with the Cauchy–Schwarz andYoung’s inequalities shows
that

2μτ |(ηn
H × curlH(tn+1), ψ̂

n+1
h )| ≤ Cτ‖H(tn+1)‖22,2‖ηn

H ‖20,2 + ντ

11
‖∇ψ̂

n+1
h ‖20,2,

2μτ |(φn
h × curlH(tn+1), ψ̂

n+1
h )| ≤ Cτ‖H(tn+1)‖22,2‖φn

h‖20,2 + ντ

11
‖∇ψ̂

n+1
h ‖20,2,

2μτ |((Hn
h − Ĥn+1

h ) × curlηn+1
H , ψ̂

n+1
h )| ≤ Cτ‖Hn

h − Ĥn+1
h ‖20,2h−1‖∇ηn+1

H ‖20,2
+ ντ

11
‖∇ψ̂

n+1
h ‖20,2,

2μτ |(Ĥn+1
h × curlηn+1

H , ψ̂
n+1
h )| ≤ Cτ‖curlĤn+1

h ‖20,2‖curlηn+1
H ‖20,2

+ ντ

11
‖∇ψ̂

n+1
h ‖20,2,

2μτ |(u(tn+1) × ηn
H , curlφ̂

n+1
h )| ≤ Cτ‖u(tn+1)‖22,2‖ηn

H ‖20,2 + σ−1τ

7
‖curlφ̂n+1

h ‖20,2,

2μτ |(u(tn+1) × φn
h, curlφ̂

n+1
h )| ≤ Cτ‖u(tn+1)‖22,2‖φn

h‖20,2 + σ−1τ

7
‖curlφ̂n+1

h ‖20,2,

2μτ |(ηn+1
u × (Hn

h − Ĥn+1
h ), curlφ̂

n+1
h )| ≤ Cτ‖Hn

h − Ĥn+1
h ‖20,2h−1‖∇ηn+1

u ‖20,2
+ σ−1τ

7
‖curlφ̂n+1

h ‖20,2,
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2μτ |(ηn+1
u × Ĥn+1

h , curlφ̂
n+1
h )| ≤ Cτ‖curlĤn+1

h ‖20,2‖∇ηn+1
u ‖20,2

+ σ−1τ

7
‖curlφ̂n+1

h ‖20,2.

Finally, the consistency error terms are bounded as

2τ |(En+1
1 , ψ̂

n+1
h )| + 2τ |(En+1

2 , φ̂
n+1
h )| ≤ Cτ‖En+1

1 ‖2−1,2 + Cτ‖En+1
2 ‖2−1,2

+ σ−1τ

7
‖curlφ̂n+1

h ‖20,2 + ντ

11
‖∇ψ̂

n+1
h ‖20,2.

Use above estimates, insert (36) and (37) into (40) and rearrange. Then,

‖ψn+1
h ‖20,2 − ‖ψn

h‖20,2 + ‖ψn+1
h − ψ̂

n+1
h ‖20,2 + τ 2‖dt ψ̂

n+1
h ‖20,2 + ντ‖∇ψ̂

n+1
h ‖20,2

+ μ(‖φn+1
h ‖20,2−‖φn

h‖20,2+‖φn+1
h −φ̂

n+1
h ‖20,2+τ 2‖dt φ̂

n+1
h ‖20,2) + σ−1τ‖curlφ̂n+1

h ‖20,2
+ β1

(

‖∇ · ψn+1
h ‖20,2 − ‖∇ · ψn

h‖20,2 + τ 2

2
‖∇ · dtψ

n+1
h ‖20,2

)

+ γ1τ‖∇ · ψn+1
h ‖20,2

+ β2μ

(

‖∇ · φn+1
h ‖20,2 − ‖∇ · φn

h‖20,2 + τ 2

2
‖∇ · dtφ

n+1
h ‖20,2

)

+ μγ2τ‖∇ · φn+1
h ‖20,2

≤ Cτ
(‖ψn

h‖20,2 + ‖φn
h‖20,2 + β1‖∇ · ψn

h‖20,2 + μβ2‖∇ · φn
h‖20,2

)

+ Cτ(‖∇ηn+1
u ‖20,2 + ‖∇ηn+1

H ‖20,2)
+ C

(∫ tn+1

tn
‖ηut‖20,2dt +

∫ tn+1

tn
‖ηHt‖20,2dt + τ‖∇ηn+1

u ‖20,2 + τμ‖∇ηn+1
H ‖20,2

)

+ C(1 + τ)

(

β1

∫ tn+1

tn
‖∇ηut‖20,2dt + β2μ

∫ tn+1

tn
‖∇ηHt‖20,2dt

)

