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Abstract
The objective of the present work is to introduce a computational approach employing
Chebyshev Tau method for approximating the solutions of constant coefficients systems
of multi-order fractional differential equations. For this purpose, a series representation for
the exact solutions in a neighborhood of the origin is obtained to monitor their smoothness
properties. We prove that some derivatives of the exact solutions of the underlying problem
often suffer from discontinuity at the origin. To fix this drawback and design a high order
approach a regularization procedure is developed. In addition to avoid high computational
costs, a suitable strategy is implemented such that approximate solutions are obtained by
solving some triangular algebraic systems. Complexity and convergence analysis of the pro-
posed scheme are provided. Various practical test problems are presented to exhibit capability
of the given approach.

Keywords Multi-order fractional differential equations · Chebyshev Tau method ·
Convergence analysis

Mathematics Subject Classification 34A09 · 65L05 · 65L20 · 65L60 · 65L80

1 Introduction

For nearly three centuries, the theory of fractional calculus has been considered by mathe-
maticians as a branch of pure mathematics. However, many researchers have recently found
that non-integer derivatives and integrals are more useful than integer ones for modeling
the phenomena that have inherited and memory properties [3,17,31,43], and in this regard
various numerical methods have been introduced to approximate the solutions of the arising
fractional order functional equations [22–25,34–39]. There are many physical issues which
correlate a number of separated elements and thereby onemay expect that their mathematical
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modeling leads to systems of differential equations. In this connection, systems of fractional
differential equations (FDEs) have recently been used to describe the various properties of
the phenomena in physics and engineering such as pollution levels in a lake [7,29], hepati-
tis B disease in medicine [9], fractional-order financial system [11], population dynamics
[14,15], fractional order Bloch system [26], electrical circuits [28], fractional-order love
triangle system [32], nuclear magnetic resonance (NMR) [33,50], fractional-order Volta’s
system [42], magnetic resonance imaging (MRI) [44], fractional-order Lorenz system [49]
and fractional-order Chua’s system [51].

Due to high usage of the systems of FDEs, the researchers have tried to find analytic and
numerical methods to solve them. Since it is very difficult or practically impossible to obtain
accurate solutions for most systems of FDEs, it is important to provide suitable approxi-
mate methods for solving them. Specially due to wide applications for constant coefficients
systems of FDEs, researchers have recently adopted various numerical techniques to approx-
imate their solutions such as Homotopy perturbation method [1,4], Chebyshev Tau method
[2], fractional order Laguerre and Jacobi Tau methods [5,6], Legendre wavelets method [12],
Adomian decomposition method [13,40], differential transform method [19], spectral collo-
cation method [29,30], variational iteration method (VIM) [40,46] and Bernoulli wavelets
method [47].

However, in some of the aforementioned studies, the effect of the possible discontinuity
behavior in the derivatives of the solution has not paid attention, and basis functions are
selected from infinitely smooth functions. Most importantly, the available researches often
provide numerical methods for systems of single order FDEs and there are a few articles
related to a comprehensive numerical analysis of systems of multi-order FDEs. In this regard,
the main object of this paper is to fill this gap with providing a reliable and high order
numerical technique using Chebyshev Tau method for approximating the solutions of the
following constant coefficients system of multi-order FDEs

⎧
⎪⎨

⎪⎩

D
α j
C y j (x) =

n∑

i=1

a ji yi (x) + p j (x), j = 1, 2, . . . , n,

y(k)
j (0) = y(k)

j,0, k = 0, 1, . . . , �α j� − 1, x ∈ � = [0, 1], α j ∈ Q+,

(1)

where �.� is the ceiling function, a ji are given constants, p j (x) are continuous functions on
� and y j (x) are unknowns. Here D

α j
C is the Caputo type fractional derivative of order α j

defined by [10,17,31,43]

D
α j
C y j (x) = J �α j �−α j D�α j �y j (x),

where J �α j �−α j is the Riemann–Liouville fractional integral operator of order �α j�−α j and
is defined by

J �α j �−α j y(x) = 1

�(�α j� − α j )

∫ x

0
(x − t)�α j �−α j−1y(t)dt,

and �(.) denotes as the Gamma function. It can be seen that for α, β ≥ 0 the following
relations hold

JαDα
C y(x) = y(x) −

�α�−1∑

k=0

Dk y(0)

k! xk ,

Jαxβ = �(β + 1)

�(α + β + 1)
xα+β, (2)

under validity of some requirements for the function y(x) [10,17,31,43].
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Although the classical implementation of spectral methods provides a useful tool to pro-
duce high order approximations for smooth solutions of functional equations, there are some
disadvantages including need for solving complex and ill-conditioned algebraic systems as
well as a significant reduction in the accuracy for problems with non-smooth solutions. In
this paper, in order to avoid these drawbacks, the numerical approach is designed such that
not only the expected higher accuracy is reconstructed regarding the non-smooth problems
by proceeding a regularization technique, but also approximate solutions are computed by
solving well-conditioned triangular systems.

The remainder of this paper is divided into six sections as follows. In the later section,
we first introduce a result on the existence and uniqueness of the solutions of (1). Then, the
smoothness theorem is given, which derives a series representation for the solutions of (1)
and concludes that some derivatives of the exact solutions often suffer from discontinuity
at the origin. To fix this difficulty, a regularization strategy is proceeded. In Sect. 3, to
survey the effect of this regularization process on providing high-order approximations, the
Chebyshev Tau approach is developed to approximate the solutions of (1) which satisfy the
assumptions of the existence, uniqueness and smoothness theorems. The uniquely solvability
and complexity analysis of the numerical solution are also justified by solving some triangular
algebraic systems. In Sect. 4, we provide a detailed convergence analysis for the proposed
scheme in uniform norm. In Sect. 5, efficiency and applicability of the proposed method
are examined by different illustrative examples. The final section contains our conclusive
remarks.

2 Existence, Uniqueness and Smoothness Results

In this sectionwe investigate existence, uniqueness and smoothness properties of the solutions
of (1). First, the existence and uniqueness theorem is given as follows.

Theorem 1 Assume that the functions {p j (x)}nj=1 are continuous on �. Then the system of
Eq. (1) has a unique continuous solution on �.

Proof Clearly, it is a straightforward consequence of Theorem 8.11 of [17] and Theorem 2.3
of [16]. ��

From thewell-known existence and uniqueness theorems of FDEs,we expect some deriva-
tives of the exact solutions of (1) to have a discontinuity at the origin, even for smooth input
functions depending on the fractional derivative order [17]. Therefore, to develop high order
approximate approaches, recognizing the smoothness properties of the solutions of (1) under
certain assumptions on the given functions p j (x) is essential. In this regard, recently in [16]
Diethelm et al. investigated the degree of smoothness and asymptotic behavior of the solu-
tions of homogeneous constant coefficients multi-order FDEs when fractional derivatives lie
in the interval (0,1). In the following theorem we try to derive the same properties for the
constant coefficients systems of multi-order FDEs in the general form (1) by exploring a
series representation of the solutions in a neighborhood of the origin.