+ Cτ
(
‖∇ηn+1

u ‖20,2‖∇Ĥn+1
h ‖20,2+‖∇ûn+1

h ‖20,2‖∇ηn+1
u ‖20,2+‖∇Ĥn+1

h ‖20,2‖∇ηn+1
H ‖20,2

)

+ Cτ
(
τ 2h−1‖dt û

n+1
h ‖20,2‖∇ηn+1

u ‖20,2 + τ 2h−1‖dt Ĥ
n+1
h ‖20,2‖∇ηn+1

H ‖20,2
)

+ Cτ
(
τ 2h−1‖dt Ĥ

n+1
h ‖20,2‖∇ηn+1

u ‖20,2 + ‖En+1
1 ‖2−1,2 + ‖En+1

2 ‖2−1,2

)
, (41)

where we have used Lemma 2.1.
Sum (41) from n = 0 to N − 1 and use Theorem 3.1, (31) and the accuracy of the

interpolation to yield

‖ψ N
h ‖20,2 + μ‖φN

h ‖20,2 + β1‖∇ · ψ N
h ‖20,2 + β2‖∇ · φN

h ‖20,2 + ντ

N−1∑

n=0

‖∇ψ̂
n+1
h ‖20,2

+ τ

σ

N−1∑

n=0

‖curlφ̂n+1
h ‖20,2 + τ

N−1∑

n=0

(
γ1‖∇ · ψn+1

h ‖20,2 + γ2μ‖∇ · φn+1
h ‖20,2

)

≤ Cτ

N−1∑

n=0

(‖ψn
h‖20,2 + ‖φn

h‖20,2 + β1‖∇ · ψn
h‖20,2 + β2‖∇ · φn

h‖20,2
)

+ C(h4 + τ 2 + τh3 + ‖ψ0
h‖20,2 + μ‖φ0

h‖20,2 + β1‖∇ · ψ0
h‖20,2 + β2‖∇ · φ0

h‖20,2).
(42)
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In view of Lemma 2.2, we have

‖ψ N
h ‖20,2 + μ‖φN

h ‖20,2 + β1‖∇ · ψ N
h ‖20,2 + β2‖∇ · φN

h ‖20,2 + ντ

N−1∑

n=0

‖∇ψ̂
n+1
h ‖20,2

+ τ

σ

N−1∑

n=0

‖curlφ̂n+1
h ‖20,2 + τ

N−1∑

n=0

(
γ1‖∇ · ψn+1

h ‖20,2 + γ2μ‖∇ · φn+1
h ‖20,2

)

≤ C(h4 + τh3 + τ 2 + ‖ψ0
h‖20,2 + μ‖φ0

h‖20,2 + β1‖∇ · ψ0
h‖20,2 + β2‖∇ · φ0

h‖20,2).
Then we have completed the proof by using ψ0

h = φ0
h = 0 and applying the triangle

inequality. �

4 Numerical Experiments

In this section, we give some numerical examples to illustrate the theoretical results proven in
the previous sections and to show the effectiveness of Algorithm 3.1 for the 2D/3D unsteady
incompressible MHD problem. Convergence will be checked against problems with known
analytical solutions and a classical benchmark problem, Hartmann flow, which is the MHD
version of classical Poiseuille flow. In the given experiments, the velocity, pressure and
magnetic are approximated by the P2 − P1 − P2 element pair.

4.1 Analytical Solutions

The prescribed solutions are in � = (0, 1)d and d = 2, 3. The right hand sides of problem
(1) are determined by the following exact solutions with α an arbitrary positive constant

u1 = απ sin2(πx) sin(π y) cos(π y) cos(t), u2 = −απ sin(πx) sin2(π y) cos(πx) cos(t),

H1 = α sin(πx) cos(π y) cos(t), H2 = −α cos(πx) sin(π y) cos(t),

p = α cos(πx) cos(π y) cos(t),

for d = 2 and

u1 = −1

2
απ sin2(πx) sin(π y) cos(π y) sin(π z) cos(π z) cos(t),

u2 = απ sin(πx) cos(πx) sin2(π y) sin(π z) cos(π z) cos(t),

u3 = −1

2
απ sin(πx) cos(πx) sin(π y) cos(π y) sin2(π z) cos(t),

p = α cos(πx) cos(π y) cos(π z) cos(t),

H1 = −1

2
απ sin(πx) cos(π y) cos(π z) cos(t),

H2 = απ cos(πx) sin(π y) cos(π z) cos(t),

H3 = −1

2
απ cos(πx) cos(π y) sin(π z) cos(t),

for d = 3. Besides, choose equation parameters ν = 1, μ = 1 and σ = 1, the stabilization
parameters γ1 = γ2 = 1 and β1 = β2 = 0.2, α = 0.01 and the final time T = 1.

Firstly, we implement the numerical tests to verify the unconditional stability of the pre-
sented method. In order to verify Theorem 3.1, we compute the values of ‖∇ · uN

h ‖0,2,
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Table 1 ‖∇ · uN
h ‖0,2 and ‖∇ · HN

h ‖0,2 of the considered scheme for 2D problem

1
τ

4 8 16 32 64

‖∇ · uN
h ‖0,2 h = 1

8 5.30E−03 6.07E−03 6.57E−03 6.91E−03 7.17E−03

h = 1
16 2.53E−03 2.73E−03 2.86E−03 2.97E−03 3.07E−03

‖∇ · HN
h ‖0,2 h = 1

8 5.27E−04 6.89E−04 8.35E−04 9.66E−04 1.08E−03

h = 1
16 3.61E−04 4.22E−04 4.74E−04 5.22E−04 5.65E−04

Table 2 ‖∇ûN
h ‖0,2 and ‖∇ĤN

h ‖0,2 of the considered scheme for 2D problem

1
τ

4 8 16 32 64

‖∇ûN
h ‖0,2 h = 1

8 5.33E−02 5.52E−02 5.60E−02 5.64E−02 5.66E−02

h = 1
16 5.49E−02 5.70E−02 5.80E−02 5.84E−02 5.86E−02

‖∇ĤN
h ‖0,2 h = 1

8 2.46E−02 2.56E−02 2.61E−02 2.63E−02 2.64E−02

h = 1
16 2.48E−02 2.58E−02 2.63E−02 2.65E−02 2.66E−02

Table 3 ‖∇ · uN
h ‖0,2 and ‖∇ · HN

h ‖0,2 of the considered scheme for 3D problem

1
τ

4 8 16 32 64

‖∇ · uN
h ‖0,2 h = 1

4 2.87E−04 2.73E−04 2.23E−04 1.82E−04 1.84E−04

h = 1
8 6.02E−05 5.77E−05 4.69E−05 3.49E−05 2.52E−05

‖∇ · HN
h ‖0,2 h = 1

4 2.49E−04 2.33E−04 1.90E−04 1.57E−04 1.55E−04

h = 1
8 6.02E−05 5.23E−05 4.06E−05 2.90E−05 2.15E−05

Table 4 ‖∇ûN
h ‖0,2 and ‖∇ĤN

h ‖0,2 of the considered scheme for 3D problem

1
τ

4 8 16 32 64

‖∇ · uN
h ‖0,2 h = 1

4 1.49E−00 1.71E−00 1.83E−00 1.89E−00 1.91E−00

h = 1
8 1.49E−00 1.71E−00 1.83E−00 1.89E−00 1.92E−00

‖∇ · HN
h ‖0,2 h = 1

4 6.56E−01 7.55E−01 8.07E−01 8.33E−01 8.47E−01

h = 1
8 6.56E−01 7.55E−01 8.07E−01 8.34E−01 8.47E−01

‖∇ûN
h ‖0,2, ‖∇ · HN

h ‖0,2 and ‖∇ĤN
h ‖0,2 for the 2D/3D MHD problems with different time

steps, which are listed in Tables 1, 2, 3 and 4. From these tables, we find that the values of
‖∇ûN

h ‖0,2 and ‖∇ĤN
h ‖0,2 approach constants, which shows that no time-step restriction is

needed. Besides, the values of ‖∇ · uN
h ‖0,2 and ‖∇ ·HN

h ‖0,2 are small, which shows that the
numerical solutions have better conservation.
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Table 5 Errors and convergence
rates of the considered scheme
with h = O(τ ) for 2D problem

1
τ Err(eu) Rate Err(∇ · eu) Rate Err(∇ êu) Rate

4 2.92E−04 – 8.97E−04 – 2.72E−03 –

8 3.09E−05 3.24 1.45E−04 2.63 4.34E−04 2.65

16 5.83E−06 2.41 3.30E−05 2.14 1.21E−04 1.84

32 2.84E−06 1.04 7.18E−06 2.20 3.02E−05 2.00

64 1.42E−06 1.00 1.84E−06 1.96 1.17E−05 1.37

Table 6 Errors and convergence rates of the considered scheme with h = O(τ ) for 2D problem

1
τ Err(eH ) Rate Err(∇ · eH ) Rate Err(∇ êH ) Rate

4 4.80E−05 – 1.55E−04 – 5.55E−04 –

8 2.11E−05 1.19 2.36E−05 2.72 1.08E−04 2.36

16 1.07E−05 0.98 5.10E−06 2.21 4.36E−05 1.31

32 5.38E−06 0.99 1.09E−06 2.23 2.07E−05 1.08

64 2.70E−06 1.00 2.84E−07 1.94 1.03E−05 1.00

Table 7 Errors and convergence
rates of the considered scheme
with h = O(τ ) for 3D problem