Theorem 2 Let {α j = η j/γ j }nj=1, such that the integers η j ≥ 1 and γ j ≥ 2 are co-prime and

the given continuous functions p j (x) can be written as p j (x) = p̄ j (x1/γ1 , x1/γ2 , . . . , x1/γn )
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with analytic functions p̄ j in the neighborhood of (0, 0, . . . , 0︸ ︷︷ ︸
n

). Then the series representation

of the solution y j (x) of the Eq. (1) in a neighborhood of the origin is given by

y j (x) = φ j (x) +
∞∑

ν j=η j

∞∑

ν1,...,ν j−1,ν j+1...,νn=0

ȳ j,ν1,ν2,...,νn x
ν j
γ j

+∑n
k=1,k 	= j

νk
γk ,

where φ j (x) = ∑�α j �−1
i=0

y(i)
j,0
i ! xi and ȳ j,ν1,ν2,...,νn are known coefficients.

Proof Consider the functions

y j (x) =
∞∑

ν1,ν2,...,νn=0

ȳ j,ν1,ν2,...,νn x
∑n

k=1
νk
γk , j = 1, 2, . . . , n, (3)

satisfying the initial condition of Eq. (1). On the other hand, since the functions p̄ j are
analytic, the functions p j can be written as

p j (x) = p̄ j (x
1/γ1 , x1/γ2 , . . . , x1/γn ) =

∞∑

ν1,ν2,...,νn=0

p̃ j,ν1,ν2,...,νn x
∑n

k=1
νk
γk , (4)

where { p̃ j,ν1,ν2,...,νn }nj=1 are known coefficients. In the sequel, we show that the coefficients
ȳ j,ν1,ν2,...,νn are calculated in such a way that the representation (3) converges and solves the
Eq. (1). Trivially the Eq. (1) is equivalent to the following system of second kind Volterra
integral equations

y j (x) = φ j (x) +
n∑

i=1

a ji J
α j yi (x) + Jα j p j (x), j = 1, 2, . . . , n. (5)

Therefore, assuming uniform convergence and substituting the relations (3) and (4) into
(5), the coefficients ȳ j,ν1,ν2,...,νn satisfy in the following equality

∞∑

ν1,ν2,...,νn=0

ȳ j,ν1,ν2,...,νn x
∑n

k=1
νk
γk

= φ j (x) +
n∑

i=1

∞∑

ν1,ν2,...,νn=0

a ji ȳi,ν1,ν2,...,νn Jα j

(

x
∑n

k=1
νk
γk

)

+
∞∑

ν1,ν2,...,νn=0

p̃ j,ν1,ν2,...,νn Jα j

(

x
∑n

k=1
νk
γk

)

, j = 1, 2, . . . , n.

Using (2) the above equality can be written as

∞∑

ν1,ν2,...,νn=0

ȳ j,ν1,ν2,...,νn x
∑n

k=1
νk
γk

= φ j (x) + ξ j

⎛

⎝
n∑

i=1

∞∑

ν1,ν2,...,νn=0

a ji ȳi,ν1,ν2,...,νn x
∑n

k=1
νk
γk

+α j

+
∞∑

ν1,ν2,...,νn=0

p̃ j,ν1,ν2,...,νn x
∑n

k=1
νk
γk

+α j

⎞

⎠ , j = 1, 2, . . . , n, (6)
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where ξ j = �(
∑n

k=1
νk
γk

+1)

�(
∑n

k=1
νk
γk

+α j+1)
. Substituting ν j = ν j − η j in the both series of the right-hand

side of (6), we obtain

∞∑

ν1,ν2,...,νn=0

ȳ j,ν1,ν2,...,νn x
∑n

k=1
νk
γk

= φ j (x) + ξ̃ j

( n∑

i=1

∞∑

ν j=η j
νk=0,k 	= j

a ji ȳi,ν1,...,ν j−η j ,...νn x
∑n

k=1
νk
γk

+
∞∑

ν j=η j
νk=0,k 	= j

p̃ j,ν1,...,ν j−η j ,...νn x
∑n

k=1
νk
γk

)

, j = 1, 2, . . . , n, (7)

in which ξ̃ j = �(
∑n

k=1
νk
γk

−α j+1)

�(
∑n

k=1
νk
γk

+1)
. Now, we try to obtain the unknown coefficients ȳ j,ν1,ν2,...,νn

by comparing the coefficients of x
ν1
γ1 x

ν2
γ2 ...x

νn
γn on both sides of (7). The results of this

comparison depend on ν j . Clearly for {ν j < η j }nj=1, we have

ȳ j,ν1,ν2,...,νn =

⎧
⎪⎪⎨

⎪⎪⎩

y

(
ν j
γ j

)

j,0(
ν j
γ j

)

!
, ν j = 0, γ j , . . . , (�α j� − 1)γ j , νk = 0, k 	= j,

0 else.

For {ν j ≥ η j }nj=1 and νk ≥ 0, k 	= j , we obtain

ȳ j,ν1,ν2,...,νn = ξ̃ j

(
n∑

i=1

(
a ji ȳi,ν1,...,ν j−η j ,...νn

) + p̃ j,ν1,...,ν j−η j ,...νn

)

, (8)

and thereby the coefficients ȳ j,ν1,ν2,...,νn with ν1 + ν2 + · · · + νn = l, l ≥ η j can be
calculated from (8), such that this calculation requires the knowledge of ȳ j,ν1,ν2,...,νn with
ν1 + ν2 + · · · + νn ≤ l − 1. Therefore, we should first evaluate all the coefficients with
ν1 + ν2 + · · · + νn = η j , then with ν1 + ν2 + · · · + νn = η j + 1, etc. This means that the
series representation (3) solves (1).

Now, it should be proved that this series is uniformly and absolutely convergent in a
neighborhood of the origin. For this purpose, we apply a suitable modification of the well-
knownLindelof’s theorem [17,27]. Consider the following systemof the second kindVolterra
integral equations

Y j (x) = φ̃ j (x) +
n∑

i=1

|a ji |Jα j yi (x) + Jα j |p j (x)|, j = 1, 2, . . . , n,

where φ̃ j (x) = ∑�α j �−1
k=0

xk
k! |y(k)

j,0|. Evidently the right-hand side of the above equation is a
majorant of the right-hand side of the main Eq. (5) and the formal solution {Y j (x)}nj=1 can
be calculated exactly as the previous step such that all of its coefficients are positive. Now
we show that the series expansion of Y j (x) is absolutely convergent for each x ∈ [0, κ j ],
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with some κ j > 0 which is defined in the sequel. To this end, it is sufficient to show that the
finite partial sum of Y j (x) is uniformly bounded over [0, κ j ]. Let