1
τ Err(eu) Rate Err(∇ · eu) Rate Err(∇ êu) Rate

2 2.84E−02 – 3.19E−01 – 9.14E−01 –

4 6.69E−03 2.09 1.53E−01 1.06 5.39E−01 0.76

6 2.77E−03 2.17 9.90E−02 1.07 3.76E−01 0.89

8 1.49E−03 2.16 7.30E−02 1.06 2.89E−01 0.92

10 9.34E−04 2.09 5.78E−02 1.05 2.34E−01 0.95

12 6.46E−04 2.02 4.78E−02 1.04 1.97E−01 0.94

Secondly, we implement the numerical tests to verify the error convergence rate of Algo-
rithm 3.1, which is presented in Theorem 3.2. Here, we pick several values of τ : 1/4, 1/8,
1/16, 1/32, 1/64 for the 2D problem and 1/2, 1/4, 1/6, 1/8, 1/10, 1/12 for the 3D problem. Let
Err(es) denote the error by

Err(es) =
(

τ

N−1∑

n=0

‖en+1
s ‖20,2

)1/2

.

We present the error results of the velocity and magnetic field in Tables 5, 6, 7 and 8.
From these numerical results, the expected first-order time accuracy (or better) is seen for
all relevant quantities. Moreover, we show the spatial convergence rates of the velocity and
magnetic field for 2D and 3D problems in Tables 9, 10, 11 and 12. From these tables, we find
that the desired second-order accuracy (or better) for Err(∇ · eu), Err(∇ · eH ), Err(∇ êu)

and Err(∇ êH ) are obtained. As expected, the values of Err(∇ · eu) and Err(∇ · eH ) are
small, which shows that the numerical solutions of the presented method has better mass
conservation.

Thirdly, for the timing test, we compare our algorithm with the standard grad-div algo-
rithm. We set τ = h = 1/32, and vary the grad-div parameters such that 0 ≤ β1, β2 ≤ 8000
and 0 < γ1, γ2 ≤ 20,000 at T = 1 for 2D problem. For the standard grad-div algorithm and
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Table 8 Errors and convergence rates of the considered scheme with h = O(τ ) for 3D problem

1
τ Err(eH ) Rate Err(∇ · eH ) Rate Err(∇ êH ) Rate

2 1.30E−02 – 1.95E−01 – 3.81E−01 –

4 8.37E−03 0.64 8.85E−02 1.14 2.25E−01 0.76

6 6.05E−03 0.80 5.68E−02 1.09 1.57E−01 0.89

8 4.66E−03 0.91 4.17E−02 1.07 1.21E−01 0.91

10 3.97E−03 0.72 3.29E−02 1.06 9.81E−02 0.94

12 3.41E−03 0.83 2.72E−02 1.04 8.25E−02 0.95

Table 9 Errors and convergence
rates of the considered scheme
with τ = O(h2) for 2D problem

1
h Err(∇ · eu) Rate Err(∇ êu) Rate

4 2.36E−03 – 3.16E−03 –

8 6.29E−04 1.91 5.68E−04 2.48

16 1.51E−04 2.06 1.15E−04 2.30

32 3.97E−05 1.93 2.83E−05 2.02

64 1.04E−05 1.93 7.08E−06 2.00

Table 10 Errors and convergence
rates of the considered scheme
with τ = O(h2) for 2D problem

1
h Err(∇ · eH ) Rate Err(∇ êH ) Rate

4 5.40E−04 – 5.9E−04 –

8 1.08E−04 2.32 8.69E−05 2.76

16 2.51E−05 2.11 1.72E−05 2.34

32 5.94E−06 2.08 4.05E−06 2.09

64 1.60E−06 1.90 1.02E−06 1.99

Table 11 Errors and convergence
rates of the considered scheme
with τ = O(h2) for 3D problem

1
h Err(∇ · eu) Rate Err(∇ êu) Rate

2 6.89E−04 – 1.04E−02 –

4 1.68E−04 2.04 3.29E−03 1.66

6 4.82E−05 3.08 1.29E−03 2.31

8 1.89E−05 3.25 6.56E−04 2.35

10 8.92E−06 3.36 3.92E−04 2.31

Table 12 Errors and convergence
rates of the considered scheme
with τ = O(h2) for 3D problem

1
h Err(∇ · eH ) Rate Err(∇ êH ) Rate

2 8.38E−04 – 3.02E−02 –

4 1.45E−04 2.53 8.82E−03 1.78

6 4.33E−05 2.98 4.00E−03 1.95

8 1.86E−05 2.94 2.26E−03 1.99

10 9.80E−06 2.87 1.45E−03 1.99
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Table 13 Computational time by different grad-div algorithms

β1 γ1 β2 γ2 Standard time (s) Modular time (s) Percent (%)

0 0.2 0 0.2 480.861 162.043 33.70

0 2 0 2 1098.990 162.616 14.80

0 20 0 20 1758.690 161.553 9.19

0 200 0 200 1759.390 162.729 9.25

0 2000 0 2000 1642.630 163.620 9.96

0 20,000 0 20,000 1643.720 162.793 9.90

0.01 0.2 0.01 0.2 522.554 163.245 31.24

0.02 0.2 0.02 0.2 662.987 162.481 24.51

0.04 0.2 0.04 0.2 646.066 163.483 25.30

0.08 0.2 0.08 0.2 1656.210 161.939 9.78

0.8 0.2 0.8 0.2 1975.630 161.572 8.18

8 0.2 8 0.2 1974.230 164.140 8.31

80 0.2 80 0.2 1971.820 165.497 8.39

800 0.2 800 0.2 1611.570 164.242 10.19

8000 0.2 8000 0.2 1610.720 165.794 10.29

Step I of the modular grad-div algorithm, we use GMRES to solve. For Step II of the modular
grad-div algorithm, at each time step, we use UMFPACK to solve. We list the computational
times in Table 13.We see that the computational time cost by the modular grad-div algorithm
does not increase as the stabilization parameters increase. However, for the standard grad-div
algorithm, increasing stabilization parameters increases computational time. In addition, we
can find that the present method costs less computational time, which is not surprising since
Step I of the presented algorithm requires solution of a standard system without the added
coupling or ill-conditioning of the grad-div terms and Step II is the same uncoupled and
simple grad-div system at every timestep.

4.2 Hartmann Flow

Hartmann flow is a classical benchmark problem for theMHDmodel which involves a steady
unidirectional flow. It describes the flow of a liquid metal through a channel under an external
transversemagnetic field [21] and has been investigated in [42,44,45,48]. The related physical
parameters Re (fluid Reynolds number), Rm (magnetic Reynolds number) and the coupling
coefficient s are given by

Re = 1

ν
, Rm = μσ, s = 1

μ
,

in our numerical examples.We consider both 2D/3DHartmann flows with Hartmann number
Ha = √

Re Rms.
Firstly, we consider the domain� = (0, 2)×(−1, 1) under the influence of the transverse

magnetic field Hd = (0, 1). The exact solutions to the 2D MHD problem are given by [21]

u(x, y) =
(

G Re

Ha tanh(Ha)

(
1 − cosh(y Ha)

cosh(Ha)

)
, 0

)

,
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Fig. 2 Ha = 5, Re = Rm = 1 (left: velocity; right: magnetic field)

p(x, y) = −Gx − G2

2s

(
sinh(y Ha)

sinh(Ha)
− y

)2

+ p0,

H(x, y) =
(

G

s

( sinh(y Ha)

sinh(Ha)
− y

)
, 1

)

.

We impose no-slip boundary conditions on the wall and Neumann boundary conditions on
the inlet and the outlet:

u = 0 on y = ±1,

(pI − R−1
e ∇u)n = pn on x = 0, 2

n × H = n × Hd on ∂�,

where I is the identity matrix.
For the 2D problem, we set G = 1, p0 = 10, s = 25 with Re = Rm = 0.1 and

Re = Rm = 1. We select h = 1/60, τ = 1 and γ1 = γ2 = 1, β1 = β2 = 0.2. The numerical
solutions are computed at T = 50 for the these cases, respectively. The analytical solutions
u(1, y) andH(1, y) are presented in Figs. 1 and 2 alongside the numerical ones u(1, yk) and
H(1, yk) (yk = −1 + 0.1k, k = 0, . . . , 20) obtained by Algorithm 3.1. From the figures,
we find that the numerical solutions of our scheme are consistent with the exact solutions of
Hartmann flow.
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Secondly, we consider the 3D Hartmann flow with the rectangular duct � = (0, 2) ×
(−y0, y0)× (−z0, z0) under the influence of the uniform magnetic fieldHd = (0, 1, 0). The
solutions of this model are of the following form [21,42,48]:

u(x, y, z) = (Hu(y, z), 0, 0), H(x, y, z) = (HH (y, z), 1, 0),

p(x, y, z) = −Gx − s H2
H (y, z)/2 + p0,

with

Hu(y, z) = −1

2
G Re(z

2 − z20) +
+∞∑

i=0

ai (y) cos(λi z), HH (y, z) =
+∞∑

i=0

bi (y) cos(λi z),

where

ai = Ai cosh(p1y) + Bi cosh(p2y),

bi = 1

Res

(

Ai
λ2i − p21

p1
sinh(p1y) + Bi

λ2i − p22
p2

sinh(p2y)