S j,K+1(x) = φ̃ j (x) +
K+1∑

ν j=η j

K+1∑

ν1,...,ν j−1,ν j+1...,νn=0

Ȳ j,ν1,ν2,...,νn x
ν j
γ j

+∑n
k=1,k 	= j

νk
γk ,

is the finite partial sum of Y j (x) for j = 1, 2, . . . , n. The following inequality evidently
holds

S j,K+1(x) ≤ φ̃ j (x) +
n∑

i=1

|a ji |Jα j Si,K (x) + Jα j |p j (x)|, j = 1, 2, . . . , n,

in view of the recursive calculation of the coefficients. More precisely, if we expand the
right-hand side of the above inequality, all coefficients Ȳ j,ν1,...,νn with

∑n
l=1

νl
γl

≤ (K +
1)
(∑n

l=1
1
γl

)
are eliminated from both sides while there will some additional positive terms

remain in the right-hand side with higher order. Considering

D( j)
1 =

�α j �−1
∑

k=0

1

k! |y
(k)
j,0|,

D( j)
2 = max

(x,z1,...,zn)∈[0,1]×[0,2D(1)
1 ]×...×[0,2D(n)

1 ]

[∑n
i=1 |a ji |zi + |p j (x)|

]

�(α j + 1)
,

j = 1, 2, . . . , n,

we define

κ j = min

⎧
⎨

⎩
1,

[
D( j)
1

D( j)
2

] 1
α j

⎫
⎬

⎭
, j = 1, 2, . . . , n.

Now we intend to show that |S j,K (x)| ≤ 2D( j)
1 for 1 ≤ j ≤ n and x ∈ [0, κ j ]. This issue

is done through induction over K . For K = 0, from definition of D( j)
1 we have

S j,0(x) = |y(0)
j,0| ≤ D( j)

1 , j = 1, 2, . . . , n.

For the induction step from K to K + 1, we can write

|S j,K+1(x)| = S j,K+1(x) ≤ φ̃ j (x) +
n∑

i=1

|a ji |Jα j Si,K (x) + Jα j |p j (x)|

≤
�α j �−1
∑

k=0

κk
j

k! |y(k)
j,0| + max

t∈[0,x]

[
n∑

i=1

|a ji |Si,K (t) + |p j (t)|
]

xα j

�(α j + 1)

≤ D( j)
1 + max

t∈[0,x]

[
n∑

i=1

|a ji |Si,K (t) + |p j (t)|
]

xα j

�(α j + 1)

≤ D( j)
1 + κ

α j
j D( j)

2 ≤ 2D( j)
1 , j = 1, 2, . . . , n,

which concludes the uniform boundedness of S j,K+1(x) over [0, κ j ]. Due to positivity of
all its coefficients it is also monotone. Therefore the series expansion of Y j is absolutely
convergent over [0, κ j ] and uniformly convergent on the compact subsets of [0, κ j ) due to the
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power series structure of Y j (x). Finally, Lindelof’s theorem indicates that series expansion
of y j (x) are absolutely and uniformly convergent on the compact subsets of [0, κ j ) too.
Therefore, the interchange of integration and series was done correctly. ��

From Theorem 2, we can conclude that the �α j�th derivative of y j (x) often has a discon-
tinuity at the origin. This difficulty affects accuracy when the classical spectral methods are
implemented to approximate the exact solutions. To overcome this weakness, we apply the
coordinate transformation

x = vγ , t = wγ , v = x
1
γ , w = t

1
γ , (9)

where γ is the least commonmultiple of γ j , and convert the Eq. (5) into the following system
of equations

ŷ j (v) =
n∑

i=1

a ji Ĵ
α j ŷi (v) + Ĵα j p̂ j (v) + φ̂ j (v), j = 1, 2, . . . , n, (10)

where φ̂ j (v) = φ j (v
γ ), p̂ j (v) = p j (v

γ ) and

Ĵα j ŷi (v) = γ

�(α j )

v∫

0

(vγ − wγ )α j−1wγ−1 ŷi (w)dw. (11)

Here ŷ j (v) is the infinitely smooth exact solution of (10) and given by

ŷ j (v) = y j (v
γ )

= φ̂ j (v) +
∞∑

ν j=η j

∞∑

ν1,...,ν j−1,ν j+1...,νn=0

ȳ j,ν1,ν2,...,νn xb j ν j+∑n
k=1,k 	= j bkνk ,

for γ
γ j

= b j ∈ N, j = 1, 2, . . . , n. Consequently, variable transformation (9) regularizes
the solutions and provides the possibility of obtaining the familiar exponential accuracy by
implementing the classical spectral methods. To monitor the effect of this regularization
process on producing high-order approximations for (1), we assume that the assumptions of
Theorem 2 hold in the sequel.

3 Numerical Approach

In this section, we introduce an efficient formulation of Chebyshev Tau approach for approx-
imating the solutions of the transformed Eq. (10). For this purpose, we consider Chebyshev
Tau solutions of (10) as follows

ŷ j,N (v) =
∞∑

i=0

c jiTi (v) = c jT = c jT V , c j = [c j0, c j1, . . . , c j N , 0, . . .], (12)

for j = 1, 2, . . . , n, where T = [T0(v), T1(v), . . . , TN (v), . . .]T is the vector of shifted
Chebyshev polynomial basis with degree (Ti (v)) ≤ i for i ≥ 0 on �. Furthermore, T is a
lower triangular invertible matrix and V = [1, v, v2, . . . , vN , . . .]T . Substituting (12) into
(10) and assuming

φ̂ j (v) =
∞∑

i=0

φ̂ j iv
i = φ

j
V , φ

j
= [φ̂ j0, φ̂ j1, . . . , φ̂ j N , 0, . . .],
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p̂ j (v) � p̂ j,N (v) =
∞∑

i=0

p̂ j iTi (v) = p
j
T = p

j
T V ,

p
j
= [ p̂ j0, p̂ j1, . . . , p̂ j N , 0, . . .],

for j = 1, 2, . . . , n, we can write

c jT V =
n∑

i=1

a ji ciT Ĵα j V + p
j
T Ĵα j V + φ

j
V , j = 1, 2, . . . , n. (13)

Therefore, it suffices to compute { Ĵα j V }nj=1. For this purpose using the relation (2) we
have

Ĵα j V = [ Ĵα j vi ]i≥0 =
[

γ

�(α j )

∫ v

0
(vγ − wγ )α j−1wi+γ−1dw

]

i≥0

=
[

vγα j+i

�(α j )

∫ 1

0
(1 − z)α j−1zi/γ dz

]

i≥0

=
[

�( i
γ

+ 1)

�(α j + i
γ

+ 1)
vγα j+i

]

i≥0

= B j V , j = 1, 2, . . . , n, (14)

with

B j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α jγ
︷ ︸︸ ︷
0 . . . 0 1

�(α j+1) 0 . . .

... 0
�
(
1
γ

+1
)

�
(
α j+ 1

γ
+1

) 0 · · ·
...