)

,

Ai = − p1(λ2i − p22)

γi
ui (y0) sinh(p2y0), Bi = p2(λ2i − p21)

γi
ui (y0) sinh(p1y0),

λi = (2i + 1)π

2z0
, p21,2 = λ2i + H2

a /2 ± Ha

√

λ2i + H2
a /4, ui (y0) = −2G Re

λ3z0
sin(λi z0),

γi = p2(λ
2
i − p21) sinh(p1y0) cosh(p2y0) − p1(λ

2
i − p22) sinh(p2y0) cosh(p1y0).

The boundary conditions are imposed by

u = 0 on y = ±y0 and z = ±z0,

(pI − R−1
e ∇u)n = pn on x = 0 and x = 2,

n × H = n × Hd on ∂�.

We take G = 1, y0 = 1
2 and z0 = 1

4 . Besides, we design this investigation with the
parameters Re = Rm = 30, s = 1, γ1 = γ2 = 1 and β1 = β2 = 0.2. The numerical results
of the presented method, Zhang’s method [48] and the Linearized Crank–Nicolson method
at final time T = 10 are shown in Table 14. From this table, we can find that the presented
method has the best accuracy among these methods.

5 Conclusions

In this work, we have presented an Euler semi-implicit time-discrete, modular grad-div stabi-
lization algorithm for the time-dependent MHD equations. Then, we theoretically establish
the unconditional stability and provide rigorous error estimates of the algorithm. The pre-
sented algorithm is unaffected by variations of grad-div stabilization parameters whereas
the cost of standard implementations grow rapidly as the parameters grow. Numerical tests
illustrate the theoretical results and computational efficiency.

In the future, wewill consider some second order in time numerical schemeswith grad-div
stabilization to solve the time-dependent MHD equations, such as the BDF2 scheme or the
Crank–Nicolson scheme.
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Table 14 Errors for the different methods of 3D Hartmann flow at T = 10

Methods τ = h ‖u(T ) − uN
h ‖0,2 ‖H(T ) − HN

h ‖0,2
Algorithm 3.1 1/4 5.36E−02 4.65E−02

Zhang’s algorithm [48] 1/4 9.49E−02 7.22E−02

Linearized Crank–Nicolson [48] 1/4 9.50E−02 7.22E−02

Algorithm 3.1 1/8 2.40E−02 2.55E−02

Zhang’s algorithm [48] 1/8 3.58E−02 3.24E−02

Linearized Crank–Nicolson [48] 1/8 3.58E−02 3.24E−02

Algorithm 3.1 1/16 1.09E−02 8.84E−03

Zhang’s algorithm [48] 1/16 1.15E−02 1.08E−02

Linearized Crank–Nicolson [48] 1/16 1.15E−02 1.08E−02

Acknowledgements Part of this work was done by the Second author while he was visiting University of
Pittsburgh in 2019. The author wishes to thank Prof. William Layton for several insightful discussions. The
authors would like to thank the editor and anonymous referees for their helpful comments and suggestions
which helped to improve the quality of our present paper.

References

1. Ahmed, N.: On the grad-div stabilization for the steady Oseen and Navier–Stokes equations. Calcolo 54,
471–501 (2017)

2. Akbas, M., Linke, A., Rebholz, L.G., Schroeder, P.W.: The analogue of grad-div stabilization in DG
methods for incompressible flows: limiting behavior and extension to tensor-product meshes. Comput.
Methods Appl. Mech. Eng. 341, 917–938 (2018)

3. Amari, T., Luciani, J.F., Joly, P.: A preconditioned semi-implicit method for magnetohydrodynamics
equations. SIAM J. Sci. Comput. 21, 970–986 (1999)

4. Badia, S., Planas, R., Gutiérrez-Santacreu, J.V.: Unconditionally stable operator splitting algorithms for
the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation
based on projections. Int. J. Numer. Meth. Eng. 93, 302–328 (2013)

5. Belenli, M.A., Kaya, S., Rebholz, L.G., Wilson, N.E.: A subgrid stabilization finite element method for
incompressible magnetohydrodynamics. Int. J. Comput. Math. 90, 1506–1523 (2013)

6. Bowers,A.L., Borne, S.L., Rebholz, L.G.: Error analysis and iterative solvers forNavier–Stokes projection
methods with standard and sparse grad-div stabilization. Comput. Methods Appl. Mech. Eng. 275, 1–19
(2014)

7. Case, M.A., Ervin, V.J., Linke, A., Rebholz, L.G.: A connection between Scott–Vogelius and grad-div
stabilized Taylor–Hood FE approximations of the Navier–Stokes equations. SIAM J. Numer. Anal. 49,
1461–1481 (2011)

8. Case, M.A., Labovsky, A., Rebholz, L.G., Wilson, N.E.: A high physical accuracy method for incom-
pressible magnetohydrodynamics. Int. J. Numer. Anal. Model. Ser. B 1, 217–236 (2010)

9. Çıbık, A.: The effect of a sparse grad-div stabilization on control of stationary Navier–Stokes equations.
J. Math. Anal. Appl. 437, 613–628 (2016)

10. Dallmann, H., Arndt, D., Lube, G.: Local projection stabilization for the Oseen problem. IMA J. Numer.
Anal. 36, 796–823 (2016)

11. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge
(2001)

12. DeCaria, V., Layton, W., Pakzad, A., Rong, Y., Sahin, N., Zhao, H.: On the determination of the grad-div
criterion. J. Math. Anal. Appl. 467, 1032–1037 (2018)

13. de Frutos, J., García-Archilla, B., John, V., Novo, J.: Grad-div stabilization for the evolutionary Oseen
problem with inf-sup stable finite elements. J. Sci. Comput. 66, 991–1024 (2016)

14. de Frutos, J., García-Archilla, B., John, V., Novo, J.: Analysis of the grad-div stabilization for the time-
dependent Navier–Stokes equations with inf-sup stable finite elements. Adv. Comput. Math. 44, 195–225
(2018)

123



Journal of Scientific Computing (2020) 82 :3 Page 23 of 24 3

15. Dong, X.J., He, Y.N.: Optimal convergence analysis of Crank–Nicolson extrapolation scheme for the
three-dimensional incompressible magnetohydrodynamics. Comput. Math. Appl. 76, 2678–2700 (2018)

16. Dong, X.J., He, Y.N., Zhang, Y.: Convergence analysis of three finite element iterative methods for
the 2D/3D stationary incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 276,
287–311 (2014)

17. Fiordilino, J.A., Layton, W., Rong, Y.: An efficient and modular grad-div stabilization. Comput. Methods
Appl. Mech. Eng. 335, 327–346 (2018)

18. Franca, L.P., Hughes, T.J.R.: Two classes ofmixed finite elementmethods. Comput.MethodsAppl.Mech.
Eng. 69, 89–129 (1988)

19. Franz, S., Höhne, K., Matthies, G.: Grad-div stabilized discretizations on S-type meshes for the Oseen
problem. IMA J. Numer. Anal. 38, 299–329 (2018)

20. Galvin,K.J., Linke,A., Rebholz, L.G.,Wilson,N.E.: Stabilizing poormass conservation in incompressible
flow problems with large irrotational forcing and application to thermal convection. Comput. Methods
Appl. Mech. Eng. 237–240, 166–176 (2012)

21. Gerbeau, J.F., Bris, C.L., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid
Metals. Oxford University Press, Oxford (2006)

22. Gunzburger,M.D., Ladyzhenskaya, O.A., Peterson, J.S.: On the global unique solvability of initial bound-
ary value problems for the coupled modified Navier–Stokes andMaxwell equations. J. Math. FluidMech.
6, 462–482 (2004)

23. He, Y.N.: Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD
equations. IMA J. Numer. Anal. 35, 767–801 (2015)

24. He, Y.N., Zou, J.: A priori estimates and optimal finite element approximation of theMHDflow in smooth
domains. ESAIM Math. Model. Numer. Anal. 52, 181–206 (2018)

25. Jenkins, E.W., John, V., Linke, A., Rebholz, L.G.: On the parameter choice in grad-div stabilization for
the Stokes equations. Adv. Comput. Math. 40, 491–516 (2014)

26. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite
element methods for incompressible flows. SIAM Rev. 59, 492–544 (2017)

27. Ladyzhenskaya, O.A., Solonnikov, V.: Solution of some non-stationary problems of magnetohydrody-
namics for a viscous incompressible fluid. Tr. Math. Inst. Steklov 59, 115–173 (1960)

28. Linke, A., Neilan,M., Rebholz, L.G.,Wilson, N.E.: A connection between coupled and penalty projection
timestepping schemes with FE spatial discretization for the Navier–Stokes equations. J. Numer. Math.
25, 229–248 (2017)