... 0
�
(
2
γ

+1
)

�
(
α j+ 2

γ
+1

) 0 · · ·

· · · · · · . . .
. . .

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Inserting (14) into (13) yields

c jT (I − a j jB j )V =
n∑

i=1,i 	= j

a ji ciT B j V + p
j
T B j V + φ

j
V , j = 1, 2, . . . , n,

which can be rewritten as
n∑

i=1

ciA
T
i j T =

(
p
j
BT

j + φ
j
T −1

)
T , j = 1, 2, . . . , n, (15)

where AT
i j = T Ai jT −1, BT

j = T B jT −1 and

Ai j =
{−a jiB j , i 	= j,
I − a j jB j , i = j,

(16)

where I is an identity matrix.
Projecting (15) on the space of 〈T0(v), T1(v), . . . , TN (v)〉 and using the orthogonality

of {Ti (v)}Ni=0, the unknown coefficients satisfy in the following block algebraic system of
order n
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n∑

i=1

cNi

(
AT

i j

)N = pN
j

(
BT

j

)N + φN
j

(
T N )−1

, j = 1, 2, . . . , n, (17)

where the corresponding index N on the top of the matrices and vectors represents the prin-
ciple sub-matrices and sub-vectors of order N + 1 respectively and cNi = [ci0, ci1, . . . , ci N ]
is the unknown vector which can be accessed by solving n(N + 1) × n(N + 1) system of
algebraic Eq. (17).

3.1 Numerical Solvability and Complexity Analysis

In this subsection the numerical solvability as well as the complexity analysis of the resulting
system (17) are studied. In this respect, multiplying both sides of (17) by T N and assuming

c′N
i = cNi T N = [c′

i0, c
′
i1, . . . , c

′
i N ], i = 1, 2, . . . , n, (18)

the following algebraic system of order n(N + 1)

C� = F, (19)

with

C = [c′N
1 , c′N

2 , . . . , c′N
n ], � = (

AN
i j

)n
i, j=1,

and

F =
[
pN
1
T NBN

1 + φN
1

, pN
2
T NBN

2 + φN
2

, . . . , pN
n
T NBN

n + φN
n

]
,

can be obtained. Applying block LU-decomposition for the matrix � we derive

� = LU =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I
L2,1 I
L3,1 L3,2 I

...
...

. . .
. . .

Ln,1 Ln,2 · · · Ln,n−1 I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

U1,1 U1,2 . . . U1,n−1 U1,n

U2,2 U2,3 . . . U2,n

U3,3 . . . U3,n
. . .

...

Un,n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (20)

with the following block matrices of order N + 1

Li,1 = AN
i1(A

N
11)

−1, i = 2, 3, . . . , n,

U1, j = AN
1 j , j = 1, 2, . . . , n,

Ui, j = AN
i j −

i−1∑

r=1

Li,rUr , j , i = 2, 3, . . . , n, j = i, i + 1, . . . , n,

L j+1,i =
(

AN
j+1i −

i−1∑

r=1

L j+1,rUr ,i

)

(Ui,i )
−1, i = 2, . . . , n − 1, j = i, . . . , n − 1.

(21)

From (16), it is obvious that AN
i j is an invertible bi-diagonal upper triangular matrix with

the diagonal entries one for i = j and is a single diagonal upper triangular matrix with
diagonal entries zero for i 	= j . Therefore, from (21) it can be concluded that the following
matrices
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Li, j , i = 2, 3, . . . , n, j = 1, 2, . . . , n − 1,

Ui, j , i, j = 1, 2, . . . , n, i 	= j,

are upper triangular matrices with diagonal entries zero and the matrices {Ui,i }ni=1, are upper
triangular matrices with diagonal entries one. This property is used in the following remark
for justifying the uniquely solvability of the resulting system (19).

Remark 3 From (20) we obtain

det(�) = det(L) × det(U ) =
n∏

i=1

det(Ui,i ) = 1,

which concludes the invertibility of the coefficient matrix � and thereby the linear algebraic
system (19) is uniquely solvable.

Although the above remark indicates that the system (19) has a unique solution, a direct
solution of this system can lead to less accurate approximations, due to high computational
costs for large scale systems or high degree of approximations. In order to avoid this difficulty,
instead of solving (19) directly, we solve the triangular block systemsWU = F andCL = W
separately with W = [w1, w2, . . . , wn]. Due to the structure of block matrix U as well as
non-singularity of the upper triangular matrixUj, j , the unknowns {w j }nj=1 are obtained from
solving the following n systems of upper triangular algebraic equations of order N + 1

w jU j, j =
(
pN
j
T NBN

j + φN
j

)
−

j−1∑

r=1

wrUr , j , j = 1, 2, . . . , n,

and consequently, regarding the structure of block matrix L , the main unknowns {c′N
i }ni=1 are

computed by the following recurrence relation:

c′N
n = wn,

c′N
n− j = wn− j −

n∑

r=(n− j)+1

c′N
r Lr ,n− j , j = 1, . . . , n − 1.

In fact, themain advantage of this approach is to avoid solving the (n(N+1))×(n(N+1))
system (19) directly, and calculating the unknowns by solving n non-singular upper triangular
systems of order N + 1 and a recursive relation. Finally, obtaining {cNi }ni=1, from solving the
lower triangular system (18), the Chebyshev Tau solutions (12) for the transformed system of
Eq. (10) can be calculated. Since the solutions of the main problem (1) and the transformed
problem (10) are equivalent by the relation {ŷ j (v) = y j (vγ )}nj=1, then the approximate
solutions y j,N (x) of the main problem (1) are given by

y j,N (x) = ŷ j,N (x1/γ ), j = 1, 2, . . . , n.

4 Convergence Analysis

The purpose of this section is to analyze convergence properties of the proposed method
and provide suitable error bounds for the approximate solutions in uniform norm. For this
purpose, some of the required preliminaries are given and then the convergence theorem is
proved.
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Definition 4 [8,45]

• The spaceCm(�) form ≥ 0 is the set of allm-times continuously differentiable functions
on �. For m = 0, the space (C(�), ‖.‖∞) is the set of all continuous functions on �

with the uniform norm ‖ f ‖∞ = maxv∈� | f (v)|.
• TheChebyshev-weighted L2-spacewith respect to the shiftedChebyshevweight function

ξ(v) = 1√
v(1−v)

is defined by

L2
ξ (�) = { f : � → R, ‖ f ‖ξ < ∞},

equipped with the norm

‖ f ‖2ξ = ( f , f )ξ =
∫

�

f 2(v)ξ(v)dv,

where (., .)ξ is the Chebyshev-weighted inner product formula.
• The Chebyshev-weighted Sobolev space of order m ≥ 0 is defined by

Hm
ξ (�) = { f : � → R, ‖ f ‖ξ,m < ∞},

equipped with the following norm and semi-norm

‖ f ‖2ξ,m =
m∑

k=0

‖ f (k)‖2ξ , | f |ξ,m = ‖ f (m)‖ξ .

• The L2
ξ -orthogonal Chebyshev projection πN : L2

ξ (�) → PN for the function f ∈
L2

ξ (�) is defined by

( f − πN f , ϕ)ξ = 0, ∀ϕ ∈ PN ,

where PN is the space of all algebraic polynomials with degree at most N .

In the following lemma we present the truncation error πN f − f in the uniform norm.

Lemma 5 [48] For any f ∈ Hμ
ξ (�) with μ ≥ 1, we have

‖eπN f ‖∞ ≤ CN
3
4−μ| f |ξ,μ,

where eπN f = f − πN f is the truncation errors and C is a positive constant independent
of N .

In our analysis we will refer to the following Gronwall’s inequality:

Lemma 6 [18] (Gronwall’s inequality) Suppose that f is a non-negative and locally inte-
grable function satisfying in the following inequality

f (v) ≤ b(v) + d

v∫

0

(v − w)−q f (w)dw, v ∈ �, 0 < q < 1, d ≥ 0,

where b(v) ≥ 0. Then, there exists a constant c dependent on q such that

f (v) ≤ b(v) + c

v∫

0

(v − w)−qb(w)dw, v ∈ �.
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Nowwe are ready to present the fundamental result of this section, which provides suitable
error bounds of the approximate solutions in the uniform norm.

Theorem 7 Assume that {ŷ j,N (v)}nj=1, given by (12) are the Chebyshev Tau solutions of the

transformed Eq. (10). If Ĵα j ŷi ∈ Cμ j i+1(�), Ĵα j p̂ j ∈ Cρ j+1(�) and p̂ j ∈ H
ε j
ξ (�) for

μ j i , ρ j , ε j ≥ 1 and i, j = 1, 2, . . . , n, then for sufficiently large values of N we have

∥
∥ê j,N

∥
∥∞ ≤ C

(
n∑

i=1

N
3
4−μ j i

∣
∣
∣ Ĵα j ŷi

∣
∣
∣
ξ,μ j i

+ N
3
4−ρ j

∣
∣
∣ Ĵα j p̂ j

∣
∣
∣
ξ,ρ j

+ N
3
4−ε j | p̂ j |ξ,ε j

)

,(22)

for j = 1, 2, . . . , n, where ê j,N (v) = ŷ j (v) − ŷ j,N (v) are the error functions and C is a
generic positive constant independent of N .

Proof Implementing the presented approach in the previous section for (10) leads to the
following operator equation

ŷ j,N (v) =
n∑

i=1

a ji πN

(
Ĵα j ŷi,N (v)

)
+ πN

(
Ĵα j p̂ j,N (v)

)
+ πN (φ̂ j (v)), (23)

for j = 1, 2, . . . , n. Subtracting (10) from (23) yields

ê j,N (v) =
n∑

i=1

a ji

(
Ĵα j ŷi (v) − πN

(
Ĵα j ŷi,N (v)

))

+ Ĵα j p̂ j (v) − πN

(
Ĵα j p̂ j,N (v)

)
, j = 1, 2, . . . , n, (24)

in view of considering eπN (φ̂ j (v)) = 0 for sufficiently large values of N . By some simple
calculations, the Eq. (24) can be rewritten as follows

ê j,N (v) =
n∑

i=1

a ji

(
Ĵα j êi,N (v)

)
+ � j , j = 1, 2, . . . , n,

and equivalently we have

ê j,N (v) =
n∑

i=1

(∫ v

0
k ji (v,w)êi,N (w)dw

)

+ � j , j = 1, 2, . . . , n, (25)

where k ji (v,w) = a jiγ

�(α j )
wγ−1(vγ − wγ )α j−1, and

� j =
n∑

i=1

a ji eπN

(
Ĵα j ŷi,N (v)

)
+ eπN

(
Ĵα j p̂ j,N (v)

)
+ Ĵα j eπN

(
p̂ j (v)

)
. (26)

Defining the vectors

Ê(v) = [
ê1,N (v), ê2,N (v), . . . , ên,N (v)

]T
, � = [

�1,�2, . . . ,�n
]T

,

the Eq. (25) is converted to the following matrix formulation

Ê(v) =
∫ v

0
(v − w)

min
1≤l≤n

{αl }−1
K (v,w)Ê(w)dw + �, (27)
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where

K (v,w) =
[

(v − w)
1− min

1≤l≤n
{αl }

ki j (v,w)

]n

i, j=1

=
[
a jiγ

�(α j )
wγ−1(v − w)

α j− min
1≤l≤n

{αl }
(

γ∑

r=1

vγ−rwr−1

)α j−1 ]n

i, j=1
,

is a continuous function on {(v,w) : 0 ≤ w ≤ v ≤ 1}. From (27) we can write

|Ê | ≤ �

∫ v

0
(v − w)

min
1≤l≤n

{αl }−1|Ê(w)|dw + |�|, (28)

where � = max0≤w≤v≤1 |K (v,w)| < ∞. Applying Gronwall’s inequality (i.e., Lemma 6)
in (28) indicates

‖Ê‖∞ ≤ C
∥
∥�

∥
∥∞ ,

and thereby the relation (26) concludes

‖ê j,N (v)‖∞ ≤ C‖� j‖∞

≤ C

(
n∑

i=1

|a ji |‖eπN

(
Ĵα j ŷi,N (v)

)
‖∞

+‖eπN

(
Ĵα j p̂ j,N (v)

)
‖∞ + ‖ Ĵα j eπN

(
p̂ j (v)

) ‖∞
)

,

j = 1, 2, . . . , n. (29)

Using the inequality ‖ Ĵα j f ‖∞ ≤ C‖ f ‖∞ (see [31]), the inequality (29) can be rewritten
as

‖ê j,N (v)‖∞ ≤ C

(
n∑

i=1

|a ji |‖eπN

(
Ĵα j ŷi,N (v)

)
‖∞

+‖eπN

(
Ĵα j p̂ j,N (v)

)
‖∞ + ‖eπN

(
p̂ j (v)

) ‖∞
)

,

j = 1, 2, . . . , n. (30)

Applying Lemma 5, we deduce
∥
∥
∥eπN

(
Ĵα j ŷi,N (v)

)∥
∥
∥∞ ≤ CN

3
4−μ j i | Ĵα j ŷi,N (v)|ξ,μ j i . (31)

Under the assumption Ĵα j ŷi ∈ Cμ j i+1(�) and using the first order Taylor formula, the
inequality (31) implies

∥
∥
∥eπN

(
Ĵα j ŷi,N (v)

)∥
∥
∥∞ ≤ CN

3
4−μ j i

(∥
∥
∥
∥

(
Ĵα j ŷi (v)

)(μ j i )
∥
∥
∥
∥

ξ

+‖êi,N (v)‖∞
∥
∥
∥
∥

(
Ĵα j ŷi (v)

)(μ j i+1)
∥
∥
∥
∥

ξ

)