29. Linke, A., Rebholz, L.G.: On a reduced sparsity stabilization of grad-div type for incompressible flow
problems. Comput. Methods Appl. Mech. Eng. 261–262, 142–153 (2013)

30. Linke, A., Rebholz, L.G., Wilson, N.E.: On the convergence rate of grad-div stabilized Taylor–Hood to
Scott–Vogelius solutions for incompressible flow problems. J. Math. Anal. Appl. 381, 612–626 (2011)

31. Moreau, R.: Magnetohydrodynamics. Kluwer Academic Publishers, Dordrecht (1990)
32. Neda, M., Pahlevani, F., Rebholz, L.G., Waters, J.: Sensitivity analysis of the grad-div stabilization

parameter in finite element simulations of incompressible flow. J. Numer. Math. 24, 189–206 (2016)
33. Olshanskii, M.A.: A low order Galerkin finite element method for the Navier–Stokes equations of steady

incompressible flow: a stabilization issue and iterative methods. Comput. Methods Appl. Mech. Eng. 191,
5515–5536 (2002)

34. Olshanskii, M.A., Lube, G., Heister, T., Löwe, J.: Grad-div stabilization and subgrid pressure models
for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 3975–3988
(2009)

35. Olshanskii, M.A., Reusken, A.: Grad-div stabilization for Stokes equations. Math. Comput. 73, 1699–
1718 (2004)

36. Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydro-
dynamics system. ESAIM Math. Model. Numer. Anal. 42, 1065–1087 (2008)

37. Rebholz, L.G.,Xiao,M.:On reducing the splitting error inYosidamethods for theNavier–Stokes equations
with grad-div stabilization. Comput. Methods Appl. Mech. Eng. 294, 259–277 (2015)

38. Rong, Y., Fiordilino, J.A.: Numerical analysis of a BDF2 modular grad-div Stabilization method for the
Navier–Stokes equations. arXiv:1806.10750v1 (2018)

39. Salah, N.B., Soulaimani, A., Habashi, W.G.: A finite element method for magnetohydrodynamics. Com-
put. Methods. Appl. Mech. Eng. 190, 5867–5892 (2001)

40. Tone, F.: On the long-time H2-stability of the implicit Euler scheme for the 2D magnetohydrodynamics
equations. J. Sci. Comput. 38, 331–348 (2009)

41. Wang, P., Huang, P.Z.,Wu, J.: Superconvergence of the stationary incompressiblemagnetohydrodynamics
equations. Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 80, 281–292 (2018)

123

http://arxiv.org/abs/1806.10750v1


3 Page 24 of 24 Journal of Scientific Computing (2020) 82 :3

42. Wang, L., Li, J., Huang, P.Z.: An efficient two-level algorithm for the 2D/3D stationary incompressible
magnetohydrodynamics based on the finite elementmethod. Int. Commun.HeatMass Transf. 98, 183–190
(2018)

43. Yang, J., He, Y.N.: Stability and error analysis for the first-order euler implicit/explicit scheme for the 3D
MHD equations. Int. J. Comput. Methods 14, 1750077 (2017)

44. Yang, J., He, Y.N., Zhang, G.: On an efficient second order backward difference Newton scheme forMHD
system. J. Math. Anal. Appl. 458, 676–714 (2018)

45. Yang, Y., Si, Z.: Unconditional stability and error estimates of the modified characteristics FEMs for the
time-dependent incompressible MHD equations. Comput. Math. Appl. 77, 263–283 (2019)

46. Zhang, G.D., He, Y.N.: Unconditional convergence of the Euler semi-implicit scheme for the 3D incom-
pressible MHD equations: numerical implementation. Int. J. Numer. Methods Heat Fluid Flow 25,
1912–1923 (2015)

47. Zhang, Y., Hou, Y.R., Shan, L.: Numerical analysis of the Crank–Nicolson extrapolation time discrete
scheme for magnetohydrodynamics flows. Numer. Meth. Part. Differ. Equ. 31, 2169–2208 (2015)

48. Zhang, G.D., Yang, J.J., Bi, C.J.: Second order unconditionally convergent and energy stable linearized
scheme for MHD equations. Adv. Comput. Math. 44, 505–540 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	A Modular Grad-Div Stabilization for the 2D/3D Nonstationary Incompressible Magnetohydrodynamic Equations
	Abstract
	1 Introduction
	2 Preliminaries
	3 A Modular Grad-Div Stabilization for the MHD Equations
	3.1 Stability Analysis
	3.2 Error Estimates of the Modular Algorithm

	4 Numerical Experiments
	4.1 Analytical Solutions
	4.2 Hartmann Flow

	5 Conclusions
	Acknowledgements
	References