≤ CN
3
4−μ j i

(
| Ĵα j ŷi (v)|ξ,μ j i + ‖êi,N (v)‖∞

)
,

i, j = 1, 2, . . . , n. (32)
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Also, from Lemma 5, we can conclude

‖eπN ( p̂ j (v))‖∞ ≤ CN
3
4−ε j | p̂ j (v)|ξ,ε j , j = 1, 2, . . . , n, (33)

and again by proceeding the same way as (31)–(32), we derive
∥
∥
∥eπN

(
Ĵα j p̂ j,N (v)

)∥
∥
∥∞ ≤ CN

3
4−ρ j

(
| Ĵα j p̂ j (v)|ξ,ρ j + ‖eπN ( p̂ j (v))‖∞

)

≤ CN
3
4−ρ j

(
| Ĵα j p̂ j (v)|ξ,ρ j + N

3
4−ε j | p̂ j (v)|ξ,ε j

)
, (34)

in view of (33), and the assumption Ĵα j p̂ j ∈ Cρ j+1(�) for j = 1, 2, . . . , n. Inserting the
inequalities (32)–(34) into (30) yields

‖ê j,N (v)‖∞ − C
n∑

i=1

N
3
4−μ j i |a ji |‖êi,N (v)‖∞ ≤ CG j , j = 1, 2, . . . , n, (35)

in which

G j =
n∑

i=1

N
3
4−μ j i

∣
∣
∣ Ĵα j ŷi

∣
∣
∣
ξ,μ j i

+ N
3
4−ρ j

∣
∣
∣ Ĵα j p̂ j

∣
∣
∣
ξ,ρ j

+ N
3
4−ε j | p̂ j |ξ,ε j .

Evidently, the inequality (35) can be written in the following vector-matrix form

Mê ≤ CG, (36)

where

ê = [‖ê1,N‖∞, ‖ê2,N‖∞, . . . , ‖ên,N‖∞]T ,

G = [G1,G2, . . . ,Gn]T ,

and M is a matrix of order n with the following entries

(
M
)n
i, j=1 =

{
1 − CN

3
4−μ j j |a j j |, i = j,

−CN
3
4−μ j i |a ji |, i 	= j .

Therefore, for large values of N , thematrixM tends to the identitymatrix and consequently
the inequality (36) gives

‖ê j,N‖∞ ≤ CG j , j = 1, 2, . . . , n,

which is the desired result. ��

5 Illustrative Examples

In this section, some test problems are solved using the proposed method to confirm its effi-
ciency and applicability. All of the calculations were performed using Mathematica software
v11.2, running in an Intel (R) Core (TM) i5-4210U CPU@2.40 GHz. If we access the exact
solution, the errors are calculated by

‖e j,N‖∞ = max
x∈�

|y j (x) − y j,N (x)|, j = 1, 2, . . . , n,

and if we do not have the exact solution, the errors are estimated by

‖ẽ j,N‖∞ = max
x∈�

|y j,2N (x) − y j,N (x)|, j = 1, 2, . . . , n,
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where y j,2N (x) and y j,N (x) are approximations of the exact solution y j (x), and N is the
degree of approximation.

Example 1 Consider the following problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D3/2
C y1(x) = y1(x) + 3y2(x) − y3(x) + y4(x) + p1(x),

D5/2
C y2(x) = 2y1(x) − y2(x) + 3

2 y3(x) + 5
2 y4(x) + p2(x),

D7/2
C y3(x) = −y1(x) + 3y2(x) + y3(x) + 4y4(x) + p3(x),

D9/2
C y4(x) = y1(x) + 2y2(x) − y3(x) − y4(x) + p4(x),

with zero initial conditions and the following forcing functions

p1(x) = − sin x
3
2 − x2

√
x

(

3 − x + x2 + 6x3 − 4x4 + 1

3
x5
)

+ 3
√

π

4
2F3

({
1

6
,
5

6

}

;
{
1

3
,
2

3
, 1

}

;− x3

4

)

− 45
√

π

64
x32F3

({
7

6
,
11

6

}

;
{
4

3
,
5

3
, 2

}

;− x3

4

)

,

p2(x) = 15�
( 1
2

)

8
+ 231�

( 7
2

)

8
x3 − 2 sin x

3
2

+ x2
√
x

(

1 − 3

2
x − 5

2
x2 + 2x3 − 6x4 − 5

6
x5
)

,

p3(x) = 105�
( 1
2

)

16
+ 3003�

( 7
2

)

8
x3 + sin x

3
2

− x2
√
x

(

3 + x + 4x2 + 6x3 + 4x4 + 4

3
x5
)

,

p4(x) = 945�
( 1
2

)

32
+ 15015�

( 7
2

)

64
x3 − sin x

3
2

+ x2
√
x

(

−2 + x + x2 − 4x3 + 4x4 + 1

3
x5
)

,

where θ Fτ

({a1, . . . aθ }; {b1, . . . , bτ }; z
)
is the generalized hypergeometric function.

The exact solutions are given by

y1(x) = sin x
3
2 , y2(x) = x2

√
x
(
1 + 2x3

)
,

y3(x) = x3
√
x
(
1 + 4x3

)
, y4(x) = x4

√
x
(
1 + 1

3
x3
)
,

with the following asymptotic behaviors near the origin

y1(x) = O(x3/2), y2(x) = O(x5/2), y3(x) = O(x7/2), y4(x) = O(x9/2),

which are coincident with the results obtained in Theorem 2.

123



6 Page 16 of 25 Journal of Scientific Computing (2020) 82 :6

Table 1 Obtained errors for Example 1 with different values of N

N
∥
∥e1,N

∥
∥∞

∥
∥e2,N

∥
∥∞

∥
∥e3,N

∥
∥∞

∥
∥e4,N

∥
∥∞ CPU-time

10 2.04 × 10−3 5.77 × 10−1 – 8.33 × 10−2 0.25

20 4.17 × 10−5 6.41 × 10−16 9.84 × 10−16 2.77 × 10−16 0.48

30 4.27 × 10−9 6.41 × 10−16 9.84 × 10−16 2.77 × 10−16 0.71

40 1.12 × 10−13 6.41 × 10−16 9.84 × 10−16 2.77 × 10−16 1.17

50 4.49 × 10−16 6.41 × 10−16 9.84 × 10−16 2.77 × 10−16 1.70

Applying the variable transformation (9) for this problem with γ = 2, the transformed
Eq. (10) becomes as follows

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ŷ1(v) = Ĵ 3/2 ŷ1(v) + 3 Ĵ 3/2 ŷ2(v) − Ĵ 3/2 ŷ3(v) + Ĵ 3/2 ŷ4(v) + Ĵ 3/2 p̂1(v),

ŷ2(v) = 2 Ĵ 5/2 ŷ1(v) − Ĵ 5/2 ŷ2(v) + 3

2
Ĵ 5/2 ŷ3(v) + 5

2
Ĵ 5/2 ŷ4(v) + Ĵ 5/2 p̂2(v),

ŷ3(v) = − Ĵ 7/2 ŷ1(v) + 3 Ĵ 7/2 ŷ2(v) + Ĵ 7/2 ŷ3(v) + 4 Ĵ 7/2 ŷ4(v) + Ĵ 7/2 p̂3(v),

ŷ4(v) = Ĵ 9/2 ŷ1(v) + 2 Ĵ 9/2 ŷ2(v) − Ĵ 9/2 ŷ3(v) − Ĵ 9/2 ŷ4(v) + Ĵ 9/2 p̂4(v),

(37)

with the following infinitely smooth exact solutions

ŷ1(v) = sin v3, ŷ2(v) = v5(1 + 2v6),

ŷ3(v) = v7(1 + 4v6), ŷ4(v) = v9
(

1 + 1

3
v6
)

.

The transformed Eq. (37) is numerically solved via the proposed scheme and the obtained
results are given in Table 1. Obtained numerical errors as well as the CPU-time (s) are
reported in Table 1 for different values of N . Indeed, the reported results confirm that the
proposed smoothing process removes the existence discontinuity in the derivatives of the
exact solutions and produces the reliable approximate solutions, especially for large values
of N in a very short CPU time.

Example 2 [41] Consider the following problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D1/2
C y1(x) = y1(x) + y2(x) + y3(x),

D1/2
C y2(x) = 2y1(x) + y2(x) − y3(x),

D1/2
C y3(x) = −y2(x) + y3(x),

y1(0) = 1, y2(0) = 2, y3(0) = 3,

(38)

where the exact solutions are given by

y1(x) = −4

3
E 1

2
(−√

x) + 7

3
E 1

2
(2

√
x),

y2(x) = 16

9
E 1

2
(−√

x) + 2

9
E 1

2
(2

√
x) + 7

3

√
x E ′

1
2
(2

√
x),

y3(x) = 8

9
E 1

2
(−√

x) + 19

9
E 1

2
(2

√
x) − 7

3

√
x E ′

1
2
(2

√
x),

where Eδ(x) is the one parameter Mittag-Leffler function [31]. Clearly, the exact solutions
are non-smooth at the origin with the asymptotic behavior O(

√
x). This problem is solved

by using the proposed approach, and the obtained results are reported in Table 2 and Fig. 1.
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Table 2 Obtained errors for
Example 2 with different values
of N

N
∥
∥e1,N

∥
∥∞

∥
∥e2,N

∥
∥∞

∥
∥e3,N

∥
∥∞ CPU-time

30 3.29 × 10−4 5.29 × 10−3 4.96 × 10−3 0.20

40 1.24 × 10−7 2.6 × 10−6 2.48 × 10−6 0.25

50 1.5 × 10−11 3.89 × 10−10 3.74 × 10−10 0.34

60 4.6 × 10−14 1.82 × 10−13 1.65 × 10−13 0.42

70 4.73 × 10−14 1.96 × 10−13 1.33 × 10−13 0.48

Fig. 1 Semi-log representation of the numerical errors of Example 2 versus N

To compute the numerical errors, 100-terms of the Mittag-Leffler functions are considered.
The presented numerical results indicate the well performance of the proposed scheme in
approximating the solutions of (38), especially for large values of N in a very short CPU time.
Furthermore, from Fig. 1, the predicted exponential like rate of convergence in Theorem 7
can be confirmed due to the linear variations of semi-log representation of errors versus N .
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Table 3 Obtained errors of the hybrid scheme in [20] for Example 3 with degree of approximation N = 4
and m subintervals

α = 1/4 α = 1/2 α = 2/3

m Maximum error m Maximum error m Maximum error

15 2.11 × 10−6 26 1.94 × 10−7 32 5.53 × 10−8

34 1.45 × 10−7 59 1.27 × 10−8 71 3.58 × 10−9

75 9.43 × 10−9 128 8.13 × 10−10 155 2.28 × 10−10

166 6.00 × 10−10 278 5.14 × 10−11 331 1.44 × 10−11

Example 3 [20] Consider the following system of FDEs
⎧
⎪⎨

⎪⎩

Dα
C y1(x) = y2(x),

Dα
C y2(x) = −y1(x) − y2(x) + xα+1 + π csc(πα)x1−α

�(−α−1)�(2−α)
+ πx csc(πα)

�(−α−1) ,

y1(0) = 0, y2(0) = 0,

where the exact solutions are

y1(x) = x1+α, y2(x) = πα(α + 1) csc(πα)

�(1 − α)
x .

Wehave solved this problem via the proposed scheme for values α = 1
4 ,

1
2 ,

2
3 and obtained

the exact solutions for degree of approximation N ≥ 5. On the other hand, this problem was
evaluated in Ref. [20] by applying a hybrid numerical method. In this method, after dividing
the integration domain� intom subintervals, the approximate solutions were considered as a
linear combination of non-polynomials in a neighborhood of the origin, and by polynomials
in the rest of domain. The presented results in Ref. [20] for various values α and m are listed
in Table 3. The listed results in Table 3 approve that our method provides more accurate
approximations in comparison with the scheme mentioned in [20].

5.1 Application

The following three examples are intended to illustrate the applicability of the proposed
scheme in approximating the solutions of some real life and practical problems.

First we consider well-known multi-term Bagley-Torvik equation which has wide appli-
cations in engineering. This equation appears in modelling of the movement of a thin, rigid
plate in a viscous Newtonian fluid, and the plate is attached to a fixed point via a spring with
certain spring constant [3]. Another application of this equation can be seen in studying the
performance of a Micro-Mechanical system (MEMS) instrument that is used in measuring
the viscosity of fluids that are encountered during oil well exploration [21].

Example 4 Consider the following Bagley-Torvik equation
{
Ay′′(x) + BD3/2

C y(x) + Cy(x) = g(x),

y(0) = d0, y′(0) = d1,
(39)

in which the constants A, B, C and the function g(x) are known.

Here we set A = C = 1, B = β
√

π , g(x) = 0, y(0) = 1 and y′(0) = 0 which is
considered in [21] to study the performance of the MEMS system. In this case, the exact
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Table 4 Obtained errors for
Example 4 with different values
of N and β = 1

5

N ‖y − yN ‖∞ CPU-time

10 4.13 × 10−4 1.18

20 1.93 × 10−8 1.21

30 9.23 × 10−14 1.73

40 1.87 × 10−16 1.98

Fig. 2 Semi-log representation of the numerical errors of Example 4 versus N with β = 1
5

solution is given by

y(x) = 1 −
∞∑

i=0

∞∑

j=0

(−1) j (−β
√

π)i (i + j)!x2+2 j+ i
2

i ! j ! (2 + 2 j + i
2

)
�

(

2 + 2 j + i

2

) .

From [17], it can be seen that the main problem (39) is equivalent with the following
constant coefficients system of multi-order FDEs

⎧
⎪⎨

⎪⎩

D3/2
C y1(x) = y2(x),

D1/2
C y2(x) = −y1(x) − β

√
π y2(x),

y1(0) = 1, y′
1(0) = 0, y2(0) = 0,

(40)

with y1(x) = y(x).We solve (40) using the presentedmethod and consider yN (x) = y1,N (x)
as the approximate solution of theBagley-Torvik equation (39). The obtained results are given
in Table 4 and Fig. 2 which demonstrates the effectiveness and applicability of the proposed
scheme.

As the second practical example, we consider the following system of multi-order FDEs
which arises frommodelling of a linear electrical circuit shown in Fig. 3. This circuit consists
of resistors, inductors, capacitors, voltage sources with known capacitances C j , inductances
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Fig. 3 Electrical circuit

Table 5 Obtained errors for Example 5 with different values of N

N
∥
∥ẽ1,N

∥
∥∞

∥
∥ẽ2,N (x)

∥
∥∞

∥
∥ẽ3,N

∥
∥∞

∥
∥ẽ4,N

∥
∥∞ CPU-time

10 1.52 × 10−2 1.87 × 10−3 3.76 × 10−2 3.23 × 10−2 0.04

20 3.58 × 10−4 4.9 × 10−4 1.27 × 10−3 2.63 × 10−4 0.07

30 3.55 × 10−6 3.64 × 10−6 1.27 × 10−5 1.49 × 10−6 0.11

40 2.62 × 10−8 2.02 × 10−8 7.35 × 10−8 1.62 × 10−8 0.18

50 9.23 × 10−11 8.18 × 10−11 2.74 × 10−10 7.03 × 10−16 0.28

60 2.6 × 10−13 2.12 × 10−13 7.11 × 10−13 2.11 × 10−13 0.48

70 5.35 × 10−16 4.05 × 10−16 1.35 × 10−15 4.86 × 10−16 0.68

L j , voltages on the capacitances VC j , sources voltages VE j , currents i j for j = 1, 2 and
resistances Rl for l = 1, 2, 3.

Example 5 [28] Consider the following problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dα1
C VC1(x) = 1

C1
i1(x),

Dα2
C VC2(x) = 1

C2
i2(x),

Dα3
C i1(x) = − 1

L1
VC1(x) − (R1+R3)

L1
i1(x) + R3

L1
i2(x) + VE1

L1
,

Dα4
C i2(x) = − 1

L2
VC2(x) + R3

L2
i1(x) − (R2+R3)

L2
i2(x) + VE2

L2
,

VC1(0) = d1, VC2(0) = d2, i1(0) = d3, i2(0) = d4,

with α j = j
5 for 1 ≤ j ≤ 4. Here we set the parameters C1 = 3, C2 = 2, L1 = 5, L2 = 7,

R1 = R3 = 5/3, R2 = 11/6, VE1 = 3, VE2 = 6 and d1 = d2 = d3 = d4 = 0.

This problem is evaluated by the proposed approach, and the results are reported in Table 5
and Fig. 4.

The numerical results show that the estimated errors are decreased as the degree of approx-
imation N is increased.Moreover, decay of the errors for large values of N in a very short CPU
time reveals the well-posedness of the proposed approach in approximating the solutions of
this problem.

The next practical example is a fractional model of the Bloch equation which is used to
study the spin dynamics and magnetization relaxation, in the simple case of a single spin
particle at resonance in a static magnetic field.
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Fig. 4 Semi-log representation of the numerical errors of Example 5 versus N

Example 6 [33] Consider the following time fractional Bloch equations (TFBE)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
CMx (t) = ω′

0My(t) − Mx (t)

T ′
2

,

Dα
CMy(t) = −ω′

0Mx (t) − My(t)

T ′
2

,

Dα
CMz(t) = M0 − Mz(t)

T ′
1

,

Mx (0) = c1, My(0) = c2, Mz(0) = c3, 0 < α ≤ 1,

where 1/T ′
1 = τ 1−α

1 /T1, 1/T ′
2 = τ 1−α

2 /T2 and ω′
0 = ω0/τ

α−1
2 are parameters with the

unit of (sec)−α . Here Mx (t), My(t) and Mz(t) represent the system magnetization (x , y,
and z components), T1 is the spin-lattice relaxation time, T2 is the spin-spin relaxation time,
M0 is the equilibrium magnetization, c1, c2 and c3 are given constants, ω0 is the resonant
frequency given by the Larmor relationship ω0 = σ B0, where B0 is the static magnetic field
(z-component) and σ/2π is the gyromagnetic ratio (42.57 MHz/Tesla for water protons).

We set the parameters α = 1/6, T ′
1 = 1, T ′

2 = 3/2, M0 = 2, c1 = 0, c2 = 2, c3 = 0
and ω0 = 4π/15, and solve the problem via the proposed approach. The numerical results
are presented in Table 6 and Fig. 5, which justify efficiency and reliability of the proposed
scheme. Indeed, Fig. 5 indicates that the familiar spectral accuracy is achieved because the
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Table 6 Obtained errors for Example 6 with different values of N

N
∥
∥ẽ1,N

∥
∥∞

∥
∥ẽ2,N

∥
∥∞

∥
∥ẽ3,N

∥
∥∞ CPU-time

30 1.38 × 10−2 1.31 × 10−2 2.13 × 10−3 0.04

40 1.41 × 10−3 4.88 × 10−4 8.46 × 10−5 0.09

50 8.15 × 10−5 8.08 × 10−6 2.34 × 10−6 0.12

60 2.88 × 10−6 1.69 × 10−6 4.82 × 10−8 0.20

70 6.04 × 10−8 8.70 × 10−8 7.73 × 10−10 0.25

80 4.66 × 10−10 2.66 × 10−9 9.97 × 10−12 0.39

90 1.46 × 10−11 5.50 × 10−11 1.06 × 10−13 0.45

100 6.46 × 10−13 7.74 × 10−13 9.63 × 10−16 0.53

Fig. 5 Semi-log representation of the numerical errors of Example 6 versus N

logarithmic representation of the errors has almost linear behavior versus N . Furthermore,
the reported errors as well as the CPU time used, especially for large values of N approve
that our implementation process prevents the growth of the rounding errors and its effect on
destroying the error of the method.
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6 Conclusion

In this paper an efficient formulation of the Chebyshev Tau method for approximating the
solutions of constant coefficients system of multi-order FDEs was developed and analyzed.
To monitor the smoothness properties of the exact solutions, series representations of the
solutions near the origin were obtained which indicate that some derivatives of the exact
solutions may suffer from a discontinuity at the origin depending on the fractional derivative
orders. To fix this weakness and make the Chebyshev Tau method applicable for obtaining
high-order approximation, a regularization strategy proceeded. Convergence analysis of the
presented scheme was also investigated, and effectiveness and reliability of the proposed
approach were confirmed using some illustrative examples.
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